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Evolution of cosmological models in the brane-world scenario

Antonio Campos and Carlos F. Sopuerta
Relativity and Cosmology Group, School of Computer Science and Mathematics, Portsmouth University, Portsmouth PO1 2EG,
United Kingdom
(Received 10 January 2001; published 16 April 2001

In this work we consider Randall-Sundrum brane-world type scenarios, in which the spacetime is described
by a five-dimensional manifold with matter fields confined in a domain wall or three-brane. We present the
results of a systematic analysis, using dynamical systems techniques, of the qualitative behavior of the
Friedmann-Lemane-Robertson-Walker and the Bianchi type | and V cosmological models in these scenarios.
We construct the state spaces for these models and discuss how their structure changes with respect to the
general-relativistic case, in particular, what new critical points appear and their nature, the occurrence of
bifurcations and the dynamics of anisotropy.
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[. INTRODUCTION The original motivation for the Randall-Sundrum model
was the solution of the hierarchy problem in a slightly dif-
String and membrane theories are promising candidateferent setug6]. In this case one has two parallel branes with
for a unified theory of all forces and particles in nature. Aopposite tensions embedded in a five-dimensional spacetime
consistent construction of a quantum string theory is onlywith a negative cosmological constant. Actually, the fifth
possible in more than four spacetime dimensions. Then, tdimension is compactified in the orbifoBf/Z, and the two
make a direct connection of these theories with our familiabranes are located at the singular boundary points. Because
non-compact four-dimensional spacetime we are compelledf an exponential factor in the metric tensor, the particles
to compactify the extra spatial dimensions to a finite size orliving in the negative tension brane acquire effectively a
alternatively, find a mechanism to localize matter fields anchuge physical mass parameter compared to the fundamental
gravity in a lower dimensional submanifold. spale V\_/ith a moderate fine-tuni.ng of the size of the extra
Recently, Randall and Sundrum have shown that for nondimension. Unfortunately, as pointed out[ifi, the cosmol-
factorizable geometries in five dimensions there exists #9Y in this brane is rather unsatisfactory because the energy
single massless bound state confined in a domain wall dfénsity of matter present in the brane must be negative,
three-brang 1]. This bound state is the zero mode of the Which violates the weak energy condition. The argument is

Kaluza-Klein di ional ; h&ased on the observation made by Biog et al. [8,9] (see
aluza-Klein dimensional reduction and corresponds to t éz;Iso [10]) that the effective Friedmann equation for the

four-dimensional graviton. The picture of this scenario is 8 ubble parameter for a five-dimensional spacetime with en-
five-dimensional anti—de Sitter spa@auilk) with an embed- par . . o 'SP : :
ergy density localized in a infinitely thin domain wall is

ded_ three—b_rang where. matter fields are canfined and N?‘%odified with respect to the general relativistic case. Other
tonian gravity is effectively reproduced at large-scale dis-

Earli K on Kal Klein di ional reduct attempts to solve the hierarchy problem in the context of
tances. Earlier work on Kaluza-Klein dimensional reduction,y s dimension have been examined 1n].

and matter |ocalization in a four-dimensional manifold of @  Neyertheless, the model with a non-compact fifth dimen-
higher-dimensional non-compact spacetime can be found igjoy angd only one brane is consistent with present gravity
[2]. L ._experiments. In general, scenarios with extra dimensions pre-
The Randall-Sundrum model was inspired by stringgjct corrections to the Newtonian potential at short distances
theory. In the context of dimensional reduction of eleven-,4 imnortant deviations from the standard evolution of the
dimensional supergravity, Hava and Witten showed that unjverse at early times. Then, current day cosmological ob-
the ten-dimensionaEgx Eg heterotic string is connected servations, such as the age of the universe or the abundances
with an eleven-dimensional theory compactified on the orbiof light elements, cannot be used to constraint these models.
fold R*°x SY/7, [3]. Moreover, they concluded that the cou- In contrast, the search for deviations of Newton'’s law is their
pling constants of gauge fields in the ten-dimensional boundfundamental observational propE2]. The fact that Newton-
ary are related with the eleven-dimensional gravitationajan gravity has been tested quite accurately up to 1 mm
constan{4]. The picture coming out of this model is that of (M, ~10"®TeV) limits the value of the fundamental scale
two separated ten-dimensional manifolds. Gauge fields argssociated with the five-dimensional gravitational coupling
confined in these boundary manifolds whereas gravity cagonstant: M®), > M2*M3~10° Tev [1,13] (M; is the
propagate in the higher dimensional spacetime. As a cons@janck mass Future experiments will further constraint this
quence, these two separated worlds can only communicaigjye estimaté14,15].
through gravitational interactions. The cosmological implica-  The purpose of the present work is to study the cosmo-
tions of the Hoava-Witten theory have already been exten-logical evolution of these brane-world scenarios. We are go-
sively analyzed5]. ing to follow the geometric formulation and generalization of
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the Randall-Sundrum scenario introduced[i6—18. The  with respect to the normah, (n"n,=1), to the hypersur-
Einstein equations in the bulk can be written in the followingface y=0 where matter is confined, that is,
form:!

GRB=— A (5,958 + k{5)THa 1) o _
. Moreover, it is worth to note that the twice contracted second
with Bianchi identities in the bulky (5, G&3=0, imply
T3=00)[ X gap+ Tagl. 2) VT, —0=0, ©6)

In these eXpreSSionﬁS) is the five-dimensional graVitational where we have take{'p(’xa} to be Gaussian normal coordi-
coupling constantg, G and A (s, are the metric, Ein- nates (see, e.g.[19]) adapted to the hypersurfage=0.
stein tensor and the negative cosmological constant of th&herefore, we can say that the Einstein equations in the bulk
bulk spacetime, respectivelyT,gz is the matter energy- (1) imply the conservation of the energy-momentum tensor
momentum tensor; the spacelike hypersurfade=xy=0  in the brane world.

gives the brane world angl,g is its induced metric; finally, In this paper we will deal with generalized Randall-
\ is the tension of the brane, which must be assumed to b8undrum scenarios in which the effects of the extra-
positive in order to recover conventional gravity on thedimension come from the term quadratic in the energy-
brane. Using the Gauss-Codacci equations relating the fouromentum tensor, i.eS,p (5). Thus, we are assuming

and five-dimensional spacetimes, Eq$)—(2) lead to the 5 5

following modification of the Einstein’s equations of general E(AB)|X=O:O<:>E£1b):O- ()

relativity on the bran¢16,17:
Y ¢ K This includes conformally-flat bulksQxgcp=0), and in

Gap=—Aapt K2Tab+ K?S)Sab— Eg5b) , (3) particular, the five-dimensional anti—de Sitter spacetime, the

bulk considered in the original Randall-Sundrum scenario.

whereg,, is the four-dimensional metric on the brane andThe extension of this work to general bulks will be presented
G,y its Einstein tensor. The four-dimensional gravitationalin a future papef20].

constantk and the cosmological constait are given in For the scenarios just outlined we have constructed and
terms of the fundamental constants in the bulk by studied the state space of the Friedmann-Lamal
Robertson-Walke(FLRW) and the Bianchi type | and V

2_1)\ 4 cosmological models. Then, we have discussed systemati-

K=o, cally how the extra dimension changes the dynamics with

respect to the general-relativistic case. In particular, we find
a new critical point representing the dynamics at very high
' energies, in the early univergaear the big-bangand also
near the big-crunch in the case of recollapsing models. We
respectively, whera . is a critical brane tensidrgiven by also find new bifurcations in the state space as the equation
of state of matter changdsve will assume a perfect-fluid

2

A N
AZMH_
2 [Ix,

, A energy-momentum contentwhich are characterized by the
Ne=6—(. (4) occurrence of an infinite number of non-general-relativistic
K(s) critical points. Finally, the Bianchi type | and V models will

provide information regarding the dynamics of anisotropy in
the brane-world scenario.
The paper is organized as follows. In Sec. Il we will study
_ 1 _1iTc 1 cdr _ T2 the dynamics of the FLRW models in the brane-world sce-
Sab=12TTab™ T Toct 249an 3T Tea= T, () narios, introducing the notation and some tools used in the
whereT=T,2. And finally, E$) are corrections coming from analysis of dynamical systentsee, e.g}21,22). In Sec. lll,
the extra dimension, more preciseﬂié%) are the components W€ will study the dynamics in homogeneous but anisotropic

f the electri rtof the Wevl tensor of th () cosmologic_al quels. In particular, the d_ynamics of the_or-
of the electric partof the Wey! tensor of the bulksco. thogonal Bianchi type | and V cosmological models, which

contain the flat and the negatively curved FLRW models,
respectively. We will finish with some concluding remarks in
lUpper-case Latin letters denote coordinate indices in the bullSec. IV.

S, are corrections quadratic in the matter variakéise to
the form of the Gauss-Codacci equatipasd given by

spacetime A,B, ...=0,...,4) vhereas lower-case Latin letters

denote coordinate indices in the four-dimensional spacetime where Il. DYNAMICS OF THE FLRW MODELS
matter is confinedd,b, ...=0, ... ,3). We will usephysical units IN THE BRANE-WORLD SCENARIO
in whichc=1.

2The particular Randall-Sundrum solution corresponds to the case In this section, we start by assuming that the brane-world
when the tension of the braneequals the critical brane tensiay IS described by a FLRW metric. The FLRW spacetimes are
(4) and T,,=E{)=0. the standard cosmological models. As is well knd&8,24,

104012-2



EVOLUTION OF COSMOLOGICAL MODELS IN THE . .. PH®ICAL REVIEW D 63 104012

they are motivated by the so-calledsmological principlen

. : p=—3yHp, (10
the sense that they are homogeneous and isotropic cosmo-
logical models(they have a six-dimensional group of mo- 1 o 1 1
tions). Then, the line element in the brane-world=0) will H2=-k?p| 1+ —| — =°R+ A, (11)
be given by 3 2\) 6 3
ds?= —dt?+a2(t)[dr2+32(r)(d6?+sintade?) ], where ®R denotes the scalar curvature of the hypersurfaces
orthogonal to the fluid velocity, th§t=cons} hypersur-
where faces, which is given byR=6ka ?(t). Equation(9) is the
modified Raychaudhuri equation, EG0) comes from the
sinr  fork=1, energy-momentum tensor conservation equation, and finally,
S(r)=1{r fork=0 Eq. (11) is the modified Friedmann equation. As is well
k . ' known, Eq.(9) is a consequence of Eqd.0) and(11), and
sinhr fork=—1, the dynamics is completely described by the functiddso(

q is th e f and the parameteis «, y, A andA.
an Ha(t) IS T e_ﬁcat ed a(t::]m.d . ¢ the FLRW model In order to study the dynamics of these models we will
ere, we witl study the dynamics ot the models closely follow the analysis carried out by Goliath and Ellis

considgring a bulk 'spac'etime' satisfyiqg the' conditih . [27] for general relativistic FLRW models with a cosmologi-
which includes the five-dimensional anti-de Sitter spacetime,,|"vonstant. To that end. and in order to get compactified
On Fhe other hand, we will assume that the matter content IState spaces, it is convenient to consider two differentiated
equivalent to that of a perfect fluid and therefore, the eNer9Yzases(i) 3R=0 (k=0 or k=—1) and(ii) 3R>0 (k=1)

momentum tensor will have the following form: In the casdi), let us introduce the following set of dimen-

sionless variables:
Tap= (P+ p)Uan+ POab

where u, p and p are the unit fluid velocity of matter Q= «%p Qo= — °R __k (12
(utu,=—1), the energy density and the pressure of the mat- P gn2’ k= a4
ter fluid, respectively. We will also assume a linear barotro-

pic equation of state for the fluid, that is,
p=(y=1)p. tS)

The weak energy conditiofsee, e.g.[23]) imposes the re- where(), is the ordinary density parameter afig, 2, and
striction p=0, and from causality requirements, the speed ol are the fractional contributions of the curvature, cosmo-

sound[ c=(dp/dp)*?] must be less than the speed of light, gical constant and brane tension, respectively, to the uni-
we have thatye[0,2]. Then, taking into account the form of yerse expansiori11). Therefore, all of them have a clear
Egs.(3),(5) and (7), it turns out that the fluid velocityi is  physical meaning. As we can see, they are non-negative and
aligned with the velocity of the preferred observers in thesingular whenH=0. Furthermore, the Friedmann equation

FLRW spacetimegexcepting in the cas&ap*Jap, Where  (11) which now takes the following simple form:
there are no preferred observeithose that observe the mat-

ter distribution to be homogeneous and isotropic. Then, we Q+0+0,+0,=1 (14)
can writeu as follows: g

Q=—o, O=——— 13
=z O (13)

P implies that they must belong to the intery8l1] and hence,
U= — = u=—dt. the state space with coordinatés=(Q,,Q,,0,,Q,) is
ot compact.

) o . In order to find the dynamical equations for these vari-
Finally, taking into account recent observatid@$,26, we  aples we will introduce the following dimensionless time
will consider only the case of a positive cosmological con-yerivative:

stant, i.e. A=0. Then, introducing the Hubble functid(t)

. 1d 15
lda a =
Ht)=—-——=—, | |dt
adt a
) ) _where|H]| is the absolute value dfi. Then, we have
the dynamics of the FLRW models imposed by the modified
Einstein field equationg3) and the energy-momentum con- H'=—e(1+q)H, (16)
servation equatiori6) is governed by the following set of
ordinary differential equations where € is the sign ofH [e=sgnH)]. As is clear, fore
=1 the model will be in expansion, and fer= — 1 it will be
G2 372, Sy=1p| 1 in contraction. Moreoverq is the deceleration parameter,
H H Kkp| 1+ +=A, (9) o g
6 3y—2\| 3 which is defined by
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1 a 3y—2 Model Coordinates Eigenvalues
== za- 2 Lt Gr=h. F. (1,0,0,0) (3y—2,3y—2,3y,—~37)
M, (0,1,0,0) e(—(3y—-2),0,2-2(3y-1))
Then, the dynamical system for our dimensionless variables ds (0,0.1,0) —€(37.2.2,67)
(12),(13) can be written in the following form Me (0,0,0,1) €(37,2(3y-1),6y,2(3y-1))
, The dynamical character of these points is given in a table
Q= e[2(1+0) 371, D porow P J
Now, let us consider the situation of the c&sg in which
O =2eqQy, (18  °Ris positive. As we have already mentioned, in this case
the state space defined by the variable§)
Q\=2e(1+9)Q,, (19) =(9,,0,0,,0)) is no longer compactbecause now

0,<0). However, we can introduce another set of variables,
, analogous to the ones introduced previoudl),(13), de-
0, =2€(1+9=3y) Q. (20 scribing a compact state space. First, instead of using the
Hubble functionH we will use the following quantity:
It is important to note that Eq16) is not coupled to the
system of equationgl7)—(20), and therefore we can ignore D
it for the dynamical analysis. To begin with, we have to find
the critical points of this dynamical system, which can be
written in vector form as follows:

H%+3°R, (21)

and from it, let us define the following dimensionless vari-

ables:
Q' :f(ﬂ)l H sz
Q=5. Q,=—, (22

wheref can be extracted from Eq$l7)—(20). The critical 3D
points, Q*, which are the points at which the system will
stay if initially it was there(see, e.g[22]), are given by the - A ~ 1 k%p?
condition QAEE, kaa 0?7

f(Q*)=0. From these definitions we see that now the cHiseO is

included. Moreover, the Friedmann equation takes the fol-
Their dynamical character is determined by the eigenvaluegwing form:
of the matrix
Q,+0,+0,=1, (23
of

| which, together with the fact that 1<=Q<1 [see Eq(22)],
a=o implies that the state space defined by the new variables is

. . N indeed compact. Using the following new time derivative
If the real part of the eigenvalues of a critical point is not P g g

zero, the point is said to bayperbolic In this case, the

dynamical character of the critical point is determined by the !
sign of the real part of the eigenvalues: If all of them are
positive, the point is said to berapeller, because arbitrarily
small deviations from this point will move the system away -
from this state. If all of them are negative the point is called?,, &, andQ, is given by
anattractor because if we move the system slightly from this

(24)

Q.lQ_

1
D

the system of evolution equations for the variabl2sQ,

point in an arbitrary way, it will return to it. Otherwise, we D'=-(1+qQ%)QD,

say the critical point is aaddlepoint. The dynamical system

(17)—(20) has four hyperbolic critical points corresponding Q'=—-qQ%1-Q?), (25
to:z'/[ge) flat FLRW models (F)k=A=X\"1=0 and a(t)

=177 the Milne universe (M),p=A=0, k=—1 and 0= +002)— 0
a(t)zt\}Lhe de Sitter model (dS)k=p=0 and a(t) 2,=[2(1+9Q)~37]QA,, (29
=exp(yA/3t); and a non-general-relativistic model (m) first =, o\ A=

discussed by Birteuy, Deffayet and Langloif8] in a brane- 0,=2(1+0Q9)Q0,, (27)
world scenario without brane tensigsee[9,10] for more 5 5

detaily. Their coordinates in the state space, i.€), Qg=2[1+qQ2—3y]QQ}\, (28
=(Q2,,0,Q,,0,), and their eigenvalues are given in the

following table[28]: where the deceleration parameter is now given by
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) 3y ~
1+9gQ =7(QP+ZQ>\).

The evolution equation fdD is not coupled to the rest, so we

will not consider it for the dynamical study. Thus, we study

the dynamical system for the variablesQ
=(Q,9,,0,,0,), determined by Egs(25-(28). The

PH®ICAL REVIEW D 63 104012

For instance, in the brane-world scenario the expanding and
contracting flat FLRW models (Fand F_ respectively are

no longer repeller and attractor, respectively, §of 5. They

are now saddle points.

Another important difference is that now we have addi-
tional critical points, namely, mand m_. Let us analyze in
detail the dynamics represented by these models. First of all,
we have to point out that their characterization presents an

complete set of critical points, their coordinates in the statextra difficulty with respect to the other models. Their coor-
space, i.eQ2*, and their corresponding eigenvalues are giverginates in the state space a®*=(0,0,0,1) and Q*

in the following table[28]:

Model Coordinates Eigenvalues

F. (€,1,0,0) e(3y—2,3y,3y,—3y)
ds, (€,0,1,0) —€(2,3y,0,6y)
E (0,6* ,QX ,Q:) (01\/5101_ \/Z)
m, (€,0,0,1) 26(3y—1,3y/2,3y,3y)
Where 0%, 0% and O} are constants satisfying E(3)
and the relations

O* — 1 o* O* — 2 O*

0y =2 E—Q)\ , QA—l—ﬂ—I—Q}\. (29

=(¢,0,0,1), i.e. the contributions of the ordinary matter term
(€2,), the spatial curvature(},) and the cosmological con-
stant (2,) are negligible. Therefore, we have at the same
time x?pH 2-0 and (&) '«x?p?H 2—1, hence their
characterization must involve a limiting process. In order to
understand the dynamics let us consider the simplified situ-
ation A=3R=0, in which the Friedmann equatidf1) can

be solved to give

a(t)=(t—tgg) " (t+tgp) ™, (30
where the constaritg is the big-bang time

¢ _ [ 2 _ 1 (K(S))Z
Be 392k’ 37 .

K

Here, E represents a set of infinite saddle points whose linfn the state-space diagrams shown in Figs. 1-5 below, this

element is that of the Einstein universk=1 andH=0).
The eigenvalues of these points are determineg bwhich

in terms of Q* andy is given by

_ 3y

=3

[(3y—2)0%+4(3y-1)D}].

One can check, using Eq&3) and (29), that ¢ is always
positive. The dynamical character of all the equilibrium

situation corresponds to models in the line joining @and

F. . From Eq.(30), we deduce that for late timet>tgg,

the scale factor behaves agt) ~t%®”, and therefore the so-
lution approaches the flat FLRW model (F hence, we
have a general relativistic behavior. However, the new inter-
esting behavior appears when we approach the initial singu-
larity (t—tgg) or, in other words, at very high energies (
>\), where we hava(t)~ (t—tgg)¥®”. From the point of
view of Einstein’s equation&3), in such a situation the term

points is given in the table below. As we can see from thdnvolving the four-dimensional constant, becomes negli-

previous tables, it depends on the equation of sfatethe
parametery) and on the expandingH>0<e=1) or con-
tracting characterf <0< e=—1) of the point:

Model Dynamical character

0<y<3 y=3 y>3
F. saddle saddle saddle
M, repeller repeller saddle
M_ attractor attractor saddle
ds, attractor attractor attractor
ds. repeller repeller repeller
E — saddle saddle
m, saddle repeller repeller
m_ saddle attractor attractor

gible with respect to the term involving the five-dimensional
one, k). We recover general relativity in the limizg

—0, which is the opposite situation. From this discussion we
realize that the limiting process leading to the critical points

m.. is
—0 K2—> ! 31

Then, we find that the points mare models whose scale
factor is given by
a(t)=t?. (32)

This is the Binéruy-Deffayet-Langlois(BDL) solution [8]
(see alsd9,10)). As we have already mentioned, these mod-

At this point, we can observe some differences with theels describe the dynamics near the singularities. That is, the

general relativistic cas27]. First, the Einstein universg)
appears to be a critical point for=3, in contrast with gen-
eral relativity, where it appears far=2%. On the other hand,

early universe behavior, near the initial big-bang singularity
and also, for recollapsing mode(®r which we must have
3R>0), the dynamical behavior when we approach the big-

as we will discuss in detail later, the dynamical character otrunch singularity. In both cases the dynamics changes with
some of the points changes with respect to general relativityrespect to general relativity.
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AQA AQA

FIG. 1. State space for the FLRW models witk (0,%) and(a) non-negative spatial curvaturdR=0 (on the lefy and(b) non-positive
spatial curvature’R=0 (on the righi. ReplacingQ, by Q, and M, by K, the drawing on the right is also the state space for Bianchi type
I models withy € (0,1). The plane§} , —Q and( , — Q, correspond to the state space of general relativity. The critical pointME, dS,
E, m. and K, describe the flat FLRW model, the Milne universe, the de Sitter model, the Einstein universe, the non-general-relativistic BDL
models and the Kasner spacetimes respectivelig. the sign of the Hubble function, differentiating between expanding and collapsing
models. The planes joining the points d3, and m represent vacuum solutionﬁlg:ﬁp:O). Only trajectories on the invariant planes,
which outline the whole dynamics, are drawfl,(=0, Q,=0,=0, andQ, =0, =0).

With the information we have obtained about the critical changes in the state spac®e[22] for detaily, appear. Spe-
points of the dynamical systems f6¥ andQ, we can apply cifically, these values argg=0,%,% (in general relativity we
the well-known techniques used in dynamical syst¢8®  only have bifurcations aty=02). As we will see in the
to obtain the structure of the state space, which provides, igiscussion of each particular case, fgr1 and y=2, we
a visual way, the complete information on the evolution ofhaye lines with an infinite number of critical points, for
our system(a perfect-fluid FLRW model in the brane-world which we get one vanishing eigenvalue, as is expected in
scenarig once the initial conditions are given. In the samethose casef22].
way as the dynamical character of the critical points depend et us begin with they=0 case. We have not drawn the
on the equation of state, or equivalently, on the paramgter state space because it is quite simple. Equati@® implies
so will do the state space. In fact, we have found that ther¢hat the energy density is constant. Then, we can solve the
are values ofy for which bifurcations that is, topological Friedmann equatiofil1l) and we find that(t) is given by

FIG. 2. State space for the FLRW models witk 3 (a bifurcation and (a) non-negative spatial curvaturdR=0 (on the lefy and (b)
non-positive spatial curvaturéR=<0 (on the righj. The drawing on the right is also the state space for Bianchi modelsywith. See the
caption of Fig. 1 for more details.
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FIG. 3. State space for the FLRW models witk (%,%) and(a) non-negative spatial curvaturéR=0 (on the lefj and(b) non-positive
spatial curvature’R=<0 (on the righi. The drawing on the right is also the state space for Bianchi modelsyitfil,2). See the caption

of Fig. 1 for more details.

( \/X
cosh e g(t—ti)

(t=t))

=sinh € §(t—ti)

=Y w

e

a(t)=9q e

w

=

\

for k=1,

for k=0,

fork=—-1,
(33

wheret; is a constante=sgn{), andA is a modified cos-

mological constant given by

p
1+x

A=A+k%p

. (34

For A+0, all the models belong to the de Sitter class,
whereas in the limitA—0 (A=p=0) we find the
Minkowski (k=0) and Milne k= —1) spacetimes. The dy-
namics(of expanding modelse=1) is reduced to the fact
that the modek=0 is the future attractor, and the Milne
universe is a repeller.

For the other casesyf 0), the whole state space is con-
structed by matching the state space corresponding to the
dynamical system$17)—(20) and (25—(28). It consists of
three pieces, the diagram shown in Figb)lon the right,
which corresponds to the cage=1 in Egs.(17)—(20), the
diagram in Fig. 1a) in the middle, and on the left the dia-
gram corresponding to the cage=—1 in Eqgs.(17)—(20),
which has not been included here because it can be obtained
from Fig. 1(b) just by reversing the direction of the arrows

FIG. 4. State space for the FLRW models witkr 5 (a bifurcation and (a) non-negative spatial curvaturdR=0 (on the lefy and (b)
non-positive spatial curvaturéR=<0 (on the righj. The drawing on the right is also the state space for Bianchi modelsywith. See the

caption of Fig. 1 for more details.

104012-7



ANTONIO CAMPOS AND CARLOS F. SOPUERTA PHYSICAL REVIEW B3 104012

FIG. 5. State space for the FLRW models wi;th>§ and(a) non-negative spatial curvaturdR=0 (on the lefi and (b) non-positive
spatial curvature®R=<0 (on the righj. See the caption of Fig. 1 for more details.

and replacing the subscript#” by “ —.” In order to follow  hence they do not appear in general relativity. In order to see
the evolution, we have specified the quantities represented it what particular models they corresponds we need to con-

the different axes. Notice that the state space is compaciger the limit(31) since they havé)* =1. Then, solving the
with the boundaries given by the planés,=Q,=0, Q,  Friedmann equatiofiL1), we find they are positively curved
=0,=0 and the vacuum modeﬂpzﬁpzo. FLRW models with dynamics described bft) ~t. The par-

We have drawn only the trajectories on the planes, but théicular caseQ* =0 corresponds to the Einstein universe. In
trajectory of any point in the state space outside these planese *R<0 sector, Fig. &), the critical points, excepting
can be deduced qualitatively following the behavior shownpoints m. and M. , are also not in the tables above and they
in them. As is obvious, the general relativistic state spac@re non-general-relativistic in nature. Their coordinates are
corresponds to the plan&,=0, which is aninvariant Q*=(0,05,007F) with Qf + Q¥ =1. Then, using the lim-
submanifold of the state space. Therefore, the aim of thisiting procedure(31), we get the same time dependence:

work is to study what happens when we take initial condi-5(t—t. These points are also non-general-relativistic.
tions outside of this plane. The other invariant submanifolds * The next step is to study the state space in the interval

are: the vacuum boundarf2,=0, the flat geometry sub-
manifold (=0, and the) , =0 submanifold.

ye(3,%), which is now described by the diagrams shown in

Keeping this preamble in mind, let us analyze the differ—Fig' 3 We can_find some ch_anges with respect to the situa-
) 1 3 . . tion in the previous cases. First, we have an infinite number
ent cases according ta For ye (0,5) and “R<0, Milne is ¢ critical points corresponding to the Einstein universe,
a repeller, as in the general-relativistic case, and the expangshich are arranged in a line determined by E29). In the
ing de Sitter model is the future attractor for all the initial 3R> sector we can see that d&nd m_ are attractors of
conditions excepting the plarfé, =0, for which the attrac-  the evolution. Then, this sector of the state space is divided
tor is the flat FLRW model. Fo?R> 0, dS; plays the same into two regions. The first one consists of those points which
role. In the plane, =0, collapsing FLRW models evolve || evolve to the de Sitter model (dS, which corresponds
towards the expanding flat FLRW model (F with the ef- .0\ hole3R=0 sector in the casge (0,3). The second

fect of the extra dimension being maximum when=0 S . . .
(<Q=0). In conclusion, the dynamics in this case is essenlegion is determined by the points which evolve towards the
tially the s'ame as in geﬁeral relativity BDL model (m_) which does not contain any general rela-

The next casey= 1, constitutes a bifurcation. The topol- tivistic point. These trajectories correspond to models col-

. lapsing in the future, that is, evolving towards a big crunch
ogy of the state space chandsse Figs. @) and 2b)] due . . S .
to the fact that we have now a line of vacuum critical points.s'nQU|ar'ty’ where the dynamics is given by HG2). It is

This line extends to the three parts of the whole state spac%ﬁrtzgccﬁ'rnf%rthitg m.l.ﬁgggr,s\ll Or?ftli\(l)lr?; ;igosnsp;g?eéng d::‘rl]se
In the 3R=0 sector, Fig. 2a), all these critical points, ex- y Y3 9 P y

. . ) . . surface generated by the trajectories that start from or arrive
cepting the points mand E, are not included in the previous h f critical poi ing the Ei . .
_ i B% (O 0.0.1 <1 and to the set of critical points representing the Einstein universe
tables. Their coordinates af¢*=(Q*,0,0,1),|Q*[<1,and () which are saddle points. In tRR=0 sector the situa-
tion is simpler. For a vanishing cosmological constait, (
=0) the future attractor are the flat FLRW models, jF
3State space trajectories starting in an invariant submanifold wilwhereas in the case with a cosmological constant it is the de
never leave it. Sitter model (dS).
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In y=2% we have another bifurcation motivated by the defined by the commutation relations between the spatial ba-
appearance of two I|_n§s. of |r_1f|n|t§ cr|t|9al pomts_ Whl(ih join gjs vectors[(_aﬁ &)= 701!359& (Y*1557=¥"ps)- Here, we will
at the general relativistic Einstein universe, given &y use the equivalent variables
=(0,1,0,0) (see Fig. 4. One of the lines is composed by
Einstein universe points whose state space coordinates sat-
isfy Eq. (29). The other line corresponds to general relativ-. o
istic models(which were not shown ifi27]), and it occupies lntroducedhby Schnklgg, Kundt ang Behfsefe[”29] a.nd C[ef-
the three regions. Their points are characterized py €'€NCES therejn to eCcompos€y p; as IONOWS. vy g;

=2a;36% 5+ €psMN"". (ii) The kinematical quantitiesThe

=\"1=0, and their scale factor grows linearly with time .
(H#0), a(t)=Ct. They are perfect-fluid models with equa- Hubble functionH (=V,u?/3) and the components of the
! shear tensoo

tion of statep+3p=0 and energy density given by

aaE% A naﬁE%‘g&K(a’yﬁ)ﬁk

Tab= hachbdv cUgy—Hhgp,
,  3(C%+k) 0
P o2 where hap=g.,+U,U, is the orthogonal projector to the
fluid velocity u. (iii) The matter variablesIn our case only
the energy density and the isotropic pressug related by
an equation of statés).

In the case of Bianchi models the generalized Friedmann
equation reads as follows:

The casek=—1 ((R<0) and C=1 corresponds to the
Milne universe.

The last situation corresponds to the case3, described
by the state space drawn in Fig. 5. The situation in tRe
=0 sector is now very similar to that showed in the 1
e(%,3) case, where two regions appeared according to H2=§KZP
whether the points evolve to the BDL or to the de Sitter
model. The region of points evolving to the BDL model is where 2= Uaba'ab and the Spatia| scalar curvature has the
now bigger. With regard to théR=<0 sector, the situation following expression in terms of the spatial commutation
has now changed: for the models without cosmological confynctions
stant the attractor is the Milne universe (] whereas the

Pl 1, 1, 1
1+ 6 R+ 3¢ + 3A, (35

flat FLRW models (F) are saddle points. For a non- ’R=—6a"a,—n*n,z+3(n*,)> (36)
vanishing cosmological constant, the de Sitter model, (dS ) ) )
is again the attractor. On the other hand, from the Einstein equati¢@)swe have a

constraint on our variables

Ill. DYNAMICS OF BIANCHI MODELS 30 58P~ £ 45N""0%,=0. (37)
IN THE BRANE-WORLD SCENARIO
To find systems of equations for Bianchi models similar to

In this section we will study the dynamics of some homo'those described in the FLRW case, we need evolution equa-

geneous but anisotropic cosmological mod&mnchi mod- tions for the new variablest, , n ando ;. However, it is

e_Is) in the brane-wqud scenario. In particular, we will con- better to consider them for each particular Bianchi case.
sider the perfect-fluid Bianchi type | and V homogeneous

cosmological models in which the fluid velocity is non-tilted,
which means that the hypersurfaces of homogeneity are or-
thogonal to the fluid flow. Moreover, we will also consider a  The Bianchi type | models are homogeneous and aniso-
linear equation of stat€8) for the perfect fluid. We have tropic cosmological models containing the flat FLRW space-
considered these two particular classes of Bianchi models fdimes. We can specialize the trige,} in such a way that the
simplicity and because they contain the flat and negativelynit vector fieldse, are Fermi-Walker propagated along

A. Bianchi type | perfect-fluid cosmologies

curved FLRW models. and at the same time their commutation functions vafash
It is well-known that Bianchi models can be described by 5 op
systems of ordinary differential equations, being the fluid Y ap=0ea,=n*"=0. (39

proper timet is the only independent variable that appears

The form of the system of ordinary differential equationsThen’ in th'.s case the constraif#7) IS identically satisfied.
depends on the parametrization of the models, i.e., on th oreover, in these models the spatial curvature, the curva-

variables we use to describe them. Here, we will start usiné/ure. of the hypersurfaces orthogonal to the fluid velocity,
the point of view adopted by Ellis and MacCallufa9], anishes, that is,
where they use an orthonormal tetrgd,e,} («=1,...,3), 3R..=0
adapted to the fluid velocity ab— =
In particular®R=0, which is a consequence of E¢36) and
u-u=—1, u-e,=0, €,"€=0J,p- (38). Then, in this case the Friedmann equat{@b) takes
the following form:
Then, the dynamics can be described in terms of the follow-

ing variables:(i) The spatial commutation functiong/“ g, Q,+Q,+Q,+Q,=1, (39
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whereQ),, 2, and(), are defined as in the FLRW cajsee dSy K, Q
Egs.(12),(13)], and where we have introduced the following L4 < o =
dimensionless quantity associated with the shear

FIG. 6. State space for Bianchi type | models wijtk 0.

0_2 O'aba'ab

=— = . (40) =0,1,2, which at the same time constitute bifurcations and
3H?  6H? will be discussed later. From the eigenvalues we get the dy-

) ) namical character of the critical points, which is shown in the
We can construct a state space for the Bianchi type | cosm@zpe pelow:

logical models by taking the variables Q
=(Q2,,0,,0,,0)). Then, taking into account that all these

g

guantities are positive by definition, the Friedmann equation Model Dynamfal character
(39) implies that we have got a compact state space in which O=r=1 r=1 r=>1
these variable are restricted to the interMdJ1]. Using the F. saddle saddle saddle
time derivative defined in Eq.15) and using the evolution ds, attractor attractor attractor
equation foro? [29] ds. repeller repeller repeller
oL 2 Ky repeller repeller saddle
(07)'==6Ho", (4D K_ attractor attractor saddle
the system of dynamical equations is given by m, saddle repeller repeller
m_ saddle attractor attractor
O, =€2(1+q)—3v]Q,, (42
Now let us analyze the state space for these models. It can
Q,=2e(1+q)Q,, (43) be represented by the same drawings used for*Re0
sector of the FLRW evolution, the only thing we need to
Q' =2e(q-2)Q,, (44) change is the axis corresponding to the varidble For the
7 7 Bianchi type | models instead d2, we have to consider
Q] =2¢[1+q-37]Q, (45) Q. , and instead of the critical points M(Milne), we have

to consider K. (Kasnej. Then, taking into account this cor-

and Eq.(16), which again is uncoupled to the rest of equa_respondence, let us examine the structure of the state space
tions. Now, the expression for the deceleration paranter for Bianchi type | models for the different values of For

in terms of the variable$ is given by the sake of simplicity, we will do it only for expanding mod-
els, that ise=1. The casee=—1 can be obtaining by a
_3y-2 simple time reversal.

9=—% 0,0 +20,+(By=-1)Q,. (40 In the case y=0, all the points given by Q*

=(Q5,Q%,007) such thatQ + Q3+ Qf =1, are critical
The critical points of the dynamical systed?)—(45) having  points corresponding to the de Sitter model as given in ex-
a hyperbolic character, together with their state space coopressiong33),(34) for k=0. The dynamics can be shown in
dinatesQ* = (Q% ,Q% ,Q% ,QF) and their eigenvalues are a one-dimensional state spa@®e Fig. 6. De Sitter is the

given in the following table: attractor and Kasner the repeller, therefore, any initial anisot-

ropy is diluted out in the evolution.
Model Coordinates Eigenvalues The situation in the casge (0,1) is more complicated.

The state space is represented in Fiy).1As we can see, F

Fe (1,0,0,0) €By—23y,3(y=2),—3y) is the attractor in the case without cosmological constant.

ds, (0,1,0,0) —€(37,2,6,6y) When a cosmological constant is present, the de Sitter is the

Ke (0,0,1,0) e(—3(y—2),6,4-6(y—1))  general attractor. In both cases, the anisotropic Kasner mod-

m, (0,0,0,1) €(3y,6v,6(y—1),2(3y—1)) els are repellers of the evolution, which means that indepen-

where K denotes the Kasner vacuum spacetimes, whose Iindeently of th_e |n|t|a! conditions the models isotropize. .
element can be written as follows: . Wheny=1, which correspon(_js to dugt matter, a bifurca-
tion occurs and the state space is how given in Hig). Zhe
3 dynamical behavior is essentially the same as in the previous
d= —dt?+ 2 t2Pa(dx®)?, (47) case, the difference is that now we have an infinite set of
a=1 critical points situated in the lin€ ,+Q,=1. We can find
these models by using the limiting procedure introduced in

wherep,, are constants satisfying Eq. (31). The line element of these models is described by

3 3 the Kasner metri¢47), but now only the first condition in
E .= 2 pi:]__ (48) Eq. (48) holds, i.e.,
a=1 a=1
3
Apart from the critical points shown in the table above, we _
2l points showr : > Pa=1, (49
have found sets of infinite points in the particular cases a=1
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where the parameters, depend onk ), and in the limit  This equation implies that we can construct a compact state
p— 0, where the influence of the extra dimension disappearspace from the variableQ®=({2,,Q,,Q, ,Q,,Q,), which
we recover the vacuum Kasner models. are all positive, and as usual, restricted to the intefrQal].

In the intervalye (1,2) the only change with respect to  Before looking at the dynamical system 8 let us con-
the situation in the casge (0,1) is that now the BDL model sider the constraint37). In this case it is not automatically
(m,) is a repeller point and K are saddle points. The state satisfied, but it imposes, by virtue of EG1), the following
space is represented in FigbR In y=2, which corresponds condition:
to a stiff matter equation of statgp€ p), there is another
bifurcation. We have a line of general relativistic critical
points, as shown by Fig.(8). The models are described, as
in the previous casey=1), by a Kasner metri¢47) where
the parameters only satisfy E@9) and the energy density is which supposes a restriction on the general metric of the
given by Bianchi type V models, whose line element can be written in

the following way:

01.=0, (52

1 3
2 _ 2
Kp= —th(l ;:1 pa)- 0 dg=—dt?+ A%(t)dx?+ e[ B%(t)dy?+ C?(t)d Z].

They are saddle points. The dynamics of the rest of the statene restriction imposed by E¢52) is then
space is as in the casee (1,2). Finally, for y>2 (which
does not satisfy the causality conditjprthe state space )
would be given by Fig. &). A*=BC. (53

To sum up, we have seen that expanding models isotro-
pize as it happens in general relativity, although now we can 1 fing the dynamical system we need the evolution equa-
have |r_1termed|ate stages in Whlph the anisotropy can grow, . fora, and o2, The equation for, is [29]
[see Fig. 4b) for ye (1,2)]. The situation near the big bang
is more interesting. In the brane-world scenario anisotropy
dominates only fory<1l, whereas in general relativity it alz—Hal,
dominates fory<2, therefore in the physically relevant in-
terval y € (1,2) the prediction is completely differetfor the _ 5. .
context of inflation se€30]): in the brane-world scenario the @nd the equation foo” is Eq. (41). Then, the equations for

singularity is isotropic. are
B. Bianchi type V perfect-fluid cosmologies Q"): e[2(1+09)—-3y]Q,, (54)
In the Bianchi type V cosmological models the hypersur-
faces of homogeneity, which we have assumed to be or- Q=260 (55

thogonal to the fluid velocity, are negatively curved. In fact,
we can pick up a triade,} Fermi-Walker propagated along

u and such that the spatial commutation functions satisfy Q) =2e(1+q)Q,, (56)
a;#0, a=az=0, and n,z=0. (51
0,=2¢(q-2)Q,, (57)
Then, the spatial scalar curvatui®b) is given by
3R=—6a2<0. Q) =2€[1+9-35]Q,, (58)
We can introduce the quantify, as defined in Eq(12), but  where the deceleration parameter is also given by the expres-
now it looks as follows: sion (46). The critical points of the dynamical systeis¥)—
(58) as well as their coordinates and eigenvalues are given in
3 ai the following table[28]:
KT o2 g2
6H H Model Coordinates Eigenvalues
Therefore, using also the variable€3,, Q,, Q, [Egs. F. (1,0,0,0,0) €(By—2,3y—2,3y,3(y—2),—3y)
(12),(139)], and Q, (40), the Friedmann equatio(85) be- M, (0,1,0,0,0) —€e(3y—2,0-2,4,2(3y—1))
comes ds. (0,0,1,0,0) —€(3y,2,2,6,6y)
K* (0,0,0,1,0) €(=3(y—2),4,6,4-6(y—1))
Q,+ Qe+ Q) +Q,+Q,=1. m. (0,0,0,0,1) 2(37/2,3y—1,3y,3(y—1),3y—1)
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Qo K:_ dS+ M+ Qk

FIG. 7. State space for Bianchi type V models wijtk 0.

That is, we recover the equilibrium points we had in the case
of FLRW models with®R<0 plus the models denoted by
K*, which corresponds to Kasner models. However, we must
take into account the restrictigh3), which implies that the
critical points K only represent Kasner models for which
the parameterp, are given by

1 1+ J3
pl_§1 p2= 3 ’

:1_\/§

Ps 3

(59

On the other hand, we have now sets of infinite points for

y=0,%,%2,1,2, which also are bifurcation values of the pa-
rametery. We have more bifurcations than in the Bianchi

type | case, so we need more state space diagrams to repre-

sent the dynamics. To do that we need to extract, from the
previous table, the dynamical character of the equilibrium

: o . t
points, which is shown in the next table:

Model Dynamical character
o<y<1 y=1 v>1

F. saddle saddle saddle
M. saddle saddle saddle
ds, attractor attractor attractor
ds_ repeller repeller repeller
K* repeller repeller saddle
K* attractor attractor saddle
m, saddle repeller repeller
m_ saddle attractor attractor

Let us now analyze the state space diagrams shown

PHYSICAL REVIEW B3 104012

ds,

K’ K’

Kt

FIG. 9. State space for Bianchi type V models wijikr %

o those of the FLRW and Bianchi type | models we would
need four-dimensional diagrams. However, this is not neces-
sary since, as it happens in the case of the FLRW and Bian-
chi type | models, the qualitative dynamics follows from the
trajectories of two-dimensional
Hence, we have drawn two-dimensional state space diagrams
in which all the dynamical information is present. We have
drawn only the trajectories joining critical points and the
direction of the dynamical flow. The interior trajectories can
be derived from them and by comparison with the state space
diagrams for the FLRW and Bianchi type | models.

invariant submanifolds.

We start with the case=0, in which Eq.(10) implies

that the energy density is constant. The state space is again
very simple(see Fig. J, the de Sitter model, with a modified
iposmological constan34), is the general attractor and the

Figs. 7—-11. First of all we notice that to get diagrams similarKasner and Milne spacetimes are repellers.

K* ds, R

Kt

FIG. 8. State space for Bianchi type V models witk (0,3).
Changing the line joining m and M, by a line in which all the
points are critical, we get the state space i@r% Reversing the
arrow in that line we have the state spacefcur(% % .

K:

ds, K,

A

Kt

FIG. 10. State space for Bianchi V models wii;he(é,l).

Changing the lines joining mand K by lines in which all the
points are critical, we get the state space for 1. Reversing the
arrow in those lines we have the state spaceyfern(1,2).
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K ds, K: instead of repellers. This means that if we initially start with

v Y Q%+ Q) =1, the models will evolve towards’Kinstead of
my .
Finally, for y=2 we have again an infinite number of
critical points(see Fig. 11 They are spatially-flat models

and therefore, following the discussion of the Bianchi type |
models, they are described by a Kasner met#ié) with
exponents given by E@60) and energy density by E¢50).

M, To summarize, we can say that the dynamics of the Bian-

. chi type V models encompasses the features of the state
spaces of the FLRW models witt)R<0 and the Bianchi |
models.

IV. REMARKS AND CONCLUSIONS

In this paper we have studied systematically the dynamics
of homogeneous cosmological modétse FLRW and Bian-

Kt chi type | and V modelsin a generalized version of the
scenario proposed by Randall and Sundfdin stressing the
FIG. 11. State space for Bianchi type V models wjth 2. main differences with respect to the general-relativistic case.

In the case of the FLRW cosmological models, the state
. . o space presents a new equilibrium point, namely, the BDL
Now, let us consider the casee (0,3), which is repre-  model (m,) [8]. It dominates the dynamics at high energies,
sented in Fig. 8. Again, for the sake of brevity we will con- where the extra-dimension effects become dominant. For this
sider only the expanding case, i.es 1 (the casee=—1is  reason, we expect them to be a generic feature of the state
obtained by time reversal, i.e. by reversing the arrow in thespace of more general cosmological models in the brane-
state-space diagramsThe attractor forA=0 is the flat world scenario, as it occurs in the Bianchi models analyzed
Friedmann model, whereas far#0 is de Sitter. The other here. In the FLRW case the critical points. ndescribe the
critical points are saddle points. As in the Bianchi type Inew dynamics near the big bang and also near the big crunch
case, these models isotropi@volving either to E or dS,),  for recollapsing models.
with the exception of extreme situations of zero measure, Another new feature is the existence of new bifurcations
representing models evolving towards the BDL solution. FordS We change the equation of state, the parametém the
y=1 we have the first bifurcation due to the appearance of §25€ Of FLRW models there is one new bifurcation for
line with an infinite number of critical points located @¢  — 3, characterized by the appearance of an infinite number of
= (0,0%,0,00%) with QF +0* =1 (see Fig. 8 They are nont—gtgneralérellatlxlsuc ?ntlcalI pomtts..Artr;]ng ;h;ehm lezlga fltnq
the models discussed in the FLRW cdsee Fig. 2 In the a stafic mocel wnose fine element 1s that ot -the Einstein

1 . universe. This contrasts with general relativity, where it ap-
caseye(3,3) the only change with respect to the cage pears fory=2. The consequence is that in the brane-world

€(0,3) is that now models in the line joining mand M, scenario recollapsing models appear for 3 instead ofy

evolve to M, instead of m . >2 as in general relativity. In the case of Bianchi type |
For y=2/3 we have another bifurcatiqsee Fig. 9 with models we have found a new bifurcation fg#=1, and in the

a set of equilibrium points located a©)f ,(7,0,0,0), with ~ case of Bianchi type V models for=3,1.

Q*+Qf =1. They are FLRW models that correspond to the On the other hand, Bianchi models allow us to study an-

critical points in Fig. 4b). isotropy. We have seen that expanding Bianchi type | and V

In the intervalye (2,1) (Fig. 10 we have that the flat models always isotropize, as it happens in general relativity,

FLRW model is a saddle point, even if we restrict ourselvesalthough now we can have intermediate stages in which the

~ ! ) : anisotropy grows. This is an expected result since the energy
:og?e dplgneﬁlA—O. Forryn— 1 W? haveta ?lfurr]icatltcr)n ?harﬁtci— Eensity decreases and hence, the effect of the extra dimen-
erized by the appearance of a Set ol anisolropic CriliCag;,, 1,0 omes less and less important. The situation changes
points which are not general relativistic in nature since thelrd

: ok " . rastically when we look backwards. Near the big bang the
coordinates are (0,0, ,Q\) with Q, +Qy=1. They are  jnisqirony only dominates for<1, whereas in general rela-
among the critical points discussed in the casel of Bi-

tivity it dominates fory<2, which includes all the physi-
anchi type I. The metric is given by the line eleméit), but y Y Py

; cally interesting cases.
now the exponentp,, satisfy Just to finish we would like to mention some current and

future work in the line of the present one. First we recall that
1 2 in this paper we have considered brane-world scenarios in
Pi=3 and py+ps=g3. (60 which the bulk satisfies the conditigi). Then, it would be
interesting to look at the effect of having a contribution from
the bulk curvature, or in other words, a contribution from the
In the situationye (1,2) (Fig. 10, the only change with  pyik wWeyl tensor piec&’3). This is currently under inves-

respect to the casge (3,1) is that the points K are saddle tigation [20]. On the other hand, taking into account that
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