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NÄ3 chiral supergravity compatible with the reality condition
and higher N chiral Lagrangian density
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We obtainN53 chiral supergravity~SUGRA! compatible with the reality condition by applying the pre-
scription of constructing the chiral Lagrangian density from usual SUGRA. TheN53 chiral Lagrangian
density in first-order form, which leads to Ashtekar’s canonical formulation, is determined so that it reproduces
the second-order Lagrangian density of usual SUGRA especially by adding appropriate four-fermion contact
terms. We show that the four-fermion contact terms added in the first-order chiral Lagrangian density are the
nonminimal terms required from the invariance under first-order supersymmetry transformations. We also
discuss the case of higherN theories, especially forN54 andN58.
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I. INTRODUCTION

The supersymmetric extension of Ashtekar’s canon
gravity @1,2# has been developed since the first construct
of N51 chiral1 supergravity~SUGRA! @3#. In particular, the
extended chiral SUGRA was constructed in the context
two-form gravity @4,5# for N52 @6,7# and N53,4 theories
@8#, and was also constructed by closely following t
method of usual SUGRA forN52 theory@9#. Furthermore
the canonical formulation of SUGRA in terms of the As
tekar variable was explicitly derived up toN52 theory from
the method of two-form SUGRA@6,7# and also from that of
usual SUGRA@10#. However, forN>3 chiral SUGRA, a
straightforward derivation of the canonical formulation
terms of the Ashtekar variables has not yet been done.

In this paper we constructN53 chiral SUGRA compat-
ible with the reality condition, which is the lowestN theory
involving a spin-1/2 field in addition to spin-2~gravita-
tional!, spin-3/2 and spin-1 fields, by closely following th
method of the usual SUGRA as a preliminary to derive
canonical formulation ofN53 SUGRA in terms of the Ash-
tekar variable. Furthermore, we discuss the construction
higherN chiral SUGRA, in particular, the construction of th
chiral Lagrangian density forN54 andN58 theories.

When we construct the chiral SUGRA, we assume at fi
that the tetrad is complex and construct such a chiral
grangian as analytic in complex field variables as brie
mentioned in Ref.@3#. This means that right- and left-hande
supersymmetric~SUSY! transformations introduced in th
chiral SUGRA are independent of each other even in
second-order formalism. This fact makes it more transpa
to confirm the SUSY invariance, particularly the righ
handed one. Once we construct the chiral Lagrang

*Email address: tsuda@sit.ac.jp
1‘‘Chiral’’ means in this paper that only right-handed~or left-

handed! spinor fields are coupled to the spin connection in the
netic term of spinor fields.
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density, we impose the reality condition.2

In order to construct the chiral Lagrangian density in fir
order form, we apply the prescription proposed in the case
N52 chiral SUGRA@9#. First the chiral Lagrangian densit
in the second-order formalism,L (1)@second order#, with a
~complex! tetrad is obtained from the Lagrangian density
the usual SUGRA,Lusual SUGRA~second order!, by complexi-
fying spinor fields~spin-3/2 and -1/2 fields! as follows.

~a! Replace Rarita-Schwinger fields3 cm
I and their conju-

gatesc̄m
I with

cm
I →cRm

I 1c̃Lm
I ,

c̄m
I →c̄Lm

I 1 c̄̃Rm
I , ~1.1!

by using two independent sets of Rarita-Scwinger fieldscm
I

and c̃m
I .

~b! Rewrite the kinetic term ofeemnrsc̄Lm
I gr¹sc̃Ln

I into

eemnrsc̄̃Rm
I gr¹scRn

I plus a total derivative by partial inte
gration, where¹s denotes the ordinary covariant derivativ
in general relativity.

~c! Apply the prescription~a! and ~b! to spin-1/2 fields.
Then the chiral Lagrangian density in first-order form

L (1), is determined by the following prescription.
~d! Replace the¹s to the Ds

(1) which is defined in Eq.
~2.2! later.

-

2After imposing the reality condition, the phase space in the
nonical formulation consists of the real triad and the complex c
nection as discussed, for example, in Refs.@1,2,11,12# for general
relativity, and in Refs.@3,13# for (N51) chiral SUGRA. This phase
space leads to non-Hermitian operator with respect to the con
tion variable in quantizing the theory~see, for example, Refs
@11,13#!.

3Rarita-Schwinger fields denoted bycm
I and c̃m

I , and spin-1/2

fields denoted byx ~or x I ,x IJK) and x̃ ~or x̃ I ,x̃ IJK) represent Ma-
jorana spinors. Throughout this paper capital lettersI ,J, . . . , de-
note the number of Rarita-Schwinger fields, and we shall follow
notation and convention of Ref.@9#.
©2001 The American Physical Society21-1
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~e! Add appropriate four-fermion contact terms so that
L (1) reproduce theL (1)@second order#.

The four-fermion contact terms added inL (1) by means
of the prescription~e! are also required from the invarianc
under first-order SUSY transformations up toN53 chiral
SUGRA as will be explained later: We expect that the sa
result will be the case for higherN. TheL (1) in terms of the
real spin contents is obtained by imposing the reality con
tion ~e.g., em

i 5em
i for the tetrad, andc̃m

I 5cm
I for Rarita-

Schwinger fields!.
In the case ofN52 chiral SUGRA@9# under the reality

condition, the chiral Lagrangian density in first-order for
constructed by the above prescription~a!–~e! differs from
the first-order Lagrangian density of the usualN52 SUGRA
by

~L N52
(1) 2LN52 usual SUGRA! ~first order!

52
i

8k2 eemnrs~Tlmn1 ik2c̄m
I glcn

I !Tl
rs

1
i

8
k2eemnrs~c̄Lm

I cRn
J !c̄Rr

K cLs
L e IJeKL

2
i

4k2 ]m$eemnrs~Tnrs1 ik2c̄r
I gncs

I !%, ~1.2!

whereTlmn stands for the torsion tensor. The last imagina
boundary term corresponds to a certain Chern-Sim
boundary term given by Macı´as @14# and Mielkeet al. @15#
as a generating function of the canonical transformati
However, in the first-order formalism, the second fou
fermion contact term added by the prescription~e! does not
appear inN51 chiral SUGRA@3,14,15#. Indeed, we showed
that this new second term is the nonminimal one requi
from the invariance under first-order SUSY transformatio
@9#. In the second-order formalism, the first term does
vanish by itself in contrast with theN51 theory, but cancels
with the second four-fermion contact term by using a Fi
transformation. InN53 chiral SUGRA, an additional four
fermion contact term quadratic with respect to both spin-
and -1/2 fields is also required in the chiral Lagrangian d
sity as explained in the next section.

This paper is organized as follows. In Sec. II we constr
N53 chiral SUGRA compatible with the reality conditio
by applying the above prescription~a!–~e!. The invariance of
the field equation for vector fields under duality transform
tions inN53 chiral SUGRA is shown in Sec. III. In Sec. IV
we discuss the case of higherN theories, especially forN
54 andN58. The conclusion is given in Sec. V.

II. NÄ3 CHIRAL SUGRA COMPATIBLE WITH THE
REALITY CONDITION

Let us constructN53 chiral SUGRA by means of the
prescription~a!–~e! explained in the Introduction. The usu

N53 SUGRA @16,17# has spin contents (2,3
2 , 3

2 , 3
2 ,1,1,1,12 ).

Corresponding to these spin contents, the independent
ables inN53 chiral SUGRA are a~complex! tetradem

i , two
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independent sets of Rarita-Schwinger fields (cm
I ,c̃m

I ) (I

51,2,3), two independent spin-1/2 fields (x,x̃), ~complex!
vector fieldsAm

I , in addition to the self-dual connectionAi j m
(1)

which is also treated as one of the independent variable
the first-order formalism. Then theN53 chiral Lagrangian
density in first-order form is given by

L N53
(1) 52

i

2k2 eemnrsem
i en

j Ri j rs
(1) 2eemnrsc̄̃Rm

I grDs
(1)cRn

I

1 iex̄̃RgmDm
(1)xR2

e

4
~Fmn

I !21
k

2A2
e$~F (2)Imn

1F̂ (2)Imn!c̄Lm
J cRn

K 1~F (1)Imn

1F̂ (1)Imn!c̄̃Rm
J c̃Ln

K %e IJK2
i

2
ke

3H F̂mn
I 2

k

2
~ c̄Lm

I gnx̃L1 c̄̃Rm
I gnxR!J ~ c̄Ll

I Smnglx̃L

1 c̄̃Rl
I SmnglxR!

1
i

8
k2eemnrs~c̄Lm

J cRn
K !c̄̃Rr

L c̃Ls
M e IJKe ILM

1
k2

2
e~ c̄̃Rm

I g [mcRn
I !x̄̃Rgn]xR , ~2.1!

which is globally O~3! invariant. Here eªdet(em
i ),

e IJK denotes a totally antisymmetric tensor, andFmn
(6)I

ª(1/2)(Fmn
I 7 i F̃ mn

I ) with Fmn
I 52] [mAn]

I and F̃mn
I

5(1/2)emnrsFIrs. The covariant derivativeDm
(1) and the

curvatureR(1) i j
mn are

Dm
(1)

ª]m1
i

2
Ai j m

(1)Si j ,

R(1) i j
mnª2~] [mA(1) i j

n]1A(1) i
k[mA(1)k j

n] !,
~2.2!

while F̂mn
I in the chiral Lagrangian density~2.1! is defined as

F̂mn
I
ªFmn

I 2
k

A2
~ c̄Lm

J cRn
K 1 c̄̃Rm

J c̃Ln
K !e IJK. ~2.3!

In Eq. ~2.1!, the Am
I -dependent terms and the four-fermio

contact terms except for the last two contact terms co
spond to those obtained in the usual SUGRA. Note that
~2.1! is reduced to theN52 chiral Lagrangian density@9#, if
we put the condition

~x,x̃ !50, ~cm
3 ,c̃m

3 !50, Fmn
1 505Fmn

2 , ~2.4!

in Eq. ~2.1!, and if the em
i , (cm

I ,c̃m
I ) (I 51,2) and

Fmn(ªFmn
3 ) are taken as the field variables.

We show that the chiral Lagrangian density~2.1! is in-
variant under the local SUSY transformations. The inva
1-2
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ance up to the orderk is confirmed by means of the follow
ing right- and left-handed SUSY transformations in the fir
order formalism, and entirely determines the form of t
chiral Lagrangian density. In particular, the last two cont
terms in Eq.~2.1!, which are added by the prescription~e! of
constructing the chiral Lagrangian density, are the nonm
mal terms required from the invariance of orderk under the
right-handed SUSY transformations generated bya I given
by

dRem
i 5 ikāL

I g i c̃Lm
I , dRAm

I 5A2e IJKāL
JcRm

K 1āL
I gmx̃L ,

dRcRm
I 5

2

k
Dm

(1)aR
I 2

i

2
k~ x̄̃RglxR!glgmaR

I ,

dRc̃Lm
I 52

1

A2
e IJKF̄ (2)J

rsSrsgmaR
K

2
i

A2
ke IJK~ c̄Lm

J gnx̃L!gnaR
K ,

dRxR5F̄ (1)I
mnSmnaR

I , dRx̃L50, ~2.5!

and under the left-handed SUSY transformations gener
by ã I given by

dLem
i 5 ikā̃R

I g icRm
I , dLAm

I 5A2e IJKā̃R
J c̃Lm

K 1 ā̃R
I gmxR ,

dLc̃Lm
I 5

2

k
Dm

(2)ãL
I 1

i

2
k~ x̄̃RglxR!glgmãL

I ,

dLcRm
I 52

1

A2
e IJKF̄ (1)J

rsSrsgmãL
K

2
i

A2
ke IJK~ c̄̃Rm

J gnxR!gnãL
K ,

dLxR50, dLx̃L5F̄ (2)I
mnSmnãL

I , ~2.6!

whereF̄mn
I in Eqs.~2.5! and ~2.6! is defined as

F̄mn
I
ªF̂mn

I 2k~c̄Lm
I gnx̃L1 c̄̃Rm

I gnxR!. ~2.7!

In addition, we choose the right- and left-handed SU
transformations ofAi j m

(1) as @18#

dRAi j m
(1)50,

dLAi j m
(1)5self-dual part of$2k~Bm i j 2em[ iB

m
umu j ] !%,

~2.8!

respectively, with

Blmn
ªemnrsā̃R

I glDr
(1)cRs

I . ~2.9!
10402
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Although the Ai j m
(2) appears atdLc̃Lm

I in the left-handed
SUSY transformations of Eq.~2.6!, it is not an independen
variable but a quantity given byem

i , (cm
I ,c̃m

I ), and (x,x̃);
namely, theAi j m

(2) is fixed as the sum of the antiself-dual pa
of the Ricci rotation coefficientsAi j m(e) and that ofKi j m
given by

Ki j m5
i

2
k2~ c̄̃R[ i

I g umucR j]
I 1 c̄̃R[ i

I g u j ucRm]
I 2 c̄̃R[ j

I g u i ucRm]
I !

1
k2

4
e i j mnx̄̃RgnxR . ~2.10!

At orderk2 andk3, on the other hand, the transformatio
~2.8! should be corrected to recover the SUSY invariance
the first-order formalism. However, this task will be comp
cated as is expected from the usual SUGRA@16#, and there-
fore we turn to the second-order formalism in order to mi
mize complication. Then it can be shown by
straightforward calculation that the chiral Lagrangian dens
~2.1! is invariant under the SUSY transformations of Eq
~2.5! and ~2.6!, provided that theAi j m

(1) is fixed as

Ai j m
(1)5Ai j m

(1)~e!1Ki j m
(1) ~2.11!

by solving the equationdL N53
(1) /dAi j m

(1)50 with respect to
Ai j m

(1) .
Here we also note that the last two four-fermion cont

terms in Eq.~2.1!, which do not appear in the first-orde
Lagrangian density@16,17,19# of the usual SUGRA, are nec
essary to reproduce the second-order Lagrangian densi
the usualN53 SUGRA, when the reality condition

em
i 5em

i , c̃m
I 5cm

I , x̃5x andAm
I 5Am

I , ~2.12!

is imposed.4 Indeed, if we use the solution~2.11! in the first
three terms in Eq.~2.1!, then these terms give rise to a num
ber of four-fermion contact terms, which involve the follow
ing terms:

i

8k2 eemnrsTlmnTl
rs52

i

16
k2eemnrs

3~ c̄̃Rm
J glcRn

L !c̄̃Rr
K glcRs

M e IJKe ILM

2
k2

2
e~ c̄̃Rm

I g [mcRn
I !x̄̃Rgn]xR ,

~2.13!

where the torsion tensor is defined byTi
mn522D [men]

i with
Dmen

i 5]men
i 1Ai

j men
j . The second last term in Eq.~2.1!, on

the other hand, can be rewritten as

4The bars ofem
i andAm

I in Eq. ~2.12! mean the complex conjugate
1-3
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i

8
k2eemnrs~c̄Lm

J cRn
K !c̄̃Rr

L c̃Ls
M e IJKe ILM

5
i

16
k2eemnrs~ c̄̃Rm

J glcRn
L !c̄̃Rr

K glcRs
M e IJKe ILM

~2.14!

by using a Fierz transformation, and the sum of the last
terms in Eq.~2.1! exactly cancels out the terms of Eq.~2.13!.
When the reality condition~2.12! is imposed in the second
order formalism, the last two terms in Eq.~2.1! and the terms
of Eq. ~2.13! are purely imaginary up to boundary terms, b
they cancel each other. Therefore theL N53

(1) ~second order!
of N53 chiral SUGRA with the reality condition~2.12! is
reduced to that of the usual one up to imaginary bound
terms, namely, we have5

L N53
(1) ~second order!5LN53 usual SUGRA~second order!

1
1

8
]m~eemnrsc̄r

I gncs
I

1 iex̄g5gmx!. ~2.15!

This second-order Lagrangian density~2.15! is invariant un-
der the right- and left-handed SUSY transformations of E
~2.5! and ~2.6!, which are now complex conjugate of eac
other in the second-order formalism under the reality con
tion ~2.12!.

Let us explain how to gauge@20# the globalO(3) invari-
ance of the chiral Lagrangian density~2.1!. First we intro-
duce a minimal coupling ofcRm

I with Am
I , which automati-

cally requires a spin-3/2 masslike term and a cosmolog
term in order to ensure the SUSY invariance of the Lagra
ian, and we also replace the Abelian field strengthFmn

I with
the non-Abelian one

Fmn8I
ªFmn

I 1le IJKAm
J An

K ~2.16!

with the gauge coupling constantl: The three terms adde
to Eq. ~2.1! in order to gauge theO(3) invariance are then
written as

Lcosm52leemnrsc̄̃Rm
I grcRn

K As
J e IJK

2A2ik21le~ c̄̃Rm
I Smnc̃Ln

I 1c̄Lm
I SmncRn

I !2Lk22e,

~2.17!

where the cosmological constantL is related tol as L
526k22l2.

5The imaginary boundary terms in Eq.~2.15! correspond to the
Chern-Simons type boundary terms@14,15# as appeared in Eq.~1.2!
evaluated in the second-order formalism.
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III. DUALITY INVARIANCE IN NÄ3 CHIRAL SUGRA

In the extended usual SUGRA without gauging the glo
O(N) invariance, the field equation for vector fields is inva
ant under duality transformations@21–23# which generalize
those of the free Maxwell equations, while the Lagrang
changes its form in a specific way under these transfor
tions.

As we have already noted, the chiral Lagrangian den
~2.1! possesses global O~3! invariance. We show in this sec
tion that the field equation for vector fields derived from t
nongauged, chiral Lagrangian density~2.1! is invariant under
duality transformations. The field equation forAm

I can be
written as

]m~eG̃Imn!50, ~3.1!

where theG̃Imn are defined by

G̃Imn
ª

2

e

]L N53
(1)

]Fmn
I 52FImn1k~H (1)Imn1I (2)Imn!

~3.2!

with H (1)Imn and I (2)Imn being given by

H (1)Imn5A2e IJK~ c̄̃R
J mc̃L

Kn!(1)2 i c̄Ll
I Smnglx̃L ,

I (2)Imn5A2e IJK~ c̄L
JmcR

Kn!(2)2 i c̄̃Rl
I SmnglxR .

~3.3!

In addition, theF̃mn
I satisfies the Bianchi identity

]m~eF̃Imn!50. ~3.4!

Equations~3.1! and ~3.4! are invariant under the following
~global! duality transformations:

dem
i 50, dcRm

I 52 iL IJcRm
J , dc̃Lm

I 5 iL IJc̃Lm
J ,

dxR50, dx̃L50,

dS FImn

GImnD 5S 0 L IJ

2L IJ 0 D S FJmn

GJmnD ~3.5!

with the constant parametersL IJ which are assumed to b
complex, symmetric (L IJ5LJI) and traceless (L II 50):
When the reality condition~2.12! is imposed, however,L IJ

are supposed to be real. The transformations of Eq.~3.5! can
be rewritten in terms of the bases (H (1)Imn,I (2)Imn) and
(FImn1 iGImn,FImn2 iGImn) as

dS H (1)Imn

I (2)Imn D 52 i S L IJ 0

0 2L IJD S H (1)Jmn

I (2)Jmn D ,

dS FImn1 iGImn

FImn2 iGImnD 52 i S L IJ 0

0 2L IJD S FJmn1 iGJmn

FJmn2 iGJmnD .

~3.6!
1-4
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Since the transformations of Eq.~3.6! combined with the
O~3! transformations becomes the SU~3! group@21#, the du-
ality symmetry based on Eq.~3.6! is an example for ‘‘com-
pact’’ duality symmetries@22#. Also, the transformations
~3.6! reduce to~global! U~1! transformations inN52 chiral
SUGRA if Eq.~2.4! andL115L2252(1/2)L33 are satisfied.

TheN53 chiral Lagrangian density~2.1! is expressed by
using (FImn,GImn) and (H (1)Imn,I (2)Imn) as

L N53
(1) 5

e

4
~Fmn

I G̃Imn!1
e

8
$~Fmn

(1)I2 iGmn
(1)I !H (1)Imn1~Fmn

(2)I

1 iGmn
(2)I !I (2)Imn%1~Am

I -independent terms!. ~3.7!

The second term is obviously invariant under the transform
tion of Eq. ~3.6!, and the invariance of theAm

I -independent
terms can also be confirmed by using Eq.~3.5!. Therefore,
the L N53

(1) transforms under Eq.~3.6! in a definite way as

dL N53
(1) 5dS e

4
Fmn

I G̃ImnD
52

e

4
~Fmn

I L IJF̃Jmn2G̃mn
I L IJGJmn!, ~3.8!

which is same as that of the usual SUGRA except that
parametersL IJ are now complex.

IV. CONSTRUCTION OF THE HIGHER N CHIRAL
LAGRANGIAN DENSITY

In this section let us first construct theN54 chiral La-
grangian density by applying the prescription~a!–~e! ex-
plained in the Introduction. In the usualN54 SUGRA, the
field contents are a tetrad field, four Rarita-Schwinger fie
six vector fields, four spin-1/2 fields, and two~real! scalar
fields. Since there are scalar fields in the theory, the dua
symmetry group becomes ‘‘noncompact’’@22# in contrast
with the N52,3 theories. Indeed, the duality symmet
group of the usualN54 SUGRA is SU~4!3SU~1,1! @24#,
and the two scalar fields are described by the SU~1,1!/U~1!
nonlinear sigma model@22,23#.

In N54 chiral SUGRA, we introduce at first the~com-
plex! tetrad em

i , two independent sets of Rarita-Schwing

fields (cm
I ,c̃m

I ) (I 51,2,3,4), two independent sets of spi

1/2 fields (x I , x̃ I), ~complex! vector fieldsAm
IJ(52Am

JI), and
complex scalar fields6 (6f1 , 6f2) as the field variables. The
self-dual connectionAi j m

(1) is also treated as one of the ind
pendent variables in the first-order formalism. If we app
the prescription of constructing the chiral Lagrangian den
from the usualN54 SUGRA as in the case ofN53, then
the obtainedN54 chiral Lagrangian density in first-orde

6In N54 chiral SUGRA, we define complex scalar fields
6f15p6 iq and 6f25r 6 is with p, q, r , ands being assumed to
be complex, respectively. The reality condition for these sca

fields will be taken as (2f1 ,2f2 )5(1f1 ,1f2).
10402
-

e

,

ty

r

y

form can be written schematically as

L N54
(1) 52

i

2k2 eemnrsem
i en

j Ri j rs
(1)

2eemnrsc̄̃Rm
I grDs

(1)cRn
I 1 iex̄̃R

I gmDm
(1)xR

I

1LN54 ~scalar kinetic term1Am
IJ-dependent terms!

1~Am
IJ-independent terms!

1
i

16
k2eemnrs~c̄Lm

K cRn
L !c̄̃Rr

M c̃Ls
N e IJKLe IJMN

1
k2

2
e~ c̄̃Rm

I g [mcRn
I !x̄̃R

J gn]xR
J ~4.1!

with

LN54 ~scalar kinetic term1Am
IJ-dependent terms!

5
1

2

]m
1z]m 2z

~12 1z 2z!
2

e

4
Fmn

IJ KIJ,KLFKLmn

1~Fmn
IJ -proportional terms!. ~4.2!

The first term in Eq.~4.2! is the kinetic term of the scala
fields corresponding to the SU~1,1!/U~1! nonlinear sigma
model, and6z in this term is defined as U~1! invariant vari-
able constructed from (6f1 , 6f2), i.e.,

6zª 6f2~6f1!21. ~4.3!

The function KIJ,KL(5KKL,IJ) in the second term of Eq
~4.2!, on the other hand, is given by

KIJ,KL5
11 2z2

12 2z2d I [Kd uJuL]2
2 2z

12 2z2

1

2
e IJKL , ~4.4!

which is determined from a specific transformation prope
of KIJ,KL @22,23# under the duality transformations. Equatio
~4.2! and theAm

IJ-independent terms in Eq.~4.1! correspond
to those obtained in the usualN54 SUGRA @24,25#. In or-
der to prove the SUSY invariance of the chiral Lagrang
density~4.1! under right- and left-handed SUSY transform
tions, we will need a straightforward calculation.

The last two four-fermion contact terms in Eq.~4.1! has
the same role as inN52,3 chiral SUGRA, namely, those
terms ensure the first-order SUSY invariance and are
necessary to reproduce the Lagrangian density of the u
N54 SUGRA, when the reality condition

em
i 5em

i , c̃m
I 5cm

I , x̃ I5x I ,

Am
IJ5Am

IJ , and ~2f1 ,2f2 !5~1f1 ,1f2!, ~4.5!

is imposed. Indeed, the last two terms in Eq.~4.1! exactly
cancel with two of terms obtained in the second-order f
malism by solving the equationdL N54

(1) /dAi j m
(1)50 with re-

spect toAi j m
(1) . Then theL N54

(1) ~second order! of N54 chiral
r

1-5
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SUGRA with the reality condition~4.5! is reduced to that of
the usual one up to imaginary boundary terms as

L N54
(1) ~second order!5LN54 usual SUGRA ~second order!

1
1

8
]m~eemnrsc̄r

I gncs
I

1 iex̄ Ig5gmx I !. ~4.6!

This second-order Lagrangian density~4.6! is invariant un-
der the SUSY transformations of the usualN54 SUGRA.

Next we discuss the construction of theN58 chiral La-
grangian density also by applying the prescription~a!–~e!
explained in the Introduction. Here we note the characteri
features of the chiral Lagrangian density constructed so
TheN53 and 4 chiral Lagrangian densities of Eqs.~2.1! and
~4.1! have different forms from those of the usual SUGR
in particular, with respect to the following points: First, on
the gravitational and spinor~spin-3/2 and -1/2! kinetic terms
in the chiral Lagrangian density are written in terms of t
self-dual connectionAi j m

(1) . Then the appropriate four
fermion contact terms, which are required from the inva
ance under first-order SUSY transformations at orderk at
least up toN53 chiral SUGRA, are added in the chira
Lagrangian density by the prescription~e!. In view of these
points, the prescription of constructing the chiral Lagrang
density is easily extended toN58 SUGRA @26,27#.

The field contents of the usualN58 SUGRA are a tetrad
field, eight Rarita-Schwinger fields, 28 vector fields, 56 sp
1/2 fields, and 35 complex scalar fields. If we introduce
first the~complex! tetradem

i , two independent sets of Rarita

Schwinger fields (cm
I ,c̃m

I ) (I 51, . . . ,8), two independent

sets of spin-1/2 fields (x IJK,x̃ IJK),7 then the gravitational and
spinor kinetic terms written by theAi j m

(1) in the N58 chiral
Lagrangian densityL N58

(1) are written as

L N58
(1) ~gravitational and spinor kinetic terms!

52
i

2k2 eemnrsem
i en

j Ri j rs
(1) 2eemnrsc̄̃Rm

I grDs
(1)cRn

I

1
i

6
ex̄̃R

IJKgmDm
(1)xR

IJK . ~4.7!

The four-fermion contact terms added inL N58
(1) by means of

the prescription~e!, on the other hand, are chosen as

L N58
(1) @contact terms by the prescription~e!#

5
i

836!
k2eemnrs~c̄Lm

P cRn
Q !c̄̃Rr

R c̃Ls
S

3e IJKLMNPQe IJKLMNRS

7The x IJK denotes totally antisymmetric spinor, i.e.,x IJK

5x [ IJK] .
10402
ic
r.

,

-

n

-
t

1
k2

12
e~ c̄̃Rm

I g [mcRn
I !x̄̃R

JMNgn]xR
JMN , ~4.8!

which will also be required from the invariance under firs
order SUSY transformations at orderk. The terms other than
Eqs.~4.7! and~4.8! correspond to those obtained in the usu
N58 SUGRA @26,27#. In order to prove the SUSY invari
ance ofL N58

(1) under right- and left-handed SUSY transfo
mations, we will also need a straightforward calculation.

By means of the four-fermion contact terms of Eq.~4.8!,
the L N58

(1) ~second order! of N58 chiral SUGRA with the
reality condition is also reduced to that of the usual one up
imaginary boundary terms as

L N58
(1) ~second order!

5LN58 usual SUGRA ~second order!

1
1

8
]mS eemnrsc̄r

I gncs
I 1

i

6
ex̄ IJKg5gmx IJKD ,

~4.9!

which is invariant under the SUSY transformations of t
usualN58 SUGRA. The imaginary boundary terms in E
~4.9! are same as those of theN53,4 chiral SUGRA.

V. CONCLUSION

In this paper we obtainedN53 chiral SUGRA compat-
ible with the reality condition by applying the prescription
constructing the chiral Lagrangian density from the usuaN
53 SUGRA. TheN53 chiral Lagrangian density in first
order form of Eq.~2.1! was determined so that it reproduc
the L N53

(1) ~second order! of Eq. ~2.15! by adding the appro-
priate four-fermion contact terms, and showed that th
four-fermion contact terms added in Eq.~2.1! are the non-
minimal terms required from the invariance under the fir
order SUSY transformations at orderk. We also showed tha
the field equation for the vector fields derived from Eq.~2.1!
is invariant under the~compact! duality transformations.

Furthermore, we constructed theN54 chiral Lagrangian
density, in which the duality symmetry group is~noncom-
pact! SU~4!3SU~1,1!, and we also discussed the constru
tion of theN58 chiral Lagrangian density. In the higherN
chiral Lagrangian density we added appropriate four-ferm
contact terms as in the case ofN53, which will be required
from the invariance under the first-order SUSY transform
tions at orderk. We will need a straightforward calculatio
in order to prove the SUSY invariance of the higherN chiral
Lagrangian density under right- and left-handed SUSY tra
formations.

Finally we briefly discuss the polynomiality of constrain
in the canonical formulation of the chiral SUGRA. The
appear, in the chiral SUGRA, right- and left-handed SUS
constraints in addition to Gauss-law, U~1! gauge ~for N
>2), vector and Hamiltonian constraints, which reflect t
invariance of the chiral Lagrangian density. In theN51
theory @3#, all the constraints are indeed written in polyn
mial form in terms of the canonical variables of the Ashtek
formulation. In theN52 theory @6,10#, although only the
left-handed SUSY constraint~and the Hamiltonian constrain
as stated in Ref.@6#! has the nonpolynomial factor as in th
1-6
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case of the Einstein-Maxwell theory in the Ashtekar varia
@28#, the rescaled left-handed SUSY constraint by multip
ing this factor becomes polynomial. In theN53 theory de-
rived from theN53 chiral Lagrangian density~2.1! with the
reality condition~2.12!, it can be verified that both right- an
left-handed SUSY constraints have the same nonpolyno
factor as appears only in the left-handed SUSY constrain
theN52 theory. However, the polynomiality of these SUS
constraints is also recovered by multiplying this factor to
constraints. The constraint algebra of theN53 theory is now
under investigation and will be reported elsewhere.
ty
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