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Looking for event horizons using UV-IR relations
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A primary goal in holographic theories of gravity is to study the causal structure of spacetime from the field
theory point of view. This is a particularly difficult problem when the spacetime has a nontrivial causal
structure, such as a black hole. We attempt to study causality through the UV-IR relation between field theory
and spacetime quantities, which encodes information about bulk position. We study the UV-IR relations for
charged black hole spacetimes in the AdS-CFT correspondence. We find that the UV-IR relations have a
number of interesting features, but find little information about the presence of a horizon in the bulk. The scale
of Wilson loops is simply related to radial position, whether or not there is a horizon. For time-dependent
probes, the part of the history near the horizon only affects the late-time behavior of field theory observables.
Static supergravity probes have a finite scale size related to radial position in generic black holes, but there is
an interesting logarithmic divergence as the temperature approaches zero.
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[. INTRODUCTION (i.e., a source at radiud in AdSs corresponds to perturbing
the field theory in a region of sizéx) [10]. Here,U is the

Resolving the long-standing problems associated withradial coordinate in a Poincamordinate system, such that
black holes in quantum gravity seems to require a radicall -« at the boundary of AdS. Hendd) relates large dis-
shift in our understanding of spacetime causal structure. Ho:ances in spacetiméhe IR) to short distances in the field
lographic theories of gravity, such as the AdS conformalheory (the UV).
field theory(CFT) correspondencil-3], seem to offer such In pure AdS, this relationship follows from the isometry
a change in viewpoint. The true, fundamental causal strucx' —Ax',U—\"1U in the bulk. The UV-IR relationship has
ture of the theory is the fixed background causal structure imlso been studied for more general metrics with Poincare
a d-dimensional field theory. The dynamical spacetime deinvariance in the directions parallel to the boundary. It is
scription is supposed to emerge from this underlying fieldused to relate non-trivial solutions of this form to renormal-
theory in some approximation. Since spacetime has morgation group flows in the dual field theofa huge industry
dimensions than the space the field theory lives in, the emow; early works ar¢11—-14). However, the class of space-
coding of information about the dynamical spacetime shouldimes for which the description of bulk position in field
be quite subtle. Understanding how the spacetime, especialtfieory terms is understood is still very limited. One of the
its causal structure, are encoded in the field theory is one ajoals of our paper is to attempt to extend the understanding
the main open questions about these models. The aim of thisf this relation for the simplest examples of spacetimes with
paper is to see to what extent non-trivial causal structures non-trivial causal structure.
such as a black hole horizon, affect the values of simple |n the relation(1), U—0 is mapped to diverging scale
gauge theory observables. We find that the causal structuggize in the field theory. From the spacetime point of view,
near an event horizon does not appear in an obvious way i =0 in Poincarecoordinates is an event horizon, and one
these observables. can think of the divergence in the scale size as reflecting the

In the AdS-CFT correspondence, the introduction of aone-way nature of the horizon: particles at the event horizon
source probe in the bulk will be reflected in a change incannot move to largetJ, and an infinite scale excitation
one-point functions in the field theory4—6] (higher-point  cannot return to smaller scale. As we will review in Sec. II,
functions are also needed to resolve some probes; see edt.least in pure AdS, the relatidi) provides a connection

[7,8]). The holographic nature of the correspondence is repetween spacetime and field theory causality throughout
flected in a UV-IR relation between the radial position of thespacetimg15].

probe and the characteristic scale of the one-point function in \We would like to know if this connection between the
the field theory[9,10]. In the AdS-CFT, case, this can be UV-IR relation and causality can be generalized. A simple

expressed as a distance-distance relationship question to ask is whether the horizon of a black hole is also
associated with an infinite scale size in the CFT. We will

——— consider a variety of probes of black hole spacetimes, and

_ gvuN 1) find that the characteristic scale in the field theory descrip-

UV tion of time-independent probes is typically finite, even when
they are very close to the horizon. Considering time-
dependent probes is more complicated, but we argue that the

*Electronic address: J.P.Gregory@durham.ac.uk scale size diverges at late times, although the leading behav-
"Electronic address: S.F.Ross@durham.ac.uk ior is not directly related to the black hole structure.
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The example that we study is a charged black hole irextend their argument to the toroidal black holes. The
AdS. Considering charged black holes allows us to have aharged black hol€2) is derived from the reduction ansatz
large separation between the horizon size and the thermal 3
scale. In an uncharged black hole, the standard reldfign )
and some probe calculations, would assign a scale size which dsz=gm,dx”dx +i21 [dMi2+Mi2(d¢i +Audxﬂ)z] ®)
is of the order of the thermal scale when a probe is at the
black hole horizon. We would like to investigate if this con- whereg,, is the five-dimensional metrig; are the direc-
nection between the horizon and the thermal scale persistfn cosines andp; are the rotation angles on t8. Non-
when there are other scales in the problem, or if we can segero A, gives the electric potential
some sign of a divergent scale associated with the horizon.

The presence of charge allows us to see which boundary q

scales are related to the thermal fluctuations in the gauge = A=(®(Uq)—P(U))dt, where (U)=—". (6)
theory and which depend on the scale set by the black hole U
horizon.

The black holes we study are the toroidal “Reissner-
Nordstran AdS” black holes. In the case of AdSthese

The norm of the Killing vector fielk= o/ dt with respect to
our ten dimensional metric is

black holes can be obtained from the near horizon limit of 2 U2 2
spinning D3 branefl6]. Therefore the associated dual field k2= _< 1— _T) U2l 1—- —=|+|1- _; (U$+ U2y,
theory is the world-volume theory on these branes. In U2 U2 T

[16,17], the thermodynamic properties of charged Reissner- @
Nordstran AdS, . ; black holes was investigated. They con-

sidered both spherical black holes, with the boundBry whereU_ is the inner horizon. We see thkt is always

xS""1, and toroidal black holes, where the asymptoticnegative outside the black hole horizon, and thus superradi-
boundary isR". From the point of view of thermodynamics, ance cannot occur for the toroidal black hole.

the spherical black holes are more interesting, but to analyze A useful rewriting of the metri¢2) is
UV-IR relations, we will focus on the simpler case of toroi-

dal black holes. These can be obtained as the infinite volume R2 du? 2 ) 3 )
limit of the spherical black holes. The metric for these black ds’=— ——+—| —f(U)dt +2 d|, (9
holes is uzfU) R =1
du* S f(U)=1-(1+6) $+0 v 9
- _ 2 - 2 =1— — —,
ds?= —V(U)dt+ Gy + 2, dxf, 2) U U us
where where we have defined a dimensionless parameter
=q?R?/US; for the uncharged black holé=0, while the
U2 2 extremal black hole hag=2. The case#=U1=0 is pure
V(U)= — — m + q_. 3y AdSin Poincarecoordinates, where Eql) is valid.
RZ un"n2 y2+4 After reviewing the connection between Ha) and cau-

sality in Sec. Il, we move on to consider specific probes in
We work in units wheréd =1, soR:(giMN)l"‘, The hori-  this black hole background. We begin with a discussion of
zon radiusU+, is given byV(U1)=0, and the temperature Wilson loops in Sec. Ill. We find that the qualitative behav-

T is related to the periog in Euclidean time by ior of the loop expectation values is independent of the
charge, and the non-trivial physics associated with the pres-
1 41 47R2YZ3 ence of a black ho!e appears at a scale given bXEthgt
B= T = Pt (4) is, the characteristic scale for these observables is the inverse
V'(Ur) nU7 “=(n=-2)g°R horizon size, and is not in general related to the temperature.

We then go on to discuss supergravity probes in Sec. IV. We

The black hole will be extremalT(=0, and the horizons find that the scale of the expectation value for time-
coincidg atUr=U,, whereUZ" %= (n—2)R?g%n. ltwas  dependent probes diverges at late times, but the expectation
shown in[16] that these black holes are thermodynamicallyvalue is primarily determined by the asymptotic metric. We
stable (in both the canonical and the grand canonical enstudy the small contribution from the near-horizon region in
sembleg for arbitrary values of the mass and charge, so thehe BTZ metric, and argue that it is spatially constant. For
black hole solutions carry information about the CFT in thestatic supergravity probes, there is a finite scale size associ-
corresponding ensemble. We will focus on the case ofsAdS ated with the horizon in general. The scale size associated
that is,n=4. with the static propagator diverges like Th(in the extremal

It was further shown if18] that the spherical black hole limit T—0. This behavior provides the main element of sur-
solutions in the AdSX S° context will not have superradiant prise in the paper, and it would be very interesting to gain a
modes, as the interng@® rotates at a speed less than thebetter understanding of this logarithmic dependence from the
speed of light everywhere in the spacetime. It is easy tdield theory point of view.
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In addition to addressing the implications for our under- R?
standing of bulk causality, we will briefly comment on the 0F 2= X~ 22-6) 55 IN(U—-Uq), (19
physical significance of these UV-IR relations from the field
theory point of view, and remark on the relation to previous R2 1
work [19,20Q which studied the Euclidean rotating brane so- 0=2= X~ 5 - (16)
lutions as models for pure gauge theories. 12U-Uy

We conclude in Sec. V with a discussion of the difficul-
ties in identifying the origins of spacetime causal structure in
the gauge theory, and some speculations for future dire
tions.

Thus, a diverging scale size for probes at finite radial posi-
Ct on would be a signature of a horizon, under the assumption
that bulk causality arises from a kinematical restriction in the
field theory. This is the main prediction we will investigate
in our discussion of the probes.

In studies of the uncharged black holes, it was found that

To begin our investigation of the UV-IR relation in space- sources near the black hole horizon produced expectation
times with horizons, we review the connection between the&/alues with a scaleSx~1/T, whereT is the temperature
UV-IR relation and causality in pure AdS proposedi5].  [4,21,22. It was proposed that the physical interpretation of
In pure AdS, the condition for a bulk probe to move insidethis is that probes which fall into the horizon become en-
the light cone in the radial direction is tangled with the thermal bath in the gauge theory. This sug-
gests that the presence of finite-temperature Hawking radia-
tion acts as a barrier to our ability to probe the non-trivial
classical causal structure in the region near the horizon. One
reason for our extension to the charged black holes is that it
enables us to consider black holes of arbitrarily low tempera-
ture, and separate the thermal scale from the horizon radius,
allowing us to study this issue further.

II. UV-IR RELATIONS IN BLACK HOLE SPACETIMES

2 2
—Edt2+mduzso. (10
For a supergravity probe, the UV-IR relati¢h) implies that
Eq. (10) is equivalent to

(11)

dé\XH
dt

=1,
’ Il. WILSON LOOP CALCULATIONS
which is just the statement that the field theory excitation’s The expectation value of a Wilson loop operator in the
size cannot change faster than the speed of light in the fielleld theory is related by the AdS-CFT correspondence to the
theory. This thus connects the causality of AdS to the cauaction for a string worldsheet in the bulk which terminates
sality of the space the field theory lives in. on the path of the Wilson loop on the bound&23,24]. This

It would be interesting to see if a similar relation could makes this a very convenient observable to consider, as we
exist for black hole spacetimes, through a suitable modificacan investigate its leading-order behavior by finding the
tion of the UV-IR relation(1). In a black hole spacetime, the minimal-area surface for the string worldsheet. The symme-
condition (10) is modified to tries of the metrid8) lead us to consider rectangular Wilson
loops with two long sides, and a separatlobetween them.
The long sides lie either along thelirection (timelike Wil-
son loop$ or along one of the!' directions(spacelike Wilson

loops.
We could derive a candidate UV-IR relation on the black P
hole spacetime by assuming that this spacetime condition is
still equivalent to the kinematical conditiofil). If we as-

2
—?f(U)dtan

2

2
sz(u)du <0.

(12

A. Timelike Wilson loops

sume a UV-IR relationship of the foriéx;=g(U), then Eq.
(11) would imply

dg(U) (13

Requiring that this condition is equivalent to Eq2) gives

This can be solved exactly for the black hole spacetimes w

R2
U2f(u)

dg(U)|
du |

(14

We wish to consider Wilson loop operators in the bound-
ary theory, where the loof forms a rectangle with two long
sides extended along thedirection, of lengtht,, and two
sides of lengthL along one of thex' directions. From the
field theory point of view, the value of this operator deter-
mines the potential of an external quark-antiquark pair. This
potential was obtained i23,24] for the vacuum(pure AdS.

The expectation value of the Wilson loop behaves like
(W(C))~exp(—tE) in the limit ty—oo, whereE=V(L) is

the lowest possible energy of the quark-antiquark configura-
tion. For largeN and Iargeg,z,MN, this expectation value is
given by(W(C))~exp(—9), whereSis the Nambu-Goto ac-

are considering, but the important feature is how the boundtion for a fundamental string worldsheet which joins the
ary scale size behaves for a probe near the black hole horboundary at the loof (we must also subtract the infinite

zon. The behavior differs according to whether or not themass of thé/V boson to regularize this supergravity calcula-
black hole is extremal, but in both cases the scale size bedion). This calculation was extended to the field theory at

comes infinite as the black hole horizon is approached:

finite temperature by considering a string worldsheet in a
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Schwarzschild-AdS background[i#2,21).1 In pure AdS, the ¢ U4
quark-antiquark potential i¥=—(g2,,N)%L, as expected S= —Of dx \/(axu)2+ —f(U). (17)
by conformal invariance. At finite temperature, the snhall- 2m R*
behavior is similar, but screening sets in avec0 at L
~1/T, whereT is the temperature.

Our objective is to investigate the quark-antiquark potenWe are working in the static gauge=t, o=x for the string
tial obtained from the string worldsheet in the charged AdSworldsheet coordinates, whexas the position in the bound-
black hole background. We begin with the met(8, and  ary direction along which the quarks are separated. This ac-
calculate the string worldsheet area from the Nambu-Gotdion is independent ok, so we can calculat& from the
action Euler-Lagrange equations to find

(18

R2 UalUy y2dy
x=—ay1l—(1+0)a*+6 Gf :
Us V1= (L+O)a’+ da 1 Y-y - ad)(yH+ a’y?— gat) (y+y?— 02

We have introduced a dimensionless paramatelJ+/U,,  creasing from 0, th& vs L plot rises smoothly to the cusp
where U is the minimum value of the radial coordinate th increasingL and increasingg, at which point bothL
along the string worldsheet in AdS. We see that0 atU  andE begin to decrease along the upper branch. This mono-
=Uo, so the string profile is symmetric about0. Further-  tonjc decreasing behavior in and E continues untila=1
more, the separation of the quarks is given lby 2x(U where bothL andE are zero.

=o). We wish to calculate the energy, which is vely In the uncharged case, it was remarked that the upper
given by S/ty, whereSis the action(17) integrated over the pranch (with E=0) is unphysical. The potential energy
range —L/2<x<L/2. However, as was pointed out in shown in the graph is the energy of a U-shaped string con-
[23,24 and subsequent works, this would give an infinitefiguration hanging into the bulk. There is an alternative con-
result due to the contribution from the mass of the W-bOSOﬂfiguration, a pair of Strings hanging Straight down to the ho-
We must therefore regularize the expression by only integratizon. This second configuration has zero enefaffer we

ing up toU=U,,,, and subtracting the regularized mass ofsubtract thé\V boson mass contributionso when the energy

the W-bosonU ,,/(27). Taking our cutoff to infinity, we  of the U-shaped configuration is greater than zero, this con-
then find the solution for the energy

0.04
Ug fw V(y?=a®)(y*+ a®y?— 0a?)
E=— 1
malJil Ay =Dy Y- 0a®)
0.02 1
Xdy—1+a|. (19

We can only evaluate this integral by numerical methods. If
we plot E/Ut againstLU+/R?, the only free variable i9,

which specifies the charge on the black hole. We can study
the effect of the charge by varyiny The results obtained in

the uncharged case have been reproduced here for compara-
tive purposes in Fig. 1. The typical behavior®fs L for a
charged black holéplotted here is the cage=1) is given in -0.04 1
Fig. 2, and the behavior for the extremal black hole is given
in Fig. 3. It should be noted that in these plots the parameter
«a is not plotted over the complete range, as numerical meth- g o6
ods to solve the integral break down whens close to O or
1. However, the behavior of tHe vs L plot in the unplotted
regions can be observed from studyin@ndE separately as

-0.02 1

functions ofa. As a—0, L—0 andE— —. With « in- 10081
1 ) ) ) -0.1-
A review of Wilson loops from the string/gauge correspondence
can be found if25] which includes extensive references. FIG. 1. E vs L plot for uncharged black holes&0).
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FIG. 2. E vs L plot for charged black holed=1).
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screening of the quark charge by the plasma in the field
theory which carries the energy of the thermal state.

We see that the qualitative behavior of the potential re-
mains the same as the charge of the black hole is increased.
The separation at which screening sets in increases slightly,
but the overall scale is still set by the horizon radluis.

This is reasonable from the point of view of the field theory,
since we interpret this screening as due to polarization in the
plasma in the field theory which carries the energy density in
this state(which corresponds to the black hole mass from the
spacetime point of viey In the charged black hole case, this
energy density goes likeJ;, and not like the temperature.
Even in the extremall— 0 limit, there is still a finite energy
density, which is responsible for the screening behavior in
Fig. 3.

It is interesting to observe that the maximum value of the
parameter for which E is negative increases from0.66 in
the uncharged case to 1 in the extremal charged case. That is,
as we increase the charge, the string worldsheet probes
deeper into the interesting region near the horizon before the
crossover to the disconnected solution. Despite this behavior,
these loops are not a good probe of the bulk causality. In
particular, there is no sign of any special behaviorTas
—0. From the field theory point of view, the qualitative
screening behavior is associated with the background energy
density, and one seems to find qualitatively similar behavior
independent of the details of the energy distribution. It is also

figuration is no longer energetically favorable and we pasgossible to construct examples which display the same
over to the other. We should therefore only consider thescreening behavior without a black hole horizon, for example
section of theE vs L curves with negative energy. Where the by considering states on the Coulomb branch of the field
curve crosses the axis, the potential becomes constant. Fradimeory [26,27,9. Thus, while the value of the screening
the point of view of gauge theory, this corresponds to thdength is dictated by the horizon radil;, this probe is

0.04 7

0.02

0.6 0.7 08 09 1

-0.02 1

-0.04 1

-0.06 1

-0.08 1

-0.1-

FIG. 3. E vs L plot for extremal black holed=2).

insensitive to the horizon as a horizon.

B. Spacelike Wilson loops

We can use similar techniques to study spacelike Wilson
loops on the boundary of the charged black hole. In earlier
studies of the uncharged AdS Schwarzschild black hole
[28,29, spacelike Wilson loops were considered in the Eu-
clidean black hole metric. For the uncharged black hole, the
physics of the Wilson loops in the Lorentzian and Euclidean
black holes is the same, as the two are related by the analytic
continuationt—i 7. Therefore these studies of spacelike Wil-
son loops in the Euclidean solution can be directly translated
to statements about the Lorentzian solution, which is what
we must consider in our study of the causal structure. These
spacelike Wilson loops for the finite temperature field theory
were considered if28,29. Because of the thermal boundary
conditions, the direction is compactified on a circle of pe-
riod B=1/T in the Euclidean solution. At energies smaller
than the compactification scale, this Euclidean bulk solution
is dual to a pure gauge theory living in the-2 uncompac-
tified directions, as all the other modes of the original field
theory get a mass proportional to the temperature. In this
analysis of the Euclidean solution, one of the spatial direc-
tions is interpreted as the time direction in the 2 theory;
the spacelike Wilson loop with the long side along this di-
rection is interpreted as giving the quark-antiquark potential

104023-5



JAMES P. GREGORY AND SIMON F. ROSS PHYSICAL REVIEW 68 104023

in this gauge theory. The supergravity calculation indicated 27
that it would display an area-law behavior far>g, in
agreement with the expectation that this pure Yang-Mills
theory is confining. Unlike the timelike loops, the string
worldsheet always approaches arbitrarily close to the horizon
as we increase the separation in the boundary. H

We want to consider spacelike Wilson loops in the
Lorentzian charged black hole metf&#). Once we introduce
charge, the physics of a real Euclidean solution is not the
same as that of the Lorentzian solution we want to consider.
The analytic continuation from EdB8) to a real Euclidean 0
solution involves continuing both—i7andg—iq’. (This is
easy to see if we remember that charge comes from rotation
in the higher-dimensional solution; that is, it is an angular
momentum paramet@rThe analytic continuatiogq—iq’ in
Eqg. (8) drastically changes the physics—for example, the
analytically continued metric no longer has an extremal
limit. Thus, while the results obtained in the Euclidean met-
ric would have an interpretation in terms of a
(2+1)-dimensional gauge theory, as in the uncharged case, _, |
the spacelike Wilson loops in the Lorentzian metigg we
will consider do not have the same interpretation. In our
solution,q is not analytically continued, and there is no con-
nection between the behavior of the Wilson loops in this
metric and any (2 1)-dimensional theory. Our motivation —3-
for studying the spacelike Wilson loops is thus simply that ) ]
they are an interesting probe of the state in the FIG. 4. Spacelike Wilson Ioop_EvsL plozt for extremal black
(3+1)-supersymmetric field theory corresponding to ourl©le- As before, we ploE/Ur againstL.Ur/R*.
charged black holes. ) ) )

The action for the string worldsheet spanning a loop alongvhere the tensior7=U7/27R". The E vs L plot for the

two spatial dimensions is extremal black hole is given in Figd), to illustrate the simi-
larity with the uncharged case. The scale at which the linear
% (9,U)2 U4 behavior sets in is once again determined primarily by the

S= py= dx f(0) + = (200 horizon radiudJ 1 ; the effect of¢ is just some multiplicative

factor of order unity.

These probes see the horizon basically as a boundary,
whereY is the length of the long side of the loop. Repeatiﬂgproviding a lower bound om,i., and hence enforcing an
the method of calculation df andE used above, we find  area law behavior at large distances. Since they do not probe

the g, part of the metric, it is not surprising that they are not
2R?2¢ ydy good probes of the causal structure, or particularly sensitive
= . (21 to the temperature.

L o]
Ur L VY= 1)(y*= a®)(y*+ a’y?— a*6)

IV. SUPERGRAVITY PROBES

Ur| (= °
=T J ( = > Zy 1 We now consider the supergravity propagators on the
ma| J1\J(y* = 1) (y*=a®)(y*+a’y*— a0) charged black hole background. These can be used to calcu-
late the dual expectation value for sources coupled to the
xdy—1+al. (22) supergravity fields near the _horizon. One might hope that
these supergravity sources will better probe the causal struc-

ture, as unlike the string worldsheets considered above, these

We would like to find the behavior of the theory at lalgd. ~ Sources can have compact support in the radial direction.
is increasing as a function ef, so this requires us to con- However, the fact that the one-point functions are deter-

sider the behavior fo— 1 (i.e., we consider strings which Mined by the asymptotic fields will still complicate the story.

hang close to the horizonFor any value of the parametér
both of the integrals are then dominated by the regjon A. Retarded propagator

=1. Sofora—1, the integrals in. andE become the same v consider first the retarded propagator, defined as the
and we uncover the same area law as in the uncharged cas®ution to the wave equation

E=TL, (23) d,(—9g""9,G(x,x"))= 8(x—x") (24)
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subject to the boundary conditio®(x,x")=0 for t<t’. tr,

Here,x' is the position of the source, andis the position ¢=0r=r cothy7. (26)
where the measurement is made. It is natural to assume that

sources in the bulk will follow geodesics, and in the charged

black hole spacetimes, this implies that they will fall into the The propagator from a point on this trajectory to the bound-
black hole. To study the effects of such source probes, wary atr=c will be non-zero only at the intersection of the
must calculate boundary expectation values using the rdight-cone of the point with the boundargince the space is
tarded propagator; to learn about the causal structure, wecally AdS, we can use the propagator obtainefBi). For
must respect it. Unfortunately, the explicit calculation of thisa point atr =r , (1+ ¢€), the light cone meets the boundary at
propagator is extremely difficult, because of the complicated

nature of the spacetime. In this section, we will focus on the

calculation in the (2 1)-dimensional Baados-Teitelboim- 12 (2 cosltir, ¢/l)
Zanelli (BTZ) black hole, as this solution is locally AdS, so t= :l ' (27
the propagator can be obtained exactly. In the conclusions,
we will discuss the qualitative features of the retarded propa-
gator in higher dimensions. As causality requirest here goes to infinity as the source
The BTZ black hole solutiofi30] approaches the horizon. More importantly, the point contrib-
utes at later times as we increage We consider the contri-
2 (r’=r?) 2 1%dr? 24,2 bution to the expectation value at some fixed late time from
ds’=-— |2 dt“+ (r2—r2) +rede”, (25 the source worldline near the horizon. If we take the source

sufficiently close to the horizon, we need only consider the
wherel (the analogue oR in our higher-dimensional discus- contribution from the source ap=0, and not that of the
sion) is the cosmological length scale, is locally pure AdS. Ifimages under the identification @i=*2=n. That is, we
¢ ranges over all values, this is a peculiar coordinate systeroan disregard the compactification éffor this calculation.
for AdS;. If ¢ is periodically identified with period 2, this The contribution to the expectation value of the dual op-
is a black hole with a horizon at=r , . A lightlike geodesic  erator from a geodesic source near the horizon in these co-
starting at the boundary poibt=0,4=0 is described by ordinates with¢ e (—o0,) is [31]

A
ar
<O>= 2 2\ i (A/2+)2 2\ i A2 (28)
(@%+ (1+a?)sink[r, (t+ ¢)/2])*%(@%+ (1+a?)sinkr . (t— ¢)/2])
|
for an operator of conformal dimensiak, wherea is the B. Static propagator
boost parametefthe source is lightlike foe—0). This ex- We will next turn to static sources. The advantage of con-

pectation value is approximately independentdffor ¢ gjgering static sources is that since the source is always near

e (—m,m) at larget. Thus, the contribution to the expecta- the horizon, the expectation value will be affected by the

tion value from the region near the black hole horizon ispear-horizon structure. However, the static propagator is in-

¢-independent, which is as close as we can come to confirmependent o, , so this is not guaranteed to produce a result

ing our general expectation that the horizon is associated t@hich reflects the causal structure near the black hole, and in

an infinite scale in the present context of a compact spatigact the answer we obtain does not have a straightforward

direction on the boundary. We reiterate that this is just thaelation to statements about the causality. However, it does

contribution from the region near the horizon; the main con-appear to encode information about the near-horizon region

tribution to the expectation value istat = ¢ as discussed in in a non-trivial way.

[7], and comes from the part of the worldline near the bound- The calculation of the appropriate propagator in the un-

ary. charged black hole background was discusseBifj. The
Thus, in the BTZ black hole, the contribution to an ex- static propagator for a massless scalar field is defined as a

pectation value from a source near the horizon calculatedolution to the equation

with the retarded propagator is non-zero only at late times, .

and is independent of the spatial coordinate. Note also that 3(N9g13,G(x,x"))= Vg d(x—X"). (29)

the part of the source worldline near the horizon makes only

a small contribution to the expectation value; as discussed in

more detail in[7], the main contribution, even at late times, Herex’ is the position of the source, whileis the point at

comes from the part of the worldline near the boundary. Irwhich the field is measured. We take the meii® and

the conclusions, we will briefly argue that similar resultsrescale the coordinates by —Usu, t—tR%>U; and x

should be expected in higher dimensions. —xR?/U+. The equation for the static propagator is then
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U= (1+ o)us+ 0u)(956+(5u6_(1+ 9)u2— 6)9,G in this Fgurier transform are expressed as a sum over the
- , poles of G(u,u’,k;). The boundary behavior of the dilaton
825 Jub—(1+6)u’+ 0 , field is then found to be
—uk°G= =7 S(u—u’). (30
U—ox U# © e~ Ml
nge we have Fourier transformed the propagator equation $(U.x) ~ 87ROU4 gl mnrw’(mn)f y2(u',my)du’.
with respect tax;, so (37)

G(u,u’ k'):J d3xe"2'>zG(u u’oxi). (31) Here, m, are the zeros ofv(k), which give poles in the
B B propagator. These correspond to the special valudsfof

) ) , o which we can construct solutions regular at both the horizon

Foru<u’ andu>u’ the Green’s function is given by the anq infinity. y,(u’,m,) are the corresponding solutions of
solutions of the homogeneous equation Eq. (32). Thus, the propagator has an exponential suppres-
7. 3 . 6 2 sion forr >1/m,, and these poles hence provide a maximum
U= (1+6)u°+ Ou)y”(u)+ (5u°—(1+ )u — Oy’ (u) length scale for the expectation value dual to sources any-
—u3k2y(u)=0. (32) where in the bulk. We proceed to determine this maximum

scale by finding the poles, .

We must now consider the indicial equations which arise In the case of the uncharged black hole, this problem of
for solutions near the horizon=1 and the boundary ~ determining the zeros of the Wronskian physically corre-
=, Foru>u’ this iso?+40=0, and the presence of elec- SPonded to finding the glueball mass spectrum for the (2
tric charge makes no difference to the boundary behavior of 1)-dimensional pure Yang-Mills theory, and was first de-

the Green’s function. In order for the solution to vanish atScribed in[28], and both numerical methods and analytic
infinity, as required, we therefore have approximations have since been used to calculate the spec-

trum [32,33,3]. As was emphasized in the discussion of
~ 1 spacelike Wilson loops, the Lorentzian met(®) is not di-
G(u>u',k)=Ay;(u,k) where y;(u,k)~ — u—e. rectly related to the (2 1)-field theory obtained from a Eu-
u clidean rotating brane metric. Thus, the zengsfound here
(33 will not be simply related to the glueball mass spectra ob-
. o ) tained from studies of the rotating brane metric$10,20.
For the behavior nean=1, we have the indicial equation We follow the approach di33] in calculatingm, , as the

(4-26)[o(o—1)+ U]. :.O' So long ag#2 (i_.e., for a non- change of coordinates employed there makes the interpreta-
extremal black holgthis is also the same as in the unchargedtion in the extremal limit clear. Returning to E(82), with

case, and regularity at the horizon requires the change of variables=u? (k=i«), we find
G(u<u’,k)=By,(u,k) where y,(u,k)~1, U—>%.34) AL OC— (14 0)x+ 0)dy]+ k?y=0. (38)
In order to use WKB methods on a second order linear dif-
erential equation, it is necessary to redefine the dependent
variable so that it satisfies a differential equation with no first
derivative term. The WKB analysis is greatly simplified with
the change of variables=1+e*. Defining

_ Y 1 x3—(1+ 6)x+ 6
A W(y1,Y2) Ru’Ju'8—(1+6)u’?+6’ y=\N—x=7 Y= Vi@y, (39

(39
Y1 1 where

We will return to the extremal case later in this section. Th
constant® andB are calculated by continuity in the Green'’s
function atu=u’ and the correct discontinuity in its deriva-
tive, giving

B

~ W(Y1.Y2) R7u' U5 —(1+ )u'2+ 6 f(z)=e?*+3e’+(2—6) (40)

From Eq.(32) we see that the Wronskid®(y,,y,) is we obtain a differential equation which is completely analo-

gous to the uncharged case,

S p— 36)
Yi.Yo )= ————. %
0 +V(z)y=0, 41
u5—(1+0)u+a ViV “y
where
The value of the dilaton can then be computed ag3i. 5 , o
The position-space propagator is written as the Fourier trans- V(z)= K—ez— f_+ o 42)
form of this momentum-space propagator, and the integrals f 2f \2f) -

104023-8



LOOKING FOR EVENT HORIZONS USING UV-IR RELATIONS PHYSICAL REVIEW [B3 104023

The only change in this equation is tHdt) is altered by the 1.8
0 term. To perform the WKB analysis we need to find the

points where the potential in this equation is zero, as these

are the turning points of the WKB approximation. In the

limits of large|z|, for 6+2, we have 16-
2
~l | p? <
V(z) 2-6 2(2-0) e’ for z<0, (43
V(z)~k?e ?—1 for z=0. (44) 147

For « sufficiently large there are thus turning points zat
=—o andz=2zy=2 In(x). The WKB approximation there-
fore gives 1.2

= f jo dz\V(2). (45)

L
)

To leading order ink we can approximate the integral
e} ez
T= K\/ dz
f - Vi(2) 0.8

°° dx
= Kf =kKa, (46) R
1 C—(1+0)x+ 0 0 02 04 06 08 1 12 14 16 18

theta

L
T2

where the last equality defines. The zerosm, of the FIG. 5 P
Wronskian are thus approximately given by -2 My Vs 0.

L1
"3

w
my=—
n a

indicial equation for solutions near the black hole horizon is
, (47)  given by (4-26)[o(o—1)+]=0. This is true ford+2,

but for 6=2 the dominant terms in the solution near the
wheren is a positive integef. horizon are those of a lower exponent and they lead to the

In the uncharged case can be evaluated exactly. For the indicial equation

charged case, we evaluate alpha numerically, and see that as
the charge of the black hole is increasedjncreases and 120(0—1) + 240 —k?=0. (48)
thus eachm, decreases. In Fig. 5, we plot the value of the

lowest zerom, as a function of the parametérdetermining  For solutions to be well behaved near the horizon this re-
black hole charge. A¥—2, a diverges like IN[)<In(2  quiresk?=0. This is problematic since the zeros are given
—6), whereT is the black hole temperature. Since we arepy m2— — k2, |n fact, in the extremal case, E(B2) can be

obtaining a divergent answer, we should consider the validityglyed exactly, enabling us to see how it differs from the

of the approximation more carefully. o non-extremal case. Making the substitutioru? reduces
The divergence found in the WKB approximation in the e homogeneous equation fér=2 to

extremal case can be explained by considering the potential.

For non-extremal black holes the behavior \fz) for z K2

<0 was as given in Eq43). This is the case for any value (x—1)%(x+2)d2y+3(x—1)(x+1)d,y— —y=0.
of 6 other than 2, but foW=2 it is the next term inf(z) 4
which contributes tov(z) for z<0. The potential now no

longer decays exponentially far<<O: instead it becomes )

constant, and the potential never reaches zero in this regiod/hereas in both the uncharged case and the nonextremal
Therefore there is no second turning point of the equatior?harged case our homogeneous differential equation was lin-

(49

and the bound state problem has no solutions. ear second order with four regular singularities, this equation
The different nature of the problem in the extremal casePnly has three regular singularities, & —2, x=1 andx
was discovered earlier, when we found for E8p), that the ~ =%. We recognize this as the hypergeometric equation and

reduce it to the standard form by the transformation
=3/(1—x). Then

2lt is argued in[31] that the extra zero fon=0 does not contrib- K2
ute and this claim is substantiated by comparison to numerical re- . 2, _
z2(1-2)9 ay+—=y=0. 50
sults for calculation of the zeros in the uncharged black hole. ( )02y =92y 12y (50
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We will look for solutions of Eq(50) satisfying our bound- V. CONCLUSIONS

ary conditions without restricting the sign kf, to see if any . . .
such solutions exist. We need the solution to be normaliz- We only found signs of the expected divergence in the

able, soy~u—* asu—: after coordinate transformations scale size of dual expectation values for probes near the ho-
this ’condition becomey;zz asz—0. We also require the rizon in the discussion of time-dependent probes. The failure
solution to be well-behaved ai=1 i.e atz=c. The hy- to find such a relationship for Wilson loops is perhaps un-

pergeometric equation has one solution with the correct begers.tandable, since the extended nature of the worldsheet
havior atz=0, implies that the part of the worldsheet that changes as we

vary the asymptotic separation is probing a range of radii

3 3 1 near the horizon, and not a specific value. Thus, the Wilson
y(2)=2°F §+)\:§—)\13i2>, A=gV9+3k™=0. loops do depend non-trivially on the structure of the metric
(51)  hear the horizon, but do not really see the horizon as a
horizon.
To examine the behavior near«~, we use the asymptotic It is more surprising that static supergravity probes pro-
expansion in terms of hypergeometric functions iz 1@  duce dual expectation values with a finite scale size. From
give the spacetime point of view, this statement means that a
point charge close to the horizon produces an asymptotic
I'3)r'(—=2n) 324N 1/2 field which still depends non-trivially on the transverse co-
y(2)= m(_l) z ordinates x;. This is quite different from the case of
Schwarzschild black holes in flat space, where the field of a
3 1 1\ T(3)I(2)) charged particle close to the horizon becomes pompletely
XF > +\, 5 +N,1+2); z) + T(3/2+ n)? spherically symmetri¢see]34] and references thergirNote

that this is not just the usual difference between the
3 1 1 asymptotic behaviors of flat space and AdS: in the Schwarzs-
X (— 1)3’2>‘21’2“F(— —N,— =—\,1-2\; —) . child case, the field measured at some finite radius is becom-
2 2 z ing spherically symmetric as the source approaches the hori-
(52 zon. It would be interesting to know what happens for the
Schwarzschild-AdS solution.
Since the hypergeometric function as a function of & The static propagator in the Lorentzian charged black hole
asymptotic to 1 ar=o, for our function to be well behaved also exhibits a mysterious logarithmic dependence on the
atz=o we require thaz does not appear outside the hyper-temperature for small temperatures. It should be noted that
geometric function with a positive exponent. In the seconchis only provides an upper limit for the behavior of the scale
term of this expression foy(z) this cannot be achieved, so size of excitations for static probes near the horizon, and the
the gamma function in the denominator must diverge to seactual scale could be constant. Nevertheless, it would be in-
this term to zero. However, this would only happen if 3/2teresting to try to understand this behavior from the field
+A=—n for n a non-negative integer, and is positive.  theory point of view. While no analogue of this behavior was
Thus, in the extremal case there are no solutions of the timeseen in the glueball mass calculations in rotating back-
independent wave equation satisfying the boundary condigrounds[19,20, this should not cause concern. As previ-
tions at both the horizon and the boundary. The breakdowwously emphasized, these calculations address the physically
in the WKB analysis near extremality is therefore physical. different Euclidean solution obtained by-ir, g—iq’. In
In these static propagator calculations, we have found thahis Euclidean solution, it is not possible to take the tempera-
there is a finite screening length associated with most of théure to zero; in fact, the minimum value of the temperature is
black hole spacetimes. From the calculations in the unachieved whem’'=0.
charged black hole, where the screening length is the thermal We were only able to carry out an explicit calculation
scale, one might have suspected that this is associated witlsing the retarded propagator in the BTZ black hole. How-
the thermal fluctuations, which are concealing a divergencever, we can make a case that the behavior for higher-
in the true behavior. However, as we increase the charge, th#imensional black holes should be similar. In black hole
screening length grows only logarithmically in the tempera-spacetimes, the metric at large distances is approximately
ture, and soon falls below the thermal scale. There is thuadS, so we would expect propagation in this region to be
really some limit on the characteristic scale for probes neawell-approximated by the propagation in pure AdS. The re-
the horizon, and we see no sign of a divergent scale sizearded propagator in pure AdS was previously investigated in
associated with the horizon in this calculation. It also would[31], where it was found that a highly-boosted source pro-
be interesting to understand the origin of this behavior in theduced a “bubble” around the light-cone of the point where
field theory: since the scale is not simply fixed by the horizonthe source makes its closest approach to the boundary. By
radiusUt, there may be some interesting physics here. Frontausality, only the part of the source trajectory near the
this point of view, it should be stressed thaim}/only pro-  boundary can be contributing to this part of the expectation
vides an upper bound on the possible scale size; there may balue; the region where the expectation value is large is out-
power-law suppression at a smaller scale that this calculatioside of the light cone of all but the initial part of the probe’s
is not sensitive to. trajectory(see[31] for detail9. Thus, for a source starting at
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a large radial distance in the black hole geometry, the expedhe Euclidean solution is simply a point where the proper
tation value will have a contribution which produces a delta-length of the periodie direction goes to zero. If we place a
function along the light cone. This part will spread out to D-instanton at this point, the translational symmetryriis
infinite scale size along the light cone, just as it did in AdS.preserved, so the dual expectation value must be
In an uncharged black hole background, there are thermal-independent. That is, for D-instantons near the horizon, the
fluctuations around this average value, so it was argupdiin scale of the dual field theory instanton goes to infinity in the
that in practice, we will see the bubble expand until it 7 direction (and from the above comments on static propa-
reaches the thermal scale, where it becomes confused witfators, in ther direction only. This may be a useful test for
the thermal fluctuations. In the charged black hole, we cam horizon in the Euclidean solution, but it does not help us to
suppress these thermal fluctuations, so we should be able tmderstand the causality of the Lorentzian solution.
see the bubble expanding to larger and larger scales, just as The key to a more satisfactory representation of the bulk
in pure AdS. Thus, the behavior of the leading contributioncausal structure may be to develop a relation between the
to expectation values in higher-dimensional black holes isulk theory and the boundary which does not require us to
similar to the BTZ case. propagate effects out to the boundary in spacetime. This is

However, in the BTZ case, the contribution from the near-difficult to achieve with the present correspondence, as the
horizon region was a small correction to this leading behavrelation between spacetime and field theory is phrased in
ior. Thus, to determine if the horizon is associated with infi-terms of boundary conditions on the gravity side. It is worth
nite scale sizes in higher-dimensional black holes, we shouldtressing that this problem is distinct from the problem of
consider the contribution to the expectation value from thestudying local physics on scales smaller than the AdS scale;
region near the horizon. Here, all that we can say is thathe black holes here can be as large as one wants. Perhaps
because of the non-trivial causal structure, there can be @en resolving this apparently simple question requires the
contribution from the region near the horizon only at verydevelopment of a more general background-independent ver-
late times, and the discussion in pure AdS suggests this cosion of the correspondence.
tribution will be small compared to the contribution from the
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