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Looking for event horizons using UV-IR relations
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A primary goal in holographic theories of gravity is to study the causal structure of spacetime from the field
theory point of view. This is a particularly difficult problem when the spacetime has a nontrivial causal
structure, such as a black hole. We attempt to study causality through the UV-IR relation between field theory
and spacetime quantities, which encodes information about bulk position. We study the UV-IR relations for
charged black hole spacetimes in the AdS-CFT correspondence. We find that the UV-IR relations have a
number of interesting features, but find little information about the presence of a horizon in the bulk. The scale
of Wilson loops is simply related to radial position, whether or not there is a horizon. For time-dependent
probes, the part of the history near the horizon only affects the late-time behavior of field theory observables.
Static supergravity probes have a finite scale size related to radial position in generic black holes, but there is
an interesting logarithmic divergence as the temperature approaches zero.
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I. INTRODUCTION

Resolving the long-standing problems associated w
black holes in quantum gravity seems to require a rad
shift in our understanding of spacetime causal structure.
lographic theories of gravity, such as the AdS conform
field theory~CFT! correspondence@1–3#, seem to offer such
a change in viewpoint. The true, fundamental causal st
ture of the theory is the fixed background causal structur
a d-dimensional field theory. The dynamical spacetime
scription is supposed to emerge from this underlying fi
theory in some approximation. Since spacetime has m
dimensions than the space the field theory lives in, the
coding of information about the dynamical spacetime sho
be quite subtle. Understanding how the spacetime, espec
its causal structure, are encoded in the field theory is on
the main open questions about these models. The aim of
paper is to see to what extent non-trivial causal structu
such as a black hole horizon, affect the values of sim
gauge theory observables. We find that the causal struc
near an event horizon does not appear in an obvious wa
these observables.

In the AdS-CFT correspondence, the introduction o
source probe in the bulk will be reflected in a change
one-point functions in the field theory@4–6# ~higher-point
functions are also needed to resolve some probes; see
@7,8#!. The holographic nature of the correspondence is
flected in a UV-IR relation between the radial position of t
probe and the characteristic scale of the one-point functio
the field theory@9,10#. In the AdS5-CFT4 case, this can be
expressed as a distance-distance relationship

dxi5
AgY M

2 N

U
~1!
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~i.e., a source at radiusU in AdS5 corresponds to perturbing
the field theory in a region of sizedxi) @10#. Here,U is the
radial coordinate in a Poincare´ coordinate system, such tha
U→` at the boundary of AdS. Hence~1! relates large dis-
tances in spacetime~the IR! to short distances in the field
theory ~the UV!.

In pure AdS5, this relationship follows from the isometr
xi→lxi ,U→l21U in the bulk. The UV-IR relationship has
also been studied for more general metrics with Poinc´
invariance in the directions parallel to the boundary. It
used to relate non-trivial solutions of this form to renorm
ization group flows in the dual field theory~a huge industry
now; early works are@11–14#!. However, the class of space
times for which the description of bulk position in fiel
theory terms is understood is still very limited. One of t
goals of our paper is to attempt to extend the understand
of this relation for the simplest examples of spacetimes w
a non-trivial causal structure.

In the relation~1!, U→0 is mapped to diverging scal
size in the field theory. From the spacetime point of vie
U50 in Poincare´ coordinates is an event horizon, and o
can think of the divergence in the scale size as reflecting
one-way nature of the horizon: particles at the event hori
cannot move to largerU, and an infinite scale excitation
cannot return to smaller scale. As we will review in Sec.
at least in pure AdS, the relation~1! provides a connection
between spacetime and field theory causality through
spacetime@15#.

We would like to know if this connection between th
UV-IR relation and causality can be generalized. A simp
question to ask is whether the horizon of a black hole is a
associated with an infinite scale size in the CFT. We w
consider a variety of probes of black hole spacetimes,
find that the characteristic scale in the field theory desc
tion of time-independent probes is typically finite, even wh
they are very close to the horizon. Considering tim
dependent probes is more complicated, but we argue tha
scale size diverges at late times, although the leading be
ior is not directly related to the black hole structure.
©2001 The American Physical Society23-1
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JAMES P. GREGORY AND SIMON F. ROSS PHYSICAL REVIEW D63 104023
The example that we study is a charged black hole
AdS. Considering charged black holes allows us to hav
large separation between the horizon size and the the
scale. In an uncharged black hole, the standard relation~1!,
and some probe calculations, would assign a scale size w
is of the order of the thermal scale when a probe is at
black hole horizon. We would like to investigate if this co
nection between the horizon and the thermal scale per
when there are other scales in the problem, or if we can
some sign of a divergent scale associated with the horiz
The presence of charge allows us to see which bound
scales are related to the thermal fluctuations in the ga
theory and which depend on the scale set by the black
horizon.

The black holes we study are the toroidal ‘‘Reissn
Nordström AdS’’ black holes. In the case of AdS5, these
black holes can be obtained from the near horizon limit
spinning D3 branes@16#. Therefore the associated dual fie
theory is the world-volume theory on these branes.
@16,17#, the thermodynamic properties of charged Reissn
Nordström AdSn11 black holes was investigated. They co
sidered both spherical black holes, with the boundaryR
3Sn21, and toroidal black holes, where the asympto
boundary isRn. From the point of view of thermodynamics
the spherical black holes are more interesting, but to ana
UV-IR relations, we will focus on the simpler case of toro
dal black holes. These can be obtained as the infinite volu
limit of the spherical black holes. The metric for these bla
holes is

ds252V~U !dt21
dU2

V~U !
1

U2

R2 (
i 51

n21

dxi
2 , ~2!

where

V~U !5
U2

R2
2

m

Un22
1

q2

U2n24
. ~3!

We work in units wherel s51, soR5(gY M
2 N)1/4. The hori-

zon radius,UT , is given byV(UT)50, and the temperatur
T is related to the periodb in Euclidean time by

b5
1

T
5

4p

V8~UT!
5

4pR2UT
2n23

nUT
2n222~n22!q2R2

. ~4!

The black hole will be extremal (T50, and the horizons
coincide! at UT5Ue , whereUe

2n225(n22)R2q2/n. It was
shown in@16# that these black holes are thermodynamica
stable ~in both the canonical and the grand canonical
sembles! for arbitrary values of the mass and charge, so
black hole solutions carry information about the CFT in t
corresponding ensemble. We will focus on the case of Ad5,
that is,n54.

It was further shown in@18# that the spherical black hol
solutions in the AdS53S5 context will not have superradian
modes, as the internalS5 rotates at a speed less than t
speed of light everywhere in the spacetime. It is easy
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extend their argument to the toroidal black holes. T
charged black hole~2! is derived from the reduction ansat

ds25gmndxmdxn1(
i 51

3

@dm i
21m i

2~df i1Amdxm!2# ~5!

wheregmn is the five-dimensional metric,m i are the direc-
tion cosines andf i are the rotation angles on theS5. Non-
zeroAt gives the electric potential

A5„F~UT!2F~U !…dt, where F~U !5
q

U2
. ~6!

The norm of the Killing vector fieldk5]/]t with respect to
our ten dimensional metric is

k252S 12
UT

2

U2D FU2S 12
U2

2

U2 D 1S 12
U2

2

UT
2 D ~UT

21U2
2 !G ,

~7!

where U2 is the inner horizon. We see thatk2 is always
negative outside the black hole horizon, and thus superr
ance cannot occur for the toroidal black hole.

A useful rewriting of the metric~2! is

ds25
R2

U2

dU2

f ~U !
1

U2

R2 F2 f ~U !dt21(
i 51

3

dxi
2G , ~8!

f ~U !512~11u!
UT

4

U4
1u

UT
6

U6
, ~9!

where we have defined a dimensionless parameteu
5q2R2/UT

6 ; for the uncharged black holeu50, while the
extremal black hole hasu52. The caseu5UT50 is pure
AdS5 in Poincare´ coordinates, where Eq.~1! is valid.

After reviewing the connection between Eq.~1! and cau-
sality in Sec. II, we move on to consider specific probes
this black hole background. We begin with a discussion
Wilson loops in Sec. III. We find that the qualitative beha
ior of the loop expectation values is independent of
charge, and the non-trivial physics associated with the p
ence of a black hole appears at a scale given by Eq.~1!. That
is, the characteristic scale for these observables is the inv
horizon size, and is not in general related to the temperat
We then go on to discuss supergravity probes in Sec. IV.
find that the scale of the expectation value for tim
dependent probes diverges at late times, but the expecta
value is primarily determined by the asymptotic metric. W
study the small contribution from the near-horizon region
the BTZ metric, and argue that it is spatially constant. F
static supergravity probes, there is a finite scale size ass
ated with the horizon in general. The scale size associa
with the static propagator diverges like ln(T) in the extremal
limit T→0. This behavior provides the main element of su
prise in the paper, and it would be very interesting to gai
better understanding of this logarithmic dependence from
field theory point of view.
3-2



er
e
ld
u
o

l-
i

re

e-
th

de

n’
fie
au

ld
ca
e

ck
n

w
n
o

th
b

si-
tion
he
te

hat
tion

of
n-
ug-
dia-
ial
One
at it
ra-
ius,

he
the
es

we
he
e-

n

d-

r-
his

ike

ra-

he
e
a-
at
a

LOOKING FOR EVENT HORIZONS USING UV-IR RELATIONS PHYSICAL REVIEW D63 104023
In addition to addressing the implications for our und
standing of bulk causality, we will briefly comment on th
physical significance of these UV-IR relations from the fie
theory point of view, and remark on the relation to previo
work @19,20# which studied the Euclidean rotating brane s
lutions as models for pure gauge theories.

We conclude in Sec. V with a discussion of the difficu
ties in identifying the origins of spacetime causal structure
the gauge theory, and some speculations for future di
tions.

II. UV-IR RELATIONS IN BLACK HOLE SPACETIMES

To begin our investigation of the UV-IR relation in spac
times with horizons, we review the connection between
UV-IR relation and causality in pure AdS proposed in@15#.
In pure AdS, the condition for a bulk probe to move insi
the light cone in the radial direction is

2
U2

R2 dt21
R2

U2 dU2<0. ~10!

For a supergravity probe, the UV-IR relation~1! implies that
Eq. ~10! is equivalent to

Uddxi

dt U<1, ~11!

which is just the statement that the field theory excitatio
size cannot change faster than the speed of light in the
theory. This thus connects the causality of AdS to the c
sality of the space the field theory lives in.

It would be interesting to see if a similar relation cou
exist for black hole spacetimes, through a suitable modifi
tion of the UV-IR relation~1!. In a black hole spacetime, th
condition ~10! is modified to

2
U2

R2 f ~U !dt21
R2

U2f ~U !
dU2<0. ~12!

We could derive a candidate UV-IR relation on the bla
hole spacetime by assuming that this spacetime conditio
still equivalent to the kinematical condition~11!. If we as-
sume a UV-IR relationship of the formdxi5g(U), then Eq.
~11! would imply

UdU

dt U<U dU

dg~U !
U. ~13!

Requiring that this condition is equivalent to Eq.~12! gives

Udg~U !

dU U5 R2

U2f ~U !
. ~14!

This can be solved exactly for the black hole spacetimes
are considering, but the important feature is how the bou
ary scale size behaves for a probe near the black hole h
zon. The behavior differs according to whether or not
black hole is extremal, but in both cases the scale size
comes infinite as the black hole horizon is approached:
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R2

2~22u!
ln~U2UT!, ~15!

u52⇒dxi;
R2

12

1

U2UT
. ~16!

Thus, a diverging scale size for probes at finite radial po
tion would be a signature of a horizon, under the assump
that bulk causality arises from a kinematical restriction in t
field theory. This is the main prediction we will investiga
in our discussion of the probes.

In studies of the uncharged black holes, it was found t
sources near the black hole horizon produced expecta
values with a scaledxi;1/T, where T is the temperature
@4,21,22#. It was proposed that the physical interpretation
this is that probes which fall into the horizon become e
tangled with the thermal bath in the gauge theory. This s
gests that the presence of finite-temperature Hawking ra
tion acts as a barrier to our ability to probe the non-triv
classical causal structure in the region near the horizon.
reason for our extension to the charged black holes is th
enables us to consider black holes of arbitrarily low tempe
ture, and separate the thermal scale from the horizon rad
allowing us to study this issue further.

III. WILSON LOOP CALCULATIONS

The expectation value of a Wilson loop operator in t
field theory is related by the AdS-CFT correspondence to
action for a string worldsheet in the bulk which terminat
on the path of the Wilson loop on the boundary@23,24#. This
makes this a very convenient observable to consider, as
can investigate its leading-order behavior by finding t
minimal-area surface for the string worldsheet. The symm
tries of the metric~8! lead us to consider rectangular Wilso
loops with two long sides, and a separationL between them.
The long sides lie either along thet direction ~timelike Wil-
son loops! or along one of thexi directions~spacelike Wilson
loops!.

A. Timelike Wilson loops

We wish to consider Wilson loop operators in the boun
ary theory, where the loopC forms a rectangle with two long
sides extended along thet direction, of lengtht0, and two
sides of lengthL along one of thexi directions. From the
field theory point of view, the value of this operator dete
mines the potential of an external quark-antiquark pair. T
potential was obtained in@23,24# for the vacuum~pure AdS!.
The expectation value of the Wilson loop behaves l
^W(C)&;exp(2t0E) in the limit t0→`, whereE5V(L) is
the lowest possible energy of the quark-antiquark configu
tion. For largeN and largegY M

2 N, this expectation value is
given by^W(C)&;exp(2S), whereS is the Nambu-Goto ac-
tion for a fundamental string worldsheet which joins t
boundary at the loopC ~we must also subtract the infinit
mass of theW boson to regularize this supergravity calcul
tion!. This calculation was extended to the field theory
finite temperature by considering a string worldsheet in
3-3
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Schwarzschild-AdS background in@22,21#.1 In pure AdS, the
quark-antiquark potential isV}2(gY M

2 N)1/2/L, as expected
by conformal invariance. At finite temperature, the smalL
behavior is similar, but screening sets in andV50 at L
;1/T, whereT is the temperature.

Our objective is to investigate the quark-antiquark pot
tial obtained from the string worldsheet in the charged A
black hole background. We begin with the metric~8!, and
calculate the string worldsheet area from the Nambu-G
action
te
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ite
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o

.

ud

pa

e
et
et

c
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-

to

S5
t0

2pE dxA~]xU !21
U4

R4
f ~U !. ~17!

We are working in the static gauget5t, s5x for the string
worldsheet coordinates, wherex is the position in the bound
ary direction along which the quarks are separated. This
tion is independent ofx, so we can calculatex from the
Euler-Lagrange equations to find
x5
R2

UT
aA12~11u!a41ua6E

1

Ua/UT y2dy

A~y221!~y22a2!~y41a2y22ua4!~y41y22ua6!
. ~18!
p

no-

per
y
on-
n-
o-

on-
We have introduced a dimensionless parametera5UT /U0,
where U0 is the minimum value of the radial coordina
along the string worldsheet in AdS. We see thatx50 at U
5U0, so the string profile is symmetric aboutx50. Further-
more, the separation of the quarks is given byL52x(U
5`). We wish to calculate the energy, which is naı¨vely
given byS/t0, whereS is the action~17! integrated over the
range 2L/2<x<L/2. However, as was pointed out i
@23,24# and subsequent works, this would give an infin
result due to the contribution from the mass of the W-bos
We must therefore regularize the expression by only integ
ing up toU5Umax, and subtracting the regularized mass
the W-boson,Umax/(2p). Taking our cutoff to infinity, we
then find the solution for the energy

E5
UT

pa F E
1

`S A~y22a2!~y41a2y22ua4!

A~y221!~y41y22ua6!
21D

3dy211aG . ~19!

We can only evaluate this integral by numerical methods
we plot E/UT againstLUT /R2, the only free variable isu,
which specifies the charge on the black hole. We can st
the effect of the charge by varyingu. The results obtained in
the uncharged case have been reproduced here for com
tive purposes in Fig. 1. The typical behavior ofE vs L for a
charged black hole~plotted here is the caseu51) is given in
Fig. 2, and the behavior for the extremal black hole is giv
in Fig. 3. It should be noted that in these plots the param
a is not plotted over the complete range, as numerical m
ods to solve the integral break down whena is close to 0 or
1. However, the behavior of theE vs L plot in the unplotted
regions can be observed from studyingL andE separately as
functions ofa. As a→0, L→0 andE→2`. With a in-

1A review of Wilson loops from the string/gauge corresponden
can be found in@25# which includes extensive references.
.
t-
f

If

y

ra-

n
er
h-

creasing from 0, theE vs L plot rises smoothly to the cus
with increasingL and increasingE, at which point bothL
andE begin to decrease along the upper branch. This mo
tonic decreasing behavior inL and E continues untila51
where bothL andE are zero.

In the uncharged case, it was remarked that the up
branch ~with E>0) is unphysical. The potential energ
shown in the graph is the energy of a U-shaped string c
figuration hanging into the bulk. There is an alternative co
figuration, a pair of strings hanging straight down to the h
rizon. This second configuration has zero energy~after we
subtract theW boson mass contribution!, so when the energy
of the U-shaped configuration is greater than zero, this c

e
FIG. 1. E vs L plot for uncharged black hole (u50).
3-4
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LOOKING FOR EVENT HORIZONS USING UV-IR RELATIONS PHYSICAL REVIEW D63 104023
figuration is no longer energetically favorable and we p
over to the other. We should therefore only consider
section of theE vs L curves with negative energy. Where th
curve crosses the axis, the potential becomes constant. F
the point of view of gauge theory, this corresponds to

FIG. 2. E vs L plot for charged black hole (u51).

FIG. 3. E vs L plot for extremal black hole (u52).
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screening of the quark charge by the plasma in the fi
theory which carries the energy of the thermal state.

We see that the qualitative behavior of the potential
mains the same as the charge of the black hole is increa
The separation at which screening sets in increases slig
but the overall scale is still set by the horizon radiusUT .
This is reasonable from the point of view of the field theo
since we interpret this screening as due to polarization in
plasma in the field theory which carries the energy density
this state~which corresponds to the black hole mass from
spacetime point of view!. In the charged black hole case, th
energy density goes likeUT , and not like the temperature
Even in the extremal,T→0 limit, there is still a finite energy
density, which is responsible for the screening behavior
Fig. 3.

It is interesting to observe that the maximum value of t
parametera for which E is negative increases from;0.66 in
the uncharged case to 1 in the extremal charged case. Th
as we increase the charge, the string worldsheet pro
deeper into the interesting region near the horizon before
crossover to the disconnected solution. Despite this beha
these loops are not a good probe of the bulk causality
particular, there is no sign of any special behavior asT
→0. From the field theory point of view, the qualitativ
screening behavior is associated with the background en
density, and one seems to find qualitatively similar behav
independent of the details of the energy distribution. It is a
possible to construct examples which display the sa
screening behavior without a black hole horizon, for exam
by considering states on the Coulomb branch of the fi
theory @26,27,8#. Thus, while the value of the screenin
length is dictated by the horizon radiusUT , this probe is
insensitive to the horizon as a horizon.

B. Spacelike Wilson loops

We can use similar techniques to study spacelike Wils
loops on the boundary of the charged black hole. In ear
studies of the uncharged AdS Schwarzschild black h
@28,29#, spacelike Wilson loops were considered in the E
clidean black hole metric. For the uncharged black hole,
physics of the Wilson loops in the Lorentzian and Euclide
black holes is the same, as the two are related by the ana
continuationt→ i t. Therefore these studies of spacelike W
son loops in the Euclidean solution can be directly transla
to statements about the Lorentzian solution, which is w
we must consider in our study of the causal structure. Th
spacelike Wilson loops for the finite temperature field theo
were considered in@28,29#. Because of the thermal bounda
conditions, thet direction is compactified on a circle of pe
riod b51/T in the Euclidean solution. At energies small
than the compactification scale, this Euclidean bulk solut
is dual to a pure gauge theory living in the 211 uncompac-
tified directions, as all the other modes of the original fie
theory get a mass proportional to the temperature. In
analysis of the Euclidean solution, one of the spatial dir
tions is interpreted as the time direction in the 211 theory;
the spacelike Wilson loop with the long side along this
rection is interpreted as giving the quark-antiquark poten
3-5
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JAMES P. GREGORY AND SIMON F. ROSS PHYSICAL REVIEW D63 104023
in this gauge theory. The supergravity calculation indica
that it would display an area-law behavior forL@b, in
agreement with the expectation that this pure Yang-M
theory is confining. Unlike the timelike loops, the strin
worldsheet always approaches arbitrarily close to the hori
as we increase the separation in the boundary.

We want to consider spacelike Wilson loops in t
Lorentzian charged black hole metric~8!. Once we introduce
charge, the physics of a real Euclidean solution is not
same as that of the Lorentzian solution we want to consi
The analytic continuation from Eq.~8! to a real Euclidean
solution involves continuing botht→ i t andq→ iq8. ~This is
easy to see if we remember that charge comes from rota
in the higher-dimensional solution; that is, it is an angu
momentum parameter.! The analytic continuationq→ iq8 in
Eq. ~8! drastically changes the physics—for example,
analytically continued metric no longer has an extrem
limit. Thus, while the results obtained in the Euclidean m
ric would have an interpretation in terms of
(211)-dimensional gauge theory, as in the uncharged c
the spacelike Wilson loops in the Lorentzian metric~8! we
will consider do not have the same interpretation. In o
solution,q is not analytically continued, and there is no co
nection between the behavior of the Wilson loops in t
metric and any (211)-dimensional theory. Our motivatio
for studying the spacelike Wilson loops is thus simply th
they are an interesting probe of the state in
(311)-supersymmetric field theory corresponding to o
charged black holes.

The action for the string worldsheet spanning a loop alo
two spatial dimensions is

S5
Y

2pE dxA~]xU !2

f ~U !
1

U4

R4
, ~20!

whereY is the length of the long side of the loop. Repeati
the method of calculation ofL andE used above, we find

L5
2R2a

UT
E

1

` ydy

A~y421!~y22a2!~y41a2y22a4u!
, ~21!

E5
UT

pa F E
1

`S y5

A~y421!~y22a2!~y41a2y22a4u!
21D

3dy211aG . ~22!

We would like to find the behavior of the theory at largeL. L
is increasing as a function ofa, so this requires us to con
sider the behavior fora→1 ~i.e., we consider strings which
hang close to the horizon!. For any value of the parameteru,
both of the integrals are then dominated by the regiony
51. So fora→1, the integrals inL andE become the same
and we uncover the same area law as in the uncharged

E5T L, ~23!
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where the tensionT5UT
2/2pR2. The E vs L plot for the

extremal black hole is given in Fig.~4!, to illustrate the simi-
larity with the uncharged case. The scale at which the lin
behavior sets in is once again determined primarily by
horizon radiusUT ; the effect ofu is just some multiplicative
factor of order unity.

These probes see the horizon basically as a bound
providing a lower bound ongxixi, and hence enforcing an
area law behavior at large distances. Since they do not p
thegtt part of the metric, it is not surprising that they are n
good probes of the causal structure, or particularly sensi
to the temperature.

IV. SUPERGRAVITY PROBES

We now consider the supergravity propagators on
charged black hole background. These can be used to ca
late the dual expectation value for sources coupled to
supergravity fields near the horizon. One might hope t
these supergravity sources will better probe the causal st
ture, as unlike the string worldsheets considered above, t
sources can have compact support in the radial direct
However, the fact that the one-point functions are det
mined by the asymptotic fields will still complicate the stor

A. Retarded propagator

We consider first the retarded propagator, defined as
solution to the wave equation

]m„A2ggmn]nG~x,x8!…5d~x2x8! ~24!

FIG. 4. Spacelike Wilson loop—E vs L plot for extremal black
hole. As before, we plotE/UT againstLUT /R2.
3-6
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subject to the boundary conditionG(x,x8)50 for t,t8.
Here,x8 is the position of the source, andx is the position
where the measurement is made. It is natural to assume
sources in the bulk will follow geodesics, and in the charg
black hole spacetimes, this implies that they will fall into t
black hole. To study the effects of such source probes,
must calculate boundary expectation values using the
tarded propagator; to learn about the causal structure,
must respect it. Unfortunately, the explicit calculation of th
propagator is extremely difficult, because of the complica
nature of the spacetime. In this section, we will focus on
calculation in the (211)-dimensional Ban˜ados-Teitelboim-
Zanelli ~BTZ! black hole, as this solution is locally AdS, s
the propagator can be obtained exactly. In the conclusi
we will discuss the qualitative features of the retarded pro
gator in higher dimensions.

The BTZ black hole solution@30#

ds252
~r 22r 1

2 !

l 2 dt21
l 2dr2

~r 22r 1
2 !

1r 2df2, ~25!

wherel ~the analogue ofR in our higher-dimensional discus
sion! is the cosmological length scale, is locally pure AdS
f ranges over all values, this is a peculiar coordinate sys
for AdS3. If f is periodically identified with period 2p, this
is a black hole with a horizon atr 5r 1 . A lightlike geodesic
starting at the boundary pointt50,f50 is described by
a-
is
rm
d
ti

th
n
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x-
te
e
th
n
d
s,
I

lts

10402
hat
d

e
e-
e

d
e

s,
-

f
m

f50,r 5r 1 coth
tr 1

l 2 . ~26!

The propagator from a point on this trajectory to the boun
ary at r 5` will be non-zero only at the intersection of th
light-cone of the point with the boundary~since the space is
locally AdS, we can use the propagator obtained in@31#!. For
a point atr 5r 1(11e), the light cone meets the boundary

t'
l 2

r 1
lnS 2 cosh~r 1f/ l !

e D . ~27!

As causality requires,t here goes to infinity as the sourc
approaches the horizon. More importantly, the point contr
utes at later times as we increasef. We consider the contri-
bution to the expectation value at some fixed late time fr
the source worldline near the horizon. If we take the sou
sufficiently close to the horizon, we need only consider
contribution from the source atf50, and not that of the
images under the identification atf562pn. That is, we
can disregard the compactification off for this calculation.

The contribution to the expectation value of the dual o
erator from a geodesic source near the horizon in these
ordinates withfP(2`,`) is @31#
^O&5
~ar1!D

„a21~11a2!sinh2@r 1~ t1f!/2#…D/2
„a21~11a2!sinh2@r 1~ t2f!/2#…D/2

~28!
n-
near
he
in-
ult
d in
ard
oes
ion

n-

as a
for an operator of conformal dimensionD, wherea is the
boost parameter~the source is lightlike fora→0). This ex-
pectation value is approximately independent off for f
P(2p,p) at larget. Thus, the contribution to the expect
tion value from the region near the black hole horizon
f-independent, which is as close as we can come to confi
ing our general expectation that the horizon is associate
an infinite scale in the present context of a compact spa
direction on the boundary. We reiterate that this is just
contribution from the region near the horizon; the main co
tribution to the expectation value is att56f as discussed in
@7#, and comes from the part of the worldline near the bou
ary.

Thus, in the BTZ black hole, the contribution to an e
pectation value from a source near the horizon calcula
with the retarded propagator is non-zero only at late tim
and is independent of the spatial coordinate. Note also
the part of the source worldline near the horizon makes o
a small contribution to the expectation value; as discusse
more detail in@7#, the main contribution, even at late time
comes from the part of the worldline near the boundary.
the conclusions, we will briefly argue that similar resu
should be expected in higher dimensions.
-
to
al
e
-

-

d
s,
at
ly
in

n

B. Static propagator

We will next turn to static sources. The advantage of co
sidering static sources is that since the source is always
the horizon, the expectation value will be affected by t
near-horizon structure. However, the static propagator is
dependent ofgtt , so this is not guaranteed to produce a res
which reflects the causal structure near the black hole, an
fact the answer we obtain does not have a straightforw
relation to statements about the causality. However, it d
appear to encode information about the near-horizon reg
in a non-trivial way.

The calculation of the appropriate propagator in the u
charged black hole background was discussed in@31#. The
static propagator for a massless scalar field is defined
solution to the equation

] i„Aggi j ] jG~x,x8!…5Agttd~x2x8!. ~29!

Herex8 is the position of the source, whilex is the point at
which the field is measured. We take the metric~8! and
rescale the coordinates byU→UTu, t→tR2/UT and x
→xR2/UT . The equation for the static propagator is then
3-7
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„u72~11u!u31uu…]u
2G̃1„5u62~11u!u22u…]uG̃

2u3k2G̃5
Au62~11u!u21u

R7
d~u2u8!. ~30!

Here we have Fourier transformed the propagator equa
with respect toxi , so

G̃~u,u8,ki !5E d3xeikW•xWG~u,u8,xi !. ~31!

For u,u8 and u.u8 the Green’s function is given by th
solutions of the homogeneous equation

„u72~11u!u31uu…y9~u!1„5u62~11u!u22u…y8~u!

2u3k2y~u!50. ~32!

We must now consider the indicial equations which ar
for solutions near the horizonu51 and the boundaryu
5`. Foru.u8 this iss214s50, and the presence of elec
tric charge makes no difference to the boundary behavio
the Green’s function. In order for the solution to vanish
infinity, as required, we therefore have

G̃~u.u8,k!5Ay1~u,k! where y1~u,k!;
1

u4
, u→`.

~33!

For the behavior nearu51, we have the indicial equatio
(422u)@s(s21)1s#50. So long asuÞ2 ~i.e., for a non-
extremal black hole! this is also the same as in the uncharg
case, and regularity at the horizon requires

G̃~u,u8,k!5By2~u,k! where y2~u,k!;1, u→1.
~34!

We will return to the extremal case later in this section. T
constantsA andB are calculated by continuity in the Green
function atu5u8 and the correct discontinuity in its deriva
tive, giving

A5
y2

W~y1 ,y2!

1

R7u8Au862~11u!u821u
,

~35!

B5
y1

W~y1 ,y2!

1

R7u8Au862~11u!u821u
.

From Eq.~32! we see that the WronskianW(y1 ,y2) is

W~y1 ,y2!5
w~k!

u52~11u!u1
u

u

. ~36!

The value of the dilaton can then be computed as in@31#.
The position-space propagator is written as the Fourier tra
form of this momentum-space propagator, and the integ
10402
n

e

of
t

d

e

s-
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in this Fourier transform are expressed as a sum over
poles ofG̃(u,u8,ki). The boundary behavior of the dilato
field is then found to be

f~U,x! '
U→` UT

4

8pR6U4 (
n51

`
e2mnr

mnrw8~mn!
E y2~u8,mn!du8.

~37!

Here, mn are the zeros ofw(k), which give poles in the
propagator. These correspond to the special values ofk for
which we can construct solutions regular at both the horiz
and infinity. y2(u8,mn) are the corresponding solutions o
Eq. ~32!. Thus, the propagator has an exponential supp
sion for r .1/mn , and these poles hence provide a maximu
length scale for the expectation value dual to sources a
where in the bulk. We proceed to determine this maxim
scale by finding the polesmn .

In the case of the uncharged black hole, this problem
determining the zeros of the Wronskian physically cor
sponded to finding the glueball mass spectrum for the
11)-dimensional pure Yang-Mills theory, and was first d
scribed in @28#, and both numerical methods and analy
approximations have since been used to calculate the s
trum @32,33,31#. As was emphasized in the discussion
spacelike Wilson loops, the Lorentzian metric~8! is not di-
rectly related to the (211)-field theory obtained from a Eu
clidean rotating brane metric. Thus, the zerosmn found here
will not be simply related to the glueball mass spectra o
tained from studies of the rotating brane metrics in@19,20#.

We follow the approach of@33# in calculatingmn , as the
change of coordinates employed there makes the interp
tion in the extremal limit clear. Returning to Eq.~32!, with
the change of variablesx5u2 (k5 ik), we find

]x@„x
32~11u!x1u…]xy#1k2y50. ~38!

In order to use WKB methods on a second order linear
ferential equation, it is necessary to redefine the depen
variable so that it satisfies a differential equation with no fi
derivative term. The WKB analysis is greatly simplified wi
the change of variablesx511ez. Defining

c5Ax32~11u!x1u

x21
y5Af ~z!y, ~39!

where

f ~z!5e2z13ez1~22u!, ~40!

we obtain a differential equation which is completely ana
gous to the uncharged case,

c91V~z!c50, ~41!

where

V~z!5
k2

f
ez2

f 9

2 f
1S f 8

2 f D
2

. ~42!
3-8
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The only change in this equation is thatf (z) is altered by the
u term. To perform the WKB analysis we need to find t
points where the potential in this equation is zero, as th
are the turning points of the WKB approximation. In th
limits of large uzu, for uÞ2, we have

V~z!'F k2

22u
2

3

2~22u!Gez for z!0, ~43!

V~z!'k2e2z21 for z@0. ~44!

For k sufficiently large there are thus turning points atz
52` and z5z0'2 ln(k). The WKB approximation there
fore gives

S n1
1

2Dp5E
2`

z0
dzAV~z!. ~45!

To leading order ink we can approximate the integral

S n1
1

2Dp5E
2`

`

kA ez

f ~z!
dz

5kE
1

` dx

Ax32~11u!x1u
[ka, ~46!

where the last equality definesa. The zerosmn of the
Wronskian are thus approximately given by

mn5
p

a S n1
1

2D , ~47!

wheren is a positive integer.2

In the uncharged casea can be evaluated exactly. For th
charged case, we evaluate alpha numerically, and see th
the charge of the black hole is increased,a increases and
thus eachmn decreases. In Fig. 5, we plot the value of t
lowest zerom1 as a function of the parameteru determining
black hole charge. Asu→2, a diverges like ln(T)}ln(2
2u), whereT is the black hole temperature. Since we a
obtaining a divergent answer, we should consider the vali
of the approximation more carefully.

The divergence found in the WKB approximation in th
extremal case can be explained by considering the poten
For non-extremal black holes the behavior ofV(z) for z
!0 was as given in Eq.~43!. This is the case for any valu
of u other than 2, but foru52 it is the next term inf (z)
which contributes toV(z) for z!0. The potential now no
longer decays exponentially forz!0: instead it becomes
constant, and the potential never reaches zero in this reg
Therefore there is no second turning point of the equa
and the bound state problem has no solutions.

The different nature of the problem in the extremal ca
was discovered earlier, when we found for Eq.~32!, that the

2It is argued in@31# that the extra zero forn50 does not contrib-
ute and this claim is substantiated by comparison to numerica
sults for calculation of the zeros in the uncharged black hole.
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indicial equation for solutions near the black hole horizon
given by (422u)@s(s21)1s#50. This is true foruÞ2,
but for u52 the dominant terms in the solution near t
horizon are those of a lower exponent and they lead to
indicial equation

12s~s21!124s2k250. ~48!

For solutions to be well behaved near the horizon this
quiresk2>0. This is problematic since the zeros are giv
by m252k2. In fact, in the extremal case, Eq.~32! can be
solved exactly, enabling us to see how it differs from t
non-extremal case. Making the substitutionx5u2 reduces
the homogeneous equation foru52 to

~x21!2~x12!]x
2y13~x21!~x11!]xy2

k2

4
y50.

~49!

Whereas in both the uncharged case and the nonextre
charged case our homogeneous differential equation was
ear second order with four regular singularities, this equat
only has three regular singularities, atx522, x51 andx
5`. We recognize this as the hypergeometric equation
reduce it to the standard form by the transformationz
53/(12x). Then

z~12z!]z
2y2]zy1

k2

12
y50. ~50!e-

FIG. 5. m1 vs u.
3-9
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We will look for solutions of Eq.~50! satisfying our bound-
ary conditions without restricting the sign ofk2, to see if any
such solutions exist. We need the solution to be norma
able, soy'u24 as u→`; after coordinate transformation
this condition becomesy'z2 asz→0. We also require the
solution to be well-behaved atu51, i.e., atz5`. The hy-
pergeometric equation has one solution with the correct
havior atz50,

y~z!5z2FS 3

2
1l,

3

2
2l,3;zD , l5

1

6
A913k2>0.

~51!

To examine the behavior nearz5`, we use the asymptotic
expansion in terms of hypergeometric functions in 1/z to
give

y~z!5
G~3!G~22l!

G~3/22l!2
~21!3/21lz1/22l

3FS 3

2
1l,2

1

2
1l,112l;

1

zD1
G~3!G~2l!

G~3/21l!2

3~21!3/22lz1/21lFS 3

2
2l,2

1

2
2l,122l;

1

zD .

~52!

Since the hypergeometric function as a function of 1/z is
asymptotic to 1 atz5`, for our function to be well behaved
at z5` we require thatz does not appear outside the hype
geometric function with a positive exponent. In the seco
term of this expression fory(z) this cannot be achieved, s
the gamma function in the denominator must diverge to
this term to zero. However, this would only happen if 3
1l52n for n a non-negative integer, andl is positive.
Thus, in the extremal case there are no solutions of the ti
independent wave equation satisfying the boundary co
tions at both the horizon and the boundary. The breakdo
in the WKB analysis near extremality is therefore physic

In these static propagator calculations, we have found
there is a finite screening length associated with most of
black hole spacetimes. From the calculations in the
charged black hole, where the screening length is the the
scale, one might have suspected that this is associated
the thermal fluctuations, which are concealing a diverge
in the true behavior. However, as we increase the charge
screening length grows only logarithmically in the tempe
ture, and soon falls below the thermal scale. There is t
really some limit on the characteristic scale for probes n
the horizon, and we see no sign of a divergent scale
associated with the horizon in this calculation. It also wou
be interesting to understand the origin of this behavior in
field theory: since the scale is not simply fixed by the horiz
radiusUT , there may be some interesting physics here. Fr
this point of view, it should be stressed that 1/mn only pro-
vides an upper bound on the possible scale size; there ma
power-law suppression at a smaller scale that this calcula
is not sensitive to.
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V. CONCLUSIONS

We only found signs of the expected divergence in
scale size of dual expectation values for probes near the
rizon in the discussion of time-dependent probes. The fail
to find such a relationship for Wilson loops is perhaps u
derstandable, since the extended nature of the worlds
implies that the part of the worldsheet that changes as
vary the asymptotic separation is probing a range of ra
near the horizon, and not a specific value. Thus, the Wil
loops do depend non-trivially on the structure of the met
near the horizon, but do not really see the horizon a
horizon.

It is more surprising that static supergravity probes p
duce dual expectation values with a finite scale size. Fr
the spacetime point of view, this statement means tha
point charge close to the horizon produces an asympt
field which still depends non-trivially on the transverse c
ordinates xi . This is quite different from the case o
Schwarzschild black holes in flat space, where the field o
charged particle close to the horizon becomes comple
spherically symmetric~see@34# and references therein!. Note
that this is not just the usual difference between
asymptotic behaviors of flat space and AdS: in the Schwa
child case, the field measured at some finite radius is bec
ing spherically symmetric as the source approaches the h
zon. It would be interesting to know what happens for t
Schwarzschild-AdS solution.

The static propagator in the Lorentzian charged black h
also exhibits a mysterious logarithmic dependence on
temperature for small temperatures. It should be noted
this only provides an upper limit for the behavior of the sca
size of excitations for static probes near the horizon, and
actual scale could be constant. Nevertheless, it would be
teresting to try to understand this behavior from the fie
theory point of view. While no analogue of this behavior w
seen in the glueball mass calculations in rotating ba
grounds@19,20#, this should not cause concern. As prev
ously emphasized, these calculations address the physi
different Euclidean solution obtained byt→ i t, q→ iq8. In
this Euclidean solution, it is not possible to take the tempe
ture to zero; in fact, the minimum value of the temperature
achieved whenq850.

We were only able to carry out an explicit calculatio
using the retarded propagator in the BTZ black hole. Ho
ever, we can make a case that the behavior for high
dimensional black holes should be similar. In black ho
spacetimes, the metric at large distances is approxima
AdS, so we would expect propagation in this region to
well-approximated by the propagation in pure AdS. The
tarded propagator in pure AdS was previously investigate
@31#, where it was found that a highly-boosted source p
duced a ‘‘bubble’’ around the light-cone of the point whe
the source makes its closest approach to the boundary
causality, only the part of the source trajectory near
boundary can be contributing to this part of the expectat
value; the region where the expectation value is large is o
side of the light cone of all but the initial part of the probe
trajectory~see@31# for details!. Thus, for a source starting a
3-10
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a large radial distance in the black hole geometry, the exp
tation value will have a contribution which produces a del
function along the light cone. This part will spread out
infinite scale size along the light cone, just as it did in Ad
In an uncharged black hole background, there are ther
fluctuations around this average value, so it was argued in@4#
that in practice, we will see the bubble expand until
reaches the thermal scale, where it becomes confused
the thermal fluctuations. In the charged black hole, we
suppress these thermal fluctuations, so we should be ab
see the bubble expanding to larger and larger scales, ju
in pure AdS. Thus, the behavior of the leading contribut
to expectation values in higher-dimensional black holes
similar to the BTZ case.

However, in the BTZ case, the contribution from the ne
horizon region was a small correction to this leading beh
ior. Thus, to determine if the horizon is associated with in
nite scale sizes in higher-dimensional black holes, we sho
consider the contribution to the expectation value from
region near the horizon. Here, all that we can say is t
because of the non-trivial causal structure, there can b
contribution from the region near the horizon only at ve
late times, and the discussion in pure AdS suggests this
tribution will be small compared to the contribution from th
part of the worldline near infinity.

One interesting example of a ‘‘static’’ source that is n
covered by the foregoing analysis is a D-instanton. To c
sider a D-instanton, we need to pass to the Euclidean s
tion, so we cannot really think of it as a probe of the cau
structure. However, the expectation value dual to
D-instanton is sensitive to the presence of the horizon i
dramatic way. For non-extremal black holes, the horizon
tt

c,

v.

ed

de

h

e

10402
c-
-

.
al

t
ith
n
to
as

is

-
-

-
ld
e
t
a

n-

t
-

lu-
l

a
a
n

the Euclidean solution is simply a point where the prop
length of the periodict direction goes to zero. If we place
D-instanton at this point, the translational symmetry int is
preserved, so the dual expectation value must
t-independent. That is, for D-instantons near the horizon,
scale of the dual field theory instanton goes to infinity in t
t direction ~and from the above comments on static prop
gators, in thet direction only!. This may be a useful test fo
a horizon in the Euclidean solution, but it does not help us
understand the causality of the Lorentzian solution.

The key to a more satisfactory representation of the b
causal structure may be to develop a relation between
bulk theory and the boundary which does not require us
propagate effects out to the boundary in spacetime. Thi
difficult to achieve with the present correspondence, as
relation between spacetime and field theory is phrased
terms of boundary conditions on the gravity side. It is wo
stressing that this problem is distinct from the problem
studying local physics on scales smaller than the AdS sc
the black holes here can be as large as one wants. Per
even resolving this apparently simple question requires
development of a more general background-independent
sion of the correspondence.
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