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N =3 chiral supergravity compatible with the reality condition
and higher N chiral Lagrangian density
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We obtainN= 3 chiral supergravit{ SUGRA) compatible with the reality condition by applying the pre-
scription of constructing the chiral Lagrangian density from usual SUGRA. Nke8 chiral Lagrangian
density in first-order form, which leads to Ashtekar’s canonical formulation, is determined so that it reproduces
the second-order Lagrangian density of usual SUGRA especially by adding appropriate four-fermion contact
terms. We show that the four-fermion contact terms added in the first-order chiral Lagrangian density are the
nonminimal terms required from the invariance under first-order supersymmetry transformations. We also
discuss the case of highbrtheories, especially fol=4 andN=8.
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I. INTRODUCTION density, we impose the reality conditién.
In order to construct the chiral Lagrangian density in first-

. . , . _order form, we apply the prescription proposed in the case of
The supersymmetric extension of Ashtekar's canonical =2 chiral SUGRA[9]. First the chiral Lagrangian density

gravity [1,2] has been developed since the first construction, {ha second-order formalisnt, ([ second orddr with a
of N=1 ch|ra_\F supergravit(SUGRA) [3]. In particular, the  (compley tetrad is obtained from the Lagrangian density of
extended chiral SUGRA was constructed in the context Oéhe usual SUGRAL ,sua sucra(second ordey by complexi-
two-form gravity[4,5] for N=2 [6,7] andN=3,4 theories  fying spinor fields(spin-3/2 and -1/2 fieldsas follows.
[8], and was also constructed by closely following the - (g Replace Rarita-Schwinger fieftig!, and their conju-
method of usual SUGRA foN=2 theory[9]. Furthermore gates@' with
the canonical formulation of SUGRA in terms of the Ash- #
tekar variable was explicitly derived up b= 2 theory from N
the method of two-form SUGRA6,7] and also from that of poPRu T L
usual SUGRA[10]. However, forN=3 chiral SUGRA, a - =
straightforward derivation of the canonical formulation in b= bt YRy 1D
terms of the Ashtekar variables has not yet been done.
In this paper we construdi=3 chiral SUGRA compat-
ible with the reality condition, which is the lowebttheory — and i/fl,L-
involving a spin-1/2 field in addition to spin-2gravita- (b) Rewrite the kinetic term o&e“**“y} v,V 41, into
tional), spin-3/2 and spin-1 fields, by c_Ios_er foIIowm_g the eprfll/:qﬂ’pval/f:qv plus a total derivative by partial inte-
method of the usual SUGRA as a preliminary to derive they qiion whereV,, denotes the ordinary covariant derivative
canonical formulation oN=3 SUGRA in terms of the Ash- i, general relativity.
tekar variable. Furthermore, we discuss the construction of () Apply the prescription(a) and (b) to spin-1/2 fields.
higherN chiral SUGRA, in particular, the construction of the Then the chiral Lagrangian density in first-order form,
chiral Lagrangian density fa=4 andN=8 theories. £ ) is determined by the following prescription.
When we construct the chiral SUGRA, we assume at first (d) Replace theV,, to the Df;f) which is defined in Eq.
that the tetrad is complex and construct such a chiral La¢2 2) |ater.
grangian as analytic in complex field variables as briefly
mentioned in Ref[3]. This means that right- and left-handed
supersymmetriqQSUSY) transformations introduced in the  2after imposing the reality condition, the phase space in the ca-
chiral SUGRA are independent of each other even in thewonical formulation consists of the real triad and the complex con-
second-order formalism. This fact makes it more transparentection as discussed, for example, in R¢152,11,12 for general
to confirm the SUSY invariance, particularly the right- relativity, and in Refs[3,13] for (N=1) chiral SUGRA. This phase

handed one. Once we construct the chiral LagrangiagPace leads to non-Hermitian operator with respect to the connec-
tion variable in quantizing the theorisee, for example, Refs.

by using two independent sets of Rarita-Scwinger fie;fvgs

[11,13).
®Rarita-Schwinger fields denoted by, and %), and spin-1/2
*Email address: tsuda@sit.ac.jp fields denoted by (or x',x'?%) andy (or ¥',¥"’K) represent Ma-
L“Chiral” means in this paper that only right-handdor left- jorana spinors. Throughout this paper capital letleds . . ., de-
handed spinor fields are coupled to the spin connection in the ki-note the number of Rarita-Schwinger fields, and we shall follow the
netic term of spinor fields. notation and convention of Ref9].
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(e) Add appropriate four-fermion contact terms so that theindependent sets of Rarita-Schwinger ﬁe|dﬁlﬂ(l7,lﬂ) (I

£ ™) reproduce theC (*)[second orddr - ; : z
X =1,2,3), two independent spin-1/2 fieldg,f), (complex
ferm +) m
The four-fermion contact terms added ") by means vector fieldsA!, , in addition to the self-dual connectid\fﬁ)

of the prescription(e) are also required from the invariance . = . w! . ! .
under first-order SUSY transformations up =3 chiral which is also treated as one of the independent variables in

SUGRA as will be explained later: We expect that the samethe first-order formalism. Then thi=3 chiral Lagrangian

result will be the case for highét. The £ (™) in terms of the density in first-order form is given by
real spin contents is obtained by imposing the reality condi- i o _
tion (e.g., €}, =€, for the tetrad, andj,=y|, for Rarita- E(Nz)sz_ZZGGWWGLGJVR%;)U—eeMVpglﬁlreMYpDE:)lﬁle
Schwinger fields

In the case oN=2 chiral SUGRA[9] under the reality — e K
condition, the chiral Lagrangian density in first-order form +iexry*D ) xr— Z(FI,W)ZJF _\/Ee{(F(_)IW
constructed by the above prescripticm—(e) differs from 2

the first-order Lagrangian density of the usia+ 2 SUGRA n ﬁ(‘)'MV)JIJ_ lﬂg (R
)3 v

by
. =~ i
(L£§22= Ln=2 usuarsucra (first ordey +FO Y U, e = S ke
i
= — — _EeMVPI(T 4 21 | T)\ ~ K ~ = N~
528" (PN T o X4 = 5 L yX T By Yox) | (WL S Y X0
i =
+ gKZGEWW(E‘LMWIJQV)EE,)’#IEJGUGKL + ‘/IIRAS/WY)\XR)
. i _
i D24 pvpord K ATL M _IIK _ILM
— gz 0dee (Tt iUy, )}, (12) T e LR VR L€ e
2
K = =
whereT, ,, stands for the torsion tensor. The last imaginary + 7e( tﬂ'RMy[“lﬂ'RV)XRYV]XR, (2.1

boundary term corresponds to a certain Chern-Simons

boundary term given by Maas[14] and Mielkeet al.[15] which is globally Q3) invariant. Here e==det(eilL),

as a generating function of the canonical transformation. ;x . . e
However, in the first-order formalism, the second four- denotes a totally antisymmeric tensor, aﬁéw

fermion contact term added by the prescriptiendoes not  =(L/2)(F,,*iF,,) with F, =25 ,A,; and F,,
appear ifN=1 chiral SUGRA[3,14,15. Indeed, we showed = (1/2)€,,,,F'?". The covariant derivatived!,”) and the
that this new second term is the nonminimal one require@urvatureR(*)"  are

from the invariance under first-order SUSY transformations )

[9]. In the second-order formalism, the first term does not D)y + I_A_(_+)Sij

vanish by itself in contrast with thid=1 theory, but cancels " po2mmeT

with the second four-fermion contact term by using a Fierz

transformation. I'N=3 chiral SUGRA, an additional four- RO i=2(ap, A+ AL ALK,
fermion contact term quadratic with respect to both spin-3/2 (2.2
and -1/2 fields is also required in the chiral Lagrangian den- ., . . ) ) i

sity as explained in the next section. while F,,, in the chiral Lagrangian densit®.1) is defined as

This paper is organized as follows. In Sec. Il we construct
N=3 chiral SUGRA compatible with the reality condition
by applying the above prescripti¢a)—(e). The invariance of
the field equation for vector fields under duality transforma-
tions inN=3 chiral SUGRA is shown in Sec. Ill. In Sec. IV In Eq. (2.1), the A'M-dependent terms and the four-fermion
we discuss the case of highBrrtheories, especially foN  contact terms except for the last two contact terms corre-

K

F=F', ﬁ@iﬂwéﬁﬁﬂﬁk”& 2.3

=4 andN=8. The conclusion is given in Sec. V. spond to those obtained in the usual SUGRA. Note that Eq.
(2.1 is reduced to th&l=2 chiral Lagrangian densit\9], if
Il. N=3 CHIRAL SUGRA COMPATIBLE WITH THE we put the condition

REALITY CONDITION

(xX)=0, (¥3,,4})=0, F,,=0=F% (24
Let us construcN=3 chiral SUGRA by means of the e . #
prescription(a)—(e) explained in the Introduction. The usual jn Egq. (2.1), and if the €, (¢ ,%') (1=1,2) and
; ' ! IRg !
N=3 SUGRA[16,17 has spin contents (2,3,3,1,1,1z).  F,,(:=F3 ) are taken as the field variables.
Corresponding to these spin contents, the independent vari- We show that the chiral Lagrangian densi:1) is in-
ables inN= 3 chiral SUGRA are #acomplex tetrade'ﬂ, two  variant under the local SUSY transformations. The invari-
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ance up to the ordet is confirmed by means of the follow- Ajthough the Ai(j_;L) appears atgL}L'LM in the left-handed
in% rig?t— antld Ieft-harcljded SUIS\;transformatir(])nsfin thefﬁrﬁ"SUSY transformations of Eq2.6), it is not an independent
order formalism, and entirely determines the form of the _ . TR i I N

chiral Lagrangian density. In particular, the last two contactvanalble but a quantity given bg, , (v, ,1,), and (v.x);

terms in Eq.2.1), which are added by the prescriptiée) of namely, theA() is fixed as the sum of the antiself-dual part

of the Ricci rotation coefficients\;; ,(e) and that ofK

constructing the chiral Lagrangian density, are the nonmini-. i iju

mal terms required from the invariance of ordeunder the given by
right-handed SUSY transformations generatedabygiven .
b | = = =
d Kiiuzz"z(lﬁk[ﬁlmlﬁkjﬁ YR Vi YRy — WRe V)i Vi)
Sre,=ixal Y, OrA, =2 el +aty X, .
+ 7 G XRY XR- (2.10

I 2 (+) .1 o= A |
Sr¥ru= Dy ar™ 5 K(XRY XR) N VR,
At order k% and«3, on the other hand, the transformations
1 (2.8 should be corrected to recover the SUSY invariance in
Spil = — —€IKFN ooy, oK the first-order formalism. However, this task will be compli-
RYLu po 7;4 R .
2 cated as is expected from the usual SUGRA], and there-
fore we turn to the second-order formalism in order to mini-
N kT e K mize complication. Then it can be shown by a
\/EKE (YL yux) ¥ ar, straightforward calculation that the chiral Lagrangian density
(2.1) is invariant under the SUSY transformations of Egs.

(2.5 and(2.6), provided that the\|") is fixed as

Srxr=F"',, 8" i, SrxL=0, (2.5
and under the left-handed SUSY transformations generated A=A e +K() (211
by @' given by

+)

by solving the equatiorﬁ,c(NzgmAi(jjB:O with respect to
SLe, =i kahy Pl OA, = 2T+ by, Ak
" RTTRu " RPLp - TRIWARY Here we also note that the last two four-fermion contact
2 P terms in Eq.(2.1), which do not appear in the first-order
5L,/,'LM: ;DE;)CY'LJF EK(XRV}\XR) n?’,ﬂlp Lagrangian densit{16,17,19 of the usual SUGRA, are nec-
essary to reproduce the second-order Lagrangian density of
the usualN=3 SUGRA, when the reality condition

1 — ~
S lpl :__EIJKF(+)J Uspo’,y C(K _ . 5 5 o
R 2 pr= THTL e.=e,, P.=v,, Y=xandAl=Al, (2.12
is imposed" Indeed, if we use the solutiaf2.11) in the first
three terms in Eq(2.1), then these terms give rise to a num-
ber of four-fermion contact terms, which involve the follow-

| = ~
- ﬁKfIJK('//JR#?’vXR) Yo,

Suxr=0, S =F)',, 5", (2.6  Ingterms:
E' i i i [ i
whereF,, in Egs.(2.5 and(2.6) is defined as WEGMPUTMJXM: . 1—6K266’“”"’
=l £l m <L
Fuv=F =« vuxe + YruvXR)- (2.7) = =
S g g X (PR Va R, Uy Y PR e
In addition, we choose the right- and left-handed SUSY 2 .
transformations oAi(jJ;) as[18] - Ee(akﬂ’y[kav)}R’yV]XR'
SrAfL) =0, (2.13
5LAi(jJL) = self-dual part of — k(B ,i; — €,iBmi)} where the torsion tensor is defined ﬁ'y,w= - 2D[MeiV] with

D,e,=d,€e,+A,e). The second last term in E(.1), on

the other hand, can be rewritten as
respectively, with

Ay =1 AR (+) /] . ) )
B =€t agy D,(; Wy (2.9 “The bars o&}, andA), in Eq.(2.12 mean the complex conjugate.
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i ) — KEL o~ K I IIl. DUALITY INVARIANCE IN  N=3 CHIRAL SUGRA
—Kk°ee’’P? e e
8 (VLR YRo¥La In the extended usual SUGRA without gauging the global
i O(N) invariance, the field equation for vector fields is invari-
24 uvpa(d L \T7K A M 13K LM ant under duality transformatiori21-23 which generalize
K€" P (YR, VN UR)) YRy Y YRo€ € y : . .
16 Ve VIR Ve Y IR those of the free Maxwell equations, while the Lagrangian
(2.14  changes its form in a specific way under these transforma-
tions.

As we have already noted, the chiral Lagrangian density
?2.1) possesses global(8) invariance. We show in this sec-
tion that the field equation for vector fields derived from the
nongauged, chiral Lagrangian dengi#yl) is invariant under
duality transformations. The field equation fAll’u can be
written as

by using a Fierz transformation, and the sum of the last tw
terms in Eq.(2.1) exactly cancels out the terms of E§.13.
When the reality conditiori2.12) is imposed in the second-
order formalism, the last two terms in EQ.1) and the terms
of Eq.(2.13 are purely imaginary up to boundary terms, but
they cancel each other. Therefore th§™, (second order

of N=3 chiral SUGRA with the reality conditiof2.12) is
reduced to that of the usual one up to imaginary boundary
terms, namely, we have

d,(eG*)=0, (3.1

where theG'#* are defined by

L5 (second ordér= Ly 3 usual sucra(second order 2 oD
Gluv,_— ,\Il: :_Fl/LV+K(H(+)|/LV+I(—)|,uV)
1 g | e c?FMV
+gouee Ty, (3.2

+iexysy“y). (2.15  With H(H1e and | ()2 peing given by

(F)luv_ K7 w7 Koy (+) i 7] v NT
This second-order Lagrangian dendigy15 is invariant un- H \/Ee (YR LSy X

der the right- and left-handed SUSY transformations of Egs.

(2.5 and (2.6), which are now complex conjugate of each | — 2Ky Kry() gl sarhy o
other in the second-order formalism under the reality condi- (3.3
tion (2.12.

Let us explain how to gauge0] the globalO(3) invari-  In addition, thelE;” satisfies the Bianchi identity
ance of the chiral Lagrangian densit®.1). First we intro-
duce a minimal coupling ofy,, with A, , which automati- d,(eF'*")=0. (3.4
cally requires a spin-3/2 masslike term and a cosmological
term in order to ensure the SUSY invariance of the LagrangEquations(3.1) and (3.4) are invariant under the following
ian, and we also replace the Abelian field strerfgl with  (globa) duality transformations:
the non-Abelian one i | s s

5eﬂ=0, 5¢RM= —iA YRy s 5¢LM=|A Pl

Frl.=F!' +neIKA)AK (2.16
3% 3% w Ny ~
5XR:01 5XL:07
with the gauge coupling constakt The three terms added Fluv 0 AN\ EImy
to Eq.(2.2) in order to gauge th®©(3) invariance are then 5 _ (3.5
written as G'w| \ =AY o/l '
- K N3k with the constant parameters”” which are assumed to be
Leosm= — Nee* P, v, r, A€ complex, symmetric £7=A"") and traceless A''=0):
Bk e(T ST 4T Sl ) A6 When the reality conditiori2.12 is imposed, howeverA
I K (PR S* "Lt ¥, S Pr,) — Ak %8, are supposed to be real. The transformations of( &&) can
(2.17  be rewritten in terms of the base#i{(")'#",1(")'*") and
(F'#+iG'» F'*"—iG'#") as
where the cosmological constant is related ton as A H () av AN 0 H(H)pv
=—6k 2\2 S =i
| () ey 0 — AN [ (v |

luv i lpy 1J Juv i duv
5The imaginary boundary terms in E€.15 correspond to the (F TG ) =—j ( A 0 )(F TG )
Chern-Simons type boundary terfiigt, 15 as appeared in E1.2) Fler—iGgler 0 —AV

evaluated in the second-order formalism. (3.6

FJ,uV_ iGJ,uV .
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Since the transformations of E¢3.6) combined with the form can be written schematically as
O(3) transformations becomes the @Jgroup[21], the du-

ality symmetry based on E@3.6) is an example for “cc_>m— £ i ee’“””e eJ R(+)
pact” duality symmetries[22]. Also, the transformations N=4""" 5, ijpo
(3.6) reduce to(global) U(1) transformations ilN=2 chiral _
SUGRA if Eq.(2.4) andA ™= A%*= — (1/2)A ® are satisfied. — eI YD, +iexry* D Xk
The N= 3 chiral Lagrangian densit{2.1) is expressed by ) .
using F'#*,G'#") and H(F)'#r |()ery g + Ly=4 (scalar kinetic termt A ;-dependent terms
o + (A} -independent terms
L= 7 (FLBI + SR 16U RO (R | L e
. N . + 1_6K2e€;41/p0( wL#lpRy) prl//LUelJKLGIJMN
+iGL )1} 4 (Al -independent terms (3.7)
2
The second term is obviously invariant under the transforma- + —e( lﬁRMY[“lﬂRV)XRYV] ) 4.2

tion of Eq. (3.6), and the invariance of thA'M—independent

terms can also be confirmed by using E8.5). Therefore, \yith
the £ {2, transforms under Eq3.6) in a definite way as
Lyn=4 (scalar kinetic termt Aif-dependent terms

5£§\,+_)3=5(4FLDG'“V) 14, zo" z CChuy Kl
2( _+ —Z) 4 uv'MI,KL
_S(FI AlJ"EJ/.LV_éI A|JGJ,MV) (38) 1J H
7 Fuv v ' . +(F ;,-proportional termg 4.2

he first term in Eq.4.2) is the kinetic term of the scalar
ields corresponding to the $U1)/U(1) nonlinear sigma
model, and~z in this term is defined as (@) invariant vari-
able constructed from™(¢,, * ¢,), i.e.,

which is same as that of the usual SUGRA except that th
parameters\"” are now complex.

IV. CONSTRUCTION OF THE HIGHER N CHIRAL
LAGRANGIAN DENSITY t2i= T (T y) L. 4.3

In this section let us first construct tié=4 chiral La-
grangian density by applying the prescriptio®—(e) ex-
plained in the Introduction. In the usubll=4 SUGRA, the

The functionK,; « (=Kg. ;) in the second term of Eq.
(4.2), on the other hand, is given by

field contents are a tetrad field, four Rarita-Schwinger fields, 1+ —72 2-7 1
six vector fields, four spin-1/2 fields, and twoeal) scalar K,J,K,_zﬁal[@m]— 1= 2 €KL (4.9

fields. Since there are scalar fields in the theory, the duality
symmetry group becomes ‘“noncompacf22] in contrast
with the N=2,3 theories. Indeed, the duality symmetry
group of the usuaN=4 SUGRA is SU4)xXSU(1,1) [24],
and the two scalar fields are described by thg1S1)/U(1)
nonlinear sigma modgP2,23.

In N=4 chiral SUGRA, we introduce at first thgom-
plex) tetrad e'ﬂ, two independent sets of Rarita-Schwinger

which is determined from a specific transformation property
of K3 k. [22,23 under the duality transformations. Equation
(4.2) and theA);-independent terms in Eg4.1) correspond

to those obtained in the usuldl=4 SUGRA[24,25. In or-

der to prove the SUSY invariance of the chiral Lagrangian
density(4.1) under right- and left-handed SUSY transforma-

] Lo~ ] ° tions, we will need a straightforward calculation.

fields (v, ¢ )~(I =1,2,3,4), two independent sets of spin-  Tne |ast two four-fermion contact terms in E@.1 has

1/2 fields (', x'), (comple® vectorfleldsA”(——AJ') and  the same role as ilN=2,3 chiral SUGRA, namely, those
complex scalar field ™ ¢, , = ¢,) as the fleld varlables The terms ensure the first-order SUSY invariance and are also
self-dual connect|om|“2 is also treated as one of the inde- necessary to reproduce the Lagrangian density of the usual
pendent variables in the first-order formalism. If we applyN=4 SUGRA, when the reality condition

the prescription of constructing the chiral Lagrangian density .

from the usuaN=4 SUGRA as in the case ®=3, then e,=e,, Y=, X=x\

the obtainedN=4 chiral Lagrangian density in first-order

AV=AY and (3, .3, )=("d1,7 4y, (45

®ln N=4 chiral SUGRA, we define complex scalar fields asiS imposed. Indeed, the last two terms in E4.1) exactly
*¢,=p=iq and* ¢,=r=xis with p, q, r, andsbeing assumed to cancel with two of terms obtained in the second-order for-
be complex, respectively. The reality condition for these scalamalism by solving the equat|06£(+)4/5A(]J;)—0 with re-
fields will be taken as®; &, )=(" b1, bs). spect toA|") . Then the {2, (second orderof N=4 chiral
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SUGRA with the reality conditiort4.5) is reduced to that of

the usual one up to imaginary boundary terms as

£, (second ordér= Ly 4 usua sucra (Second order

1
+ 5 Iu(Ce Py,

+iex'ysyx'). (4.6)
This second-order Lagrangian dens{#6) is invariant un-
der the SUSY transformations of the usiv=4 SUGRA.
Next we discuss the construction of the=8 chiral La-
grangian density also by applying the prescripti@(e)

explained in the Introduction. Here we note the characteristic
features of the chiral Lagrangian density constructed so far.

TheN=3 and 4 chiral Lagrangian densities of E(&.1) and

(4.1 have different forms from those of the usual SUGRA,
in particular, with respect to the following points: First, only

the gravitational and spindspin-3/2 and -1/2kinetic terms

in the chiral Lagrangian density are written in terms of the
Then the appropriate four- Which is invariant under the SUSY transformations of the

self-dual connectionAf").

PHYSICAL REVIEW D 63 104021

2

K =~ e
+ 3R URIXRT YRR (4.8
which will also be required from the invariance under first-
order SUSY transformations at order The terms other than
Eqgs.(4.7) and(4.8) correspond to those obtained in the usual
N=8 SUGRA[26,27]. In order to prove the SUSY invari-
ance of£ (g under right- and left-handed SUSY transfor-
mations, we will also need a straightforward calculation.

By means of the four-fermion contact terms of £4.8),
the L (second ordgrof N=8 chiral SUGRA with the
reality condition is also reduced to that of the usual one up to
imaginary boundary terms as

£ (second order

= Ln=8 usual sucra (s€cond order

1 i
1
+5u| €€ P,y U+ sex T ysyix T,

4.9

fermion contact terms, which are required from the invari-usua@lN=8 SUGRA. The imaginary boundary terms in Eqg.

ance under first-order SUSY transformations at oreeat

least up toN=3 chiral SUGRA, are added in the chiral
Lagrangian density by the prescripti¢e). In view of these
points, the prescription of constructing the chiral Lagrangian

density is easily extended té=8 SUGRA[26,27].

(4.9 are same as those of the=3,4 chiral SUGRA.

V. CONCLUSION

In this paper we obtainetl=3 chiral SUGRA compat-
ible with the reality condition by applying the prescription of

The field contents of the usubll=8 SUGRA are a tetrad constructing the chiral Lagrangian density from the ugual
field, eight Rarita-Schwinger fields, 28 vector fields, 56 spin-=3 SUGRA. TheN=3 chiral Lagrangian density in first-
1/2 fields, and 35 complex scalar fields. If we introduce atorder form of Eq(2.1) was determined so that it reproduces
first the(comple tetrade), , two independent sets of Rarita- the £ {5 (second orderof Eq. (2.15 by adding the appro-

Schwinger fields ¢,,,%.) (1=1,...,8), twoindependent
sets of spin-1/2 fieldsy'’%, ¥'?¥),” then the gravitational and

spinor kinetic terms written by thAi(jL) in the N=8 chiral
Lagrangian densityC (N+:)8 are written as

L{Vg (gravitational and spinor kinetic terms

_ I Lvpo Al JR(+)_ Mvpo~_| D(+) |
- 2K286 e,u.ev ijpo €e l/IR,u.FYp o l//RV

i =
+58XR" 7D xR 4.7

The four-fermion contact terms addedr},”); by means of

the prescriptior(e), on the other hand, are chosen as

£ [contact terms by the prescripti¢s)]

i = ~
2 - P R 7S
L e (T, U8 TR TR,
XEIJKLMNPQEIJKLMNRS

The x"K denotes totally antisymmetric spinor, i.ex" K

= (1K1

priate four-fermion contact terms, and showed that those
four-fermion contact terms added in E@.1) are the non-
minimal terms required from the invariance under the first-
order SUSY transformations at order We also showed that
the field equation for the vector fields derived from E2}1)

is invariant under thécompact duality transformations.

Furthermore, we constructed the=4 chiral Lagrangian
density, in which the duality symmetry group (soncom-
pach SU4)xSU(1,1), and we also discussed the construc-
tion of theN=8 chiral Lagrangian density. In the highiKr
chiral Lagrangian density we added appropriate four-fermion
contact terms as in the casel& 3, which will be required
from the invariance under the first-order SUSY transforma-
tions at orderx. We will need a straightforward calculation
in order to prove the SUSY invariance of the higihechiral
Lagrangian density under right- and left-handed SUSY trans-
formations.

Finally we briefly discuss the polynomiality of constraints
in the canonical formulation of the chiral SUGRA. There
appeatr, in the chiral SUGRA, right- and left-handed SUSY
constraints in addition to Gauss-law,(1) gauge (for N
=2), vector and Hamiltonian constraints, which reflect the
invariance of the chiral Lagrangian density. In the=1
theory[3], all the constraints are indeed written in polyno-
mial form in terms of the canonical variables of the Ashtekar
formulation. In theN=2 theory[6,10], although only the
left-handed SUSY constraif@nd the Hamiltonian constraint
as stated in Ref.6]) has the nonpolynomial factor as in the
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