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Embedding variables in finite dimensional models
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Global problems associated with the transformation from the Arnowitt-Deser-Misner~ADM ! to the Kucharˇ
variables are studied. Two models are considered: The Friedmann cosmology with scalar matter and the torus
sector of the 211 gravity. For the Friedmann model, transformations to the Kucharˇ description corresponding
to three different popular time coordinates are shown to exist on the whole ADM phase space, which becomes
a proper subset of the Kucharˇ phase spaces. The 211 gravity model is shown to admit a description by
embedding variables everywhere, even at the points with additional symmetry. The transformation from the
Kuchařto the ADM description is, however, a many-to-one transformation there, and so the two descriptions
are inequivalent for this model, too. The most interesting result is that the new constraint surface is free from
the conical singularity and the new dynamical equations are linearization stable. However, some residual
pathology persists in the Kucharˇ description.

DOI: 10.1103/PhysRevD.63.104017 PACS number~s!: 04.60.Kz
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I. INTRODUCTION

Generally covariant systems are quite popular in the t
oretical physics of today. Each such model contains one
more spacetime-like objects. For example, in string theo
we find target spacetime as well as string~and membrane!
sheets. The variables that specify points in phase space
then tensor~density! fields on Cauchy surfaces in some
the spacetimes. For example, in general relativity, the fi
and second fundamental forms of the Cauchy surface
used, or rather some modifications thereof, the so-ca
Arnowitt-Deser-Misner~ADM ! variablesqkl(x) and pkl(x)
@1#. We call the canonical formalism based on these variab
the ADM description.

As early as 1962 it was recognized@2# that the ADM
variables contain a mixture of two types of information. T
first has to do with the physical, gauge independent stat
the system. The second just tells us where in the space
the Cauchy surface lies.

The mathematical language of this idea has been wor
out by Kucharˇ @3#. The variables that describe the position
the Cauchy surface are so-calledembeddings: maps of the
form X: S°M of the Cauchy manifoldS into the space-
time manifoldM. The gauge invariant, true physical degre
of freedom can be described by variables of the so-ca
Heisenberg picture@4#. They are observables in the sense
Dirac @5#. The momentaP conjugate to the embeddingsX are
simultaneously the new constraint functions. We call the
nonical formalism based on these variables theKuchař de-
scription.

One advantage of Kucharˇ variables is that they enable
four-dimensional, spacetime formulation of canonic
theory: all Cauchy surfaces are admitted in the canon
description of the dynamics~‘‘bubble time’’ or ‘‘many-
finger time’’ @3#!. This is to be compared with the one
parameter time evolution based on a particular choice o
one-dimensional family of Cauchy surfaces in each solut
spacetime, the so-called foliation. A foliation is a particu
311 split of four-dimensional spacetime. The original AD
reduction program~for a current version, cf.@6#! was based
on such a split. Kucharˇ’s approach allows one to write dow
0556-2821/2001/63~10!/104017~14!/$20.00 63 1040
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explicitly the action of the four-dimensional diffeomorphis
group @7#—the gauge group of the model.

A canonical transformation from the ADM to the embe
ding variables, their conjugate momenta and the observa
will be called aKuchař decompositionor Kuchař transfor-
mation. The Kucharˇ transformation turned out to be a diffi
cult task. It was managed only for a few special mod
@8–11#. Moreover, some general, negative results were p
lished. In@12# and@13#, simple models were constructed th
did not allow a global Kucharˇ decomposition. Torre@14#
showed that the decomposition, which, in fact, brought
system to the form of the so-called ‘‘already parametriz
system,’’ was impossible at some points of the constra
surface of general relativity. These were the points that
Cauchy data, evolved to spacetimes with additional Killi
vectors. Thus, even the existence of Kucharˇ decomposition
was questioned.

Some progress in this situation has been achieved in@15#
~see also@16#!. The conditions for the existence of the Ku
chař transformation have been clarified. First, each Kucˇ
decomposition is associated, and in fact determined, b
choice of gauge. The Kucharˇ coordinate chart can cover onl
such part of the constraint surface for which a comm
gauge fixing exists. Second, all points of the constraint s
face must be excluded that evolve to spacetimes withany
isometries, not just with Killing vectors. And, finally, even
these conditions are satisfied, the existence could only
shown for a neighborhood of the constraint surface, not
the whole ADM phase space.

The aim of the present paper is to start a study of
conditions mentioned in the previous paragraph. This wo
be rather difficult in a general context. We shall, therefo
start by studying finite-dimensional, ‘‘minisuperspace
models. For such models, the spacetime manifoldM is ef-
fectively one dimensional and the Cauchy manifold is jus
point, so the space of embeddings can be identified w
M—a finite-dimensional space. The models chosen
completely solvable. This enables us to construct Kucˇ
transformations explicitly~the proof in@15# is not construc-
tive!.
©2001 The American Physical Society17-1
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M. AMBRUS AND P. HÁJÍČEK PHYSICAL REVIEW D 63 104017
The plan of the paper is as follows. In Sec. II, we consid
the Friedmann cosmological model driven by a zero-re
mass, conformally coupled scalar field. This model has b
studied in some detail in@17#. First, we specify the gaug
needed for a Kucharˇ transformation. In the one-dimension
spacetime model, it can be called the ‘‘choice of time’’; t
time coordinate is, in fact, an embedding variable. It is a
vantageous to decompose the choice into two steps. The
one specifies the lapseN as a function on the ADM phas
spaceP. Then the canonical equations of the Hamiltonia
PªNH, define the so-calledtrajectorieseverywhere inP;
H is the constraint function. The second step is a choice
the surface transversal to the trajectories as the origin
time. We study three choices of time:conformal, proper, and
constant mean curvature~CMC! time and try to find the cor-
responding Kucharˇ coordinates on the whole ofP.

The model of Sec. III is the torus sector of the 211 grav-
ity theory, partially reduced so that a minisuperspace mo
results. This has been carried out in@18#, from where we
adopt our starting formulas. The model is interesting for s
eral reasons. Its constraint setC does contain points assoc
ated with higher symmetry—the static tori.C has a bifurca-
tion and conical singularity at these points. The coni
singularity is a feature associated with additional Killin
vectors; see@19#. It is also the cause of the so-calledlinear-
ization instability @20#. C has no well-defined differentia
structure at these points. This is a difficulty not only for t
transformation to Kucharˇ variables, but also for the definitio
of the ADM physical phase space~see @21#!. Finally, this
model does not admit a globally transversal surface. We
therefore, study this topological obstruction, too.

All these problems disappear if we truncate the model
excising the points associated with the static tori as has b
done in@18# and @22#. The truncated model consists of tw
separated parts. Each part admits a globally transversal
face, a global chart of Kucharˇ variables, and a nice physica
phase space. In the present paper, we are trying to ex
both parts of the truncated model.

Section III B investigates important properties of t
physical phase space of the extended model. We constru
atlas for the physical phase space from a chosen famil
transversal surfaces in the constraint set. In this way
smooth manifold~in fact, analytic! can be obtained.

In Sec. III C, we turn to the embedding variables. Stric
speaking, the negative results of@14# and @15# only imply
that the ADM variables cannot be transformed into Kuchˇ
ones at the points with higher symmetry. This does not m
that there is no Kucharˇ description including solutions with
additional symmetry. However, if it exists, it cannot b
equivalent to the ADM description.

Our atlas for the physical phase space serves as a sta
point. The transversal surfaces defining it can be exten
from the constraint surface to a part of the ADM pha
space. There is a patch of Kucharˇ coordinates for each trans
versal surface. In this way, we obtain a Kucharˇ description of
the whole model. The transformation from the Kucharˇ de-
scription to the ADM one becomes singular, many to one
the points of higher symmetry~the trajectories containing
these points are zero dimensional in the ADM descript
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and one dimensional in Kucharˇ description!. However, all
classical solutions of the new system coincide complet
with the corresponding solutions of the old one. Yet the n
constraint surface is free from the bifurcation and the con
singularity. The new dynamical equations arelinear. This
has an obvious but amusing consequence: they are linea
tion stable.

The results are discussed in Sec. IV. There is also
attempt at a synthesis of the results from both minisup
space models.

II. FRIEDMANN MODEL WITH CONFORMALLY
COUPLED SCALAR FIELD

In this section, we shall study the spatially closed Frie
mann cosmological model with a particular matter conten
zero-rest mass, conformally coupled scalar field.

The action has the form

S5E dt~paȧ1pfḟ2NH!,

wherea(t) is the scale factor of the Robertson-Walker lin
element,

ds252N2dt21a~ t !2S dr2

12r 2
1r 2~dq21sinq2dw2!D ,

~1!

N is the lapse function,f is defined in terms of the origina
scalar fieldF by

fª

2A2G

3
aF,

G is the Newton constant, andH is the Hamiltonian con-
straint:

H5
1

2a
~2pa

21pf
2 2a21f2!.

For more details see@17#.
The ADM phase spaceP is four dimensional, covered by

the canonical charta, f, pa andpf with ranges

aP~0,̀ !, fP~2`,`!,

paP~2`,`!, pfP~2`,`!.

The constraint surfaceC is the three-dimensional ‘‘cone’’

2pa
21pf

2 2a21f250.

The background manifoldM is one dimensional,M5R.
For its complete definition, a choice of time coordinateT is
needed@15#. The Cauchy manifold is represented by a ze
dimensional manifold~a point! S, and the space Emb(S,M)
of embeddingsT: S°M can be identified withM:

Emb~S,M!5M.
7-2
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EMBEDDING VARIABLES IN FINITE DIMENSIONAL MODELS PHYSICAL REVIEW D 63 104017
A set of Kucharˇ variables consists then of the time va
ableT, its conjugate momentumP, which is proportional to
the Hamiltonian constraint, and two Dirac observabl
which are constants of motion. For the present case, it is
difficult to find the transformation to such variables ifT is
chosen so that the equations of motion simplify.

A. Conformal time

A suitable choice of time is connected with the followin
value of the lapse:

N5a. ~2!

Equation ~1! shows thatT is a conformal timethen. The
conjugate variable is

PªNH5
1

2
~2pa

21pf
2 2a21f2!. ~3!

The time coordinate is not yet completely specified. So
surface is to be chosen as the originT50.

The equations of motion corresponding to the Ham
tonianP are

ȧ52pa , ṗa5a, ~4!

ḟ5pf , ṗf52f. ~5!

It follows that ṗa is positive everywhere inP, and we can
choose the surface defined bypa50 asT50. The resulting
general solution to the equations of motion is

a5A cosT, pa5A sinT, ~6!

f5B cos~T1C!, pf52B sin~T1C!, ~7!

whereA, B, andC are constants. We can expressP by these
constants:

P5
1

2
~B22A2!.

The functionsT, P, B, andC form a complete set of inde
pendent variables. Equations~6! and ~7! can be written by
means of these variables ifA5AB222P is substituted forA.
They can then be considered as transformation equat
from the variablesa, pa , f, andpf to T, P, B, andC. Let us
express the Liouville form in terms of the new variables.
simple calculation reveals

pada1pfdf5PdT1
1

2
B2dC

1dS 2P sinT cosT1
1

2
B2 sinT cosT

2
1

2
B2 sin~T1C!cos~T1C! D .
10401
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To improve the right-hand side, we introduce the functionq
andp by

q5B cosC, p52B sinC;

this implies that

pdq5
1

2
B2dC1dS 2

1

2
B2 sinC cosCD .

Hence,

a5Aq21p222PcosT, pa5Aq21p222PsinT, ~8!

f5q cosT1p sinT, pf52q sinT1p cosT ~9!

is a canonical transformation. The meaning of the variableq
and p can be inferred from Eq.~9!: q5fuT50 and p
5pfuT50. These are values of the fieldf and its momentum
pf at the surface of maximal expansion.

The transformation defined by Eqs.~8! and ~9! maps the
following subset ofR4 with natural coordinatesT, P, q, and
p onto P:

~q,p!PR2\$0%, TPS 2
p

2
,
p

2 D ,

PPS 2`,
1

2
~q21p2! D . ~10!

T is the embedding variable corresponding to our choice
gauge. Its conjugate variableP is proportional to the con-
straint function. The remaining variablesq and p are Dirac
observables. They span the physical phase spaceG. Hence,
the new action reads

S5E dt~PṪ1pq̇2N8P!, ~11!

whereN85aN is the new lapse function. The action has t
Kuchař form.

The boundaries defined by Eq.~10! have the following
meaning.T52p/2 is the big bang andT5p/2 the big
crunch singularity of the solution to Einstein equations
our model, if P50. The points are still singular forPÞ0,
but this is a property of the present gauge (N can be chosen
such that the solutions of the resulting equations of mot
outside the constraint surface are regular!. The boundaryP
5(q21p2)/2 corresponds toa(T)50 for all T. This ‘‘solu-
tion’’ does not define any spacetime. Finally, the pointq
5p50 corresponds to the scalar field being identically ze
Then, again, there is no spacetime solution forP50.

The existence of bounds on the embeddings and their c
jugate momenta seems to be an important general featu
Kuchař transformation. Reference@15# already mentioned
one kind of such bound: the embeddings must be everywh
space-like for each given geometry. In the present case,
very special embeddings are allowed, which are autom
cally space like. On the other hand, our findings on
bound that must be satisfied byP are rather unexpected an
7-3



M

e

n

-
w

-
u

th

un
il-

ar
rt

-

nt

-

e
e of

t
s
ry
oth

-

o-

lt in

he

M. AMBRUS AND P. HÁJÍČEK PHYSICAL REVIEW D 63 104017
new. To understand it, let us recall that a Kucharˇ transfor-
mation is described in @15# as a map x: G
3T* Emb(S,M)°P. Here x is a symplectic diffeomor-
phism and its existence has been shown~under certain con-
ditions! only in an open subsetU of T* Emb(S,M) such
thatx(U) is a neighborhood of the constraint surfaceC in P.
One would expect thatx(U) is a proper subset ofP so that
the transformation exists only for limited values of the AD
variables, because nothing more has been proved in@15# but
there is still some uncertainty. On the other hand,U must be
a proper subset ofT* Emb(S,M), so there are always som
bounds onXPEmb(S,M) andPPTX* Emb(S,M).

In our case, Emb(S,M)5M5R, and we also use the
letter T rather than X to denote an embedding. The
T* Emb(S,M)5R. Our result is thatx(U)5P so that there
are only bounds onP andT, not on the ADM variables. The
interpretation is that the whole ADM phase spaceP is a
proper subspace of the Kucharˇ phase space
G3T* Emb(S,M).

Let us observe that the points ofG3T* Emb(S,M) that
do not satisfy the bound~10! for P do not define any reason
able initial data for the spacetime and the scalar field. Ho
ever, one can use the action~11! in the whole space
G3T* Emb(S,M) without any harm. All points of the con
straint surface satisfy the bounds, so the solution of the eq
tions of motion within the ADM framework coincide with
those within the so-extended Kucharˇ framework.

B. Transversal surface

Let us study the geometrical structures that underlie
calculation of the previous section.

The first step has been a choice of fixed phase-space f
tion for the lapseN. This has determined the true Ham
tonianP by Eq.~3!. The Hamiltonian vector fieldjP is given
by the right-hand sides of Eqs.~4! and~5!. It is important to
observe that the direction ofjP is independent ofN at the
constraint surfaceC; it is only the parametrization of the
integral curves ofjP that changes withN. OutsideC, how-
ever, even the direction ofjP depends onN, and the resulting
integral curves form different foliations ofP for differentN.

The variableT is to be conjugate toP. This implies the
condition

jPT51. ~12!

Hence, any parameter of the integral curves ofjP can be
chosen asT.

Let us denote the remaining two variables that we
looking for by X andY. They are to form a canonical cha
together withT and P. It follows that they have vanishing
Poisson brackets withP:

jPX5jPY50. ~13!

Thus,X andY are ‘‘integrals of motion.’’ Observe that con
dition ~13! depends on the choice ofN outsideC. At C, it is,
however, independent of it, and it implies thatX and Y are
10401
-
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Dirac observables. As alsojPP50, we conclude that the
functions P, X, and Y form a complete set of independe
integrals of motion.

The conditions~12! and ~13! do not determine the func
tionsT, X, andY. We can fixT using the following idea. Let
T be some function satisfying Eq.~12!. Then the equation
T5const defines a surface inP at least for some value of th
constant. This surface must intersect each integral curv
jP at most once~there can be curves along whichT does not
attain the value of the constant!. Moreover, the tangen
spaces to the surfaceT5const and that to the integral curve
of jP must have only the zero vector in common at eve
point of the surface. We call a surface that satisfies b
conditionstransversalandglobally transversalif it intersects
all integral curves ofjP . Suppose that the vector fieldjP
admits a globally transversal surfaceT. Then the functionT
can be chosen so that it vanishes atT; by that, the function is
completely determined.

Let us turn to the functionsX and Y. They must have
vanishing Poisson brackets withT. Hence they have to sat
isfy the conditions

jTX5jTY50, ~14!

wherejT is the Hamiltonian vector field ofT. Observe that
the Lie brackets betweenjP andjT vanish,

@jT ,jP#50,

because$T,P%51. Our construction of the functionsX andY
is based on this observation.

Let T be a globally transversal surface. Consider the tw
dimensional surfaceTùC. The pullbackv of the symplectic
form V from P to TùC is again symplectic~nondegenerate!.
The symplectic manifold (TùC,v) can be identified with the
physical phase spaceG.

Let us choose two coordinatesx andy on TùC satisfying

$x,y%v51.

We extend these functions in two steps to the whole ofP.
First, we use the condition~14! to extend them toT. Equa-
tion ~14! can be considered as a differential equation onT: as
jTT50, the vector fieldjT is tangential toT. Let the func-
tions X andY at T satisfy the differential equations~14! to-
gether with the initial conditions

XuTùC5x, YuTùC5y.

This is sensible because the surfaceTùC is transversal tojT
in T. The reason is thatjTP521 andTùC is defined by
P50.

The second step is to use the differential equations~13!
with the initial conditions atT given by the values ofXuT and
YuT as obtained in the previous step. The two steps resu
a pair of functionsX and Y that automatically satisfy the
remaining Poisson bracket conditions. This follows from t
Jacobi identity as follows.

At T, we have
7-4
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EMBEDDING VARIABLES IN FINITE DIMENSIONAL MODELS PHYSICAL REVIEW D 63 104017
jT$X,Y%5ˆ$X,Y%,T‰

52ˆ$T,X%,Y‰2ˆ$Y,T%,X‰

5$jTX,Y%2$jTY,X%50 ~15!

because of Eq.~14!. Equation~14! implies that

$X,T%uT50, ~16!

$Y,T%uT50, ~17!

and$X,Y%uT is constant along the integral curves ofjT .
Similarly, jP$X,Y%50, jP$X,T%50, and jP$T,Y%50

for the propagation alongjP in the second step. From th
values given by Eqs.~16! and ~17!, and from Eq.~13!, we
obtain that

$X,T%5$Y,T%5$X,P%5$Y,P%50 ~18!

everywhere inP. We also have that$T,P%51, so it remains
only to show that$X,Y%51 everywhere. Now,T, P, X, andY
are independent functions in a neighborhood of the surf
TùC and can be chosen as coordinates there. The only
zero components of the symplectic formV in these coordi-
nates areVPT52VTP51 andVYX52VXY because of Eq.
~18!. The surfaceTùC is defined by the embedding relation

X5x, Y5y, P50, T50.

Hence, the pullbackv is

vyx5VYXuP5T50

and so$X,Y%uTùC51 becausevyx51. The desired resul
follows, for the brackets$X,Y% must be constant alongjT
andjP .

Let us summarize. The construction of the previous s
tion is based on three choices: the functionP, the transversa
surfaceT, and the coordinatesx andy on TùC. The Poisson
bracket conditions on the functionsT, P, X, and Y imply
differential equations that propagate the functions fromTùC
to T and fromT to P. The result is unique, given the thre
choices.

The propagation fromTùC to T has been only implicit in
the calculation of Sec. II B because the functionsB and C
that satisfy Eq.~14! have been guessed.

From the commutativity of the vector fieldsjP andjT , it
follows that the propagation is independent of the way c
sen. Hence, we could propagate first fromTùC to C alongjP
and then fromC to P along jT with the same result. To do
that, there has first to be given the functionT everywhere on
P instead ofP. We can therefore call the method of th
previous sectionP-way and the alternative methodT-way.
We shall use theT-way in the next section.

C. Bergmann-Komar transformation

The conformal timeT of Sec. II A has a well-defined
value at each point of any spacetime solution. In general,
transformation fromT to some different ‘‘time coordinate’’
T8 will be solution dependent. For our model, it can depe
10401
ce
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on the variablesP, q, andp. Such transformations have bee
introduced and studied by Bergmann and Komar@23#.

As we have shown in Sec. II A, a choice of time can
done in two steps: that of lapse function and that of transv
sal surface. IfN is not changed, the HamiltonianP will be
preserved. The solution arcs~the point sets defined by th
trajectories! will then be the sameeverywherein P. A
change of transversal surface leads only to a reparamet
tion of the trajectories. Hence, such a transformation can
considered as a genuine, solution-dependent, reparame
tion of the trajectories everywhere. In our case, it has
general form

T85T1T̃~P,q,p!, p85 P̃~P,q,p!, ~19!

q85q̃~P,q,p!, p85 p̃~P,q,p!. ~20!

Such transformations form a subgroup. They do not cha
the character of the time. In our case, it remains conform
time. Still, it is a Bergmann-Komar transformation that ca
not be implemented, in general, by a unitary transformat
in the quantum theory~see@24#!.

If we changeN, the character of time changes. In th
section, we are going to study two such examples: theproper
and theconstant-mean-external-curvaturetimes. These are
two relatively popular choices in cosmology.

In fact, a change ofN leads to a more radical change
the trajectories outside the constraint surface than just a
arametrization. The notion of ‘‘solution spacetime’’ is gau
independent only atC. Yet the trajectories are important fo
us everywhere inP: they define the Kucharˇ coordinates
there.

The trajectories are solutions to the canonical equation
the Hamiltonian P5NH. They are so uniquely define
through all points ofP. The fact that the solution arcs depen
on N outsideC has to do with the way that the dynamics of
generally covariant system is usually formulated. The cla
cal dynamics of such a system is completely determined
the constraint surface~but cf. @25#!. The form of the con-
straint functions is irrelevant as long as they define the sa
constraint surface.

How are the trajectories outside the constraint surface
be interpreted? To be sure, each gauge and any of the c
sponding trajectories define a unique Robertson-Wa
spacetime and scalar field on it. The gauge supplies the la
function N(q,p,P,T) and then each of the correspondin
trajectories determines a unique scale factora(q,p,P,T) as
well as the scalar fieldf(q,p,P,T). In this manner, there is
a spacetime with the metric

ds252N2~q,p,P,T!dT21a2~q,p,P,T!S dr2

12r 2
1r 2dV2D

~21!

for each trajectory determined by the constant values ofq, p,
andP. The scalar fieldf(q,p,P,T) can be considered as
field on this spacetime. Of course, the relation between
momentapa and pf on the one hand and the velocitie
7-5
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M. AMBRUS AND P. HÁJÍČEK PHYSICAL REVIEW D 63 104017
da/dT anddf/dT on the other willnot, in general, coincide
with those obtained from the second-order formalism, e
by

pa5
]L
]ȧ

.

This does not seem, however, to disturb the interpreta
based on the existence of the solution spacetime~21!.

1. Proper time

Here, we calculate the transformation fromT, P, q, andp
to Kuchařvariables corresponding to the proper timeT8.

The lapse functionN that is associated with the prope
time has the valueN51. We obtain thatadT5dT8. At the
constraint surface,P50, and Eq.~8! implies

dT85Aq21p2cosTdT. ~22!

The T8 curves at the constraint surface consist of the sa
points as theT curves. Hence, the values ofq8 and p8 are
again constant along them,q85q and p85p, and Eq.~22!
has the integral

T85Aq21p2sinT, ~23!

where we have chosen the same transversal surfaceT ùC as
in Sec. II A.

In this way, the functionT8 is determined atC. To pro-
ceed with the calculation in theT-way, we have to extend th
function to the outside ofC. As was explained above, th
particular value of the extension does not have any phys
meaning and can be chosen just by convenience. A suit
choice is Eq.~23! everywhere~i.e., T8 independent ofP).
Then, the transversal surfaceT of Sec. II A is preserved.

The next step of theT-way is the propagation of the func
tions P8, q8, andp8 by the differential equations

jT8P8521, jT8q850, jT8p850 ~24!

out of C, where we have the initial conditions

P8uC50, q8uC5q, p8uC5p. ~25!

Then, the required values of the Poisson brackets,

$T8,P8%51, $q8,T8%50, $p8,T8%50,

are granted. And for a similar reason as in Sec. II B, all ot
Poisson brackets will also have the desired values.

From Eq.~23!, we easily obtain

jT852Aq21p2cosT
]

]P
1

p sinT

Aq21p2

]

]q
2

q sinT

Aq21p2

]

]p
.

Equations~24! can be solved by the method of character
tics. The characteristic equations read

]T

]P8
50,

]P

]P8
5Aq21p2cosT, ~26!
10401
.,

n
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-

]q

]P8
52

p sinT

Aq21p2
,

]p

]P8
5

q sinT

Aq21p2
.

~27!

We have already used the fact that the parameter of the c
acteristic curves can be chosen to be2P8. This follows from
the first equation of Eqs.~24!.

We can see immediately thatT is an integral of the system
and one verifies easily thatAq21p2 is another one. Then
the integration of the system is straightforward and we obt

T5T0 , P5P8Aq0
21p0

2cosT0 , ~28!

q5q0 cos~n0P8!2p0 sin~n0P8!,

p5q0 sin~n0P8!1p0 cos~n0P8!, ~29!

where

n05
sinT0

Aq0
21p0

2

and we have used the fact thatP5P850 at C. The integra-
tion constantsT0 , q0, and p0 are the values of the coordi
natesT, q, andp at the point where the characteristic inte
sects the constraint surfaceC.

Everywhere along the characteristic passing through
point (T0 ,q0 ,p0), the functionsq8 and p8 must have the
values

q85q0 , p85p0 . ~30!

This is a consequence of Eq.~24!. The functionT8 is con-
stant along each characteristic because of the trivial equa
jT8T850. Hence, the value ofT8 along the characteristic
~28! and ~29! is

T85Aq821p82sinT0 . ~31!

If we substitute Eqs.~30! and ~31! into Eqs.~28! and ~29!,
we obtain

P5P8Aq821p822T82, ~32!

q5q8 cos~n8P8!2p8 sin~n8P8!, ~33!

p5q8 sin~n8P8!1p8 cos~n8P8!, ~34!

where

n8ª
T8

q821p82
.

Equations~33!, ~34!, and~23! yield

T5arcsin
T8

Aq821p82
. ~35!
7-6
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Equations~32!–~35! are the desired transformation formul
between the two coordinate systems. From the construc
it follows that the transformation is canonical; this can
verified by direct calculation.

The inverse transformation is given by Eq.~23! together
with

P85
P

Aq21p2cosT
, ~36!

q85q cos~nP!1p sin~nP!, ~37!

p852q sin~nP!1p cos~nP!, ~38!

where

nª
tanT

q21p2
.

The transformation functions~23! and ~36!–~38! are differ-
entiable everywhere insideP, that is, for values of the coor
dinatesT, P, q, and p within the bounds~10!. The corre-
sponding ranges of the coordinatesT8, P8, q8, andp8 are

~q8,p8!PR\$0%,

T8P~2Aq821p82,Aq821p82!,

P8PS 2`,
1

2
A q821p82

q821p822T82D .

Finally, we observe that the transformation isnot of the form
~19! and ~20!.

2. CMC time

The external mean curvatureL of the surfacest5 const
has the following value for the metric~1!:

L52
1

3a

da

Ndt
.

For the conformal timeT, N5a, and we obtain, from Eq
~8!,

L5
1

3Aq21p222P

sinT

cos2 T
.

In this section, we shall choose the time functionT9 to be
equal toL at the constraint surfaceP50. We call this coor-
dinate constant mean curvature~CMC! time. Again, we shall
extend this function to the whole ofP so that it is indepen-
dent ofP:

T95
1

3Aq21p2

sinT

cos2 T
.

The same method as in Sec. II C leads to the transforma
formulas
10401
n,

on

P953Aq21p2
cos3 T

11sin2 T
P,

q95q cos~ ñP!1p sin~ ñP!,

p952q sin~ ñP!1p cos~ ñP!,

where

ñª
1

q21p2

sinT cosT

11sin2 T
.

The transformation is again differentiable everywhere
P. The range of the coordinateT9 in P is the whole real axis,
those ofq9 andp9 remain the same as those ofq andp, and
the range ofP9 can be described by its boundary, defin
parametrically as follows:

Pboundary9 5
3

2
@~q9!21~p9!2#3/2

cos3 T

11sin2 T
,

Tboundary9 5
1

3A~q9!21~p9!2

sinT

cos2 T
,

whereTP(2p/2,1p/2).

III. TORUS SECTOR OF 2¿1 GRAVITY

Our second model is the partially reduced torus secto
the 211 gravity without sources and with zero cosmologic
constant. We shall use the form of the metric

ds252N2dt21eq32q1
~du1!21eq31q1

~du21q2du1!2

~39!

and the action

S5E dt~piq̇
i2NH!, ~40!

where

H5
1

2
e2q3

~p3
22p1

22e22q1
p2

2!, ~41!

as written down by Moncrief@18#. Here, t, u1, and u2 are
coordinates on the three-dimensional spacetime of topol
R3S13S1 chosen such thatt5const are the CMC surface
anduAP(0,2p) for A51,2 are coordinates on the torus su
that xA5 const are closed geodesics of the space me
Such coordinates can always be chosen@18#; using this
‘‘spatially homogeneous gauge,’’ Moncrief reduced the fie
model to a mechanical model with a finite number of degr
of freedom. These are represented by the Teichmu¨ller param-
etersq1 and q2. The coordinateq3 is related to the surface
areaF of the T5const surface by the formula

F54p2eq3
.

7-7
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This model is very interesting because it admits solutio
with higher symmetry. All solution spacetimes are spatia
homogeneous, invariant with respect to the Abelian gro
(u1,u2)°(u11Du1,u21Du2); the time evolution of the
tori leads to expansion or contraction. However, ifp15p2
50, then alsop350 and we obtain static tori. This is a
additional symmetry. Observe that the constraint surface
fined byH50 has a conical singularity at these points.

Our aim is to find out if the Kucharˇ description can incor-
porate the points of higher symmetry. The strategy will be
transform the model to the Kucharˇ variables everywhere ex
cept at the points of higher symmetry. There, the transfor
tion becomes singular. We shall try to extend the result
Kuchařdescription. If we manage, then the extended Kucˇ
description will not be equivalent to the original Moncri
one because the transformation between them is singul
the points with symmetry.

A. Constraint surface

The phase spaceP of the model with the action~40! is R6

and the canonical chart (q1,q2,q3,p1 ,p2 ,p3) covers the
whole manifold. The symplectic form isV5dQ, where the
Liouville form Q reads

Q5pidqi , i 51,2,3.

The constraint surfaceC is defined by the constraint func
tion H of Eq. ~41!. Its manifold structure isR33C, where
R3 is covered by the coordinatesq1, q2, andq3, andC is a
two-cone. The tipS of the conep15p25p350 is a three-
dimensional surface. At the points ofS, H and the gradient
of H both vanish. The canonical transformation generated
the functionH is trivial at S. This corresponds to the trivi
ality of evolution of initial data in static toroidal spacetime
Thus, each point ofS is a whole trajectory of the Hamil
tonian action. At all other points ofC, gradH is nonvanish-
ing and so the trajectories are one dimensional.

The constraint manifold is an embedded hypersurface
cally, at each point ofC\S. There, we have a differentia
structure and the pullbackVC of V to C. HereVC is only a
presymplectic form because it is degenerate. At the point
S, no such structure is well defined.

The submanifoldC\S is the constraint surface of the trun
cated model; it consists of two components. As extension
these two parts of the truncated model, we introduce
subsetsC 1 andC 2 of C; all points ofC 1 (C 2) satisfy the
inequality p3>0 (p3<0). HereC 1 andC 2 are topological
(C0) surfaces. The mapsw6 : R5°C 6 defined by

w6~x1,x2,x3,y1 ,y2!5~q1,q2,q3,p1 ,p2!

such thatqi5xi for all i 51,2,3, p15y1 , p25y2, and p3

56Ay1
21e22x1

y2
2 are both homeomorphisms. They are n

differentiable aty15y250. Hence,C 6 are topological sur-
faces with conical singularities aty15y250. The constraint
setC is, however, more singular than that. It has a bifurcat
at S, where bothC 1 and C 2 coincide. The presymplectic
form VC on C 6\S is simply dy1`dx11dy2`dx2.
10401
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The bifurcation is connected with the way in which th
time reversal acts on the ADM variables. Let us first do
few general remarks concerning the time reversal. The
jectories at the constraint surface can be considered
classes of an equivalence relation@26#; two initial data are
equivalent if they evolve into maximal solutions that are is
metric to each other. We have, however, to restrict this iso
etry to the component of unity of the diffeomorphism grou
In particular, it has to preserve all orientations. Thus, t
data from different trajectories can still evolve to isomet
spacetimes, but they must then have different orientation

For our models, only time orientation exists. We obse
that the mapT(qi ,pi)5(qi ,2pi) is antisymplectic, takesC 1

into C 2, and vice versa.T coincides with the change o
initial data that is brought about by the time reversal in t
solution spacetimes. The time reversal maps, e.g., an exp
ing spacetime onto a contracting one.T has a well-defined
projectionTp to the physical phase space.Tp is trivial at S.
The reason is that the two possible time orientations o
static spacetime cannot be distinguished by their ADM da
We have, therefore, some motivation to consider all points
C 1 ~noncontracting spacetimes! as physically different from
all points of C 2 ~nonexpanding spacetimes!. This will re-
move the bifurcation an will leave us just with the conic
singularities.

B. Physical phase space

We first construct the two componentsG6 of the trun-
cated physical phase space corresponding toC 6\S. The trun-
cated space is defined as the quotient manifoldG6

ª(C 6\S)/trajectories. Let us calculate the trajectories.
To integrate the canonical equations that are implied

the action~40!, we choose a particular gauge. This gau
will be useful for other aims, too. The value of the associa
lapse function is

N5eq3
. ~42!

The corresponding time coordinateT has the following rela-
tion to the proper timet along the solution spacetimes:

eq3
dT5dt. ~43!

The canonical equations for the Hamiltonian,

P5NH5
1

2
~p3

22p1
22e22q1

p2
2!, ~44!

can be written in the following form:

q̇152p1 , ṗ152e22q1
p2

2 , ~45!

q̇252e22q1
p2 , ṗ250, ~46!

q̇35p3 , ṗ350. ~47!

At the constraint surface,P50, butP is an integral of these
equations everywhere inP. Second Eq.~47! implies then
that
7-8
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KªAp1
21e22q1

p2
2 ~48!

is also an integral. A straightforward but lengthy calculati
gives a general solution to Eqs.~45!–~47! everywhere inP:

q15q0
11 lnS K2p1

0

2K
eKT1

K1p1
0

2K
e2KTD , ~49!

p152K
~K2p1

0!eKT2~K1p1
0!e2KT

~K2p1
0!eKT1~K1p1

0!e2KT
, ~50!

q25q0
22e22q1

p2
0 eKT2e2KT

~K2p1
0!eKT1~K1p1

0!e2KT
,

~51!

p25p2
0 , ~52!

q35p3
0T1q0

3 , ~53!

p35p3
0 ; ~54!

this solution runs through the point (q0
i ,pi

0) for T50. At
C 6, we have

p3
056K0 ,

where

K0ªA~p1
0!21e22q0

1
~p2

0!2.

The subsetS 6 of C 6 is defined byK50. Then Eqs.~49!–
~54! become

qi5q0
i , pi5pi

0 .

The range of the time coordinateT is (2`,`). Equations
~43! and~53! show, however, thatq3→2` is a singularity:
it is reached in a finite proper time. We obtain easily, fro
Eq. ~43!,

tsing2t052
eq3

p3
,

wheret0 is the value of proper time at the pointT50.
An important property of Eqs.~44!–~47! is the so-called

linearization instability@19,20# at the points ofS, wherep1
5p25p350. If we expand these equations around the st
solutions, the constraint

p3
22p1

22e22q1
p2

250

becomes trivial, 050, in the first order. The first nontrivia
contribution to it is the second-order one:

~d1p3!22~d1p1!22e22q0
1
~d1p2!250.

This equation does not, however, contain any second-o
correctiond2qi andd2pi . It is a second-order condition fo
10401
ic

er

the first-order correctionsd1qi and d1pi . Thus, some solu-
tions of the first-order equations~‘‘linearized equations’’! are
spurious.

In the setC 6\S, the integralK is positive. Equation~53!
then implies thatq3 is a strictly increasing function ofT on
C 1\S and well defined forTP(2`,`). The range of the
function is again (2`,`). Similarly, q3 is strictly decreas-
ing on C 2\S. Hence, for both cases, the surfaceT 6 defined
by q35q0

3 intersecteachtrajectory exactlyonce, in a trans-
versaldirection. It is, therefore, a transversal surface for a
value of q0

3P(2`,`). The transversal surface can be d
scribed as the following embedding of the manifo
R23(R2\$0%) with coordinatesx1, x2, y1, and y2, where
(x1,x2)PR2 and (y1,y2)PR2\$0%, into C6 :

q15x1, q25x2, p15y1 , p25y2 , ~55!

q35q0
3 , p356Ay1

21e22x1
y2

2. ~56!

The pullbackv6 of the presymplectic formVC to G6 ,

v65dy1`dx11dy2`dx2, ~57!

is nondegenerate.
Let us consider two such sectionsT 1

6 andT 2
6 , defined by

q35q1
3 and q35q2

3, respectively. Let the coordinates o
these sections analogous to those defined by Eqs.~55! and
~56! bex1

1, x1
2, y1

1, y2
1, andx2

1, x2
2, y1

2, y2
2, respectively. Then

at each point ofT 1
6 a unique trajectory starts and it intersec

T 2
6 . This defines a point ofT 2

6 for each point ofT 1
6 , and

we obtain a mapfq
1
3q

2
3

6
betweenT 1

6 andT 2
6 . We easily find

the map from the solution~49!–~54! in terms of coordinates

x2
15x1

11 lnS K12y1
1

2K1
e6Dq3

1
K11y1

1

2K1
e7Dq3D , ~58!

y1
252K1

~K12y1
1!e6Dq3

2~K11y1
1!e7Dq3

~K12y1
1!e6Dq3

1~K11y1
1!e7Dq3 , ~59!

x2
25x1

22e22q1
1
y2

1 e6Dq3
2e7Dq3

~K12y1
1!e6Dq3

1~K11y1
1!e7Dq3 ,

~60!

y2
25y2

1 , ~61!

where Dq3
ªq2

32q1
3 and K1ªA(y1

1)21e22x1
1
(y2

1)2. The
map fq

1
3q

2
3

6
is, of course, a symplectic diffeomorphism~as

one can also verify by a direct calculation!. The truncated
physical phase spaceG1øG2 can be considered as the set
all transversal surfaces, all points of which are identified
the maps analogous tofq

1
3q

2
3

6
.

Our next aim is to extend the Kucharˇ description to the
solution spacetimes with additional symmetry. The cor
sponding separation between the physical and the gauge
grees of freedom requires a well-defined physical ph
7-9
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space as a necessary ingredient. Our first step must, th
fore, be an extension of the truncated spacesG1 andG2 to
the points ofS 1 andS 2.

Let us consider the quotientsetsC 6/trajectories and de
note the corresponding projection maps byp6 . The quotient
topology is defined as the finest one onC 6/trajectories that
makesp6 continuous. Hence,p6 is open. Let us denote th

resulting topological spaces byḠ6 . They are paracompac
locally compact, but not Hausdorff. The real problem

however, that the topological spacesḠ6 do not carry any
natural differential structure.

It is, however, possible to introduce a differentiable stru

ture onḠ6 that is inherited directly fromP. An atlas forḠ6

can be defined by transversal surfaces as follows. Le
extend each transversal surfaceT k

6 , defined byq35k, to

T̄ k
6 by adding all points ofS 6 that satisfy the same equatio

This is the two-dimensional subset (q1,q2)PR2, q35k. The

coordinates onT̄ k
6 can be chosen as (x1,x2,y1 ,y2)PR4 and

the embedding formulas coincide with Eqs.~55! and ~56!.

The setsT̄ k
6 are topological submanifolds ofC6 anddiffer-

entiable submanifoldsof P. The symplectic formvk
6 given

by Eq. ~57! is uniquely extensible toT̄ k
6 by continuity.

For a givenk, each point ofT̄ k
6 represents a unique tra

jectory, but all points ofT̄ k
6 do not represent all trajectories

Those points ofS 6 that do not satisfy the equationq35k

are trajectories that do not intersectT̄ k
6 . Hence, to represen

all trajectories, we needall transversal surfaces,k

P(2`,`). The points ofT̄ k
6 that do not lie inS 6 represent

trajectories that intersect all other transversal surfac
Hence, to represent each trajectory by just one point,
have to identify the transversal surfaces by the mapsfk1k2

6 .

The surfacesT̄ k
6 for all kP(2`,`), together with the maps

fk1k2

6 form the desired atlas, which we denote byA.

As it is usual for manifolds, its topology can be defined
a basis that is a union of the bases for each chart. Thus

atlasA also defines a topology onḠ6—let us call it theA
topology. However, theA topology and the quotient one d
not coincide. For example, theA topology is notparacom-

pact. To cover Ḡ6 , we need an uncountable set of char

Then the basis of the topology ofḠ6 is not countable and

Ḡ6 is not paracompact. TheA topology also fails to describe
the ‘‘nearness’’ between differentk levels ofS 6 properly.
Indeed, eachk level of S 6 is contained in a different chart

T̄ k
6 . Therefore,S 6ùT̄ k

6 is contained in an open set th
does not intersect any otherk level. Then, a sequence o

points ofS 6 that do not lie inS 6ùT̄ k
6 can never converge

to any point ofS 6ùT̄ k
6 in the A topology.

To see thatḠ6 is not Hausdorff~in the A topology as
well as in the quotient one!, let us consider two transversa

surfacesT̄ 1
6 and T̄ 2

6 defined byq35q1
3 andq35q2

3, respec-

tively. Let $Q1n
6 %,T̄ 1

6 be a point sequence inT̄ 1
6 with coor-

dinates
10401
re-
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-
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Q1n
6
ª~x1

1 ,x1
2 ,y1n

1 ,y2n
1 !.

Let y1n
1 Þ0 andy2n

1 Þ0 for all positive integersn and

lim
n→`

y1n
1 50, lim

n→`

y2n
1 50.

This sequence converges inT̄ 1
6 to the point

Q1
65~x1

1 ,x1
2,0,0!PS6 .

All points of the sequence lie outsideS 6 and so can be

identified with pointsQ2n
6 of T̄ 2

6 that are determined by Eqs
~58!–~61!. Their coordinates are

x2n
1 5x1

11 ln~coshDq32sinan sinhDq3!,

x2n
2 5x1

22
cosan sinhDq3

coshDq32sinan sinhDq3
,

y1n
2 56Kn

1 2sinhDq31sinan coshDq3

coshDq32sinan sinhDq3
,

y2n
2 5y2n

1 ,

wherean is defined by

sinan5
y1n

1

Kn
1

, cosan5
y2n

1 e2x1
1

Kn
1

,

and

Kn
1
ª

A~y1n
1 !21e22x1n

1
~y2n

1 !2.

The sequence$Q2n
6 % converges to the pointQ2a

6 PS 6 that is
given by (x2

1 ,x2
2,0,0) if and only if limn→`an5a exists.

Then

x2
15x1

11 ln~coshDq32sina sinhDq3!, ~62!

x2n
2 5x1

22
cosa sinhDq3

coshDq32sina sinhDq3
. ~63!

Each sequence$Q2n
6 % with a convergingan has then a

unique limit in T̄ 2
6 ; the possible limit points of all converg

ing sequences fill out a closed curve inS 6ùT 2
6 defined by

Eqs. ~62! and ~63! for aPS1. Each pointQ2a
6 is different

from Q1
6 because its coordinatesq3 in C 6 differ. Thus, one

sequence can have two different limits and the space ca
be Hausdorff.

An important property of the atlas can easily be shown
is not unique. Indeed, we could slightly deform the transv
sal surfacesT̄k

6 so that they remain transversal inC 6\S 6

and so that their intersections withS 6 remain two dimen-
sional. Let the new transversal surfaces be defined by s
equation of the formf (q1,q2,q3,p1 ,p2)5k, kP(2`,`).
The intersection withS 6 is given by
7-10
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f ~q1,q2,q3,0,0!5k

and it will generically intersect the surfaceq35k in a curve

f ~q1,q2,k,0,0!5k.

Thus, the intersection between some transversal surfac
the first family with some transversal surface of the seco
family will not be open. It follows that we cannot simply ad
the new family of transversal surfaces to the old atlas, an
the manifold defined by each of the two atlases will be d
ferent.

Any of these atlases can serve as a basis for a constru
of Kuchař decomposition. This will be shown in the ne
section.

C. Transformation to embedding variables

To construct the transformation we shall use theP-way as
described in Sec. II. The Hamiltonian that we choose co
sponds to the value of the lapse function~42!. The Hamil-
tonian itself has the form~44!, the canonical equations ar
~45!–~47!, and the general solution to these equations
given by Eqs.~49!–~54!.

The next step is a choice of transversal surface inP. Our
choice is a straightforward extension of the transversal

facesT̄ k
6 of Sec. III B to P by the equationq35k. Let us

denote the result byT̃ k
6 . It is transversal everywhere inP \C

as long asp3Þ0 because of Eq.~53!.
Equations~44! and ~48! imply that

p3
056A2P1K2.

The function p3
0 remains nonzero in the part ofP that is

determined by the following inequality:

P.2
1

2
K2. ~64!

The trajectories lying at its boundary haveT-independent
surface areaeq3

, but they are not static ifPÞ0: q1 andq2

are evolving in a nontrivial way. AtC 6, whereP50 ~and so
K50 at the boundary!, there are no problems because t
corresponding trajectories are just points. However, the
jectories atP,0, K5A22P are not points and they ar

lying in the surfacesq35const. Thus,T̃ k
6 ceases to be trans

versal at this boundary.
It is helpful to realize thatC dividesP into three disjoint

parts similarly as the light cone divides Minkowski spac
time into the future interior, the past interior, and the exter
of the light cone. Thus, we haveP 1 defined byP.0 and
p3.0, P 2 by P.0 andp3,0 andP 0 by P,0. The sur-
facep350 separatesP into two halves, one withp3.0 and

one withp3,0. The transversal surfacesT̃ k
1 coverP 1, C 1,

and thep3.0 part of P 0. Let us denote this set byP̃1.

Similarly, the surfacesT̃ k
2 cover P 2, C 2, and thep3,0

part ofP 0; this set will be denoted byP̃2. Observe thatP̃6

is not an open subset ofP; it has the boundaryS 6. At all
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points of C 6\S 6, the surfacesT̃ k
6 are well defined at both

sides ofC 6. At S 6, they are defined only in theP 6 side of
the surfaceC 6.

For eachk, the solution~49!–~54! with q0
35k and p3

05

6A2P1K2 covers a certain partP̃k
6 of P̃6. We are going to

use Eqs.~49!–~54! to define maps fromT̃ k
63R into P̃k

6 that

we callck
6 . Let the coordinates onT̃ k

6 bex1, x2, y1 , y2 , P
and that onR beT. Equations~49!–~54! have to be rewritten,
to defineck

6 , in such a way thatq0
35k, q0

15x1, q0
25x2,

p1
05y1 andp2

05y2:

q15x11 lnS Y2y1

2Y
eYT1

Y1y1

2Y
e2YTD , ~65!

p152Y
~Y2y1!eYT2~Y1y1!e2YT

~Y2y1!eYT1~Y1y1!e2YT
, ~66!

q25x22e22x1
y2

eYT2e2YT

~Y2y1!eYT1~Y1y1!e2YT
,

~67!

p25y2 , ~68!

q356TA2P1Y21k, ~69!

p356A2P1Y2, ~70!

where

Y5Ay1
21e22x1

y2
2. ~71!

The mapck
6 is invertible onP̃k

6\S k
6 wherep3Þ0. The in-

verse transformation is described by the following equatio

T5
q32k

p3
, ~72!

P5
1

2
~p3

22p1
22e22q1

p2
2!, ~73!

x15q11 ln
~K1p1!eKT1~K2p1!e2KT

2K
, ~74!

y15K
~K1p1!eKT2~K2p1!e2KT

~K1p1!eKT1~K2p1!e2KT
, ~75!

x25q22e22q1
p2

eKT2e2KT

~K1p1!eKT1~K2p1!e2KT
,

~76!

y25p2 , ~77!

whereK is defined by Eq.~48! and the substitution~72! is to
be made forT in Eqs.~74!–~76!.
7-11
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The functionsT and P given by Eqs.~72! and ~73! are
singular atS 6 wherep35p15p250:

dT5
1

p3
dq32

q32k

p3
dp3 ,

dP5e22q1
p2

2dq12p1dp12e22q1
p2dp21p3dp3 .

dT diverges anddP goes to zero. Still, the pullbackVk of
the symplectic formV by ck

6 from P k
6\S k

6 remains regular
at these points. An easy calculation reveals that

Vk5dP`dT1dy1`dx11dy2`dx2.

Hence, there is a trivial extension ofVk to the whole of

T̃ k
63R. This seems to be a general pattern that may hold

all conical singularities.
The range ofck

6 is not the whole ofP̃6: it contains all

trajectories ofP̃6\S 6, but it does not contain the point tra
jectories ofS 6 that do not satisfy the equationq35k. To
cover the whole ofP̃6, we have to useck

6 for all k
P(2`,`).

Let, for two differentk ’s, k1 and k2, the corresponding
maps bec1

6 andc2
6 , and let their domains have coordinat

(x1
1 ,x1

2 ,y1
1 ,y2

1 ,P1 ,T1) and (x2
1 ,x2

2 ,y1
2 ,y2

2 ,P2 ,T2), respec-
tively. The mapsc1

6 and c2
6 are invertible andC` where

their ranges overlap, so they define a map (c2
6)21+c1

6 on
(c1

6)21(P 1
6ùP 2

6). This map can be explicitly calculate
from Eqs.~65!–~70! and ~72!–~77!; it turns out to be aC`

symplectomorphism. Hence, the manifoldP̃K
6 that results by

pasting together all chartsT k
63R by these maps is aC`

symplectic manifold.
P̃K

6 is Hausdorff, as any sequence that converges to s

point of T̃ 1
6 in the chart corresponding tok1 will diverge in

the chart corresponding tokÞk1, say,k5k2. This can be
seen from the relation betweenT2 andT1 obtained from Eqs.
~72! and ~69!:

T25T17
k22k1

A2P11Y1
2

.

Observe thatP15P2 and so the constraint setC K
6 in P̃K

6 can
be described by the single equation

P50.

It is a smooth~Hausdorff! submanifold ofP̃K
6 .

C K
6 can be considered as a fiber bundle with the basisG̃6

and fiberR. It is defined by the trivializationsT̃ k
63R and by

pasting maps of the type (c2
6)21+c1

6 restricted toP50.
In this way, we have constructed a kind of Kucharˇ de-

scription for the torus sector that includes the static tori. T
construction is not unique, and the result is also somew
strange. The origin of the problem is in the pathologic
structure of the physical phase space, which is shared
the ADM description.
10401
r

e

e
at
l
ith

The Kucharˇ charts cover only the partP̃1øP̃2 of the
original phase spaceP; the points ofS are covered two
times. They have to satisfy the inequalities

TP~2`,`!, ~x1,x2,y1 ,y2!PR4

and

PPS 2
1

2
~y1

21e22x1
y2

2!,` Dø$0%

in each chart.
The new dynamical equations for the variablesT, P, x1,

x2, y1, andy2 in each chart are very simple:

ẋ15 ẋ25 ẏ15 ẏ15 Ṗ50

and

Ṫ5N8, P50,

whereN8 is the new Lagrange multiplier that enforces t
new constraint. These equations are manifestly lineariza
stable~because they are linear!. The deeper reason for th
stability is the absence of conical singularities in the n
description.

IV. CONCLUDING REMARKS

We have studied some global properties of the trans
mation from the ADM to the Kucharˇ description in two
minisuperspace models. We have found in all cases that
Kuchařdescription is globally inequivalent to the ADM de
scription. The solutions to the two corresponding sets of
namical equations, however, always completely coincide

The first interesting feature that we have met are the n
trivial boundaries for Kucharˇ variables. As yet, three differ
ent kinds of boundaries have been detected. First, there
boundaries due to singularities in solutions of Einstei
equations. It does not seem sensible to propose any ge
method of dealing with these singularities in the classi
version of the theory. The hope is that the quantum the
will cure them in some way~for an example, see@27#!. We
just ignore these boundaries.

Second, we have found bounds for the variables conjug
to embeddings, in our caseP, in all models. The meaning o
the bounds is simply that the functionP does not attain all
values on the ADM phase space~Sec. II!, or on a suitable
part of it ~Sec. III!. Our standpoint here simply is that noth
ing seems to prevent an extension of Kucharˇ phase space to
all values ofP. The dynamics is not changed by this exte
sion. This is the reason why we did not make any comm
when the bounds became too narrow so that a part of
constraint surface appeared ‘‘bare’’ from one side~the set
S 6 of the torus sector of 211 gravity model!. In fact, we
have seen that most claims concerning the structure of the
P\C are either trivial or gauge dependent. It seems, theref
that this structure is not relevant to physical properties of
system~although it can be used for some methodical p
7-12
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poses!. This is one more reason to consider its extension
harmless.

Finally, there is a boundary for the embedding variab
due to non-space-like character of some embeddings.
type of boundary has not been encountered here, but
quite analogous to theP boundary. It seems that an extensi
of the Kucharˇ description to all values of embeddings m

again be harmless. Let us consider the extensionP̄K of the
Kuchař phase space that contains all embeddings of
space Emb(S,M) for each point of the physical phase spa
G and all values of the momenta from the spa
TX* Emb(S,M) for each pair of points ofG3Emb(S,M).
The inequalities that both the embeddingsX and their conju-
gate momentaP have to satisfy are then telling us that th

ADM phase spaceP is a proper subset ofP̄K . Does it mean
that the ADM phase space is too small, or that the Kucˇ
phase space is unnecessarily large?

There is one argument in favor of the first claim. Isha
and Kucharˇ @7# have studied the action of the diffeomo
phism group in a phase space of ADM type. They obser
that, given any fixed diffeomorphismwPDiff M, there
is a Cauchy surfaceS in any solution spacetime suc
thatw(S) is not space like. If the ADM variables associat
with the surfaceS are qkl and pkl, then the representativ
of w acting on the phase space must map the p
(qkl ,p

kl) out of the phase space. They have conclud
that only its Lie algebra but not the group DiffM itself
has a well-defined action on the phase space. This
be compared with the situation in the Yang-Mil
field theory, where the full gauge group has a well-defin
action on the phase space. We also easily recognize
Diff M acts without hindrance onT* Emb(S,M) and so it
has a well-defined action on the extended Kucharˇ phase

spaceP̄K .
Other problems that we have studied are connected

the points that correspond to solutions of higher symme
For a model—the torus sector of 211 gravity—we have
found a description by Kucharˇ variables including such
points. The new description is smooth: there is no bifur
tion, no conical singularity, and no linearization instability.
is not equivalent to the ADM description given in@18#. This
point ought to be stressed: ‘‘passing’’ to the Kucharˇ descrip-
tion is not just a coordinate transformation on the pha
space. A mere coordinate transformation could not rem
bifurcation, conical singularity, or linearization instability.

The essence of the problem with the bifurcation, the co
cal singularity and the linearization instability in the case
the ADM description is that the fieldsqkl and pkl cannot
distinguish between two Cauchy surfaces that are linked
an isometry. Two such Cauchy surfaces then define one
the same point in the ADM phase space. However, the
Cauchy surfaces can surely be distinguished from each o
by an observer living in the corresponding solution spa
time. Hence, the ADM description is not true if there areany
symmetries. This is to be compared with the description
the embedding variables, which is true, so to speak, by d
nition. The conical singularity and the linearization instab
ity are consequences of this untrue description only if so
10401
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additional conditions are satisfied. First, the solutions w
the symmetry must form a subset of all solutions that a
include solutions without the symmetry~the static tori are
solutions as well as the expanding and contracting tori a!.
Second, the symmetry must be continuous~Killing vectors!.

The bifurcation of the ADM constraint surface is caus
by an additional discrete symmetry: the time reversal. T
static spacetimes are invariant with respect to it; the expa
ing and contracting spacetimes are not. The ADM desc
tion identifies the two possible time orientations of the sta
spacetimes, but it always distinguishes the points co
sponding to the contracting from those corresponding to
expanding spacetimes. In the phase space, the two surf
one for the noncontracting and the other for the nonexpa
ing spacetimes, are then identified at the points correspo
ing to the static spacetimes. In this way, the bifurcation
the constraint surfaceC within the ADM description comes
about.

In the case of the torus model, we have also seen
there is no global gauge at the constraint surfaceC. It may be
possible to choose one smooth lapse functionN with a do-
main that includes the whole ofC, but there is no global
transversal surface. This leads to a nontrivial fiber-bundl
structure for the constraint surface within the Kucharˇ de-
scription. Each transversal surface defines a trivialization
this bundle, but there is no global trivialization. Such a co
struction has been considered in@15#. In fact, even in the
cases that admit a global gauge, the gauge is not uni
Thus, it is the bundle that represents the gauge invar
structure of the constraint surface in all cases. Although
bundle is trivial if a global gauge exists, it does not poss
anycanonicaltrivialization. This has been explained in@15#.

The present paper focuses on the transformation betw
the ADM and the Kucharˇ descriptions. This necessarily lead
to a comparison of just these two. One should not, howe
forget that there are many other descriptions. In this resp
it may be interesting to observe that the problem with ad
tional symmetry is not characteristic for the ADM approa
only but it also afflicts the configuration space of the~usual!
second order~Lagrangian! approach.

Our results are of course only valid for the two particu
models. Of these, the torus may be the most patholog
case that exists. The Kucharˇ description of less pathologica
models with additional symmetry may, therefore, be regu
If not and if the residual pathology is very disturbing, on
can still truncate the model. More cases ought to be loo
at, and some attempts at proofs of some general theor
ought to be done. This is left for future papers.
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