PHYSICAL REVIEW D, VOLUME 63, 104011

Evidence for a continuum limit in causal set dynamics
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We find evidence for a continuum limit of a particular causal set dynamics which depends on only a single
“coupling constant”p and is easy to simulate on a computer. The model in question is a stochastic process
that can also be interpreted as one-dimensional directed percolation, or in terms of random graphs.
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[. INTRODUCTION of the generic family. We have checked in particular that
“originary percolation” (see Sec. Mis such a limit

In an earlier pap€frl] we investigated a type of causal set  Now among these dynamical laws, the one resulting from
dynamics that can be described agckssically stochastic the choiceq,=q" is one of the easiest to work with, both
process of growth or “accretion.” In a language natural to conceptually and for purposes of computer simulation. De-
that dynamics, the passage of time consists in the continudihed by a single real parametgie [0,1], it is described in
birth of new elements of the causal set and the history of anore detail in Sec. Il below. In Refl1], we referred to it as
sequence of such births can be represented as an upward patinsitive percolationbecause it can be interpreted in terms
through a poset of all finite causal sets. We called such af a random “turning on” of nonlocal bondavith probabil-
stochastic processsequential growth dynamidsecause the ity p=1—q) in a one-dimensional lattice. Another thing
elements arise singly, rather than in pairs or larger multipletsmaking it an attractive special case to work with is the avail-

A sequential description of this sort is advantageous imgbility in the mathematics literature of a number of results
representing the future as developing out of the past, but ogoverning the asymptotic behavior of posets generated in
t_he other hz_;md it_could_ seem to rely on an external par_ametqhis mannei2,3].
time (the “time” in which the growth occurg thereby vio-  ajde from its convenience, this percolation dynamics, as
lating the principle that physical time is encoded in the in-yye il call it, possesses other distinguishing features, in-
trinsic order relation of the causal_set and not_hmg elge: I];:Iuding an underlying time-reversal invariance and a special
physically real, such a parameter time would yield a distin- elevance to causal set cosmology, as we describe briefly
guished labeling of the elements and thereby a notion o elow. In this paper, we search for évidence of a continuum
“absolute _simultaneity,” in cor?tr_adiction to_ the lessons of limit of percolation dynamics.
both special and general relativity. To avoid such a conse- One might question whether a continuum limit is even

quence, we zpstutlate?].ahprlnC|pIebcd1§$;etefgtﬁnetrhal COVa&-  yesirable in a fundamentally discrete theory, but a continuum
fance according to which no probabiiity of the Iheory can approximationin a suitable regime is certainly necessary if
depend on—and no physically meaningful question can refe

. ; . the theory is to reproduce known physics. Given this, it
to—the imputed order of births, except insofar as that Ordegeems only a small step to a rigorous continuum limit, and

reflects the intrinsic precedence relation of the causal set itéonversely the existence of such a limit would encourage

self. : . L )
. . . the belief that the theory is capable of yielding continuum
To discrete general covariance, we added two other prmbhysics with sufficient accuracy.

ciples that we calle®Bell causalityandinternal temporality Perhaps an analogy with kinetic theory can guide us here
The first is a discrete analog of the condition that no influ- n quantum gravity, the discreteness scale is set presumabl)./
ence can propagate faster than light, and the second ;injp the Planck Ienéthz(xﬁ)l’z (whereK:87-rG): whose '
requires that no e.'e”.‘e”t be born to the past of any ex's.tmganishing therefore signals a continuum limit. In kinetic
element. These principles led us almost uniquely to a family theory, the discreteness scales are set by the mean frek path
of dynamical Iaws(stochastic_process)eparametriz_eq by a and thé mean free timg both of which must go to zero for
cquntable sequence of coupling constapis I_n add|t|on_ to ];;\ description by partial differential equations to become ex-
this generic family, there are some exceptional families of ot Corresponding to these two independent length and time
solutions, but we conjecture that they are all singular Iimitssca'Ies are two “coupling constants:” the diffusion constant
D and the speed of sountl,,, Just as the value of the
gravitational coupling consta@# reflects(presumably the
magnitude of the fundamental spacetime discreteness scale,
so the values oD and ¢4 reflect the magnitudes of the
microscopic parametebs and = according to the relations
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This last condition guarantees that the “parameter time” of our
stochastic procesis compatible withphysical temporality, as re-
corded in the order relatior that gives the causal set its structure.
In a broader sense, general covariance itself is also an aspect of
internal temporality, since it guarantees that the parameter time 2In the notation of Ref[1], it is the A— oo limit of the dynamics
adds nothing tahe relation<. given byty=1,t,=At", n=1,2,3....
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A2 A choose to hold fixed some convenient invariants of that sub-
D~ - Csound™ - causal set, one of which can be interprétasl the dimension

of the spacetime region it constitutes. As we will see, the

or conversely resulting scheme has much in common with the kind of
coarse graining that goes into the definition of renormaliz-

D D ability in quantum field theory. For this reason, we believe it

A~ C v T can serve also as an instructive “laboratory” in which this

sound Csound

concept, and related concepts such as “running coupling

In a continuum limit of kinetic theory, therefore, we must constant” and “nontrivial fixed point,” can be considered
have eitheD —0 or Ce,ung—. In the former case, we can from a fresh perspective. In the remaining sections of this
hold Ceyung fixed, but we get a purely mechanical macro- paper we d_ef|ne transitive pe_r(_:olanon dynamics more pre-
scopic world, without diffusion or viscosity. In the latter CiSely, specify the coarse-graining procedure we have used,
case, we can hol® fixed, but we get a “purely diffusive” report on the simulations we have run looking for a con-
world with mechanical forces propagating at infinite speedfinuum limit in the sense thereby defined, and offer some
In each case we get a well defined—but defective—concluding comments.

continuum physics, lacking some features of the true, atom- Definitions used in the sequeCausal set theory postu-
istic world. lates that spacetime, at its most fundamental level, is dis-

If we can trust this analogy, then something very similarcrete, and that its macroscopic geometrical properties reflect

must hold in quantum gravity. To serdo zero, we must & deep structure which is purely order theoretic in nature.
make eitherG or # vanish. In the former case. we would This deep structure is taken to be a partial order and called a

expect to obtain a quantum world with the metric decouple@usal setor “causet” for shor}. For an introduction to
from nongravitational matter: that is, we would expect to getc@usal set theory, s¢4—7]. In this section, we merely recall
a theory of quantum field theory in a purely classical back-S0me definitions which we will be using in the sequel.
ground spacetime solving the source-free Einstein equations. /A (Partial) order or posetis a setS endowed with a rela-
In the latter case, we would expect to obtain classical generdion < which is
relativity. Thus, there might be two distinct continuum limits
of quantum gravity, each physically defective in its own
way, but nonetheless well defined.

For our purposes in this paper, the important point is that,
although we would not expect quantum gravity to exist as a
continuum theory, it could have limits which do, and one of

these limits might be classical general relativity. It is thus(irreflexivity is merely a convention; with it, acyclicity is
sensible to inquire whether one of the classical causal seictually redundant.For example, the events of Minkowski
dynamics we have defined describes classical spacetimes. §3ace(in any dimensionform a poset whose order relation

the following, we make a beginning on this question by askis the usual causal order. In an ord@rthe interval int(x,y)
ing whether the special case of “percolated causal sets,” ag defined to be

we will call them, admits a continuum limit at all.

Of course, the physical content of any continuum limit we int(x,y)={ze g x<z<ys}.
might find will depend on what we hold fixed in passing to
the limit, and this in turn is intimately linked to how we An order is said to béocally finiteif all its intervals are finite
choose the coarse-graining procedure that defines the effedhave finite cardinality A causal sets a locally finite order.
tive macroscopic theory whose existence the continuum limitt will be helpful to have names for some small causal sets.
Signifies_ Obvious|y, we will want to senN— for any Figure 1 prOVideS such names for the causal sets with three
continuum limit, but it is less evident how we should coarseor fewer elements.
grain and what coarse grained parameters we want to hold
fixed in taking the limit. Indeed, the appropriate choices will Il. THE DYNAMICS OF TRANSITIVE PERCOLATION
depend on whether the macroscopic spacetime region we
have in mind is, to take some naturally arising examplies,
a fixed bounded portion of Minkowski space of some dimen
sion, or (i) an entire cycle of a Friedmann universe from
initial expansion to final recollapse, 0iii) an N-dependent
portion of an unbounded spacetinv that expands to en-
compass all oM asN—-oe. In the sequel, we will have in
mind primarily the first of the three examples just listed.
Without attempting an definitive analysis of the coarse-
graining question, we will simply adopt the simplest defini-
tions that seem to us to be suited to this example. More
specifically, we will coarse grain by randomly selecting a SThis interpretation is strictly correct only if the causal set forms
sub-causal set of a fixed number of elements, and we wilaninterval or “Alexandrov neighborhood” within the spacetime.

transitive: Vx,y,ze S, x<y and y<z=x<z,
acyclic: Vx,ye S, x<y=y<«Xx,

irreflexive: VxeS, Xx«X.

Regarded as a sequential growth dynamics of the sort de-
rived in Ref.[1], transitive percolation is described by one
free parameteq such thatg,=q". This is equivalent(at
stageN of the growth procesgto using the following “per-
colation” algorithm to generate a random causet.

(1) Start withN elements labeled 0,1,,2. . N—1.

(2) With a fixed probabilityp (=1—q), introduce a re-
lation i <] between every pair of elements labeledndj,
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1-chain

! .o

2-chain 2-antichain FIG. 1. Names for small causets.

: " .OA .

3-chain nyn L "A" 3-antichain

wherei {0---N—2} andj e{i+1---N—1}. _ _ €[0,1] andN e N. For a givenp, the model defines a prob-
(3) Form the transitive closure of these relatidesy., if gty distribution on the set oN-element causefsFor p

2<5 and 5<8 then enforce that 28). =0, the only causet with nonzero probability, obviously, is

C'tf'veiln thed5|fmpI|C|ty Ofl th's.tr?yn‘m'fal dmod_eli b_?thﬁcon- the N-antichain. Now lefp>0. With a little thought, one can
ceptually and trom an algorthmic stand point, it ofters a ., ince oneself that foN—oo, the causet will look very

stepping stone” allowing us to look into some general fea- similar to a chain. Indeed it has been proved (see also

tures of causal set dynamicéThe name ‘“percolation Ref. [10]) that, asN—c with p fixed at some(arbitrarily

comes from thinking of a relatiom<j as a “bond” or o . I
“channel” betweeni andj.) smal)) positive numberr—1 in probability, where

There exists another model which is very similar to tran-
sitive percolation, called “originary transitive percolation.” r= L: E
The rule for randomly generating a causet is the same as for N(N-1)/2 (3)’
transitive percolation, except that each new element is re-
quired to be related to at least one existing element. AlgoR being the number of relations in the causet, i.e., the num-
rithmically, we generate potential elements one by one, exber of pairs of causet elementsy such thax<y or y<x.
actly as for plain percolation, but discard any such elemenKote that theN-chain has the greatest possible numggraf
which would be unrelated to all previous elements. Causetgelations, sod — 1 gives a precise meaning to “looking simi-
formed with this dynamics always have a single minimaljar to a chain.” We calf the ordering fractionof the causal
element, an “origin.” set, following Ref[11].

Recent work by Dou8] suggests that originary percola- e see that foN—, there is a change in the qualitative
tion might have an important role to play in cosmology. No- nature of the causet @svaries away from zero, and the point
tice first that, if a given cosmological “cycle” ends with the p=0, N=c (or p=1/N=0) is in this sense a critical point
causet collapsing down to a single element, then the ensuingf the model. It is the behavior of the model near this critical

reexpansion is necessarily given by an originary causehoint which will concern us in this paper.
Now, in the limited context of percolation dynamics, Alon

et al. have proved rigorouslyf3] that such cosmological
“bounces” (which they callposts occur with probability 1
(if p>0), from which it follows that there are infinitely ~ An advantageous feature of causal sets is that there exists
many cosmological cycles, each cycle but the first having thgor them a simple yet precise notion of coarse graining. A
dynamics of originary percolation. For more general choicegoarse grained approximation to a caudetan be formed by
of the dynamical parametetg, of Ref.[1], posts can again selecting a subcaus&’ at random, with equal selection
occur, but now theg, take on new effective values in each probability for each element, and with the causal orde bf
cycle, related to the old ones by the action of a sort of “cos-inherited directly from that o€ (i.e.,x<y in C' if and only
mological renormalization group;” and Do8] has found jf x<y in C).
evidence that Original’y percolation is a “stable fixed pOint” For examp|e, |et us start with the 20 e|ement calSet
of this action, meaning that the universe would tend toshown in Fig. 2(which was percolated using=0.25), and
evolve toward this behavior, no matter what dynamics it besyccessively coarse grain it down to causets of 10, 5, and 3
gan with. elements. We see that, at the largest scale shipwn the

It would thus be of interest to investigate the continuumsmallest number of remaining elementC has coarse-

limit of originary percolation as well as plain percolation. In grained in this instance to the 3-elemen¥™ causet. Of
the present paper, however, we limit ourselves to the latter

type, which we believe is more appropridtgbeit not fully
appropriate for reasons discussed in the conclusiorthe
context of spacetime regions of sub-cosmological scale.

IV. COARSE GRAINING

4Strictly speaking this distribution has gauge-invariant meaning
only in the limitN— <o (p fixed); for it is only insofar as the growth
lIl. THE CRITICAL POINT AT p=0, N=c process ‘“runs to completion” that generally covariant questions
can be asked. Notice that this limit is inherent in causal set dynam-
In the previous section we have introduced a model ofcs itself, and has nothing to do with the continuum limit we are
random causets, which depends on two parametprs, concerned with herein, which sengdo zero asN—o.
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FIG. 2. Three successive coarse grainings of a
20-element causet.

AGAIN:

@*

course, coarse graining itself is a random process, so from @efined a precise notion of coarse grainifigat of random
single causet oN elements, it gives us in general, not an- selection of a sub-causal eOn this basis, we can produce
other single causet, but a probability distribution on thean effective “macroscopic”’ dynamics by imagining that a
causets om<N elements. causetC is first percolated withN elements and then coarse

A noteworthy feature of this definition of coarse graining, grained down tan<N elements. This two-step process con-
which in some ways is similar to what is often called “deci- stitutes an effective random procedure for generatingle-
mation™ in the context of spin systems, is thendomselec-  ment causets dependifig addition tom) on the parameters
tion of a subset. In the absence of any background lattic® and p. In causal set theory, number of elements corre-
structure to refer to, no other possibility for selecting a subsponds to spacetime volume, so we can interfyifen as the
causet is evident. Random selection is also recommendegctor by which the “observation scale” has been increased
strongly by considerations of Lorentz invariande?]. The  py the coarse graining. If, thelV,, is the macroscopic vol-
fact that a coarse grained causet is automatically anothglme of the spacetime region constituted by our causet, and if
causet will make it easy for us to formulate precise notionsye takeV, to be fixed asN—, then our procedure for
of continuum limit, running of the coupling constaptetc.  generating causets of elements provides the effective dy-
In this respect, we believe that this model combines precinamics at volume-scal¥,/m [i.e., length scale\(,/m)d
sion with novelty in such a manner as to furnish an instrucfgr g spacetime of dimensicufi.
tive illustration of concepts related to renormalizability, in-  \what does it mean for our effective theory to have a con-
dependently of its application to quantum gravity. Wetinyum limit in this context? Our stochastic microscopic dy-
remark in this connection, that transitive percolation iSpamics gives, for each choice pf a probability distribution
readily embedded in a “two-temperature” statistical me- on the set of causal seBwith N elements, and by choosing
chanics model, and as such, happens also to be exacthy we determine at which scale we wish to examine the
soluble in the sense that the partition function can be comegrresponding effective theory. This effective theory is itself
puted exactly13,14. just a probability distributionf, on the set ofm-element
causets, and so our dynamics will have a well defined con-
tinuum limit if there exists, abl—, a trajectoryp=p(N)
along which the corresponding probability distributiohs

In Sec. Il we described a “microscopic” dynamics for on coarse grained causets approach fixed limiting distribu-
causal setsthat of transitive percolatiorand in Sec. IV we tions f}, for all m. The limiting theory in this sense is then a

-/

V. THE LARGE SCALE EFFECTIVE THEORY
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skewness=-0.027
kurtosis=2.993

450 4

375

300 -

FIG. 3. Distribution of number
225 - of relations for N=4096, p
=0.01155.

150

75

0+
6,630,255 mean=6,722,782 6,822,375

number of relations
15.260 causets

sequence of effective theories, one for eawhall fitting  f,(s ¢) is of course not independent, since classical probabili-
together consistentlyThanks to the associatieemigroup  ties must add up to unity.
character of our coarse-graining procedure, the existence of a Interestingly enough, the numbdi,(3) has a direct
limiting distribution for any givermimplies its existence for physical interpretation in terms of the Myrheim-Meyer di-
all smallerm. Thus it suffices that a limiting distributiofy,  mension of the fine-grained causgtindeed, it is easy to see
exist for m arbitrarily large] In general there will exist not thatf,(3) is nothing but the expectation value of what we
just a single such trajectorg=p(N), but a one-parameter called above the “ordering fraction” of. But the ordering
family of them (corresponding to the one real paramater fraction, in turn, determines the Myrheim-Meyer dimension
that characterizes the microscopic dynamics at any fied d that indicates the dimension of the Minkowski spacetime
and one may wonder whether all the trajectories will take onVi® (if any) in which C would embed faithfully as an interval
the same asymptotic form as they approach the critical point15,11]. Thus, by coarse graining down to two elements, we
p=1/N=0. are effectively measuring a certain kind of spacetime dimen-
Consider first the simplest nontrivial case=2. Since sionality of C. In practice, we would not expe& to embed
there are only two causal sets of size 2, the 2-chain and thaithfully without some degree of coarse graining, but the
2-antichain, the distributiorf, that gives the “large scale original r would still provide a good dimension estimate
physics” in this case is described by a single number whiclsince it is, on average, coarse-graining invariant.
we can take to be,(), the probability of obtaining a As we begin to consider coarse graining to sines 2,
2-chain rather than a 2-antichaifiThe other probability the degree of complication grows rapidly, simply because the

600 1

skewness=0.031

kurtosis=2.99
525

450 -
375

800 FIG. 4. Distribution of number

of 4 chains for N=4096, p
225 =0.01155.

150

75

2,476,985,149,915 mean=2,745,459,887,579 3,062,430,629,438
number of 4-chains
15,260 causets
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number of partial orders defined an elements grows rap- f,,f,,f3,..., have well defined limits alN—oc. To study

idly with m. Form= 3 there are five possible causal set¥,  this question numerically, one can simulate transitive perco-
[..A and « « . Thus the effective dynamics at this “scale” lation using the algorithm described in Sec. Il, while choos-
is given by five probabilitiegso four free parametersFor  ing p so as to hold constarisay the m=2 distributionf,
m=4 there are sixteen probabilities, for=5 there are sixty (f; being trivia). Because of the way transitive percolation
three, and fom=6, 7, and 8, the number of probabilities is, is defined, it is intuitively obvious thgh can be chosen to
respectively, 318, 2045, and 16 999. achieve this, and that in doing so, one leayesvith no
further freedom. The decisive question then is whether,
along the trajectory thereby defined, the higher distribution
functions,f5, f,, etc., all approach nontrivial limits.

In this section, we report on some computer simulations As we have already mentioned, holdirig fixed is the
that address directly the question whether transitive percolssame thing as holding fixed the expectation vaieof or-
tion possesses a continuum limit in the sense defined abovdering fractionr=R/(§). To see in more detail why this is
In a subsequent paper, we will report on simulations addresso, consider the coarse graining that takes us from the origi-
ing the subsidiary question of a possible scaling behavior imal causeCy of N elements to a caus€l, of two elements.
the continuum limit. Since coarse graining is just random selection, the probabil-

In order that a continuum limit exist, it must be possibleity f,($) thatC, turns out to be a 2-chain is just the prob-
to choose a trajectory fop as a function ofN so that ability that two elements o€y selected at random form a
the resulting coarse-grained probability distributions2-chain rather than a 2-antichain. In other words, it is just the

VI. EVIDENCE FROM SIMULATIONS

N TR 5-chains  1/2 —o—
a L A 3-chains 1/2 —+
2 " #feag + " 3-chains .0815 =1 1
~REZ + Py 2-chains  1/2
X ox oy SR + o 2-chains 1/3 2
4+ * oy SE + o 2-chains 1/10 * ||
« & & °
- * =} + & i
6 x Aw@ 0+ °
e, 4 x A R
[ x - .
& 2 & FIG. 6. Flow of the “coupling constantp as
i - x g | N—oo (six trajectories
12 F .
14 + |
-16 L I L L
0 5 10 15 20
logzN
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probability that two elements dfy selected at random are ated, is determining the number of subcausets of different
causally related. Plainly, this is the same as fitaetion of  sizes and types. To get a feel for how some of the resulting
pairs of elements o€y such that the two members of the “abundances” are distributed, we start by presenting a
pair form a relationx<y or y<x. Therefore, the ordering couple of histograms. Figure 3 shows the numRef rela-

fraction r equals the probability of getting a 2-chain when tions obtained from a simulation in which 15 260 causal sets

coarse grainingCy down to two elements; and,(3) were generated by transjtivg p(_arco]ation wilh: 0.91155,

—(r), as claimed. N=4096. Visually, the_dlitrlbuthn”ls Gaussian, in agree-
This reasoning illustrates, in fact, how one can in prin-Ment with the fact that its “kurtosis

ciple determine any one of the distributiof}s by answering 5

the question “what is the probability of getting this particu- (x—Y)“/ (x—X%)?

lar melement causet from this particulldrelement causet if

you coarse grain down ton elements?” To compute the of 2.993 is very nearly equal to its Gaussian value ¢fte

answer to such a question starting with any given calget  over-bar denotes sample méaim these simulationgy was

one examines every possible combinationnefelements, chosen so that the number of 3-chains was equal on average

counts the number of times that the combination forms théo half the total number possible, i.e., the “abundance of

particular causet being looked for, and divides the total by3-chains,” (number of 3-chairﬁ$(§'), was equal tg; on av-

(m), The ensemble mean of the resultiagundanceas we  erage. The picture is qualitatively identical if one counts

will refer to it, is thenf(£), where& is the causet being 4-chains rather than 2-chains! as exhibited in Fig. 4.

looked for. In practice, of course, we would normally use a  [One may wonder whether it was to be expected that these

more efficient counting algorithm than simply examining in- distriputions would appear to be so nprmal. If the variable in
dividually all (N) subsets ofCy, question, here the number of 2-chaiRsor the number of
m .

4-chains C,, say, can be expressed as a sum of indepen-
dent random variables, then the central limit theorem pro-
vides an explanation. So consider the variabigsvhich are

As explained in the previous subsection, the main compuil if i <j and zero otherwise. TheRis easily expressed as a
tational problem, once the random causet has been genesum of these variables

A. Histograms of 2-chain and 4-chain abundances
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0.208 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4-chain abundanée in our simulaton is only
0.506 | ] G e LE %= 0.234, a considerably smaller value than the
osou /® | 2-chain abundance af=6,722,782/{3°9=0.802. This was
wsoal % to be expected, considelring.that th.e 2-chain is.or_ue of only
E Proe 7 5 | two possible causets of its size, while the 4-chain is one out
ERR {f i 1é 3 84 i $ i 4} i $82e243 16 possibilities.(Notice also that 4-chains are necessarily
< aos J{ { 1 less probable than 2-chains, because every coarse-graining of
0.496 | \Q ] a 4-chain is a 2-chain, whereas the 2-chain can come from
s | every 4-element causet save the 4-antichain.
0% 2 4 6 8 10 12 14 16
log, N B. Trajectories of p versusN
FIG. 9. Flow of the coarse-grained probabilitigg for m=2. The question we are exploring is whether there exist, for
The 2-chain probability is held &t N—oo, trajectoriesp=p(N) along which the mean abun-
dances of all finite causets tend to definite limits. To seek
such trajectories numerically, we will select some finite “ref-
R=D, Xij . erence causet” and determine, for a rang&pthose values
<] of p which maintain its abundance at some target value. If a

continuum limit does exist, then it should not matter in the
However, thex;; are not independent, due to transitivity. end which causet we select as our reference, since any other
Apparently, this dependence is not large enough to interferehoice(together with a matching choice of target abundance
much with the normality of their sum. The number of should produce the same trajectory asymptotically. We
4-chainsC, can be expressed in a similar manner would also anticipate that all the trajectories would behave
similarly for largeN, and that, in particular, either all would
lead to continuum limits or all would not. In principle it
Cs= 2 Xij XjicXii could happen that only a certain subset led to continuum
t<j=k<l limits, but we know of no reason to expect such an eventu-
ality. In the simulations reported here, we have chosen as our
and similar remarks apply. reference causets the 2-, 3-, and 5-chains. We have computed
Let us mention that for values @fsufficiently close to 0  six trajectories, holding the 2-chain abundance fixed, &t
or 1, these distributions will appear skew. This occurs simplyand 15, the 3-chain abundance fixed fand 0.0814837, and
because the numbers under consideratmg., the number the 5-chain abundance fixed &t For N, we have used as
of m-chaing are bounded between zero ari},‘,l) (@and must large a range as our computers would allow.
deviate from normality if their mean gets too close to a Before discussing the trajectories as such, let us have a
boundary relative to the size of their standard deviationlook at how the mean 2-chain abundarcke(i.e., the mean
Whenever we draw an error bar in the following, we will ordering fraction varies withp for a fixed N of 2048, as
ignore any deviation from normality in the correspondingexhibited in Fig. 5.(Vertical error bars are displayed in the
distribution. figure but are so small that they just look like horizontal
Notice incidentally that the total number of 4-chains pos-lines. The plotted points were obtained from an exact expres-
sible is (3’9 =11,710,951,848,960. Consequently, the mearsion for the ensemble average), so the errors come only
from floating point roundoff. The fitting function used in Fig.

0.4 : : 5 will be discussed in a subsequent pafbt], where we
examine scaling behavior; see also R&l.) As one can see,
035 A . .
@ (r) starts at 0 forp=0, rises rapidly to near 1 and then
03 1 asymptotes to 1 gh=1 (not shown. Of course, it was evi-
@ o, b £ i B E ER B denta priori that(r) would increase monotonically from 0 to
8 025  mmmEE B . .
E Lo 1 asp varied between these same two values, but it is per-
S H™ . . . .
2 o2f @ ®o, 2Eansnssl & A haps noteworthy that its graph betrays no sign of discontinu-
- éééﬁf% ’g‘@ | ity or nonanalyticity(no sign of a “phase transition” To
' g ©e oo this extent, it strengthens the expectation that the trajectories
01 ® ee@eeeeeeeeeeee; we find will all share the same qualitative behavior s
005 Il 1 1 1 Il 1 Il _>oo'
0 2 4 6 8 10 12 14 16
logzN
FIG. 10. Flow of the coarse-grained probabilitigs for m= 3. SFrom this point on we will usually write simply “abundance,” in
The 2-chain probability is held & place of “mean abundance,” assuming the average is obvious from
context.
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The six trajectories we have simulated are depicted in Figiound ap sufficiently close to the desired trajectory. Having
6.5 A higher abundance ah chains for fixedm leads to a  determinedp, we then generated a large number of causets
trajectory with higherp. Also note that, as observed above, by the percolation algorithm described in Sec.(Tlhe num-
the longer chains require larger valuespdd attain the same  ber generated varied from 64 to 40 00Bor each such ran-
mean abundance, hence a choice of mean abundancer-  dom causet, we computed the abundances of the different
responds in each case to a different trajectory. The trajectQn-element (subcausets under consideratiori2-chain,
ries with (r) held to lower values are “higher dimensional” 3-chain, 3-antichain, etc.and we combined the results to
in the sense thafr)=3 corresponds to a Myrheim-Meyer gpain the mean abundances we have plotted here, together
dimension of 2, while(r)= 15 corresponds to a Myrheim- it their standard error¢The errors shown do not include
Meyer dimension of 4. Observe that the plots give the im-yny contribution from the slight inaccuracy in the valuepof

pression Of. becoming straight lines with a common slope & sed. Except for the 3- and 5-chain trajectories these errors
large N. This tends to corroborate the expectation that theyare negligibly smal).

will eXh'b't some _form of scaling with a common expor_1er_1t, To compute the abundances of the 2-, 3-, and 4-orders for
a behavior reminiscent of that found with continuum limits

in many other contexts. This is further suggested by the facg 9'ven causet_, we randomly sampled its four—elemenF sub-
causets, counting the number of times each of the sixteen

that two distinct trajectories[f,(3)=1/2 and f3(})  possible 4-orders arose, and dividing each of these counts by

=0.0814837], obtained by holding different abundanceshe number of samples taken to get the corresponding abun-

fixed, seem to converge for largeé dance. As an aid in identifying to which 4-order a sampled
By taking the abscissa to beNl/rather than logN, we  sypcauset belonged we used the following invariant, which

can bring the critical point to the origin, as in Fig. 7. The gistinguishes all of the sixteen 4-orders, save two pairs:
lines which pass through the data points there are just splines

drawn to aid the eye in following the trajectories. Note that

the curves tend to asymptote to thexis, suggesting that |(S):X1;[S (2+][pastx)|).
falls off more slowly than M. This suggestion is corrobo-

rated by more detailed analysis of the scaling behavior of

these trajectories, as will be discussed in R&d]. = .
0.65 - g .
C. Flow of the coarse-grained theory along a trajectory 06| T +@
%
We come finally to a direct test of whether the coarse- —osst TEa g -
grained theory converges to a limit Bis—cc. Independently £ .| ey titseed
of scaling or any other indicator, this is by definition theg o0 e
criterion for a continuum limit to exist. We have examined  **| @e *®
this question by means of simulations conducted for five of o4t Lo
the six trajectories mentioned above. In each simulation we ;.| Lo
proceeded as follows. For each chodérwe experimentally o ol ‘ ‘ ‘ ‘ ‘
o ) 4 6 8 10 12 14 16

IogzN

SNotice that the error bars are shown rotated in the legend. This FIG. 12. Flow of the coarse-grained probabilities for m=2.
will be the case for all subsequent legends as well. The 3-chain probability is held at 0.0814837.
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Here, past{) ={y e §ly<x} is the exclusive past of the ele- to get the same four element subset twice becomes appre-

mentx and|past)| is its cardinality. Thus, we associate to ciable with more than this many samples. Numerical tests

each element of the causet, a number which is two more thagonfirmed that this rule of thumb tends to minimize the sam-

the cardinality of its exclusive past, and we form the producipling error, as seen in Fig. 8.

of these number§4, in this casgto get our invariant(For Once one has the abundances of all the 4-orders, the

example, this invariant is 90 for the “diamond” posgts.)  abundances of the smaller causets can be found by further
The number of samples taken from Binelement causet coarse graining. By explicitly carrying out this coarse grain-

was chosen to bQ/Z (4‘1), on the grounds that the probability ing, one easily deduces the following relationships:

|

ah = s+ (R e ada) + 1ad + (A + D0 + 1)
BV = S+ ad) + 1B+ 3V + 1V 0 + a0 + 57X

2
sl = 2ado+ g (e + 1)+ 5 (V0 + £AND) + A0 + 310 + 50
VNIRRTt PRI S PR YA S PR IAV SR YA RS0/ SRS TAP
fioer) = 2 (AW + AN) + 5 (V0 5AD) 4.3 74(80) + faleee)
(1) = f3(§)+§(fa(V)‘*'fs(A))‘*’%fa(I.)

f?(oo) = 1_f2(=)

In the first six equations, the coefficient before each term orare necessarily equalThe standard deviation in the abun-
the right is the fraction of coarse-grainings of that causetiances decreases with increasiNg The “blip” around
which yield the causet on the left. ~ log,N=9 occurs simply because we generated fewer causets
In Figs. 9, 10, and 11, we exhibit how the coarse-grainedy that and larger values dfto reduce computational costs.
probabilities of all possible 2, 3, and 4 element causets vary the crycial question is whether the probabilities for the
gs Kve_ foIIovg tg$ trfajectoiy a_Ior;]g |\(IthICT tge ((:joar_se-grr?mec{hree and four element causets tend to definite limitdNas
c;;rgtlarlg‘:;(i)n: d Igyoé;f)i)lig/rfésr thee Zaiaainy reﬁws::\?:s' tﬂ; atends to infinity. Several features of the diagrams indicate
hat this is indeed occurring. Most obviously, all the curves,

0 X . . . .
50%, so Fig. 9 simply shows the accuracy with which thISexcept possibly a couple in Fig. 11, appear to be leveling off

was achievedObserve the scale on the vertical axNotice . . )
that, sincef,( ) andf,(s +) must sum to 1, their error bars at largeN. But we can bolster this conclusion by observing
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in which direction the curves are moving, and consideringl). Taken all in all, then, it looks very much like the=3
their inter-relationships. coarse-grained theory has a nontrividd—c limit, with at

For the moment let us focus our attention on Fig. AO. least three out of its five probabilities converging to non-
priori there are five coarse-grained probabilities to be fol-trivial values.
lowed. That they must add up to Unity reduces the degrees of A|th0ugh the “rearrangement” of the Coarse_grained
freedom to 4. This is reduced further to 3 by the observatiotyropapilities appears much more dramatic in Fig. 11, similar
that, due to the time-reversal symmetry of the percoIatlorarg,v,memS can be made. Excepting initial “transients,” it
dynamics, we must havis(¥) = f5(A,), as duly manifested seems reasonable to conclude from the data that monotonic-
in their graphs. Moreover, all five of the curves appear to bdty Will be maintained. From this, it would follow that the
monotonic, with the curves fgk, ¥, and « ¢ ¢ rising, and the  probabilities for\[/ and /\ (which must be equal by time-
curves for$ and] , falling. If we accept this indication of reversal symmetjyand the other rising probabilitie}q,

monotonicity from the diagram, then first of all, every prob- , ... and$>e, all approach nontrivial limits. The coarse-

ability f5(£) must converge to some limiting value, becauseSraining to 4 elements, therefore, would also admit a con-

Po.?otonlctbg)unded funcgons alw?/]s do; t?ng'lipme of ttheg nuum limit with a minimum of 4 out of the 11 independent
IMIts must be honzero, because the probabliities must adf, o, apjjities being nontrivial. To the extent that the=2

up to 1. Indeed, sincé;(Y) andf3(A,) are rising, they must andm=3 cases are indicative, then, it is reasonable to con-
converge to some nonzero value, and this value must lielude that percolation dynamics admits a continuum limit
below 3 in order that the total probability not exceed unity. which is nontrivial at all “scales’m.

In consequence, the rising curdg( e ¢) must also con- The question suggests itself, whether the flow of the
verge to a nontrivial probabilityone which is neither O nor coarse-grained probabilities would differ qualitatively if we

0.8
0.7 r @
0.6
0571

041 . FIG. 15. Flow of the coarse-grained probabili-
ties f,,, for m=3. The 2-chain probability is held

03 r @ 1 at %)

Abundance

02
0.1
0 @ @ & & & & & 3 g & 4 ’TS
0 2 4 6 8 10 h 4
log 2N
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held fixed some abundance other than that of the 2-chain. limtrinsic interest of the casgé=4, these results indicate that
Figs. 12, 13, and 14, we display results obtained by fixing theur conclusions drawn fod near 2 will hold good for all
3-chain abundand@ts value having been chosen to make thelargerd as well.

abundance of 2-chains be 1/2 whigr=2"9). Notice in Fig. Figure 17 displays the flow of the coarse-grained prob-
12 that the abundance of 2-chains varies considerably alongpilities from a simulation in the opposite situation where the
this trajectory, whilst that of the 3-chaifin Fig. 13 of  ordering fraction is much greater tharithe Myrheim-Meyer
course remains constant. Once again, the figures suggegiension is down near)1Shown are the results of coarse-
strongly that the trajectory is approaching a continuum limityaining to three element causets along the trajectory which
with nontrivial valqes for the coarse-grained prqbabilities ofholds the 3-chain probability t&. Also shown is the 2-chain

at least the 3-chain, thev™ and the “A” (and in conse-  ,4papility. The behavior is similar to that of Fig. 15, except
quence, of the 2-chain and 2-antichain that here the coarse-grained probability rises with the order-

Al thE’T trajectories dlscussled so far produce causets Wlti g fraction instead of falling. This occurs because constrain-
an ordering fractiorr close tos for large N. As mentioned

earlier,r =1 corresponds to a Myrheium-Meyer dimension ing f3(3) to be i generates rather chainlike causets whose
of two. Figures 15 and 16 show the results of a simulationMyrheim-Meyer dimension is in the neighborhood of 1.34,
along the “four-dimensional” trajectory defined hy= 5. as follows from the approximate limiting valué,(g)

(The valuer = 75 corresponds to a Myrheim-Meyer dimen- ~0.8. The slow, monotonic, variation of the probabilities at
sion of 4) Here the appearance of the flow is much lessarge N, along with the appearance of convergence to non-
elaborate, with the curves arrayed simply in order of increaszero values in each case, suggests the presence of a non-
ing ordering fraction,s e+ and =+« « being at the top and trivial continuum limit forr near unity as well.

$ and (imperceptibly § at the bottom. As before, all the Figures 18 and 19 present the results of a final set of
curves are monotone as far as can be seen. Aside from tlsmulations, the only ones we have carried out which exam-
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ined the abundances of causets containing more than fo@arlo simulation of the random causet.
elements. In these simulations, the mean 5-chain abundance

f5(5-chain) was held a}, producing causets that were even VIl. CONCLUDING COMMENTS
more chainlike than beforgMyrheim-Meyer dimension
~1.1). In Fig. 18, we track the resulting abundances okall Transitive percolation is a discrete dynamical theory char-

chains fork between 2 and 7, inclusivéWe limited our- acterized by a single parametprlying between 0 and 1.
selves to chains, because their abundances are relatively ed8ggarded as a stochastic process, it describes the steady
to determine computationallyAs in Fig. 17, all the coarse- growth of a causal set by the continual birth or “accretion”
grained probabilities appear to be tending monotonically teof new elements. If we limit ourselves to that portion of the
limits at largeN. In fact, they look amazingly constant over causet comprising the elements born between blg@and
the whole range oN, from 5 to 2°. One may also observe stepN; of the stochastic process, we obtain a model of ran-
that the coarse-grained probability of a chain decreasedom posets containingfN=N;—Ng elements. This is the
markedly(and almost linearly over the range examipaith model we have studied in this paper.
its length, as one might expect. It appears also that the Because the underlying process is homogeneous, this
k-chain curves fork#5 are “expanding away” from the model does not depend iy, or N, separately, but only on
5-chain curve, but only very slightly. Figure 19 displays thetheir difference. It is therefore characterized by just two pa-
flow of the probabilities for coarse-grainings to four ele- rameterg andN. One should be aware that this truncation to
ments. It is qualitatively similar to Figs. 15—17, with very a finite model is not consistent with discrete general covari-
flat probability curves, and here with a strong preference foance, because it is the subset of elements with celdhizls
causets having many relations over those having few. Conthat has been selected out of the larger causet, rather than a
paring Figs. 19 and 16 with Figs. 14 and 11, we observe thagubset characterized by any directly physical condition.
trajectories which generate causets that are rather chainlikehus, we have introduced an “element of gauge” and we
or antichainlike seem to produce distributions that convergéaope that we are justified in having neglected it. That is, we
more rapidly than those along which the ordering fractionhope that the random causets produced by the model we
takes values close th have actually studied are representative of the type of subor-
In the way of further simulations, it would be extremely der that one would obtain by percolating a much larger
interesting to look for continuum limits of some of the more (eventually infinit¢ causet and then using a label-invariant
general dynamical laws discussed in Sec. 4.5 of Réf.In  criterion to select a subset df elements.
doing so, however, one would no longer have availdbke Leaving this question aside for now, let us imagine that
one does have for transitive percolati@very fastiyet eas- our model represents an interv@hay in a causetC under-
ily coded algorithm that generates causets randomly in aclying some macroscopic spacetime manifold. With this im-
cord with the underlying dynamical law. Since the sequentiahge in mind, it is natural to interpret a continuum limit as one
growth dynamics of Ref[1] is produced by a stochastic in which N—c« while the coarse-grained features of the in-
process defined recursively on the causal set, it is easilierval in question remain constant. We have made this notion
mimicked algorithmically; but the most obvious algorithms precise by defining coarse graining as the random selection
that do so are too slow to generate efficiently causets of thef a suborder whose cardinality measures the “coarse-
size we have discussed in this paper. Hence, one would eiess” of our approximation. A continuum limit then is de-
ther have to devise better algorithms for generating causefined to be one in whiciN tends toe such that, for each
“one off,” or one would have to use an entirely different finite m, the induced probability distributiofy,, on the set of
method to obtain the mean abundances, such as a Monite-element posets converges to a definite limit, the physical
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meaning being that the dynamics at the corresponding length Finally, a continuum limit could exist in the technical
scale is well defined. Now, how could our modeil to  sense, but it still could be effectively trividlonce again
admit such a limit? reminiscent of thex ¢* case—if you care to regard a free
In a field-theoretic setting, failure of a continuum limit to field theory as trivia). Here triviality would mean that
exist typically means that the coarse-grained theory loses pagl—or almost all—of the coarse-grained probabilitfeg ¢)
rameters as the cutoff length goes to zero. For examaié,  converged either to 0 or to 1. Plainly, we can avoid this for at
scalar field theory in 4 dimensions depends on two parameast some of thé,(£). For example, we could choose an
eters, the masg and the coupling constamt In the con-  and hold eithef,, (m-chain or f,,, (m-antichain fixed at any
tinuum limit, X is lost, although one can arrange farto  gesjred value.[Proof: as p—1, f,(m-chain}~1 and
survive. (At least this is what most workers believe occlrs. f (m-antichain)—0; asp—0, the opposite occuisHow-
Strictly speaking, one should not say that a continuum limiteyer, in principle, it could still happen that all the ottfey
fails to exist altogether, but only that the limiting theory is pesjdes these two went to 0 in the limi€Clearly, they could
poorer in coupling constants than it was before the limit was,ot go to 1, the other trivial valueOnce again, our simula-
taken. Now in our case, we have only one parameter (o stafjons show the opposite behavior. For example, we saw that
with, and we have seen that it does surviveNas  since  f () increased monotonically along the trajectory of Fig.
we can, for example, choose freely time=2 coarse-grained 1q.
probability distributionf,. Hence, we need not fear such a \oreover, even without reference to the simulations, we
loss of parameters in our case. can make this hypothetical “chain-antichain degeneracy”
What about the opposite possibility? Could the coarseappear very implausible by considering a “typical” cauget
grained theorygain parameters in th&l—c limit, as might  generated by percolation fai>1 with p on the trajectory
occur if the distributiond , were sensitive to the fine details that, for some chosem, holdsf ,,(m-chain) fixed at a value
of the trajectory along which andp approached the “criti- 3 strictly between 0 and 1. Then our degeneracy would insist
cal point” p=0, N=20?" Our simulations showed no sign of that f,(m-antichain)=1—a and f,(x)=0 for all other y.
such sensitivity, although we did not look for it specifically. gyt this would mean that, in a manner of speaking, “every”
(Compare, for example, Fig. 10 with Fig. 13 and Fig. 11 withcoarse graining of to m elements would be either a chain or
14) an antichain. In particular the caugef could not occur as a
A third way the continuum limit could fail m|ght perhaps subcauset 0[:’ Whence, Sincd R is a subcauset of every
be viewed as an extreme form of the second. It might happefy.element causet except the chain and the antici@itself
that, no matter how one chose the trajectpryp(N), some  would have to be either an antichain or a chain. But it is
of the Coarse'grainEd prObab”ltld%](rf) oscillated indefi- absurd that perco|ation for any parameter Vepuﬁher than
nitely asN—, without ever settling down to fixed values. 0 and 1 would produce a “bimodal” distribution such tt@t
Our simulations leave little room for this kind of breakdown, would have to be either a chain or an antichain, but nothing
since they manifest the exact opposite kind of behaviorin petween[It seems likely that similar arguments could be
namely monotone variation of all the coarse-grained probgevised against the possibility of similar, but slightly less
abilities we “measured.” trivial trivial continuum limits, for example a limit in which
fm(x) would vanish unlesg were a disjoint union of chains
and antichaing.

"Such an increase of the parameter set through a limiting process Putting all this together, we have persuasive evidence that
seems logically possible, although we know of no example of itthe percolation model does admit a continuum limit, with the
from field theory or statistical mechanics, unless one counts thédmiting model being nontrivial and described by a single
extra global parameters that come in with “spontaneous symmetryrenormalized” parameter or “coupling constant.” Further-
breaking.” more, the associated scaling behavior one might anticipate in
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such a case is also present, as we will discuss further in Reflere, perhaps, we can appeal to the preliminary results of
[14]. Dou mentioned in the Introduction. If—cosmologically

But is the word “continuum” here just a metaphor, or can considered—the causet that is our universe has cycled
it be taken more literally? This depends, of course, on thehrough one or more phases of expansion and recollapse,
extent to which the causets yielded by percolation dynamicghen its dynamics will have been filtered through a kind of
resemble genuine spacetimes. Based on the meager evideritemporal coarse-graining” or “RG transformation” that
available at the present time, we can only answer “it is postends to drive it toward transitive percolation. But what we
sible.” On one hand, we knoyl] that any spacetime pro- did not mention earlier was that the parameiesf this ef-
duced by percolation would have to be homogeneous, sudective dynamics scales & “/?, whereN, is the number of
as de Sitter space or Minkowski space. We also know, fronelements of the causet preceding the most recent “bounce.”
simulations in progress, that two very different dimensionSince this is sure to be an enormous number if one waits
estimators seem to agree on percolated causets, which ofithg enoughp is sure to become arbitrarily small if suffi-
might not expect, were there no actual dimensions for thengiently many cycles occur. The reason for the near flatness of
to be estimating. Certain other indicators tend to behavepacetime—or if you like for the large diameter of the con-
poorly, on the other hand, but they are just the ones that ar@mporary universe—would then be just that the underlying
not invariant under coarse grainifipey are not “RG invari-  causal set is very old—old enough to have accumulated, let
ants”), so their poor behavior is consistent with the expec-us say, 1¢f° elements in earlier cycles of expansion, contrac-
tation that the causal set will not be manifoldlike at thetion and reexpansion.
smallest scaleg“foam™ ), but only after some degree of
coarse-graining. o . . ACKNOWLEDGMENTS
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