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Evidence for a continuum limit in causal set dynamics
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We find evidence for a continuum limit of a particular causal set dynamics which depends on only a single
‘‘coupling constant’’p and is easy to simulate on a computer. The model in question is a stochastic process
that can also be interpreted as one-dimensional directed percolation, or in terms of random graphs.
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I. INTRODUCTION

In an earlier paper@1# we investigated a type of causal s
dynamics that can be described as a~classically! stochastic
process of growth or ‘‘accretion.’’ In a language natural
that dynamics, the passage of time consists in the conti
birth of new elements of the causal set and the history o
sequence of such births can be represented as an upward
through a poset of all finite causal sets. We called suc
stochastic process asequential growth dynamicsbecause the
elements arise singly, rather than in pairs or larger multipl

A sequential description of this sort is advantageous
representing the future as developing out of the past, bu
the other hand it could seem to rely on an external param
time ~the ‘‘time’’ in which the growth occurs!, thereby vio-
lating the principle that physical time is encoded in the
trinsic order relation of the causal set and nothing else
physically real, such a parameter time would yield a dist
guished labeling of the elements and thereby a notion
‘‘absolute simultaneity,’’ in contradiction to the lessons
both special and general relativity. To avoid such a con
quence, we postulated a principle ofdiscrete general cova
riance, according to which no probability of the theory ca
depend on—and no physically meaningful question can r
to—the imputed order of births, except insofar as that or
reflects the intrinsic precedence relation of the causal se
self.

To discrete general covariance, we added two other p
ciples that we calledBell causalityand internal temporality.
The first is a discrete analog of the condition that no infl
ence can propagate faster than light, and the second sim
requires that no element be born to the past of any exis
element.1 These principles led us almost uniquely to a fam
of dynamical laws~stochastic processes! parametrized by a
countable sequence of coupling constantsqn . In addition to
this generic family, there are some exceptional families
solutions, but we conjecture that they are all singular lim

*Email address: rideout@physics.syr.edu
†Email address: sorkin@physics.syr.edu
1This last condition guarantees that the ‘‘parameter time’’ of o

stochastic processis compatible withphysical temporality, as re
corded in the order relationa that gives the causal set its structur
In a broader sense, general covariance itself is also an aspe
internal temporality, since it guarantees that the parameter
adds nothing tothe relationa.
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of the generic family. We have checked in particular th
‘‘originary percolation’’ ~see Sec. II! is such a limit.2

Now among these dynamical laws, the one resulting fr
the choiceqn5qn is one of the easiest to work with, bot
conceptually and for purposes of computer simulation. D
fined by a single real parameterqP@0,1#, it is described in
more detail in Sec. II below. In Ref.@1#, we referred to it as
transitive percolationbecause it can be interpreted in term
of a random ‘‘turning on’’ of nonlocal bonds~with probabil-
ity p512q) in a one-dimensional lattice. Another thin
making it an attractive special case to work with is the ava
ability in the mathematics literature of a number of resu
governing the asymptotic behavior of posets generated
this manner@2,3#.

Aside from its convenience, this percolation dynamics,
we will call it, possesses other distinguishing features,
cluding an underlying time-reversal invariance and a spe
relevance to causal set cosmology, as we describe br
below. In this paper, we search for evidence of a continu
limit of percolation dynamics.

One might question whether a continuum limit is ev
desirable in a fundamentally discrete theory, but a continu
approximationin a suitable regime is certainly necessary
the theory is to reproduce known physics. Given this,
seems only a small step to a rigorous continuum limit, a
conversely, the existence of such a limit would encoura
the belief that the theory is capable of yielding continuu
physics with sufficient accuracy.

Perhaps an analogy with kinetic theory can guide us h
In quantum gravity, the discreteness scale is set, presuma
by the Planck lengthl 5(k\)1/2 ~where k58pG), whose
vanishing therefore signals a continuum limit. In kinet
theory, the discreteness scales are set by the mean free pl
and the mean free timet, both of which must go to zero fo
a description by partial differential equations to become
act. Corresponding to these two independent length and
scales are two ‘‘coupling constants:’’ the diffusion consta
D and the speed of soundcsound. Just as the value of the
gravitational coupling constantG\ reflects~presumably! the
magnitude of the fundamental spacetime discreteness s
so the values ofD and csound reflect the magnitudes of th
microscopic parametersl andt according to the relationsr

of
e 2In the notation of Ref.@1#, it is theA→` limit of the dynamics
given by t051, tn5Atn, n51,2,3, . . . .
©2001 The American Physical Society11-1
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D;
l2

t
, csound;

l

t

or conversely

l;
D

csound
, t;

D

csound
2 .

In a continuum limit of kinetic theory, therefore, we mu
have eitherD→0 or csound→`. In the former case, we ca
hold csound fixed, but we get a purely mechanical macr
scopic world, without diffusion or viscosity. In the latte
case, we can holdD fixed, but we get a ‘‘purely diffusive’’
world with mechanical forces propagating at infinite spe
In each case we get a well defined—but defective
continuum physics, lacking some features of the true, at
istic world.

If we can trust this analogy, then something very simi
must hold in quantum gravity. To sendl to zero, we must
make eitherG or \ vanish. In the former case, we wou
expect to obtain a quantum world with the metric decoup
from nongravitational matter; that is, we would expect to g
a theory of quantum field theory in a purely classical ba
ground spacetime solving the source-free Einstein equati
In the latter case, we would expect to obtain classical gen
relativity. Thus, there might be two distinct continuum limi
of quantum gravity, each physically defective in its ow
way, but nonetheless well defined.

For our purposes in this paper, the important point is th
although we would not expect quantum gravity to exist a
continuum theory, it could have limits which do, and one
these limits might be classical general relativity. It is th
sensible to inquire whether one of the classical causal
dynamics we have defined describes classical spacetime
the following, we make a beginning on this question by a
ing whether the special case of ‘‘percolated causal sets,’
we will call them, admits a continuum limit at all.

Of course, the physical content of any continuum limit w
might find will depend on what we hold fixed in passing
the limit, and this in turn is intimately linked to how w
choose the coarse-graining procedure that defines the e
tive macroscopic theory whose existence the continuum l
signifies. Obviously, we will want to sendN→` for any
continuum limit, but it is less evident how we should coar
grain and what coarse grained parameters we want to
fixed in taking the limit. Indeed, the appropriate choices w
depend on whether the macroscopic spacetime region
have in mind is, to take some naturally arising examples~i!
a fixed bounded portion of Minkowski space of some dime
sion, or ~ii ! an entire cycle of a Friedmann universe fro
initial expansion to final recollapse, or~iii ! an N-dependent
portion of an unbounded spacetimeM that expands to en
compass all ofM as N→`. In the sequel, we will have in
mind primarily the first of the three examples just liste
Without attempting an definitive analysis of the coars
graining question, we will simply adopt the simplest defin
tions that seem to us to be suited to this example. M
specifically, we will coarse grain by randomly selecting
sub-causal set of a fixed number of elements, and we
10401
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choose to hold fixed some convenient invariants of that s
causal set, one of which can be interpreted3 as the dimension
of the spacetime region it constitutes. As we will see,
resulting scheme has much in common with the kind
coarse graining that goes into the definition of renorma
ability in quantum field theory. For this reason, we believe
can serve also as an instructive ‘‘laboratory’’ in which th
concept, and related concepts such as ‘‘running coup
constant’’ and ‘‘nontrivial fixed point,’’ can be considere
from a fresh perspective. In the remaining sections of t
paper we define transitive percolation dynamics more p
cisely, specify the coarse-graining procedure we have u
report on the simulations we have run looking for a co
tinuum limit in the sense thereby defined, and offer so
concluding comments.

Definitions used in the sequel. Causal set theory postu
lates that spacetime, at its most fundamental level, is
crete, and that its macroscopic geometrical properties re
a deep structure which is purely order theoretic in natu
This deep structure is taken to be a partial order and calle
causal set~or ‘‘causet’’ for short!. For an introduction to
causal set theory, see@4–7#. In this section, we merely reca
some definitions which we will be using in the sequel.

A ~partial! order or posetis a setS endowed with a rela-
tion a which is

transitive: ;x,y,zPS, xay and yaz⇒xaz,

acyclic: ;x,yPS, xay⇒ya” x,

irreflexive: ;xPS, xa” x.

~Irreflexivity is merely a convention; with it, acyclicity is
actually redundant.! For example, the events of Minkowsk
space~in any dimension! form a poset whose order relatio
is the usual causal order. In an orderS, the interval int(x,y)
is defined to be

int~x,y!5$zPSuxazay%.

An order is said to belocally finite if all its intervals are finite
~have finite cardinality!. A causal setis a locally finite order.
It will be helpful to have names for some small causal se
Figure 1 provides such names for the causal sets with th
or fewer elements.

II. THE DYNAMICS OF TRANSITIVE PERCOLATION

Regarded as a sequential growth dynamics of the sort
rived in Ref. @1#, transitive percolation is described by on
free parameterq such thatqn5qn. This is equivalent~at
stageN of the growth process! to using the following ‘‘per-
colation’’ algorithm to generate a random causet.

~1! Start withN elements labeled 0,1,2, . . . ,N21.
~2! With a fixed probabilityp (512q), introduce a re-

lation i a j between every pair of elements labeledi and j,

3This interpretation is strictly correct only if the causal set form
an interval or ‘‘Alexandrov neighborhood’’ within the spacetime.
1-2
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FIG. 1. Names for small causets.
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wherei P$0¯N22% and j P$ i 11¯N21%.
~3! Form the transitive closure of these relations~e.g., if

2a5 and 5a8 then enforce that 2a8).
Given the simplicity of this dyn‘mical model, both con

ceptually and from an algorithmic stand point, it offers
‘‘stepping stone’’ allowing us to look into some general fe
tures of causal set dynamics.~The name ‘‘percolation’’
comes from thinking of a relationi a j as a ‘‘bond’’ or
‘‘channel’’ betweeni and j.!

There exists another model which is very similar to tra
sitive percolation, called ‘‘originary transitive percolation.
The rule for randomly generating a causet is the same as
transitive percolation, except that each new element is
quired to be related to at least one existing element. Al
rithmically, we generate potential elements one by one,
actly as for plain percolation, but discard any such elem
which would be unrelated to all previous elements. Caus
formed with this dynamics always have a single minim
element, an ‘‘origin.’’

Recent work by Dou@8# suggests that originary percola
tion might have an important role to play in cosmology. N
tice first that, if a given cosmological ‘‘cycle’’ ends with th
causet collapsing down to a single element, then the ens
reexpansion is necessarily given by an originary cau
Now, in the limited context of percolation dynamics, Alo
et al. have proved rigorously@3# that such cosmologica
‘‘bounces’’ ~which they callposts! occur with probability 1
~if p.0), from which it follows that there are infinitely
many cosmological cycles, each cycle but the first having
dynamics of originary percolation. For more general choi
of the dynamical parametersqn of Ref. @1#, posts can again
occur, but now theqn take on new effective values in eac
cycle, related to the old ones by the action of a sort of ‘‘co
mological renormalization group;’’ and Dou@8# has found
evidence that originary percolation is a ‘‘stable fixed poin
of this action, meaning that the universe would tend
evolve toward this behavior, no matter what dynamics it
gan with.

It would thus be of interest to investigate the continuu
limit of originary percolation as well as plain percolation.
the present paper, however, we limit ourselves to the la
type, which we believe is more appropriate~albeit not fully
appropriate for reasons discussed in the conclusion! in the
context of spacetime regions of sub-cosmological scale.

III. THE CRITICAL POINT AT pÄ0, NÄ`

In the previous section we have introduced a model
random causets, which depends on two parametersp
10401
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P@0,1# andNPN. For a givenp, the model defines a prob
ability distribution on the set ofN-element causets.4 For p
50, the only causet with nonzero probability, obviously,
theN-antichain. Now letp.0. With a little thought, one can
convince oneself that forN→`, the causet will look very
similar to a chain. Indeed it has been proved@9# ~see also
Ref. @10#! that, asN→` with p fixed at some~arbitrarily
small! positive number,r→1 in probability, where

r[
R

N~N21!/2
5

R

~2
N!

,

R being the number of relations in the causet, i.e., the nu
ber of pairs of causet elementsx, y such thatxay or yax.
Note that theN-chain has the greatest possible number (2

N) of
relations, sor→1 gives a precise meaning to ‘‘looking sim
lar to a chain.’’ We callr theordering fractionof the causal
set, following Ref.@11#.

We see that forN→`, there is a change in the qualitativ
nature of the causet asp varies away from zero, and the poin
p50, N5` ~or p51/N50) is in this sense a critical poin
of the model. It is the behavior of the model near this critic
point which will concern us in this paper.

IV. COARSE GRAINING

An advantageous feature of causal sets is that there e
for them a simple yet precise notion of coarse graining.
coarse grained approximation to a causetC can be formed by
selecting a subcausetC8 at random, with equal selectio
probability for each element, and with the causal order ofC8
inherited directly from that ofC ~i.e., xay in C8 if and only
if xay in C!.

For example, let us start with the 20 element causeC
shown in Fig. 2~which was percolated usingp50.25), and
successively coarse grain it down to causets of 10, 5, an
elements. We see that, at the largest scale shown~i.e., the
smallest number of remaining elements!, C has coarse-
grained in this instance to the 3-element ‘‘V’’ causet. Of

4Strictly speaking this distribution has gauge-invariant mean
only in the limit N→` ~p fixed!; for it is only insofar as the growth
process ‘‘runs to completion’’ that generally covariant questio
can be asked. Notice that this limit is inherent in causal set dyn
ics itself, and has nothing to do with the continuum limit we a
concerned with herein, which sendsp to zero asN→`.
1-3
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FIG. 2. Three successive coarse grainings o
20-element causet.
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course, coarse graining itself is a random process, so fro
single causet ofN elements, it gives us in general, not a
other single causet, but a probability distribution on t
causets ofm,N elements.

A noteworthy feature of this definition of coarse grainin
which in some ways is similar to what is often called ‘‘dec
mation’’ in the context of spin systems, is therandomselec-
tion of a subset. In the absence of any background lat
structure to refer to, no other possibility for selecting a su
causet is evident. Random selection is also recommen
strongly by considerations of Lorentz invariance@12#. The
fact that a coarse grained causet is automatically ano
causet will make it easy for us to formulate precise notio
of continuum limit, running of the coupling constantp, etc.
In this respect, we believe that this model combines pre
sion with novelty in such a manner as to furnish an instr
tive illustration of concepts related to renormalizability, i
dependently of its application to quantum gravity. W
remark in this connection, that transitive percolation
readily embedded in a ‘‘two-temperature’’ statistical m
chanics model, and as such, happens also to be ex
soluble in the sense that the partition function can be co
puted exactly@13,14#.

V. THE LARGE SCALE EFFECTIVE THEORY

In Sec. II we described a ‘‘microscopic’’ dynamics fo
causal sets~that of transitive percolation! and in Sec. IV we
10401
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defined a precise notion of coarse graining~that of random
selection of a sub-causal set!. On this basis, we can produc
an effective ‘‘macroscopic’’ dynamics by imagining that
causetC is first percolated withN elements and then coars
grained down tom,N elements. This two-step process co
stitutes an effective random procedure for generatingm ele-
ment causets depending~in addition tom! on the parameters
N and p. In causal set theory, number of elements cor
sponds to spacetime volume, so we can interpretN/m as the
factor by which the ‘‘observation scale’’ has been increas
by the coarse graining. If, then,V0 is the macroscopic vol-
ume of the spacetime region constituted by our causet, an
we takeV0 to be fixed asN→`, then our procedure for
generating causets ofm elements provides the effective dy
namics at volume-scaleV0 /m @i.e., length scale (V0 /m)1/d

for a spacetime of dimensiond#.
What does it mean for our effective theory to have a co

tinuum limit in this context? Our stochastic microscopic d
namics gives, for each choice ofp, a probability distribution
on the set of causal setsC with N elements, and by choosin
m, we determine at which scale we wish to examine
corresponding effective theory. This effective theory is its
just a probability distributionf m on the set ofm-element
causets, and so our dynamics will have a well defined c
tinuum limit if there exists, asN→`, a trajectoryp5p(N)
along which the corresponding probability distributionsf m
on coarse grained causets approach fixed limiting distri
tions f m

` for all m. The limiting theory in this sense is then
1-4
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FIG. 3. Distribution of number
of relations for N54096, p
50.01155.
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sequence of effective theories, one for eachm, all fitting
together consistently.@Thanks to the associative~semigroup!
character of our coarse-graining procedure, the existence
limiting distribution for any givenm implies its existence for
all smallerm. Thus it suffices that a limiting distributionf m
exist for m arbitrarily large.# In general there will exist no
just a single such trajectoryp5p(N), but a one-paramete
family of them ~corresponding to the one real parametep
that characterizes the microscopic dynamics at any fixedN!,
and one may wonder whether all the trajectories will take
the same asymptotic form as they approach the critical p
p51/N50.

Consider first the simplest nontrivial case,m52. Since
there are only two causal sets of size 2, the 2-chain and
2-antichain, the distributionf 2 that gives the ‘‘large scale
physics’’ in this case is described by a single number wh
we can take to bef 2(

d

d ), the probability of obtaining a
2-chain rather than a 2-antichain.@The other probability
10401
f a
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h

f 2(d d) is of course not independent, since classical probab
ties must add up to unity.#

Interestingly enough, the numberf 2(
d

d ) has a direct
physical interpretation in terms of the Myrheim-Meyer d
mension of the fine-grained causetC. Indeed, it is easy to se
that f 2(

d

d ) is nothing but the expectation value of what w
called above the ‘‘ordering fraction’’ ofC. But the ordering
fraction, in turn, determines the Myrheim-Meyer dimensi
d that indicates the dimension of the Minkowski spacetim
Md ~if any! in which C would embed faithfully as an interva
@15,11#. Thus, by coarse graining down to two elements,
are effectively measuring a certain kind of spacetime dim
sionality of C. In practice, we would not expectC to embed
faithfully without some degree of coarse graining, but t
original r would still provide a good dimension estima
since it is, on average, coarse-graining invariant.

As we begin to consider coarse graining to sizesm.2,
the degree of complication grows rapidly, simply because
FIG. 4. Distribution of number
of 4 chains for N54096, p
50.01155.
1-5
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FIG. 5. Ordering fractions as a
function of p for N52048.
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number of partial orders defined onm elements grows rap
idly with m. Form53 there are five possible causal sets

d

d
d, dVd

d,
d

l
d d

, öd
d d

and d d d. Thus the effective dynamics at this ‘‘scale
is given by five probabilities~so four free parameters!. For
m54 there are sixteen probabilities, form55 there are sixty
three, and form56, 7, and 8, the number of probabilities i
respectively, 318, 2045, and 16 999.

VI. EVIDENCE FROM SIMULATIONS

In this section, we report on some computer simulatio
that address directly the question whether transitive perc
tion possesses a continuum limit in the sense defined ab
In a subsequent paper, we will report on simulations addr
ing the subsidiary question of a possible scaling behavio
the continuum limit.

In order that a continuum limit exist, it must be possib
to choose a trajectory forp as a function ofN so that
the resulting coarse-grained probability distributio
10401
s
a-
ve.
s-
in

f 1 , f 2 , f 3 ,..., have well defined limits asN→`. To study
this question numerically, one can simulate transitive per
lation using the algorithm described in Sec. II, while choo
ing p so as to hold constant~say! the m52 distribution f 2
( f 1 being trivial!. Because of the way transitive percolatio
is defined, it is intuitively obvious thatp can be chosen to
achieve this, and that in doing so, one leavesp with no
further freedom. The decisive question then is wheth
along the trajectory thereby defined, the higher distribut
functions, f 3 , f 4 , etc., all approach nontrivial limits.

As we have already mentioned, holdingf 2 fixed is the
same thing as holding fixed the expectation value^r& of or-
dering fractionr 5R/(2

N). To see in more detail why this is
so, consider the coarse graining that takes us from the o
nal causetCN of N elements to a causetC2 of two elements.
Since coarse graining is just random selection, the proba
ity f 2(

d

d ) that C2 turns out to be a 2-chain is just the pro
ability that two elements ofCN selected at random form
2-chain rather than a 2-antichain. In other words, it is just
FIG. 6. Flow of the ‘‘coupling constant’’p as
N→` ~six trajectories!.
1-6



i-

EVIDENCE FOR A CONTINUUM LIMIT . . . PHYSICAL REVIEW D 63 104011
FIG. 7. Six trajectories approaching the crit
cal point atp50, N5`.
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probability that two elements ofCN selected at random ar
causally related. Plainly, this is the same as thefraction of
pairs of elements ofCN such that the two members of th
pair form a relationxay or yax. Therefore, the ordering
fraction r equals the probability of getting a 2-chain whe
coarse grainingCN down to two elements; andf 2(

d

d )
5^r &, as claimed.

This reasoning illustrates, in fact, how one can in pr
ciple determine any one of the distributionsf m by answering
the question ‘‘what is the probability of getting this partic
lar m-element causet from this particularN-element causet if
you coarse grain down tom elements?’’ To compute the
answer to such a question starting with any given causetCN ,
one examines every possible combination ofm elements,
counts the number of times that the combination forms
particular causet being looked for, and divides the total
(m

N). The ensemble mean of the resultingabundance, as we
will refer to it, is then f m(j), wherej is the causet being
looked for. In practice, of course, we would normally use
more efficient counting algorithm than simply examining i
dividually all (m

N) subsets ofCN .

A. Histograms of 2-chain and 4-chain abundances

As explained in the previous subsection, the main com
tational problem, once the random causet has been ge
10401
-

e
y

-
er-

ated, is determining the number of subcausets of differ
sizes and types. To get a feel for how some of the resul
‘‘abundances’’ are distributed, we start by presenting
couple of histograms. Figure 3 shows the numberR of rela-
tions obtained from a simulation in which 15 260 causal s
were generated by transitive percolation withp50.01155,
N54096. Visually, the distribution is Gaussian, in agre
ment with the fact that its ‘‘kurtosis’’

~x2 x̄!4Y ~x2 x̄!2 2

of 2.993 is very nearly equal to its Gaussian value of 3~the
over-bar denotes sample mean!. In these simulations,p was
chosen so that the number of 3-chains was equal on ave
to half the total number possible, i.e., the ‘‘abundance
3-chains,’’ ~number of 3-chains!/(3

N), was equal to1
2 on av-

erage. The picture is qualitatively identical if one coun
4-chains rather than 2-chains, as exhibited in Fig. 4.

@One may wonder whether it was to be expected that th
distributions would appear to be so normal. If the variable
question, here the number of 2-chainsR or the number of
4-chains (C4 , say!, can be expressed as a sum of indep
dent random variables, then the central limit theorem p
vides an explanation. So consider the variablesxi j which are
1 if i a j and zero otherwise. ThenR is easily expressed as
sum of these variables
-
of
FIG. 8. Reduction of error in estimated dia
mond abundance with increasing number
samples.
1-7
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R5(
i , j

xi j .

However, thexi j are not independent, due to transitivit
Apparently, this dependence is not large enough to inter
much with the normality of their sum. The number
4-chainsC4 can be expressed in a similar manner

C45 (
i , j ,k, l

xi j xjkxkl

and similar remarks apply.#
Let us mention that for values ofp sufficiently close to 0

or 1, these distributions will appear skew. This occurs sim
because the numbers under consideration~e.g., the number
of m-chains! are bounded between zero and (m

N) and must
deviate from normality if their mean gets too close to
boundary relative to the size of their standard deviati
Whenever we draw an error bar in the following, we w
ignore any deviation from normality in the correspondi
distribution.

Notice incidentally that the total number of 4-chains po
sible is ( 4

4096)511,710,951,848,960. Consequently, the me

FIG. 9. Flow of the coarse-grained probabilitiesf m for m52.
The 2-chain probability is held at12.

FIG. 10. Flow of the coarse-grained probabilitiesf m for m53.
The 2-chain probability is held at12.
10401
re

y

.

-
n

4-chain abundance5 in our simulation is only
2,745,459,887,579

11,710,951,848,96050.234, a considerably smaller value than t
2-chain abundance ofr 56,722,782/(2

4096)50.802. This was
to be expected, considering that the 2-chain is one of o
two possible causets of its size, while the 4-chain is one
16 possibilities.~Notice also that 4-chains are necessar
less probable than 2-chains, because every coarse-graini
a 4-chain is a 2-chain, whereas the 2-chain can come f
every 4-element causet save the 4-antichain.!

B. Trajectories of p versusN

The question we are exploring is whether there exist,
N→`, trajectoriesp5p(N) along which the mean abun
dances of all finite causets tend to definite limits. To se
such trajectories numerically, we will select some finite ‘‘re
erence causet’’ and determine, for a range ofN, those values
of p which maintain its abundance at some target value.
continuum limit does exist, then it should not matter in t
end which causet we select as our reference, since any o
choice~together with a matching choice of target abundan!
should produce the same trajectory asymptotically. W
would also anticipate that all the trajectories would beha
similarly for largeN, and that, in particular, either all would
lead to continuum limits or all would not. In principle i
could happen that only a certain subset led to continu
limits, but we know of no reason to expect such an even
ality. In the simulations reported here, we have chosen as
reference causets the 2-, 3-, and 5-chains. We have comp
six trajectories, holding the 2-chain abundance fixed at1

2,
1
3,

and 1
10, the 3-chain abundance fixed at1

2 and 0.0814837, and
the 5-chain abundance fixed at1

2. For N, we have used as
large a range as our computers would allow.

Before discussing the trajectories as such, let us hav
look at how the mean 2-chain abundance^r& ~i.e., the mean
ordering fraction! varies with p for a fixed N of 2048, as
exhibited in Fig. 5.~Vertical error bars are displayed in th
figure but are so small that they just look like horizon
lines. The plotted points were obtained from an exact exp
sion for the ensemble average^r &, so the errors come only
from floating point roundoff. The fitting function used in Fig
5 will be discussed in a subsequent paper@14#, where we
examine scaling behavior; see also Ref.@2#.! As one can see
^r& starts at 0 forp50, rises rapidly to near 1 and the
asymptotes to 1 atp51 ~not shown!. Of course, it was evi-
denta priori that ^r& would increase monotonically from 0 t
1 asp varied between these same two values, but it is p
haps noteworthy that its graph betrays no sign of disconti
ity or nonanalyticity~no sign of a ‘‘phase transition’’!. To
this extent, it strengthens the expectation that the trajecto
we find will all share the same qualitative behavior asN
→`.

5From this point on we will usually write simply ‘‘abundance,’’ in
place of ‘‘mean abundance,’’ assuming the average is obvious f
context.
1-8
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FIG. 11. Flow of the coarse-grained probabi
ties f m for m54. The 2-chain probability is held
at 1
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The six trajectories we have simulated are depicted in F
6.6 A higher abundance ofm chains for fixedm leads to a
trajectory with higherp. Also note that, as observed abov
the longer chains require larger values ofp to attain the same
mean abundance, hence a choice of mean abundance5 1

2 cor-
responds in each case to a different trajectory. The traje
ries with ^r& held to lower values are ‘‘higher dimensional
in the sense that̂r &5 1

2 corresponds to a Myrheim-Meye
dimension of 2, whilê r &5 1

10 corresponds to a Myrheim
Meyer dimension of 4. Observe that the plots give the i
pression of becoming straight lines with a common slope
large N. This tends to corroborate the expectation that th
will exhibit some form of scaling with a common exponen
a behavior reminiscent of that found with continuum lim
in many other contexts. This is further suggested by the

that two distinct trajectories@ f 2(
d

d )51/2 and f 3(
d

d
d)

50.0814837], obtained by holding different abundanc
fixed, seem to converge for largeN.

By taking the abscissa to be 1/N rather than log2 N, we
can bring the critical point to the origin, as in Fig. 7. Th
lines which pass through the data points there are just sp
drawn to aid the eye in following the trajectories. Note th
the curves tend to asymptote to thep axis, suggesting thatp
falls off more slowly than 1/N. This suggestion is corrobo
rated by more detailed analysis of the scaling behavior
these trajectories, as will be discussed in Ref.@14#.

C. Flow of the coarse-grained theory along a trajectory

We come finally to a direct test of whether the coar
grained theory converges to a limit asN→`. Independently
of scaling or any other indicator, this is by definition th
criterion for a continuum limit to exist. We have examine
this question by means of simulations conducted for five
the six trajectories mentioned above. In each simulation
proceeded as follows. For each chosenN, we experimentally

6Notice that the error bars are shown rotated in the legend. T
will be the case for all subsequent legends as well.
10401
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found ap sufficiently close to the desired trajectory. Havin
determinedp, we then generated a large number of caus
by the percolation algorithm described in Sec. II.~The num-
ber generated varied from 64 to 40 000.! For each such ran
dom causet, we computed the abundances of the diffe
m-element ~sub!causets under consideration~2-chain,
3-chain, 3-antichain, etc.!, and we combined the results t
obtain the mean abundances we have plotted here, toge
with their standard errors.~The errors shown do not includ
any contribution from the slight inaccuracy in the value ofp
used. Except for the 3- and 5-chain trajectories these er
are negligibly small.!

To compute the abundances of the 2-, 3-, and 4-orders
a given causet, we randomly sampled its four-element s
causets, counting the number of times each of the sixt
possible 4-orders arose, and dividing each of these count
the number of samples taken to get the corresponding a
dance. As an aid in identifying to which 4-order a sampl
subcauset belonged we used the following invariant, wh
distinguishes all of the sixteen 4-orders, save two pairs:

I ~S!5)
xPS

~21upast~x!u!.

is FIG. 12. Flow of the coarse-grained probabilitiesf m for m52.
The 3-chain probability is held at 0.0814837.
1-9
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FIG. 13. Flow of the coarse-grained probabi
ties f m for m53. The 3-chain probability is held
at 0.0814837.
-
to
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in-
Here, past(x)5$yPSuyax% is the exclusive past of the ele
mentx and upast(x)u is its cardinality. Thus, we associate
each element of the causet, a number which is two more
the cardinality of its exclusive past, and we form the prod
of these numbers~4, in this case! to get our invariant.~For
example, this invariant is 90 for the ‘‘diamond’’ poset

d

d
dÌd.!

The number of samples taken from anN element cause
was chosen to beA2(4

N), on the grounds that the probabilit
o
se

e
a
e

a
his

s

10401
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to get the same four element subset twice becomes ap
ciable with more than this many samples. Numerical te
confirmed that this rule of thumb tends to minimize the sa
pling error, as seen in Fig. 8.

Once one has the abundances of all the 4-orders,
abundances of the smaller causets can be found by fur
coarse graining. By explicitly carrying out this coarse gra
ing, one easily deduces the following relationships:
-

sets
.
he
s
ate
s,
off
g

In the first six equations, the coefficient before each term
the right is the fraction of coarse-grainings of that cau
which yield the causet on the left.

In Figs. 9, 10, and 11, we exhibit how the coarse-grain
probabilities of all possible 2, 3, and 4 element causets v
as we follow the trajectory along which the coarse-grain
2-chain probabilityf 2(

d

d )5r is held at 1
2. By design, the

coarse-grained probability for the 2-chain remains flat
50%, so Fig. 9 simply shows the accuracy with which t
was achieved.~Observe the scale on the vertical axis.! Notice
that, sincef 2(

d

d ) and f 2(d d) must sum to 1, their error bar
n
t

d
ry
d

t

are necessarily equal.~The standard deviation in the abun
dances decreases with increasingN. The ‘‘blip’’ around
log2 N59 occurs simply because we generated fewer cau
at that and larger values ofN to reduce computational costs!

The crucial question is whether the probabilities for t
three and four element causets tend to definite limits aN
tends to infinity. Several features of the diagrams indic
that this is indeed occurring. Most obviously, all the curve
except possibly a couple in Fig. 11, appear to be leveling
at largeN. But we can bolster this conclusion by observin
1-10
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FIG. 14. Flow of the coarse-grained probabi
ties f m for m54. The 3-chain probability is held
at 0.0814837.
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in which direction the curves are moving, and consider
their inter-relationships.

For the moment let us focus our attention on Fig. 10A
priori there are five coarse-grained probabilities to be f
lowed. That they must add up to unity reduces the degree
freedom to 4. This is reduced further to 3 by the observat
that, due to the time-reversal symmetry of the percolat

dynamics, we must havef 3( dVd

d)5 f 3(öd
d d

), as duly manifested
in their graphs. Moreover, all five of the curves appear to
monotonic, with the curves foröd

d d
, dVd

d, and d d d rising, and the
curves for

d

d
d and d

l
d d

falling. If we accept this indication of
monotonicity from the diagram, then first of all, every pro
ability f 3(j) must converge to some limiting value, becau
monotonic bounded functions always do; and some of th
limits must be nonzero, because the probabilities must

up to 1. Indeed, sincef 3( dVd

d! and f 3(öd
d d

) are rising, they must
converge to some nonzero value, and this value mus
below 1

2 in order that the total probability not exceed unit
In consequence, the rising curvef 3( d d d) must also con-
verge to a nontrivial probability~one which is neither 0 no
10401
g

-
of
n
n

e

e
se
d

ie

1!. Taken all in all, then, it looks very much like them53
coarse-grained theory has a nontrivialN→` limit, with at
least three out of its five probabilities converging to no
trivial values.

Although the ‘‘rearrangement’’ of the coarse-graine
probabilities appears much more dramatic in Fig. 11, sim
arguments can be made. Excepting initial ‘‘transients,’’
seems reasonable to conclude from the data that monoto
ity will be maintained. From this, it would follow that the
probabilities for

d

\ /
ddl

d and
d/\d

d

d
~which must be equal by time

reversal symmetry! and the other rising probabilitiesdl
dX

d

l
d
,

d d d d, and
d

d
dÌd, all approach nontrivial limits. The coarse

graining to 4 elements, therefore, would also admit a c
tinuum limit with a minimum of 4 out of the 11 independe
probabilities being nontrivial. To the extent that them52
andm53 cases are indicative, then, it is reasonable to c
clude that percolation dynamics admits a continuum lim
which is nontrivial at all ‘‘scales’’m.

The question suggests itself, whether the flow of t
coarse-grained probabilities would differ qualitatively if w
li-
FIG. 15. Flow of the coarse-grained probabi
ties f m for m53. The 2-chain probability is held
at 1

10.
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FIG. 16. Flow of the coarse-grained probabi
ties f m for m54. The 2-chain probability is held
at 1

10. Only those curves lying high enough to b
seen distinctly have been labeled.
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held fixed some abundance other than that of the 2-chain
Figs. 12, 13, and 14, we display results obtained by fixing
3-chain abundance~its value having been chosen to make t
abundance of 2-chains be 1/2 whenN5216). Notice in Fig.
12 that the abundance of 2-chains varies considerably a
this trajectory, whilst that of the 3-chain~in Fig. 13! of
course remains constant. Once again, the figures sug
strongly that the trajectory is approaching a continuum lim
with nontrivial values for the coarse-grained probabilities
at least the 3-chain, the ‘‘V’’ and the ‘‘L’’ ~and in conse-
quence, of the 2-chain and 2-antichain!.

All the trajectories discussed so far produce causets w
an ordering fractionr close to 1

2 for large N. As mentioned
earlier, r 5 1

2 corresponds to a Myrheium-Meyer dimensio
of two. Figures 15 and 16 show the results of a simulat
along the ‘‘four-dimensional’’ trajectory defined byr 5 1

10 .
~The valuer 5 1

10 corresponds to a Myrheim-Meyer dimen
sion of 4.! Here the appearance of the flow is much le
elaborate, with the curves arrayed simply in order of incre
ing ordering fraction, d d d and d d d d being at the top and
d

d
d and ~imperceptibly!

d

d
d
d

at the bottom. As before, all th
curves are monotone as far as can be seen. Aside from
10401
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the

intrinsic interest of the cased54, these results indicate tha
our conclusions drawn ford near 2 will hold good for all
largerd as well.

Figure 17 displays the flow of the coarse-grained pro
abilities from a simulation in the opposite situation where t
ordering fraction is much greater than1

2 ~the Myrheim-Meyer
dimension is down near 1!. Shown are the results of coars
graining to three element causets along the trajectory wh
holds the 3-chain probability to12. Also shown is the 2-chain
probability. The behavior is similar to that of Fig. 15, exce
that here the coarse-grained probability rises with the ord
ing fraction instead of falling. This occurs because constra

ing f 3(
d

d
d) to be 1

2 generates rather chainlike causets who
Myrheim-Meyer dimension is in the neighborhood of 1.3
as follows from the approximate limiting valuef 2(

d

d )
'0.8. The slow, monotonic, variation of the probabilities
large N, along with the appearance of convergence to n
zero values in each case, suggests the presence of a
trivial continuum limit for r near unity as well.

Figures 18 and 19 present the results of a final set
simulations, the only ones we have carried out which exa
li-
FIG. 17. Flow of the coarse-grained probabi
ties f m for m53. The 3-chain probability is held
at 1

2.
1-12
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FIG. 18. Flow of the coarse-grained probabi
ties f m(m chain) for m52 to 7. The 5-chain
probability is held at12.
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ical
ined the abundances of causets containing more than
elements. In these simulations, the mean 5-chain abund
f 5(5-chain) was held at12, producing causets that were eve
more chainlike than before~Myrheim-Meyer dimension
'1.1!. In Fig. 18, we track the resulting abundances of allk-
chains fork between 2 and 7, inclusive.~We limited our-
selves to chains, because their abundances are relatively
to determine computationally.! As in Fig. 17, all the coarse
grained probabilities appear to be tending monotonically
limits at largeN. In fact, they look amazingly constant ove
the whole range ofN, from 5 to 215. One may also observ
that the coarse-grained probability of a chain decrea
markedly~and almost linearly over the range examined! with
its length, as one might expect. It appears also that
k-chain curves forkÞ5 are ‘‘expanding away’’ from the
5-chain curve, but only very slightly. Figure 19 displays t
flow of the probabilities for coarse-grainings to four el
ments. It is qualitatively similar to Figs. 15–17, with ve
flat probability curves, and here with a strong preference
causets having many relations over those having few. C
paring Figs. 19 and 16 with Figs. 14 and 11, we observe
trajectories which generate causets that are rather chai
or antichainlike seem to produce distributions that conve
more rapidly than those along which the ordering fract
takes values close to12.

In the way of further simulations, it would be extreme
interesting to look for continuum limits of some of the mo
general dynamical laws discussed in Sec. 4.5 of Ref.@1#. In
doing so, however, one would no longer have available~as
one does have for transitive percolation! a very fast~yet eas-
ily coded! algorithm that generates causets randomly in
cord with the underlying dynamical law. Since the sequen
growth dynamics of Ref.@1# is produced by a stochasti
process defined recursively on the causal set, it is ea
mimicked algorithmically; but the most obvious algorithm
that do so are too slow to generate efficiently causets of
size we have discussed in this paper. Hence, one would
ther have to devise better algorithms for generating cau
‘‘one off,’’ or one would have to use an entirely differen
method to obtain the mean abundances, such as a M
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Carlo simulation of the random causet.

VII. CONCLUDING COMMENTS

Transitive percolation is a discrete dynamical theory ch
acterized by a single parameterp lying between 0 and 1.
Regarded as a stochastic process, it describes the st
growth of a causal set by the continual birth or ‘‘accretion
of new elements. If we limit ourselves to that portion of th
causet comprising the elements born between stepN0 and
stepN1 of the stochastic process, we obtain a model of r
dom posets containingN5N12N0 elements. This is the
model we have studied in this paper.

Because the underlying process is homogeneous,
model does not depend onN0 or N1 separately, but only on
their difference. It is therefore characterized by just two p
rametersp andN. One should be aware that this truncation
a finite model is not consistent with discrete general cov
ance, because it is the subset of elements with certainlabels
that has been selected out of the larger causet, rather th
subset characterized by any directly physical conditi
Thus, we have introduced an ‘‘element of gauge’’ and
hope that we are justified in having neglected it. That is,
hope that the random causets produced by the model
have actually studied are representative of the type of su
der that one would obtain by percolating a much larg
~eventually infinite! causet and then using a label-invaria
criterion to select a subset ofN elements.

Leaving this question aside for now, let us imagine th
our model represents an interval~say! in a causetC under-
lying some macroscopic spacetime manifold. With this i
age in mind, it is natural to interpret a continuum limit as o
in which N→` while the coarse-grained features of the i
terval in question remain constant. We have made this no
precise by defining coarse graining as the random selec
of a suborder whose cardinalitym measures the ‘‘coarse
ness’’ of our approximation. A continuum limit then is de
fined to be one in whichN tends to` such that, for each
finite m, the induced probability distributionf m on the set of
m-element posets converges to a definite limit, the phys
1-13
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FIG. 19. Flow of the coarse-grained probabi
ties f m for m54. The 5-chain probability is held
at 1
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meaning being that the dynamics at the corresponding le
scale is well defined. Now, how could our modelfail to
admit such a limit?

In a field-theoretic setting, failure of a continuum limit t
exist typically means that the coarse-grained theory loses
rameters as the cutoff length goes to zero. For example,lf4

scalar field theory in 4 dimensions depends on two par
eters, the massm and the coupling constantl. In the con-
tinuum limit, l is lost, although one can arrange form to
survive.~At least this is what most workers believe occur!
Strictly speaking, one should not say that a continuum li
fails to exist altogether, but only that the limiting theory
poorer in coupling constants than it was before the limit w
taken. Now in our case, we have only one parameter to s
with, and we have seen that it does survive asN→` since
we can, for example, choose freely them52 coarse-grained
probability distributionf 2 . Hence, we need not fear such
loss of parameters in our case.

What about the opposite possibility? Could the coar
grained theorygain parameters in theN→` limit, as might
occur if the distributionsf m were sensitive to the fine detai
of the trajectory along whichN andp approached the ‘‘criti-
cal point’’ p50, N5`?7 Our simulations showed no sign o
such sensitivity, although we did not look for it specificall
~Compare, for example, Fig. 10 with Fig. 13 and Fig. 11 w
14.!

A third way the continuum limit could fail might perhap
be viewed as an extreme form of the second. It might hap
that, no matter how one chose the trajectoryp5p(N), some
of the coarse-grained probabilitiesf m(j) oscillated indefi-
nitely asN→`, without ever settling down to fixed value
Our simulations leave little room for this kind of breakdow
since they manifest the exact opposite kind of behav
namely monotone variation of all the coarse-grained pr
abilities we ‘‘measured.’’

7Such an increase of the parameter set through a limiting pro
seems logically possible, although we know of no example o
from field theory or statistical mechanics, unless one counts
extra global parameters that come in with ‘‘spontaneous symm
breaking.’’
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Finally, a continuum limit could exist in the technica
sense, but it still could be effectively trivial~once again
reminiscent of thelf4 case—if you care to regard a fre
field theory as trivial.! Here triviality would mean that
all—or almost all—of the coarse-grained probabilitiesf m(j)
converged either to 0 or to 1. Plainly, we can avoid this for
least some of thef m(j). For example, we could choose anm
and hold eitherf m ~m-chain! or f m ~m-antichain! fixed at any
desired value. @Proof: as p→1, f m(m-chain)→1 and
f m(m-antichain)→0; as p→0, the opposite occurs.# How-
ever, in principle, it could still happen that all the otherf m
besides these two went to 0 in the limit.~Clearly, they could
not go to 1, the other trivial value.! Once again, our simula
tions show the opposite behavior. For example, we saw
f 3( dVd

d) increased monotonically along the trajectory of F
10.

Moreover, even without reference to the simulations,
can make this hypothetical ‘‘chain-antichain degenerac
appear very implausible by considering a ‘‘typical’’ causetC
generated by percolation forN@1 with p on the trajectory
that, for some chosenm, holds f m(m-chain) fixed at a value
a strictly between 0 and 1. Then our degeneracy would in
that f m(m-antichain)512a and f m(x)50 for all otherx.
But this would mean that, in a manner of speaking, ‘‘ever
coarse graining ofC to melements would be either a chain o
an antichain. In particular the causetd

l
d d

could not occur as a
subcauset ofC; whence, sinced

l
d d

is a subcauset of ever
m-element causet except the chain and the antichain,C itself
would have to be either an antichain or a chain. But it
absurd that percolation for any parameter valuep other than
0 and 1 would produce a ‘‘bimodal’’ distribution such thatC
would have to be either a chain or an antichain, but noth
in between.@It seems likely that similar arguments could b
devised against the possibility of similar, but slightly le
trivial trivial continuum limits, for example a limit in which
f m(x) would vanish unlessx were a disjoint union of chains
and antichains.#

Putting all this together, we have persuasive evidence
the percolation model does admit a continuum limit, with t
limiting model being nontrivial and described by a sing
‘‘renormalized’’ parameter or ‘‘coupling constant.’’ Further
more, the associated scaling behavior one might anticipat
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EVIDENCE FOR A CONTINUUM LIMIT . . . PHYSICAL REVIEW D 63 104011
such a case is also present, as we will discuss further in
@14#.

But is the word ‘‘continuum’’ here just a metaphor, or ca
it be taken more literally? This depends, of course, on
extent to which the causets yielded by percolation dynam
resemble genuine spacetimes. Based on the meager evid
available at the present time, we can only answer ‘‘it is p
sible.’’ On one hand, we know@1# that any spacetime pro
duced by percolation would have to be homogeneous, s
as de Sitter space or Minkowski space. We also know, fr
simulations in progress, that two very different dimensi
estimators seem to agree on percolated causets, which
might not expect, were there no actual dimensions for th
to be estimating. Certain other indicators tend to beh
poorly, on the other hand, but they are just the ones that
not invariant under coarse graining~they are not ‘‘RG invari-
ants’’!, so their poor behavior is consistent with the expe
tation that the causal set will not be manifoldlike at t
smallest scales~‘‘foam’’ !, but only after some degree o
coarse-graining.

Finally, there is the ubiquitous issue of ‘‘fine-tuning’’ o
‘‘large numbers.’’ In any continuum situation, a large num
ber is being manifested~an actual infinity in the case of
true continuum! and one may wonder where it came from.
our case, the large numbers werep21 andN. For N, there is
no mystery: unless the birth process ceases,N is guaranteed
to grow as large as desired. But why shouldp be so small?
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Here, perhaps, we can appeal to the preliminary results
Dou mentioned in the Introduction. If—cosmological
considered—the causet that is our universe has cy
through one or more phases of expansion and recolla
then its dynamics will have been filtered through a kind
‘‘temporal coarse-graining’’ or ‘‘RG transformation’’ tha
tends to drive it toward transitive percolation. But what w
did not mention earlier was that the parameterp of this ef-
fective dynamics scales asN0

21/2, whereN0 is the number of
elements of the causet preceding the most recent ‘‘bounc
Since this is sure to be an enormous number if one w
long enough,p is sure to become arbitrarily small if suffi
ciently many cycles occur. The reason for the near flatnes
spacetime—or if you like for the large diameter of the co
temporary universe—would then be just that the underly
causal set is very old—old enough to have accumulated
us say, 10480 elements in earlier cycles of expansion, contra
tion and reexpansion.
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