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Global problems associated with the transformation from the Arnowitt-Deser-MisiEvl) to the Kuchar
variables are studied. Two models are considered: The Friedmann cosmology with scalar matter and the torus
sector of the 21 gravity. For the Friedmann model, transformations to the Kudeacription corresponding
to three different popular time coordinates are shown to exist on the whole ADM phase space, which becomes
a proper subset of the Kuchahase spaces. The+d gravity model is shown to admit a description by
embedding variables everywhere, even at the points with additional symmetry. The transformation from the
Kucharto the ADM description is, however, a many-to-one transformation there, and so the two descriptions
are inequivalent for this model, too. The most interesting result is that the new constraint surface is free from
the conical singularity and the new dynamical equations are linearization stable. However, some residual
pathology persists in the Kuchdescription.
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[. INTRODUCTION explicitly the action of the four-dimensional diffeomorphism

Generally covariant systems are quite popular in the thegroup[7]—the gauge group of the model.
oretical physics of today. Each such model contains one or A canonical transformation from the ADM to the embed-
more spacetime-like objects. For example, in string theoryding variables, their conjugate momenta and the observables
we find target spacetime as well as striand membrane  will be called aKuchar decompositioror Kuchar transfor-
sheets. The variables that specify points in phase space amation The Kuchartransformation turned out to be a diffi-
then tensor(density fields on Cauchy surfaces in some of cult task. It was managed only for a few special models
the spacetimes. For example, in general relativity, the firsi8—11]. Moreover, some general, negative results were pub-
and second fundamental forms of the Cauchy surface aréshed. In[12] and[13], simple models were constructed that
used, or rather some modifications thereof, the so-calledid not allow a global Kuchadecomposition. Torré14]
Arnowitt-Deser-MisnefADM) variablesq(x) and 7*'(x) showed that the decomposition, which, in fact, brought the
[1]. We call the canonical formalism based on these variablesystem to the form of the so-called “already parametrized
the ADM description system,” was impossible at some points of the constraint

As early as 1962 it was recogniz¢d] that the ADM  surface of general relativity. These were the points that, as
variables contain a mixture of two types of information. The Cauchy data, evolved to spacetimes with additional Killing
first has to do with the physical, gauge independent state ofectors. Thus, even the existence of Kuchacomposition
the system. The second just tells us where in the spacetimgas questioned.
the Cauchy surface lies. Some progress in this situation has been achievéd5h

The mathematical language of this idea has been worketsee alsd16]). The conditions for the existence of the Ku-
out by Kuchar3]. The variables that describe the position of char transformation have been clarified. First, each Kuchar
the Cauchy surface are so-callechbeddingsmaps of the decomposition is associated, and in fact determined, by a
form X: 3+~ M of the Cauchy manifol® into the space- choice of gauge. The Kuchaoordinate chart can cover only
time manifold M. The gauge invariant, true physical degreessuch part of the constraint surface for which a common
of freedom can be described by variables of the so-callegauge fixing exists. Second, all points of the constraint sur-
Heisenberg picturg4]. They are observables in the sense offace must be excluded that evolve to spacetimes witi
Dirac[5]. The momentd conjugate to the embeddindsare  isometries, not just with Killing vectors. And, finally, even if
simultaneously the new constraint functions. We call the cathese conditions are satisfied, the existence could only be
nonical formalism based on these variables kehar de-  shown for a neighborhood of the constraint surface, not for
scription the whole ADM phase space.

One advantage of Kuchamriables is that they enable a  The aim of the present paper is to start a study of the
four-dimensional, spacetime formulation of canonicalconditions mentioned in the previous paragraph. This would
theory: all Cauchy surfaces are admitted in the canonicabe rather difficult in a general context. We shall, therefore,
description of the dynamicg“bubble time” or “many- start by studying finite-dimensional, “minisuperspace”
finger time” [3]). This is to be compared with the one- models. For such models, the spacetime manifbldis ef-
parameter time evolution based on a particular choice of &ctively one dimensional and the Cauchy manifold is just a
one-dimensional family of Cauchy surfaces in each solutiorpoint, so the space of embeddings can be identified with
spacetime, the so-called foliation. A foliation is a particular M—a finite-dimensional space. The models chosen are
3+1 split of four-dimensional spacetime. The original ADM completely solvable. This enables us to construct Kuchar
reduction prograntfor a current version, cf.6]) was based transformations explicitlyfthe proof in[15] is not construc-
on such a split. Kuchz approach allows one to write down tive).
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The plan of the paper is as follows. In Sec. Il, we considerand one dimensional in Kuchatescription. However, all
the Friedmann cosmological model driven by a zero-restelassical solutions of the new system coincide completely
mass, conformally coupled scalar field. This model has beewith the corresponding solutions of the old one. Yet the new
studied in some detail ifil7]. First, we specify the gauge constraint surface is free from the bifurcation and the conical
needed for a Kucharansformation. In the one-dimensional singularity. The new dynamical equations direear. This
spacetime model, it can be called the “choice of time”; the has an obvious but amusing consequence: they are lineariza-
time coordinate is, in fact, an embedding variable. It is adion stable. _ . .
vantageous to decompose the choice into two steps. The first The results are discussed in Sec. IV. There is also an
one Specifies the |apgﬁ as a function on the ADM phase attempt at a SyntheSiS of the results from both miniSUper-
spaceP. Then the canonical equations of the Hamiltonian,SPace models.

P:=N"H, define the so-calletlajectorieseverywhere inpP;

‘H is the constraint function. The second step is a choice of Il. FRIEDMANN MODEL WITH CONFORMALLY

the surface transversal to the trajectories as the origin of COUPLED SCALAR FIELD

time. We study three choices of timsonformal proper, and
constant mean curvatuf€MC) time and try to find the cor-
responding Kuchacoordinates on the whole @?.

The model of Sec. Il is the torus sector of the 2 grav-
ity theory, partially reduced so that a minisuperspace model
results. This has been carried out[ib8], from where we _ .
adopt our starting formulas. The model is interesting for sev- S= f dt(paa+pys¢—NH),
eral reasons. Its constraint sgdoes contain points associ-
ated with higher symmetry—the static tofi.has a bifurca- \herea(t) is the scale factor of the Robertson-Walker line
tion and conical singularity at these points. The comcaldemem,
singularity is a feature associated with additional Killing
vectors; se¢19]. It is also the cause of the so-callkadear- dr2
ization instability [20]. C has no well-defined differential dszz—N2dt2+a(t)2(—+r2(d192+sim92d<p2) :
structure at these points. This is a difficulty not only for the 1-r?
transformation to Kucharariables, but also for the definition @
of the ADM physical phase spadsee[21]). Finally, this
model does not admit a globally transversal surface. We cal
therefore, study this topological obstruction, too.

All these problems disappear if we truncate the model by 226G
excising the points associated with the static tori as has been b= a
done in[18] and[22]. The truncated model consists of two 3
separated parts. Each part admits a globally transversal sur- i o
face, a global chart of Kuchamriables, and a nice physical © IS the Newton constant, aril is the Hamiltonian con-
phase space. In the present paper, we are trying to extertd &Nt
both parts of the truncated model. 1

Section IlIB investigates important properties of the Hz_(_p§+p(2ﬁ_a2+ ).
physical phase space of the extended model. We construct an 2a
atlas for the physical phase space from a chosen family oéor more details sef7].

transversal surfaces in the constraint set. In this way, . . .
smooth manifoldin fact, analyti¢ can be obtained. The AD_M phase spacg is four d|men5|onal, covered by
the canonical chad, ¢, p, andp, with ranges

In Sec. 1l C, we turn to the embedding variables. Strictly
speaking, the negative results [@4] and [15] only imply
that the ADM variables cannot be transformed into Kuchar
ones at the points with higher symmetry. This does not mean
that there is no Kuchadescription including solutions with
additional symmetry. However, if it exists,
equivalent to the ADM description.

Our atlas for the physical phase space serves as a starting _ p§+ pfb_ aZ+ ¢2=0.
point. The transversal surfaces defining it can be extended
from the constraint surface to a part of the ADM phaseThe background manifold is one dimensionalM=R.
space. There is a patch of Kuctaordinates for each trans- For its complete definition, a choice of time coordinatés
versal surface. In this way, we obtain a KucUascriptivon of needed15]. The Cauchy manifold is represented by a zero-
the whole model. The transformation from the Kucli#  dimensional manifolda poind 3, and the space EmB(M)

scription to the ADM one becomes singular, many to one, abf embeddingsT: 3+ M can be identified with\:
the points of higher symmetrithe trajectories containing

these points are zero dimensional in the ADM description Emb(Z, M) =M.

In this section, we shall study the spatially closed Fried-
mann cosmological model with a particular matter content: a
zero-rest mass, conformally coupled scalar field.

The action has the form

N is the lapse functiong is defined in terms of the original
Scalar field® by

ae(0%°), ¢e(—=,2),

pae(—oo,oc), p¢>E(_°Or°°)

it cannot be The constraint surfacé is the three-dimensional “cone”
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A set of Kucharvariables consists then of the time vari- To improve the right-hand side, we introduce the functigns
ableT, its conjugate momentur, which is proportional to andp by
the Hamiltonian constraint, and two Dirac observables, )
which are constants of motion. For the present case, it is not q=BcosC, p=-BsinC;
difficult to find the transformation to such variablesTifis

chosen so that the equations of motion simplify. this implies that

1 1
A. Conformal time pdg= EBZdC-Fd - EBZ sinC cosC |.
A suitable choice of time is connected with the following
value of the lapse: Hence,
N=a. 2) a=+q°+p’®—2PcosT, p,=q’+p?—2PsinT, (8)
Equation (1) shows thatT is a conformal timethen. The ¢=qcosT+psinT, p,=-—gsinT+pcosT 9

conjugate variable is ) ) ) ) .
is a canonical transformation. The meaning of the variaples

1 s 2 o and p can be inferred from Eq(9): q=¢|r—o and p
Pi=NH=Z(—patpy—a’+¢7). () =m4lr—0. These are values of the fiefland its momentum
m, at the surface of maximal expansion.
The time coordinate is not yet completely specified. Some The transformation defined by Eq®) and (9) maps the

surface is to be chosen as the origis 0. following subset ofR* with natural coordinate$, P, g, and
The equations of motion corresponding to the Hamil-P Onto P
tonianP are
o T
: . (9,p) e RA{0}, Te(—§,5),
a= —Pa, pa=a, (4)
) . 1 2 2
¢=Py, Pyp=—¢. 6) Pe —W,E(q +p9) . (10

It follows that p, is positive everywhere ifP, and we can T s the embedding variable corresponding to our choice of

choose the surface defined py=0 asT=0. The resulting  gayuge. Its conjugate variabR is proportional to the con-

general solution to the equations of motion is straint function. The remaining variablesand p are Dirac
observables. They span the physical phase spadéence,

a=AcosT, py=AsinT, ®  the new action reads
¢=BcogT+C), py=-—Bsin(T+C), (7) . :
¢ s=f dt(PT+pg—N'P), 11
whereA, B, andC are constants. We can expré3dy these
constants: whereN’ =aN is the new lapse function. The action has the

Kucharform.

The boundaries defined by E¢LO) have the following
meaning. T=—=/2 is the big bang and’'==#/2 the big
crunch singularity of the solution to Einstein equations for
The functionsT, P, B, and C form a complete set of inde- our model, ifP=0. The points are still singular foP#0,
pendent variables. Equatiori6) and (7) can be written by  but this is a property of the present gaudé ¢an be chosen
means of these variablesAf= \/BZ— 2P is substituted foA. such that the solutions of the resulting equations of motion
They can then be considered as transformation equatiorwutside the constraint surface are reguldihe boundaryP
from the variables, p,, ¢, andp, to T, P, B, andC. Let us =(g?+p?)/2 corresponds ta(T)=0 for all T. This “solu-
express the Liouville form in terms of the new variables. Ation” does not define any spacetime. Finally, the paint
simple calculation reveals =p=0 corresponds to the scalar field being identically zero.
Then, again, there is no spacetime solutionPe+ 0.

The existence of bounds on the embeddings and their con-
jugate momenta seems to be an important general feature of
Kuchar transformation. Referencgl5] already mentioned
one kind of such bound: the embeddings must be everywhere

1
_ T (R2_A2
P=5(B*~A%).

1
p.da+pde=PdT+ EBzdc

1
+d| —PsinT cosT+ =B?sinT cosT

2 space-like for each given geometry. In the present case, only
1 very special embeddings are allowed, which are automati-
~ZB2sin(T+C)cogT+C)|. cally space like. On the other hand, our findings on the

bound that must be satisfied Byare rather unexpected and
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new. To understand it, let us recall that a Kuchansfor-
mation is described in[15] as a map y:I
XT* Emb(®,M)—P. Here x is a symplectic diffeomor-
phism and its existence has been shqwnder certain con-
ditions) only in an open subset of T* EmbX, M) such
that x(/) is a neighborhood of the constraint surfatm P.
One would expect thay (/) is a proper subset gP so that
the transformation exists only for limited values of the ADM
variables, because nothing more has been provétishbut
there is still some uncertainty. On the other haidnust be
a proper subset of* Emb(, M), so there are always some
bounds onX e Emb(E, M) andP e T} EmbE, M).

In our case, EmY, M)=M=R, and we also use the
letter T rather thanX to denote an embedding. Then
T* Emb, M) =R. Our result is thaj (/) = P so that there
are only bounds o andT, not on the ADM variables. The
interpretation is that the whole ADM phase spdaees a
proper subspace of the Kucharphase space
I'XT* EmbE, M).

Let us observe that the points Bfx T* Emb(, M) that
do not satisfy the boundL0) for P do not define any reason-

PHYSICAL REVIEW D 63 104017

Dirac observables. As alsé-P=0, we conclude that the
functions P, X, andY form a complete set of independent
integrals of motion.

The conditions(12) and (13) do not determine the func-
tionsT, X, andY. We can fixT using the following idea. Let
T be some function satisfying Eq12). Then the equation
T=const defines a surface M at least for some value of the
constant. This surface must intersect each integral curve of
¢p at most oncdthere can be curves along whidtdoes not
attain the value of the constantMoreover, the tangent
spaces to the surfade=const and that to the integral curves
of &, must have only the zero vector in common at every
point of the surface. We call a surface that satisfies both
conditionstransversalndglobally transversaif it intersects
all integral curves of¢p. Suppose that the vector fielgh
admits a globally transversal surfageThen the functionl
can be chosen so that it vanishegaby that, the function is
completely determined.

Let us turn to the function¥X and Y. They must have
vanishing Poisson brackets wiih Hence they have to sat-
isfy the conditions

able initial data for the spacetime and the scalar field. How-

ever, one can use the actioll) in the whole space
I'XT* Emb(, M) without any harm. All points of the con-

£X=£rY=0, (14)

straint surface satisfy the bounds, so the solution of the equavhereér is the Hamiltonian vector field of. Observe that

tions of motion within the ADM framework coincide with
those within the so-extended KucHaamework.

B. Transversal surface

the Lie brackets betweeft and &1 vanish,

[é1.6p]=0,

becausd¢T,P}=1. Our construction of the functionsandY

Let us study the geometrical structures that underlie thés based on this observation.

calculation of the previous section.

Let 7 be a globally transversal surface. Consider the two-

The first step has been a choice of fixed phase-space fundimensional surfac@NC. The pullbacke of the symplectic

tion for the lapseN. This has determined the true Hamil-
tonianP by Eq.(3). The Hamiltonian vector fieldp is given
by the right-hand sides of Eqgl) and(5). It is important to
observe that the direction @fy is independent oN at the
constraint surface’; it is only the parametrization of the
integral curves o, that changes withN. OutsideC, how-
ever, even the direction @} depends oM, and the resulting
integral curves form different foliations @ for differentN.

The variableT is to be conjugate t®. This implies the
condition

EpT=1. (12)

Hence, any parameter of the integral curvesépfcan be
chosen ag.

form Q from P to 7N C is again symplectiénondegeneraje
The symplectic manifoldINC,w) can be identified with the
physical phase spadé

Let us choose two coordinatesandy on 7N satisfying

xyto=1.

We extend these functions in two steps to the whol&Pof
First, we use the conditiofll4) to extend them td&. Equa-
tion (14) can be considered as a differential equatioryoas

&:T=0, the vector fieldst is tangential toZ. Let the func-
tions X andY at 7 satisfy the differential equationd4) to-

gether with the initial conditions

X|me=X, Ylme=Y-

Let us denote the remaining two variables that we are

looking for by X andY. They are to form a canonical chart
together withT and P. It follows that they have vanishing
Poisson brackets witR:

EpX=EpY=0. (13

Thus,X andY are “integrals of motion.” Observe that con-
dition (13) depends on the choice &F outsideC. At C, it is,
however, independent of it, and it implies thatandY are

This is sensible because the surfa€eC is transversal t@+
in 7. The reason is tha§gtP=—1 and7NC is defined by
P=0.

The second step is to use the differential equatidias
with the initial conditions a7 given by the values oX|,and
Y| as obtained in the previous step. The two steps result in
a pair of functionsX and Y that automatically satisfy the
remaining Poisson bracket conditions. This follows from the
Jacobi identity as follows.

At 7, we have
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EX Y ={{X,Y}, T} on the variable®, g, andp. Such transformations have been
introduced and studied by Bergmann and Kof28].
=—{T.XLY}={{Y, T} X} As we have shown in Sec. Il A, a choice of time can be
_ _ _ done in two steps: that of lapse function and that of transver-
={EX Y= {6rY X =0 (19 sal surface. IN is not changed, the Hamiltonia® will be
because of Eq(14). Equation(14) implies that preserved. The solution ar¢the point sets defined by the
trajectorieg will then be the sameeverywherein P. A
{X,T}H=0, (16)  change of transversal surface leads only to a reparametriza-
tion of the trajectories. Hence, such a transformation can be
{Y,T}1=0, 17 considered as a genuine, solution-dependent, reparametriza-
) ) tion of the trajectories everywhere. In our case, it has the
and{XZY}lfls constant along the integral curves&f. general form
Similarly, &p{X,Y}=0, &p{X,T}=0, and &{T,Y}=0
for the propagation alongp in the second step. From the T =T+T(P,q,p), p' =P(P,q,p), (19
values given by Egs(16) and (17), and from Eq.(13), we
obtain that a'=a(P,a.,p), P =P(P,a.p). (20
{X,T}={Y,T}={X,P}={Y,P}=0 (19

Such transformations form a subgroup. They do not change

everywhere irP. We also have thaT,P}=1, so it remains t_he charac_te_r of the time. In our case, it remai_ns conformal
only to show thafX,Y}=1 everywhere. NowT, P, X, andY time. S'FI”, it is a Bergmann-Komar transf_ormatlon that can-
are independent functions in a neighborhood of the surfacBOt Pé implemented, in general, by a unitary transformation
7N C and can be chosen as coordinates there. The only noti? the quantum theorysee[24]). . .
zero components of the symplectic fohin these coordi- If.we changeN,' the character of ime changes. In this
nates are) py= — Qrp=1 andQyy= — Oy because of Eq. section, we are going to study two such examplesptioper

(18). The surfaceZNC is defined by the embedding relations and theconstant-mean-external-curvatutenes. These are
two relatively popular choices in cosmology.

X=x, Y=y, P=0, T=0. In fact, a change oN leads to a more radical change of
the trajectories outside the constraint surface than just a rep-
Hence, the pullback is arametrization. The notion of “solution spacetime” is gauge
independent only af. Yet the trajectories are important for
@yy=Qyxlp=T=0 us everywhere inP: they define the Kuchacoordinates

there.

The trajectories are solutions to the canonical equations of
the HamiltonianP=N%H. They are so uniquely defined
through all points ofP. The fact that the solution arcs depend
on N outsideC has to do with the way that the dynamics of a
generally covariant system is usually formulated. The classi-
cal dynamics of such a system is completely determined by
the constraint surfacéout cf. [25]). The form of the con-
straint functions is irrelevant as long as they define the same
constraint surface.

How are the trajectories outside the constraint surface to
be interpreted? To be sure, each gauge and any of the corre-
. sponding trajectories define a unique Robertson-Walker
that satisfy Eq(14) have been guessed. spacetime and scalar field on it. The gauge supplies the lapse

From the commutativity of the vector fields andér, it nction N(q,p,P,T) and then each of the corresponding
follows that the propagation is independent of the way Cho'trajectories determines a unique scale faetéy,p,P,T) as

sen. Hence, we could propagat(_e first framC to C along¢p well as the scalar field(q,p,P,T). In this manner, there is
and then fromC to P along &1 with the same result. To do spacetime with the metric

that, there has first to be given the functidreverywhere on

P instead ofP. We can therefore call the method of the

previous sectiorP-way and the alternative methdbway.  ds?=—N2(q,p,P,T)d T2+ az(q,p,P,T)(
We shall use th@-way in the next section.

and so{X,Y}|;nc=1 becausew,=1. The desired result
follows, for the bracketgX,Y} must be constant along;
and ép.

Let us summarize. The construction of the previous sec
tion is based on three choices: the functi®rthe transversal
surfaceZ, and the coordinatesandy on 7NC. The Poisson
bracket conditions on the functiong P, X, andY imply
differential equations that propagate the functions framC
to 7 and from7 to P. The result is unique, given the three
choices.

The propagation frorMC to 7 has been only implicit in
the calculation of Sec. Il B because the functidsand C

dr?

1—r?

+r2d02)

C. Bergmann-Komar transformation (21)
The conformal timeT of Sec. Il A has a well-defined for each trajectory determined by the constant values pf
value at each point of any spacetime solution. In general, thand P. The scalar field$(q,p,P,T) can be considered as a
transformation froml to some different “time coordinate” field on this spacetime. Of course, the relation between the
T’ will be solution dependent. For our model, it can dependnomentap, and p, on the one hand and the velocities
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da/dT andd¢/dT on the other willnot, in general, coincide aq psinT ap qsinT

\év;th those obtained from the second-order formalism, e.g., P W P W
(27)

D= % _ We have already used the fact that the parameter of the char-
% oa acteristic curves can be chosen to-bP’. This follows from
the first equation of Eqg24).
This does not seem, however, to disturb the interpretation \We can see immediately thatis an integral of the system
based on the existence of the solution spacetig and one verifies easily thafq?+p? is another one. Then,

_ the integration of the system is straightforward and we obtain
1. Proper time

Here, we calculate the transformation framP, g, andp T=To, P=P’\Jgi+pscosTy, (28)
to Kucharvariables corresponding to the proper tiffie
The lapse functiorN that is associated with the proper g=qgcog voP’)—pgosin(vgP’),
time has the valutdl=1. We obtain thaadT=dT’. At the
constraint surfaceR? =0, and Eq.(8) implies p=qoSin(voP")+pgocog voP'), (29
dT' = g%+ p%cosTdT. (22)  where

The T’ curves at the constraint surface consist of the same

points as therl curves. Hence, the values qf andp’ are V=T
again constant along themq, =q andp’=p, and Eq.(22) Vot Po
has the integral

sinT,

and we have used the fact tHat=P’' =0 atC. The integra-
T'=\Jg%+pZsinT, (23)  tion constantsTy, 0o, andp, are the values of the coordi-
natesT, g, andp at the point where the characteristic inter-
where we have chosen the same transversal suffat€ as  sects the constraint surface
in Sec. IlA. Everywhere along the characteristic passing through the
In this way, the functionT’ is determined at. To pro- point (T,,d0,Po), the functionsq’ and p’ must have the
ceed with the calculation in thBway, we have to extend the values
function to the outside of. As was explained above, the
particular value of the extension does not have any physical q9'=do9, P’ =po. (30)
meaning and can be chosen just by convenience. A suitable
choice is EQ.(23) everywhere(i.e., T' independent ofP). This is a consequence of E®4). The functionT’ is con-

Then, the transversal surfa@eof Sec. Il A is preserved. stant along each characteristic because of the trivial equation
The next step of th&-way is the propagation of the func- &1/ T'=0. Hence, the value of’ along the characteristic
tionsP’, q', andp’ by the differential equations (28) and(29) is
&rP'=-1, &q'=0, &p'=0 (24) T'=\q'2+p’ZsinT,. (31
out of C, where we have the initial conditions If we substitute Eqs(30) and (31) into Egs.(28) and (29),
P'le=0, q'lc=a, p'le=p (25 e obtain
Then, the required values of the Poisson brackets, P=P'\Jg'*+p"*~T"%, (32
{T".P'}=1, {a".T'}=0, {p'.T'}=0, g=q’ cogv'P’')—p’sin(v'P’), (33)
are granted. And for a similar reason as in Sec. Il B, all other i oy , Loy
Poisson brackets will also have the desired values. p=q’sin(v'P’)+p’ cosv'P’), (34
From Eq.(23), we easily obtain where
d psinT ¢ gsinT ¢
£11=— VqF+ pPcosT — + . = T
JP ,/q2+ pi Jq ‘/q2+ p? ap v -=W.
Equations(24) can be solved by the method of characteris- _ _
tics. The characteristic equations read Equations(33), (34), and(23) yield
aT P T
—=0, —= +p“cosT, 26 T=arcsit——. (35
Y ey VP +p? (26) T 7
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Equations(32)—(35) are the desired transformation formulas

between the two coordinate systems. From the construction,

it follows that the transformation is canonical; this can be
verified by direct calculation.

The inverse transformation is given by E3) together
with

P
e 36
Vg2 + p®cosT (39
g’ =qcoqvP)+psin(vP), (37
p’'=—qsin(vP)+pcoqvP), (38)

where

tanT
9>+ p?

The transformation function&3) and (36)—(38) are differ-
entiable everywhere insidg, that is, for values of the coor-
dinatesT, P, g, and p within the bounds(10). The corre-
sponding ranges of the coordinafes P’, q’, andp’ are

(9',p") e R0},

T'e(—\/q’2+p'2,\/q’2+p'2),

. , qr2+p72
! q12+p72_-|-12 '

Finally, we observe that the transformatiomist of the form
(19 and(20).

Vi=

1

2. CMC time

The external mean curvatuteof the surfaces= const
has the following value for the metrid):

_1da

3a Ndt’

For the conformal timeT, N=a, and we obtain, from Eqg.

8),

B 1 sinT
3Vg?+p?—2P co$ T’

In this section, we shall choose the time functiBhto be
equal toL at the constraint surfad@=0. We call this coor-
dinate constant mean curvat@MC) time. Again, we shall
extend this function to the whole @ so that it is indepen-
dent ofP:

L

., 1 sinT

- 3Jg?2+p? cod T’
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cosT
P"=3\g?+p>——— P

1+siPT

q”=qcogvP)+psin(vP),
p"=—qsin(vP)+p cog vP),

where

1
q?+p? 1+siPT

sinT cosT

Vi=

The transformation is again differentiable everywhere in
P. The range of the coordina® in P is the whole real axis,
those ofg” andp” remain the same as thoseeéndp, and
the range ofP” can be described by its boundary, defined
parametrically as follows:

3 cos'T
goundary: E [ ( q//) 2 + ( pr/)2]3/2m ,
1 sinT

T// — ,
boundary 3 (q,,) +(p,,) COSZT

whereT e (— 7/2,+ 7/2).

Ill. TORUS SECTOR OF 2+1 GRAVITY

Our second model is the partially reduced torus sector of
the 2+ 1 gravity without sources and with zero cosmological
constant. We shall use the form of the metric

d?=— N2dt2+ e~ 9" (dub)2+eT o' (du?+ g?d ut)2

(39
and the action
S= f dt(pig'—NH), (40)
where
= %ef“?’( p5—pi-e 29p)), (41)

as written down by Moncrief18]. Here,t, u!, andu? are
coordinates on the three-dimensional spacetime of topology
Rx Stx S chosen such that=const are the CMC surfaces
andu” e (0,27) for A=1,2 are coordinates on the torus such
that x*= const are closed geodesics of the space metric.
Such coordinates can always be cho$é8]; using this
“spatially homogeneous gauge,” Moncrief reduced the field
model to a mechanical model with a finite number of degrees
of freedom. These are represented by the Teidlemparam-
etersq’ andq®. The coordinatey® is related to the surface
areaF of the T=const surface by the formula

The same method as in Sec. |l C leads to the transformation

formulas

F=4m2e.
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This model is very interesting because it admits solutions The bifurcation is connected with the way in which the
with higher symmetry. All solution spacetimes are spatiallytime reversal acts on the ADM variables. Let us first do a
homogeneous, invariant with respect to the Abelian grougew general remarks concerning the time reversal. The tra-
(ut,u?)—(ut+Aut,u?+Au?); the time evolution of the jectories at the constraint surface can be considered as
tori leads to expansion or contraction. Howeverpif=p,  classes of an equivalence relati6]; two initial data are
=0, then alsop;=0 and we obtain static tori. This is an equivalent if they evolve into maximal solutions that are iso-
additional symmetry. Observe that the constraint surface dewetric to each other. We have, however, to restrict this isom-
fined by H=0 has a conical singularity at these points. etry to the component of unity of the diffeomorphism group.

Our aim is to find out if the Kuchadescription can incor- In particular, it has to preserve all orientations. Thus, two
porate the points of higher symmetry. The strategy will be todata from different trajectories can still evolve to isometric
transform the model to the Kuchaariables everywhere ex- spacetimes, but they must then have different orientations.
cept at the points of higher symmetry. There, the transforma- For our models, only time orientation exists. We observe
tion becomes singular. We shall try to extend the resultinghat the magr (q',p;) =(q', — p;) is antisymplectic, take§ "
Kuchardescription. If we manage, then the extended Kuchamto C~, and vice versaT coincides with the change of
description will not be equivalent to the original Moncrief initial data that is brought about by the time reversal in the
one because the transformation between them is singular ablution spacetimes. The time reversal maps, e.g., an expand-

the points with symmetry. ing spacetime onto a contracting orle.has a well-defined
projectionT, to the physical phase spack, is trivial at S.
A. Constraint surface The reason is that the two possible time orientations of a

i _ s  static spacetime cannot be distinguished by their ADM data.
The phase space of the model with the actiofd0) isR” e have, therefore, some motivation to consider all points of
and the canonical chartqt,q”,a°,p1,p2,p3) covers the ¢+ (noncontracting spacetimeas physically different from
V\{hole_ manifold. The symplectic form @ =d®, where the 4 points of C~ (nonexpanding spacetimesThis will re-
Liouville form © reads move the bifurcation an will leave us just with the conical
O=pdq, i=1.23. singularities.
The constraint surfac@ is defined by the constraint func- B. Physical phase space
tion H of Eq. (41). Its manifold structure i&R*X C, where We first construct the two componenis. of the trun-
R3 is covered by the coordinateg, g2, andg®, andCis a  cated physical phase space correspondir@ytaS. The trun-
two-cone. The tipS of the conep,=p,=p;=0 is a three- cated space is defined as the quotient manifdld
dimensional surface. At the points 6f H and the gradient :=(C*\S)/trajectories. Let us calculate the trajectories.
of H both vanish. The canonical transformation generated by To integrate the canonical equations that are implied by
the functionH is trivial at S. This corresponds to the trivi- the action(40), we choose a particular gauge. This gauge
ality of evolution of initial data in static toroidal spacetimes. will be useful for other aims, too. The value of the associated
Thus, each point of5 is a whole trajectory of the Hamil- lapse function is
tonian action. At all other points @, grad is nonvanish- 5
ing and so the trajectories are one dimensional. N=e%". (42)
The constraint manifold is an embedded hypersurface lo- ] ] ] )
cally, at each point ofAS. There, we have a differential The correspondlng.tlme coordlnaTehas_the foIIOW|.ng rela-
structure and the pullbac®, of Q to C. HereQ, is only a tion to the proper timer along the solution spacetimes:
presymplectic form because it is degenerate. At the points of @
S, no such structure is well defined. etdT=dr. (43
The submanifold\S is the constraint surface of the trun-

. : . he canonical equations for the Hamiltonian,
cated model; it consists of two components. As extensions o-’f_ q

these two parts of the truncated model, we introduce two 1 L
subsets’ ¥ andC~ of C; all points of C*™ (C ) satisfy the P=NH= E(p%—pi—e‘zq p3), (44)
inequality p;=0 (p3=<0). HereC* andC ~ are topological
(C°) surfaces. The maps.. : R%~>C™ defined by can be written in the following form:
¢+ (x1x%x%,y1,y2) = (a%,0%,0%p1,P2) q'=—p;, pi=—e 20p3, (45)

such thatq'=x' for all i=1,2,3, p;=Yy;, pP,=Y,, andps

== \/y§+ e % y% are both homeomorphisms. They are not
differentiable aty,=y,=0. HenceC* are topological sur- a®=ps, p3=0. (47)
faces with conical singularities g =y,=0. The constraint

setC is, however, more singular than that. It has a bifurcationAt the constraint surfacé? =0, butP is an integral of these
at S, where bothC*™ and C~ coincide. The presymplectic equations everywhere if?. Second Eq(47) implies then
form Q. on C\S is simply dy;A\dx+ dy,A\dx2. that

~2

q = _e_2q1p21 p2:oi (46)
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Ki=/pi+e 2p3 (48

PHYSICAL REVIEW D 63 104017

the first-order corrections;q' and 8;p;. Thus, some solu-
tions of the first-order equatiorislinearized equations) are

is also an integral. A straightforward but lengthy calculationSPUrious.

gives a general solution to Eq&l5)—(47) everywhere irP:

0 0
K=P1 7 K¥P1 s

gt=q5+In s &t T (49)

o (K—pd)eXT—(K+pd)e KT 50
C T (K=p)e T+ (K+pde KT
ry e—2q1p0 KT _ a—KT

’ *(K=p)ekT+(K+pDe KT’

(51

pzng’ (52

q®=p3T+as, (53

psng? (54

this solution runs through the poinq}(,p?) for T=0. At
C™, we have

:iKo,

where

1
Koi=(p9)?+e 2(p))?2

The subsetS* of C* is defined byk=0. Then Eqs(49)—
(54) become
q'=do, Pi=p;-

The range of the time coordinaleis (—0,). Equations
(43) and (53) show, however, that®— — is a singularity:
it is reached in a finite proper time. We obtain easily, from
Eq. (43,
e’
El

Tsing~ 70— —

where 7, is the value of proper time at the poift=0.
An important property of Eq944)—(47) is the so-called
linearization instability[19,2Q at the points ofS, wherep;

=p,=p3=0. If we expand these equations around the static

solutions, the constraint
_ 1
p5—pi—e 2p5=0

becomes trivial, 80, in the first order. The first nontrivial
contribution to it is the second-order one:

1
(81P3)?—(81p1)?—e 2%(51p,)?=0.

In the setC "\S, the integralK is positive. Equatior{53)
then implies tha® is a strictly increasing function of on
C™*\S and well defined forT € (—,®). The range of the
function is again {,). Similarly, q° is strictly decreas-
ing onC "\S. Hence, for both cases, the surfafé defined
by q3=q3 intersecteachtrajectory exactlyonce in atrans-
versaldirection. It is, therefore, a transversal surface for any
value ofqge(—oo,oo). The transversal surface can be de-
scribed as the following embedding of the manifold
R2x (R?{0}) with coordinatesx!, x?, y;, andy,, where
(x},x%) e R? and (',y?) e R2\{0}, into C-. :

gt=x'  @*=x% p1=yi, P=Y2, (59
P®=a3, pa==\yi+e Zy3 (56)

The pullbackw.. of the presymplectic fornf), to I" .,
w.=dy;/A\dxt+dy,/\Ndx?, (57)

is nondegenerate.

Let us consider two such sectioig and7, , defined by
a®=q3 and g°=q3, respectively. Let the coordinates on
these sections analogous to those defined by &ds.and
(56) bexi, X3, yi, y2, andx3, x3, y2, y3, respectively. Then
at each point off; a unique trajectory starts and it intersects
T, . This defines a point of, for each point of7; , and
we obtain a map;b;iqg betweenZ; and7, . We easily find

the map from the solutiot49)—(54) in terms of coordinates:

1 1
Ki—yi £aqdy Kityg 0¥AG3

1_,1
x3=x1+In T K, : (58)
+Ag —Ag3
yo= - (Ki—ype 29— (K +yj)e™d 59
LT Ky —yhet e (K yheT e
+Aqd_ o7AQe
2_ 2 -2qh1 e e
XZ_Xl e 1y2 - 3 = 3
(Ky—ype29+ (K, +yp)e™ad
(60)
Y5=Y3, (62)

where Aqd=g3—q® and Ky:=v/(y})2+e 2(y})2 The

map ¢§3q3 is, of course, a symplectic diffeomorphistas
172

one can also verify by a direct calculatjorThe truncated

physical phase spade, UI' _ can be considered as the set of
all transversal surfaces, all points of which are identified by

i
the maps analogous tﬁ;sqs.
172

Our next aim is to extend the Kuchdescription to the
solution spacetimes with additional symmetry. The corre-

This equation does not, however, contain any second-ordesponding separation between the physical and the gauge de-
correctiond,q' and 8,p; . It is a second-order condition for grees of freedom requires a well-defined physical phase
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space as a necessary ingredient. Our first step must, there- Qi (X11X1,Y1n ,y2n)

fore, be an extension of the truncated spdcesandI” _ to

the points ofS™ andS~. Let y],#0 andy3,#0 for all positive integers and
Let us consider the quotiesetsC “/trajectories and de-

note the corresponding projection maps7y. The quotient lim y}nzo, lim y%nzo.

topology is defined as the finest one @n/trajectories that n—oo n—oo

makesm.. continuous. Hencer .. is open. Let us denote the

resulting topological spaces [y, . They are paracompact, 1hiS sequence converges T to the point
locally compact, but not Hausdorff. The real problem is, Q= (x1 x20,0) € S. .

however, that the topological spacgs: do not carry any

natural differential structure. All points of the sequence lie outsid®™ and so can be

Itis, however, possible to introduce a differentiable Struc‘identified with pointsQZ, of?i that are determined by Egs.

ture onl'.. that is inherited directly fronP. An atlas forT .. (58)—(61). Their coordinates are
can be defined by transversal surfaces as follows. Let us
extend each transversal surfage , defined byg®=«, to X3,=X] +In(coshAq®—sina, sinhAg®),
T, by adding all points o~ that satisfy the same equation. _ .
This is the two-dimensional subset(q?) € R?, g*=«. The e cosa,, sinhAq
coordinates o7 . can be chosen ax¥,x%,y;,y,) € R* and " coshAgR—sina, sinhAg®
the embedding formulas coincide with EJ85) and (56).
The setsT, are topological submanifolds &f. and differ- Y2 = 4Kl —sinhAg3+sina, coshAg®
entiable submanifoldsf 7. The symplectic formw . given T coshAgd—sina, sinhAgl
by Eq.(57) is uniquely extensible t@. by continuity. 5 .

p— Yon=VY2n

For a givenk, each point of7, represents a unique tra-

jectory, but all points oﬂ_’,f do not represent all trajectories. wherea, is defined by

Those points ofS* that do not satisfy the equatiap= « L L 1
P —X

are trajectories that do not intersﬁ . Hence, to represent sina :& osa ZYZne '

all trajectories, we needall transversal surfacesx "okt " Lo

— n n
e (—=,). The points of7, that do not lie inS~ represent q
trajectories that intersect all other transversal surface”
Hence, to represent each trajectory by just one point, we Kl \/( I )2+e*2><in( 12
have to identify the transversal surfaces by the maps . n=V¥1n Yan)™

The surfaced™: for all k e (—,), together with the maps The sequencéQ,,} converges to the poir®,, e S~ that is
P form the desired atlas, which we denote dy given by (x% ,x%,0,0) if and only if lim,_.a,=a exists.
As it is usual for manifolds, its topology can be defined by Then

a basis that is a union of the bases for each chart. Thus, the

atlas A also defines a topology on.—Ilet us call it theA

topology. However, thed topology and the quotient one do inhA G

not coincide. For example, thd topology is notparacom- X5, =X2— cosas d _ (63)

= 3_ g ; 3
pact To coverl'., we need an uncountable set of charts. coshAg”—sina sinhAq

Then the basis of the topology ®t. is not countable and gach sequencéQ;.} with a converginge, has then a

I' is not paracompact. The topology also fails to describe - nique limit in7; ; the possible limit points of all converg-
the “nearness” between different levels of S properly. o4 sequences fill out a closed curvedit N7% defined by
Indeed, eachk level of S~ is contained in a different chart, Egs. (62) and (63) for ae SL. Each pointQs. is different

T+ [FE T . . ’ + . . ) . + - 2

T’ . Therefore,S™NT," is contained in an open set that from Q; because its coordinates in ¢ * differ. Thus, one
does not intersect any other level. Then, a sequence of sequence can have two different limits and the space cannot

points of S that do not lie inS*N 7, can never converge be Hausdorff.
to any point ofSTNT= in the A topology. An important property of the atlas can easily be shown: it

i ) is not unique. Indeed, we could slightly deform the transver-
To see thatl.. is not Hausdorff(in the A topology as sal surfacesT. so that they remain transversal (h"'\S*
well as in the quot|ent onelet us consider two transversal KT Y ot . .

3 and so that their intersections with~ remain two dimen-
surfaces7; and7T; defined byq®=q3 andq®=03, respec-  sjonal. Let the new transversal surfaces be defined by some
tively. Let{Q;,}C7; be a point sequence ifi; with coor-  equation of the formf(q*,q2,03,p1,pz) =k, ke (—%,%).
dinates The intersection withS = is given by

x3=x1+In(coshAg®—sina sinhAg®), (62
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f(9%,9%,9%0,0 =«

and it will generically intersect the surfacg= « in a curve

points

f(q*,q2,x,0,0)= . For

PHYSICAL REVIEW D 63 104017

of C"\S*, the surfaces™ are well defined at both

sides ofC*. At S*, they are defined only in th®* side of
the surface .

eachk, the solution(49)—(54) with qO x and p3

+\/2P+K?Z covers a certain paﬂ’ of P*. We are going to

Thus, the intersection between some transversal surface
the first family with some transversal surface of the seco

family will notbe open. It follows that we cannot simply add We call Ve -

dage Eqs(49)—(54) to define maps from¥ = X R into P that

Let the coordinates o’EF bex!, X2, yi, Yo, P

the new family of transversal surfaces to the old atlas, and s8"d that orR beT. Equationg49)— (54) have to be rewrltten

the manifold defined by each of the two atlases will be dif- t0 define ¢ : in such a way thatig=«, qg=x*, g5=x%,
ferent. pl y; and pz Yo!
Any of these atlases can serve as a basis for a construction v v
of Kuchar decomposition. This will be shown in the next 1_,1 Y1 oy YY1
section. q=x +In( oy ¢ 2y © ' (65
C. Transformation to embedding variables _ (Y=—y)e'T—(Y+y,)e YT 66
To construct the transformation we shall use fheay as ! (Y—y))e T+ (Y+y,)e YT
described in Sec. Il. The Hamiltonian that we choose corre-
sponds to the value of the lapse functi@gt2). The Hamil- ) eYT_e YT
tonian itself has the fornt44), the canonical equations are q?=x2—e Xy, VT 7
(45—(47), and the general solution to these equations is (Y=ype' '+ (Y+yi)e
given by Eqs.(49)—(54). (67)
The next step is a choice of transversal surfac®.i©ur _
choice is a straightforward extension of the transversal sur- P2=Y2, (68)
P 3 —
faces7, of Sec. III~Ei to P by the equatiorg®= «. Let us B=+TV2P+ Y2+ k, 69)
denote the result by, . It is transversal everywhere iR\C
as long agp3#0 because of EQ53). =+.\2P+Y? (70)
Equations(44) and (48) imply that P
where
pI=*\2P+K?,
-2xt
The function pg remains nonzero in the part ® that is y te y (7D
determined by the following inequality: .. ) — . )
The mapy, is invertible onP,\S, whereps#0. The in-
1, verse transformation is described by the following equations:
P>— EK . (64) ,
q°—«
N _ T=", (72
The trajectories lying at its boundary haveindependent P3
surface are&q3, but they are not static iP+0: q* and g?
are evolving in a nontrivial way. A€ *, whereP=0 (and so _ }(pg_ pz—e‘qupz) (73
K=0 at the boundapy there are no problems because the 273 2n
corresponding trajectories are just points. However, the tra-
jectories atP<0, K=—2P are not points and they are _ 1+In(K+ pekT+(K—pye KT 74
lying in the surfaceg)®= const. Thus7, ceases to be trans- d 2K '
versal at this boundary.
It is helpful to realize that dividesP into three disjoint (K+ppekT—(K—py)e KT
parts similarly as the light cone divides Minkowski space- y1=K K06+ (K—pe KT’ (79
time into the future interior, the past interior, and the exterior (K+pye (K=pye
of the light cone. Thus, we have™ defined byP>0 and KT kT
p3>0, P~ by P>0 andp;<0 andP® by P<0. The sur- e P 20 er’ —e
facep;=0 separate® into two halves, one witlp;>0 and —d pZ(K+p1)eKT+(K_ pl)e—KT’
one withp;<0. The transversal surfac@g coverP*, C*, (76)
and thep;>0 part of P°. Let us denote this set byp".
§ y2: p2! (77)

Similarly, the surfaces}; cover P, C~, and thep3z<O0

part of P; this set will be denoted b~ . Observe thaP™
is not an open subset @; it has the boundans ~. At all
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_ The functionsT and P given by Egs.(72) and (73) are The Kucharcharts cover only the pa®"UP~ of the
singular atS~ wherepz=p;=p,=0: original phase spac®; the points ofS are covered two
1 o times. They have to satisfy the inequalities
dT=—dg®- dps,
ps 0 py Te(—%2), ()21 Y, R
dP=e"29p2dq!— p,dp;— e 29 p,dp,-+ psdps. and

dT diverges andlP goes to zero. Still, the pullbac® . of
the symplectic form() by ¢, from P \S remains regular
at these points. An easy calculation reveals that

1,
Pe| —5(yi+te #y3),=|u{0}

in each chart.
Q, =dPAdT+dy,Adxt+dy,Adx2. The new dynamical equations for the variablesP, x*,

2 i ; )
. o . X4, Y1, andy, in each chart are very simple:
Hence, there is a trivial extension 6I, to the whole of Y1 Ya y P

~Tf X R. This seems to be a general pattern that may hold for xl=x2=y,=y,=P=0
all conical singularities.
The range ofys, is not the whole ofP*: it contains all  and

trajectories ofP*\S*, but it does not contain the point tra- ,

jectories of S* that do not satisfy the equatiaf=«. To T=N’, P=0,
cover the whole of P, we have to usey, for all «

€ (—o0,,).

Let, for two differentx’s, x; and «,, the corresponding
maps bey; and, , and let their domains have coordinates
(x1.x1.y1.Y2.P1.TY) and (G,x3,y1.y3,P,T?), respec-
tively. The mapsy; and ¢, are invertible andC” where
their ranges overlap, so they define a mafg Y o; on
(1) Y(PiNP5). This map can be explicitly calculated
from Egs.(65)—(70) and (72)—(77); it turns out to be a&C” We have studied some global properties of the transfor-
symplectomorphism. Hence, the manifGk§ that results by ~mation from the ADM to the Kuchadescription in two
pasting together all chartg> xR by these maps is £  Minisuperspace models. We have found in all cases that the
symplectic manifold. Kughqrdescrlptlon is globally inequivalent to the ADM de-

= scription. The solutions to the two corresponding sets of dy-

Py is Hausdorff, as any sequence that converges to some_ ™ . S

~. _ o . namical equations, however, always completely coincide.
point of 77 in the chart corresponding te; will diverge in The first interesting feature that we have met are the non-
the chart corresponding te# «,, say, k= k,. This can be trivial boundaries for Kuchavariables. As yet, three differ-
seen from the relation betwe&n andT, obtained from Egs. ent kinds of boundaries have been detected. First, there are

whereN’ is the new Lagrange multiplier that enforces the
new constraint. These equations are manifestly linearization
stable (because they are lineaiThe deeper reason for the
stability is the absence of conical singularities in the new
description.

IV. CONCLUDING REMARKS

(72) and(69): boundaries due to singularities in solutions of Einstein’s
equations. It does not seem sensible to propose any general

T.=T.% K= Ky method of dealing with these singularities in the classical

2= 1 /—2P1+Y§' version of the theory. The hope is that the quantum theory

will cure them in some wayfor an example, se27]). We
just ignore these boundaries.

Second, we have found bounds for the variables conjugate
to embeddings, in our ca$g in all models. The meaning of

Observe thaP,= P, and so the constraint s€f in P¢ can
be described by the single equation

P=0. the bounds is simply that the functidhdoes not attain all
values on the ADM phase spac8ec. I)), or on a suitable
It is a smooth(Hausdorfj submanifold ofP; . part of it (Sec. Il)). Our standpoint here simply is that noth-

- . ) . ~ .. ing seems to prevent an extension of Kucphhase space to
Ck can be considered as a fiber bundIe~W|th the bBSis allgvalues ofP.pThe dynamics is not changgd by thl?s exten-
and fiberR. It is defined by the trivializationg, XR and by  sion. This is the reason why we did not make any comment
pasting maps of the type/ ) "ty restricted toP=0. when the bounds became too narrow so that a part of the
In this way, we have constructed a kind of Kuche-  constraint surface appeared “bare” from one sidlee set
scription for the torus sector that includes the static tori. TheS™ of the torus sector of 21 gravity mode). In fact, we
construction is not unique, and the result is also somewhdtave seen that most claims concerning the structure of the set
strange. The origin of the problem is in the pathological”\C are either trivial or gauge dependent. It seems, therefore,
structure of the physical phase space, which is shared witthat this structure is not relevant to physical properties of the
the ADM description. system(although it can be used for some methodical pur-
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poses$. This is one more reason to consider its extensions aadditional conditions are satisfied. First, the solutions with
harmless. the symmetry must form a subset of all solutions that also
Finally, there is a boundary for the embedding variablesnclude solutions without the symmetiyhe static tori are
due to non-space-like character of some embeddings. Th&olutions as well as the expanding and contracting topi are
type of boundary has not been encountered here, but it iSecond, the symmetry must be continudkigling vectors).
quite analogous to thé boundary. It seems that an extension  The bifurcation of the ADM constraint surface is caused
of the Kuchardescription to all values of embeddings may by an additional discrete symmetry: the time reversal. The

again be harmless. Let us consider the extengtprof the  Static spacetimes are invariant with respect to it; the expand-
Kuchar phase space that contains all embeddings of th&g and contracting spacetimes are not. The ADM descrip-
space Emtm,./\/l) for each point of the physica| phase Spacetion identifies the two possible time orientations of the static
I' and all values of the momenta from the spacespacetimes, but it always distinguishes the points corre-
T% Emb(, M) for each pair of points of X Emb(, M). sponding to the contracting from those corresponding to the
The inequalities that both the embeddingand their conju- ~ €xpanding spacetimes. In the phase space, the two surfaces,
gate moment@® have to satisfy are then telling us that the one for the noncontracting and the other for the nonexpand-
ADM phase spac@ is a proper subset d% . Does it mean "9 spacetlmeg, are the_n |dent|f|eq at the pomts_ corrgspond—
that the ADM phase space is too small, or that the Klichal"d to the static spacetimes. In this way, the bifurcation of
phase space is unnecessarily large? the constraint surfacé within the ADM description comes
There is one argument in favor of the first claim. Ishamabout.
and Kuchar[7] have studied the action of the diffeomor-  In the case of the torus model, we have also seen that
phism group in a phase space of ADM type. They observedhere is no global gauge at the constraint surtadé may be
that, given any fixed diffeomorphismp e Diff M, there  possible to choose one smooth lapse functibwith a do-
is a Cauchy surface& in any solution spacetime such main that includes the whole d, but there is no global
that ¢(X) is not space like. If the ADM variables associated transversal surfaceThis leads to a nontrivial fiber-bundle
with the surfaceS, areqy, and 7', then the representative structure for the constraint surface within the Kucluse-
of ¢ acting on the phase space must map the poingcription. Each transversal surface defines a trivialization of
(a7 ') out of the phase space. They have concludedhis bundle, but there is no global trivialization. Such a con-
that only its Lie algebra but not the group Diffl itself  struction has been considered [ib5]. In fact, even in the
has a well-defined action on the phase space. This cagases that admit a global gauge, the gauge is not unique.
be compared with the situation in the Yang-Mills Thys, it is the bundle that represents the gauge invariant
field theory, where the full gauge group has a well-definedsiycture of the constraint surface in all cases. Although the
action on the phase space. We also easily recognize thgfngle is trivial if a global gauge exists, it does not possess
Diff M acts without hindrance of* Emb(X, M) and so it 5y canonicaltrivialization. This has been explained [ibs).
has a well-defined action on the extended Kuchhase The present paper focuses on the transformation between
spacePy . the ADM and the Kuchadescriptions. This necessarily leads
Other problems that we have studied are connected witky a comparison of just these two. One should not, however,
the points that correspond to solutions of higher symmetryforget that there are many other descriptions. In this respect,
For a model—the torus sector oftd gravity—we have i may be interesting to observe that the problem with addi-
found a description by Kuchavariables including such a1 symmetry is not characteristic for the ADM approach

points. The_new_description is smqoth:_the_re i_S no t_’i_furca'only but it also afflicts the configuration space of {lusua)
tion, no conical singularity, and no linearization instability. It second ordefLagrangiah approach

is not equivalent to the ADM description given ib8]. This Our results are of course only valid for the two particular

point ought to be stressed: “passing” to the Kuckiascrip- .
tion is not just a coordinate transformation on the phasemOdels' Of these, the torus may be the most pathological

space. A mere coordinate transformation could not remov&3aS€ that.exists."!'he Kuchdescription of less pathological

bifurcation, conical singularity, or linearization instability. models W'th addltloqal symmetry may, therefqre, b? regular.
The essence of the problem with the bifurcation, the conilf N0t and if the residual pathology is very disturbing, one

cal singularity and the linearization instability in the case of¢an still truncate the model. More cases ought to be looked

the ADM description is that the fieldg, and 7% cannot at, and some attemp_ts_at proofs of some general theorems

distinguish between two Cauchy surfaces that are linked b@ught to be done. This is left for future papers.

an isometry. Two such Cauchy surfaces then define one and

the same point in the ADM phase space. However, the two

Cauchy surfaces can surely be distinguished from each other ACKNOWLEDGMENTS
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