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Fermions without vierbeins in curved space-time
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A general formulation of spinor fields in Riemannian space-time is given without using vierbeins. The
space-time dependence of the Dirac matrices required by the anticommutation relation$gm ,gn%52gmn deter-
mines the spin connection. The action is invariant under any local spin base transformations in the 32 param-
eter group Gl(4,c) and not just under local Lorentz transformations. The Dirac equation and the energy-
momentum tensor are computed from the action.
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I. INTRODUCTION

The Dirac equation for spinor fields was formulated
curved space in 1929 by Fock and Ivanenko@1#, who found
it convenient to employ vierbeins. That method provide
particular solution for the space-time dependent Dirac ma
cesgn satisfying the anticommutation relation

$gm,gn%52gmnI . ~1.1!

The description of fermions in curved space-time using v
beins can be found in books by DeWitt@2#, Weinberg@3#,
Burell and Davies@4#, and Wald@5#. It frequently implied,
and sometimes explicitly stated, that fermionic fields can
be formulated in curved space without the use of vierbe
This paper will show that vierbeins are not necessary.

The reason for eschewing vierbeins is not mere nove
Always using vierbeins to treat fermionic fields is rather li
always using the Coulomb gauge to perform electrodynam
calculations in Minkowski space. One can get the right
swers in Coulomb gauge. However, it would be very pu
zling if physics could only be done in that gauge because
Coulomb gauge condition only holds in one Lorentz frame
requirement which is contrary to the principle that all inert
frames are equivalent.

The vierbeins are the gravitational analogue of the C
lomb gauge. At each pointx in a curved space-time it is
always possible to choose a set of four locally inertial co
dinatesja, which depend onx. The vierbeins are defined a
the partial derivatives

em
a ~x!5

]ja

]xm
. ~1.2!

Since coordinates that are inertial at one point will not
inertial at a nearby point, the vierbeins have the property
]nem

a Þ]men
a . They automatically satisfy the two relation

em
a en

bhab5gmn and em
a en

bgmn5hab. The inverse of Eq.~1.2!
is

ea
m~x!5gmnen

b hba . ~1.3!

From any set of space-time independent Dirac matrices
isfying

$ga,gb%52habI ,
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one can solve Eq.~1.1! by choosing the space-time depe
dent Dirac matrices as particular linear combinations of
constant Dirac matrices:

gm~x!5ea
m~x!ga. ~1.4!

This is not the most general solution to Eq.~1.1! but it does
work. The action for the fermion fields and the Dirac equ
tion is expressed in terms of these vierbeins@2–5#. The vier-
bein method is used for both the classical Dirac field@6–9#
and for the quantized Dirac field@10,11#.

There are several unattractive features of the vierbein
mulation.~1! The 10 independent components of the met
tensor are replaced by the 16 components of the vierbe
~2! It is necessary to introduce a special inertial frame at e
point contrary to the basic principles that led Einstein
construct general relativity. Neither the inertial frames n
the constant Minkowski metric is necessary for spin 0 or s
1 fields or for gravity itself.~3! When the vierbein solution
for the Dirac matrices in Eq.~1.4! is inserted into the formula

g552 i
A2g

4
eabmngagbgmgn, ~1.5!

all the space-time dependence cancels andg5 becomes equa
to the constant matrixg (5) from Minkowksi space. Becaus
of intrinsic parity violation, the matrixg5 plays a central role
in the electroweak interactions. The coupling of quarks a
leptons to the weak vector bosonsW6 and Z0 is through a
linear combination of vector currentsc̄gmc and axial vector
currentsc̄gmg5c. In the vierbein formalism, local Lorentz
transformations change the space-time dependence of thegm,
but g5 remains the same constant matrix as in Minkow
space.

In the standard vierbein formulation of fermion field
their are two types of transformations: general coordin
transformations and local Lorentz transformations. The
grangian density must be a scalar under both types of tr
formations.

General coordinate transformations. Under a general
transformationxm→ x̃m(x) of the coordinate system, each o
the four vierbeins transforms as a coordinate vector

ẽa
m~ x̃!5

] x̃m

]xn
ea

n~x!. ~1.6!
©2001 The American Physical Society10-1
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The Dirac matrices transform as a vector:

g̃m~ x̃!5
] x̃m

]xn
gn~x!. ~1.7a!

The transformations matrices] x̃m/]xn are 434 real matrices
belonging to the group Gl(4,r ). Because Gl(4,r ) does not
contain as a subgroup the spinor representations of the
entz group@10,12#, it is not possible for the spinor fieldc(x)
to transform under general coordinate transformatio
Therefore the spinor field transforms as a scalar under g
eral coordinate transformations:

c̃~ x̃!5c~x!. ~1.7b!

This is completely standard@2–5#.
Local Lorentz transformations. Conventionally the way to

introduce spin base transformations that act on the com
nents of the spinor quantities is to mimic Minkowski spac
Under local Lorentz transformations of the inertial coor
nateja→Lb

ajb the vierbeins mix according to

ea8
m~x!5eb

m~x!La
b .

The constant Dirac matricesga transform according to
spinor representations of the local Lorentz group:

La
bga5SLor~L!gbSLor

21~L!.

Therefore under local Lorentz transformations of the iner
coordinate, the Dirac matrices and spinor field transform

g8m~x!5SLor~L!gm~x!SLor
21~L! ~1.8a!

c8~x!5SLor~L!c~x!. ~1.8b!

The vierbein does not appear explicitly in the transformat
equations. One may summarize this approach by saying
there are two types of transformations and the action mus
a scalar under both. Coordinate transformations employ
434 matrices] x̃m/]xn. The spin base transformations em
ploy complex 434 matricesSLor(L) that are spinor repre
sentations of the 6-parameter Lorentz group.

Given the necessity of separate laws for general coo
nate transformations and for spin base transformations
seems natural to allow any complex 434 matrix as a spin
base transformation. To do this requires abandoning the
erbeins and dispensing with the privileged position of lo
inertial frames and local Lorentz transformations.

The remainder of the paper formulates the Dirac spi
field in a Riemannian space without using vierbeins. Sec
II develops two essential ingredients: the spin metrich which
allowsc†hc to be invariant under spin base transformatio
and the spin connectionGm which makes (]m1Gm)c trans-
form covariantly under a general spin base transforma
@13#. Section III treats the equations of motion for the fe
mion field. Requiring the action to be stationary under var
tions in c gives the Dirac equation. Requiring it to be st
tionary under variations ofgmn gives the Einstein field
equation containing the energy-momentum tensor of the
10401
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mions. Section IV provides a summary. There are five
pendixes. Appendix A summarizes the Clifford algebra b
sis. Appendix B proves a general theorem which is emplo
in the development of the spin connection, of the spin met
and of the energy-momentum tensor. Appendix C sho
which components of the general spin connection actu
appear in the action for the fermion. Appendix D develo
the second order Dirac equation and relates the spin cu
ture tensor to the Riemann-Christoffel event curvature t
sor. Appendix E shows how with any fixed set of Dira
matrices satisfying Eq.~1.1! to construct a spin base tran
formation to change the Dirac matrices to a vierbein bas

The option of not using vierbeins has appeared in
earlier literature@14–18# though often without any proof tha
the necessary spin connection exists and without any ind
tion of how to compute the spin connection. Typically the
has been little discussion of the spin metric, the Dirac adjo
field, or the fermion Lagrangian. Understanding how the s
connectionGm and the spin metrich depend on the space
time metricgmn makes it possible in this paper to compu
the fermionic energy momentum tensor by varying the act
with respect to the space-time metric.

II. BASIC STRUCTURE

In the following it is not necessary to have an explic
form for the Dirac matrices which satisfy the basic antico
mutation relation, Eq.~1.1!.

A. Spin metric

The matricesgm†, which result from taking the transpos
and the complex conjugate ofgm, automatically satisfy the
same anticommutation relation. As proved in Appendix
the two solutions must be related by a matrix transformati

gm†5h gm h21, ~2.1!

for some matrixh. The adjoint of this relation can be used
obtain

@h21h†,gm#50.

A basis for the 15 nontrivial matrices of the Clifford algeb
can be formed from products of thegm. Since all of these
will commute withh21h†, the latter must be proportional t
the identity matrix:h21h†5zI for some complex numberz.
Taking the determinant of both sides shows thatuzu51 and
that (Deth)25z24. It is convenient to redefineh by chang-
ing h→hAz. Thenh21h†5Azz* 51 so thath is Hermitian,

h†5h, ~2.2!

and Deth51. The matrixh will be the spin metric. The
definition in Eq.~2.1! also implies that

g5
†52hg5h21.

It is helpful to note that the matriceshgm and hgmg5 are
Hermitian, whereashg5 andh@gm,gn# are anti-Hermitian.
0-2
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B. Spin connection

Covariant derivatives of tensor quantities require
Riemann-Christoffel event connection

Gml
n 5

1

2
gna~]mgal1]lgam2]agml!. ~2.3!

Covariant derivatives of spinors require the spin connect
Whatever choice is made for the Dirac matricesgn, one can
compute the derivatives]mgn. From these derivatives on
can compute the coefficients

tm
ab5

21

32
Tr@ga ~]mgb1Gml

b gl!# ~2.4a!

vm
a5

1

48
Tr~@ga,gn# ]mgn! ~2.4b!

am
a5

1

8
Tr~g5]mga! ~2.4c!

pm5
1

32
Tr~g5gn]mgn!. ~2.4d!

It is easy to check the antisymmetrytm
ab1tm

ba50. For a fixed
choice ofm there are 15 complex coefficients: 6 independ
values oftm

ab , 4 values ofvm
a , 4 values ofam

a , and onepm .
Under general coordinate transformations each of th
transforms as a tensor as indicated by the indices.~For com-
parison, with the vierbein solution for the Dirac matrices t
coefficientsvm

a , am
a , pm , andsm all vanish, and the nonva

nishing termtm
ab has 6 real coefficients.!

The spin connectionGm has the general decomposition
terms Dirac matrices as

Gm5tm
ab@ga ,gb#1vm

aga1am
agag51pmg51smI ,

~2.5!

wheresm is undetermined. The letterst,v,a,p,s denote ten-
sor, vector, axial vector, pseudoscalar, and scalar. This
mula for Gm was first derived by Green@16#. Appendix B
shows that the spin connection given in Eq.~2.5! satisfies

]mgn1Gml
n gl1@Gm ,gn#50. ~2.6!

It is elementary that ifGm is postulated to satisfy Eq.~2.6!,
then the coefficients are as given in Eq.~2.4!. Appendix B
proves the converse, that Eq.~2.6! is actually satisfied. The
result is non-trivial and it is worth doing some counting
appreciate what has happened. For a fixed choice ofm andn
the derivative]mgn will generally be a linear combination o
15 Dirac matrices. If onlym is fixed andn runs over its four
values, then Eq.~2.6! is a set of 60 linear equations. The
60 equations are solved by the 15 coefficients displaye
Eq. ~2.4!.

Equation~2.6! also determines the derivative of produc
of Dirac matrices. In particular, it gives

]mg51@Gm ,g5#50.
10401
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C. Spinor fields

The covariant derivative of the fermion fieldc is

¹mc5]mc1Gmc. ~2.7!

The fermion action isAf5*d4x A2gLf , where the La-
grangian density is

Lf5
i

2
c†hgm¹mc2

i

2
~¹mc!†hgmc2m c†hc. ~2.8!

To examine the role of the spin connection it is helpful
write out L in detail:

L5
i

2
c†hgm]mc2

i

2
~]mc!†hgmc

2m c†hc1
i

2
c†~hgmGm2Gm

† hgm!c.

When the full spin connection is substituted in the acti
there are numerous cancellations so that the 16 complex
rameters are reduced to 16 real parameters.~See Appendix
C.! Of these cancellations, the simplest occurs in the par
Gm that is proportional to the identity matrix, viz.smI . In
particular (Resm)I does not appear in the action. It is ve
convenient to subtract off (Resm)I from the spin connection
and define

Ĝm5Gm2
1

4
Re@Tr ~Gm!#I . ~2.9a!

The subtracted spin connection satisfies

Re@ Tr~ Ĝm!#50. ~2.9b!

It will be convenient to useĜm in Sec. III for the discussion
of the Dirac equation and the energy-momentum tensor.

D. Spin base transformations

Starting from a set of Dirac matricesgm satisfying the
anticommutation relation, Eq.~1.1!, one can change to a new
set by a spin base transformation

g8n5SgnS21, ~2.10!

whereS is an invertible, complex 434 matrix with arbitrary
dependence on space-time. ThusS belongs to the 32 param
eter group Gl(4,c). The possibility of arbitrary spin bas
transformations goes back to Schro¨dinger @14# and Belin-
fante@15#. Under a spin base transformation the derivative
the Dirac matrices transforms inhomogeneously:

]mg8n5S~]mg n1@S21]mS,gn#!S21.

The coefficients in Eq.~2.4! also change inhomogeneous
and this gives the transformed spin connection

Gm8 5SGmS212S21]mS. ~2.11!
0-3
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The transformed Dirac matrix and the transformed spin c
nection satisfy

]mg8n1Gml
n g8l 1@Gm8 ,g8n #50. ~2.12!

The event connectionGml
n does not change under a spin ba

transformation.
Under a spin base transformation the spinor field beha

as

c85Sc. ~2.13a!

The covariant derivative defined in Eq.~2.7! transforms ho-
mogeneously:

¹m8 c85S¹mc. ~2.13b!

The adjoints of the new Dirac matrices satisfy

g8m† 5h8g8mh821, ~2.14a!

where the transformed spin metric is

h85S†21h S21. ~2.14b!

There are several comparisons to be made.~1! The fact that
the spin metric changes under a spin base transformatio
analogous to the fact that the event metricgmn changes as a
result of coordinate transformations.~2! By such a transfor-
mation it is always possible to makeh8 a constant matrix
with a convenient form, e.g. diagonal. However, subsequ
spin base transformations will changeh8, unless one arbi-
trarily limits the allowed spin base transformations.~3! One
can rewrite the above relation as

S†5hS21h821.

This form emphasizes the relation ofS† to S21. If one arti-
ficially limits the allowed spin base transformations to tho
which do not change the spin metric, thenh85h so thatS† is
matrix equivalent toS21. Such a choice would limitS to
represent a unitary group as was assumed by Pagels@17# and
Finster @19#. In what follows this restriction will not be
made:h andh8 will not be constant and the spin base tran
formations will not be required to keep the spin metric
variant.

Associated with each spinor fieldc is the Dirac adjoint
field

c̄5c†h. ~2.15!

The productc̄c is manifestly self-adjoint. Under a spin bas
transformation the Dirac adjoint fieldc̄ changes into

c̄85c8†h85c†hS215c̄S21. ~2.16!

This provides various invariants under spin base transfor
tions:

c̄8c85c̄c
10401
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c̄8gn8¹m8 c 85c̄gn¹mc

c̄8gn8c85c̄gnc.

The first of these is the mass term in the fermion action,
second is part of the energy-momentum tensor, and the t
is the vector current for electromagnetism.

E. Additional covariant derivatives

The covariant derivatives of various additional quantit
will be needed. Sincec̄c is a coordinate scalar and a sp
base scalar, the Leibnitz product rule gives]m(c̄c)
5(¹mc̄)c1c̄(¹mc). Consequently the covariant derivativ
of the Dirac adjoint field is

¹mc̄5]mc̄2c̄Gm . ~2.17!

On the other hand, the adjoint of Eq.~2.7! is

¹mc†5]mc†1c†Gm
† ~2.18!

whereGm
† is the complex conjugate, transpose matrix. Co

paring these last two results gives the covariant derivative
the spin metric:

¹mh5]mh2hGm2Gm
† h. ~2.19!

It is possible to evaluate this. Taking the complex conjuga
transpose of Eq.~2.6! and using the definition of the spi
metric leads to

05@h21]mh2Gm2h21Gm
† h, gn#.

By Schur’s lemma the only matrix that commutes with
the gn is a multiple of the identity matrix so that

h21]mh2Gm2h21Gm
† h5cmI .

One can evaluatecm by taking the trace of both sides of th
relation:

cm52
1

2
Re@Tr~Gm!#.

In terms of the subtracted spin connectionĜm defined in Eq.
~2.9a! this reads

h21]mh2Ĝm2h21Ĝm
† h50. ~2.20a!

This relation is also useful as a way of computing the adjo
of the spin connection:

Ĝm
† 52hĜmh211~]mh!h21. ~2.20b!

A third possibility is to view Eq.~2.20a! as the vanishing of
the covariant derivative of the spin metric:

¹̂mh5]mh2hĜm2Ĝm
† h50. ~2.20c!
0-4
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III. FIELD EQUATIONS

The action for the fermion field isA5*d4x A2gLf ,
where the Lagrangian density for fermions is

Lf5
i

2
c†hgm¹mc2

i

2
~¹mc!†hgmc2mc̄c. ~3.1!

The independent variables are the fermion fieldc, its adjoint
c† and the metric tensorgmn. The Dirac matrices, the spi
connection, and the spin metric depend on the event me
gmn . There is no vierbein. The Lagrangian density is a sca
under general coordinate transformations and invariant un
general spin base transformations in Gl(4,c).

A. Dirac equation

As discussed in Sec. II C, the real part of the trace of
spin connectionGm does not contribute to the action and it

convenient to discard that part by employingĜm as defined
in Eq. ~2.9a! and define the matrix differential operator

K5 ihgm~]m1Ĝm!2mh. ~3.2!

The fermion action can be written

A5E d4xA2gH 1

2
c†Kc1

1

2
~Kc!†cJ . ~3.3!

By using the identity

]m~A2g hgm!5A2g~hgmĜm1Ĝm
† hgm!,

it is easy to show that for any two spinor fieldsc andx that
fall off sufficiently fast,

E d4xA2gx†Kc5E d4xA2g~Kx!†c. ~3.4!

ThusA2g K is a self-adjoint operator.
Extremizing the action with respect toc† gives the gen-

eralized Dirac equationKc50, or, more explicitly,

igm~]m1Ĝm!c5mc. ~3.5a!

Varying the action with respect toc gives

2 i ~]mc̄!gm1 i c̄Ĝmgm5mc̄. ~3.5b!

The second equation is also implied by the first. As a con
quence of these the vector current and the axial vector
rent obey the following:

]m~c̄gmc!1Gml
m c̄glc50

]m~c̄gmg5c!1Gml
m c̄glg5c5 i2m c̄c,

with the axial anomaly omitted. Appendix D iterates t
Dirac equation~3.5a! to obtain the second order form. Th
commutator of the covariant derivatives@¹m ,¹n#c intro-
duces the spin curvature tensor, which is directly related
10401
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the Riemann-Christoffel curvature tensor, so as to simp
the second order wave equation.

B. Energy-momentum tensor

The energy-momentum tensor, being the source of
gravitational field, must also be computed. The fermion c
tribution to the energy-momentum tensor requires vary
the fermion action with respect to general changes in
metric tensor:

dA5
1

2E d4xA2g~dgmn!Tmn .

~1! The theorem proved in Appendix B provides th
variational derivative of the Dirac matrices, of the spin m
ric, and of the spin connection. The most general chang
the Dirac matrices that can result from a change in the me
tensor is

dg m5
1

2
~dgmn!gn1@g m,G#, ~3.6a!

whereG is some 434 matrix. Without loss of generality one
may restrictG to be traceless since the identity matrix com
mutes withgm. The dependence of the matrixG on the met-
ric tensor will depend upon how the basic anticommutato
Eq. ~1.1! is solved.@For the vierbein solution it has the valu
G5ec

a(debc)@ga ,gb#/8.#
~2! To compute the variation in the spin metrich, take the

variation of Eq.~2.1! and substitute Eq.~3.6a! to get

05@h21dh2G2h21G†h,g m#.

By Schur’s lemma the only matrix that commutes with
thegm is a multiple of the identity. Since Tr(h21dh)50 and
Tr(G)50, the quantity that commutes is traceless, wh
implies

dh5hG1G†h. ~3.6b!

The producthgm appears throughout the action. Its variatio
is therefore

d~hgm!5
1

2
~dgmn!hgn1hgmG1G†hgm.

~3! Next one needs the dependence of the spin connec
Gm on the metric. Varying Eq.~2.6! with respect to the met-
ric tensor gives

05¹m~dgn!1~dGml
n ! gl1@dGm ,gn#.

The first term can be evaluated using Eq.~3.6a! and the fact
that ¹mgl50:

¹m~dgn!5
1

2
~¹mdgnl!gl2@¹mG,gn#.

By taking the variation of 05¹m gnl this can be expresse
more explicitly as
0-5
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¹m~dg n!52
1

2
~dGml

n !gl2
1

2
~dGma

l !gangl2@¹mG,gn#.

Substituting above gives

05
1

2
~dGml

n !gl2
1

2
~dGma

l !gangl1@dGm2¹mG,gn#.

The first two terms together can be written as a commut
with gn so that

05FdGm2¹mG2
1

8
dGmb

a @ga ,gb#,gnG .
Since each term on the left hand side of the commutato
traceless, Schur’s lemma implies that

dGm5]mG1@Gm ,G#1
1

8
~dGmb

a ! @ga ,gb#. ~3.6c!

~4! To compute the energy-momentum tensor for a f
mion field requires varying the action given in Eq.~3.1!:

dA5E d4x~dA2g!H 1

2
c†Kc1

1

2
~Kc!†cJ

1E d4xA2g H 1

2
c†~dK !c1

1

2
„~dK !c…†cJ .

The variation of the differential operatorK given in Eq.~3.2!
with respect to the metric tensor can be computed using E
~3.6a!, ~3.6b!, and~3.6c! with the result

dK5
i

2
~dgmn!hgn~]m1Ĝm!1KG1G†K

1
i

8
~d Gmb

a ! hgm@ga ,gb#. ~3.7!

The Dirac equation,Kc50, and the self-adjoint propert
Eq. ~3.4! guarantees that the termsKG andG†K will make
no contribution. Consequently, for the classical theory it
not necessary to know the matrixG explicitly. The last term
in Eq. ~3.7! is anti-Hermitian and automatically cancels
dA. Thus the variation gives

dA5E d4xA2gdgmnH i

4
c†hgn¹mc2

i

4
~¹mc!†hgncJ .

Symmetrizing with respect tomn gives the final result for the
energy-momentum tensor for any fermion field:

Tmn5
i

4
~ c̄gn¹mc1c̄gm¹nc! ~3.8!

2
i

4
@~¹mc̄!gnc1~¹nc̄!gmc#.

The Einstein field equations are, as always,
10401
or
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Rmn2
1

2
gmnR58pG Tmn . ~3.9!

IV. SUMMARY AND CONCLUSIONS

The action for fermions that has been constructed is
variant under two separate transformations: general coo
nate transformations and local spin base transformations

~1! General coordinate transformations. Under a general
transformation xm→ x̃m(x) of the coordinate system th
Dirac matrices and the fermion field transform as

g̃m~ x̃!5
] x̃m

]xn
gn~x! ~4.1a!

c̃~ x̃!5c~x!. ~4.1b!

This is completely standard.
~2! Spin base transformations. Under arbitrary spin base

transformations the Dirac matrices and spinor field transfo
as

g8m~x!5S~x!gm~x!S21~x! ~4.2a!

c8~x!5S~x!c~x!, ~4.2b!

whereS(x) is any matrix in Gl(4,c).
~3! Spin base transformations to vierbein base.According

to the theorem proved in Appendix B, any two sets of Dir
matrices that solve the anticommutation relations must
related by a spin-base similarity transformation. Con
quently every solution to the anticommutation relations
spin-base equivalent to a vierbein solution. Appendix
shows how, starting from an arbitrary set of Dirac matric
gm, to construct a transformation matrixSand the quantities
ea

m satisfying

gm5ea
m SgaS21. ~4.3!

The construction does not prove thatea
m are derivatives of a

locally inertial coordinate as are the vierbeins in Eq.~1.2!.
~4! Inclusion of gauge fields. Every species of fermion

field contains the covariant derivative (]m1Ĝm)c. Under a
spin base transformation every fermion field undergoes
same transformationc→Sc. By contrast, non-Abelian
gauge transformations always transform each fermion i
muliplet differently. For example, in QCD each type
quark transforms as a triplet of the SU~3! color group. In the
electroweak interactions the chiral projections 1/2
2g5)c of the quarks and leptons transform as doublets
the gauge group SU~2! and these gauge transformations a
distinct from spin base transformations. However, the f
electroweak gauge group is SU(2)3U(1) and the Abelian
U~1! factor requires some discussion.

It is simplest to consider QED and then return to the el
troweak U~1! gauge invariance. Letce be the field of the
electron field,cu the field of the up quark, andcd the field of
the down quark. The kinetic terms in the action are
0-6
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c̄e~]m1Ĝm2 ieAm!ce1c̄uS ]m1Ĝm1 i
2

3
eAmDcu

1c̄dS ]m1Ĝm2 i
1

3
eAmDcd .

Included among the spin base transformations is the ph
changec→exp(2if)c of all three fields, wheref is an
arbitrary real function. Under this spin base transformat

Ĝm→Ĝm1 i (]mf)I and Am does not change. By contras
under an electromagnetic gauge transformation each ferm
field transforms with a different phase:ce→exp(2if)ce,
cu→exp(i 2/3f)cu , and cd→exp(2i 1/3f)cd . The vector

potential changes,Am→Am2]mf/e, but Ĝm does not
change.

The behavior of the Abelian group in the SU(2)3U(1)
electroweak interactions is analogous except that there is
ity violation in the coupling to the U~1! vector potentialBm .
Included among the spin base transformationsc→Sc are
those for whichS21]mS5 i ]mf(aI1bg5) with a andb the
same for all fermions. The U~1! gauge transformation is dis
tinct from these spin base transformations in that the va
of a andb are different for each field type and consequen
the vector potentialBm changes but the spin connection do
not.

~5! Non-Riemannian spaces. This paper treats only Rie
mann spaces. In a non-Riemannian space there are addit
degrees of freedom beyond the metric that determine
geometry. The full event connection is the sum of the Chr
offel connection and an additional event connection. The
spin connection is the sum of the Riemann spin connec
used here and an additional piece representing the new
grees of freedom. There are no obstacles encountered in
tending the above treatment to this more general space w
out using vierbeins. The full Gl(4,c) invariance is
maintained.

~6! Possible advantages. Solving the Dirac equation for a
particular metric is often difficult because of the space-ti
dependence of the Dirac matrices. The freedom to m
spin-base transformations can simplify the Dirac matri
enough that the Dirac equation can be solved, as, for
ample, in@19#. There may also be advantages to this form
lation in treating the quantized field theory, i.e. whenc and
gmn are operators. First, in the canonical quantization of p
gravity by Arnowitt, Deser, and Misner@21# it is the metric
gmn that is quantized and not the vierbein. This makes
natural to keep the metric as the fundamental variable in
fermionic sector. Second, in perturbative quantum grav
the graviton vertex with a fermion field can be read off fro
Eq. ~3.7!. The classical Dirac equationKc50 no longer
applies when the fermion field is off the mass shell. Thus
terms in Eq.~3.7! involving G will contribute to the vertex
and the value ofG that ensues from the choice of the pa
ticular Dirac matrix will affect the perturbative expansion
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APPENDIX A: CLIFFORD ALGEBRA

In the anticommutation relations, Eq.~1.1!, the off-
diagonal components of the general metricgmn mean that the
anticommutator is never zero. In proving various results i
often much easier to deal with one covariant index and
contravariant index so that

$gm ,gn%52dm
n I .

Using this one can show that the space-time dependent
trix g5 defined in Eq.~1.5! has the property

g5gng552gn. ~A1!

Contracting both sides withgn gives

g5g55I . ~A2!

Taking trace of Eq.~A1! and using the cyclic property give
Tr(gn)52Tr(gn) and therefore

Tr ~gn!50. ~A3!

Becausegngn54, Eq. ~A1! implies g552gng5gn/4. Tak-
ing the trace of this and using the cyclic property giv
Tr(g5)52Tr(g5) and therefore

Tr ~g5!50. ~A4!

The four Dirac matrices are the bases for the Cliffo
algebra. The vector space of this algebra is spanned by
matrices which can be chosen as the covariant ten
1,ga ,@ga ,gb#,g5, and gag5. All except the identity are
traceless.

APPENDIX B: GENERAL THEOREM

There are several computations which require know
how the Dirac matrices change when the metric ten
changes in a specified way. The answer to this comes f
the fundamental anticommutation relation

$gn,gk%52gnkI . ~B1!

Under an infinitesimal change in the metric tensor this
comes

$Dgn,g k%1$gn,Dgk%52Dgnk I . ~B2!

This appendix proves that the most general solution forDgn

is

Dgn5
1

2
~Dgnl!gl2@M ,gn#, ~B3!

whereM is a 434 matrix. The specific values of the chang
Dgnl will determine the specific value ofM. Before proving
the theorem it may be helpful to see the actual uses of
theorem.
0-7
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1. Spin connection

One application of the theorem is to compute the spa
time derivative of the Dirac matrices in terms of the deriv
tives of the metric. In other words, expressDgn5dxm]mgn

in terms ofDgnl5dxm]mgnl. In this case the matrixM must
also be proportional to the coordinate differentials:M
5dxmMm . Since¹mgnl50, it follows that

Dgnl52dxm~Gmk
n gkl1Gmk

l gkn!.

Then Eq.~B3! can be rearranged as

dxm~]mgn1Gml
n gl!5

1

2
dxm~Gmk

n gkl2Gmk
l gkn!gl

2 dxm@Mm ,gn#.

Because the two terms on the right involving the event c
nection are antisymmetric undern↔l, the entire right hand
side can be written as commutator withgn:

]mgn1Gml
n gl52@Gm ,gn#. ~B4!

The matrixGm is the spin connection:

Gm5
1

8
Gmb

a @ga ,gb#1Mm . ~B5!

Although Mm is not a vector under general coordinate tra
formations, the spin connectionGm is automatically a vector

2. Pauli’s theorem in curved space

Given one set of Dirac matricesgn satisfying Eq.~B1!
and another setg8n also satisfying Eq.~B1!, it is natural to
ask if the two solutions are related. In Minkowski spa
Pauli proved that the two sets are always related by a s
larity transformation@22–24#.

In curved space-time, this question is equivalent to ask
what infinitesimal changesDgn are possible whenDgnk

50. The most general solution given in Eq.~B3! is thatgn

1Dgn is of the formgn2@M ,gn# for infinitesimalM. Iter-
ating this shows that the most general solution is of the fo

exp~2M ! gnexp~M !. ~B6!

Thus any two sets of Dirac matrices satisfying anticomm
tation relations~B1! with the same metric tensor must b
related by a similarity transformation. This is used in S
II C, where the spin metrich is the similarity transformation
betweengn andgn† and in Appendix E.

3. Energy-momentum tensor

Another application occurs in the computation of t
energy-momentum tensor in Sec. III B. There the problem
to compute the change in the Dirac matrices produced by
arbitrary variation in the metricDgnk.
10401
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4. Proof of the theorem

To prove Eq.~B3! the first step is to parametrize the mo
general possible change in the Dirac matrices as

Dgn58Tnaga12Ang51Bnag5ga1Cnab@ga ,gb#. ~B7!

For a fixed value ofn the expansion is a linear combinatio
of 15 traceless matrices. As already noted in the above
plications, the coefficients may or may not transform as
ordinate tensors depending upon whetherDgnl is a tensor.

~1! The coefficientTna can be written as a trace:

Tnk5
1

32
Tr@~Dgn!gk#.

The symmetric part of this is

Tnk1Tkn5
1

8
Dgnk. ~B8!

~2! Next substitute the expansion Eq.~B7! into Eq. ~B2!
to get

2Dgnk516~Tnk1Tkn!1g5Xnk1Ynk,

whereX andY denote the matrices

Xnk5Bna@ga ,gk#1Bka@ga ,gn#

Ynk5Cnab$@ga ,gb#,gk%

1Ckab$@ga ,gb#,gn%.

Because of Eq.~B8!, this becomes

05g5Xnk1Ynk.

From their definitions,g5 commutes withXnk but anticom-
mutes withYnk. Therefore both matrices vanish:

Xnk50, Ynk50.

~3! The vanishing ofX allows us to extract information
about the coefficientsBna by evaluating the commutator

05@Xnk ,gk#516Bnaga24~gakBak!gn.

This fixesBna to have the structure

Bna522P gna, ~B9!

whereP is unknown.
~4! The fact thatY50 will yield a simplification in theC

coefficients from which it is made. Define the anticommu
tor

Zk5
1

4
$Ynk,gn%50.

Explicit calculation gives

Zk53Ckab@ga ,gb#1Cnab~gna@gb ,gk#2gnb@ga ,gk#!.
0-8
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To eliminate the Dirac matrices, compute

1

16
Tr~Zk@gl,gr#!53Ck[rl]1gna~Cn[ar]gkl2Cn[al]gkr!.

SinceZk50, the right hand side must vanish. Therefore
three-index coefficient has the structure

Ckrl2Cklr5Vl gkr2Vr gkl, ~B10!

with Vl unknown.
~5! Using the results of Eq.~B8!, ~B9!, ~B10! the expan-

sion in Eq.~B7! simplifies to

Dgn5
1

2
~Dgnl!gl14~Tna2Tan!ga

12Ang522Pg5gn1Vb@gn,gb#. ~B11!

Now define a matrixM by

M5Tab@ga ,gb#1Aagag51Pg51Vaga . ~B12!

Then Eq.~B11! can be written in the simple form

Dgn5
1

2
~Dgnl!gl2@M ,gn#. ~B13!

This proves the theorem quoted in Eq.~B3!.

APPENDIX C: CONTRIBUTION OF THE SPIN
CONNECTION TO THE ACTION

As mentioned in Sec. II, the full spin connection is p
rametrized by 16 complex coefficients. Some parts of
spin connection automatically cancel out of the fermion
tion. The spin connection appears in the action through
combination

i

2
c†@hgmGm2~hgmGm!†#c. ~C1!

When the general form for the spin connection in Eq.~2.5! is
substituted there are a number of cancellations. To disp
the result it is convenient to define coefficients which a
traceless on their event indices:

t̄ m
ab5tm

ab2
1

3
~dm

a tl
lb2dm

b tl
la! ~C2a!

v̄m
a5vm

a2
1

4
dm

avl
l ~C2b!

ām
a5am

a2
1

4
dm

aal
l . ~C2c!

Then the matrix occurring in the action can be written

hgmGm2~hgmGm!†5h~gmAm1B!, ~C3!
10401
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where the matrixAm contains the ‘‘traceless’’ part of the
coefficients,

Am52~Re t̄ m
ab!@ga ,gb#12~Rev̄m

a !ga

12i ~ Im ām
a !gag512i ~ Im pm!g512i ~ Im sm!I ,

~C4a!

and the matrixB contains the ‘‘traces’’:

B58i ~ Im tl
lb!gb12i ~ Im vl

l!I 12~Real
l!g5 . ~C4b!

The full spin connection in Eq.~2.5! contains 16 complex or
32 real parameters for a fixed value ofm. The combination
that occurs in the action contains 16 real parameters fo
fixed m.

APPENDIX D: SECOND ORDER DIRAC EQUATION AND
THE SPIN CURVATURE

If one iterates the Dirac equation~3.5a!, the result is a
second-order equation

05gmn¹̂m¹̂nc1m2c1
1

2
@gm,gn#¹m¹nc, ~D1!

where the second order covariant derivative is

¹m¹nc5]m~¹nc!2Gmn
l ~¹lc!1Gm~¹nc!.

In the second term of Eq.~D1! the antisymmetric combina
tion of covariant derivatives defines the spin curvature ten
Fmn :

¹m¹nc2¹n¹mc5Fmnc,

where

Fmn5]mGn2]nGm1GmGn2GnGm . ~D2!

SinceGm is a linear combination of the Clifford algebra ma
trices@ga ,gb#, ga , gag5 , g5, andI, one would expect tha
Fmn also contains these matrices.~The part of the spin con-
nection that is proportional to the identity matrix will trivi
ally cancel inFmn so thatGm andĜm produce the same spi
curvature tensor.!

The spin curvature tensor can be related to the Riema
Christoffel curvature tensor

Rmnk
• • • l5]mGnk

l 2]nGmk
l 1Gma

l Gnk
a 2Gna

l Gmk
a , ~D3!

in the notation of Schouten@20#. The commutator of two
covariant derivatives acting on a vector field is

¹m¹n Al2¹n¹mAl5Rmnk
• • • lAk.

By working out¹m¹ngl2¹n¹mgl50 one obtains the rela
tion

05Rmnk
• • • lgk1@Fmn ,gl#. ~D4!
0-9
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SinceFmn contains no identity component, this equation
quires the spin curvature to be entirely in the Lorentz sub
gebra:

Fmn52
1

8
Rmnab@ga,gb#. ~D5!

When this is substituted into Eq.~D1! the second order form
of the Dirac equation becomes

05gmn¹̂m¹̂nc1m2c1S ig5R̃2
1

4
IRDc ~D6!

where

R̃5
1

8A2g
emnabRmnab

R5gmbgnaRmnab .

APPENDIX E: SPIN BASE TRANSFORMATION
TO VIERBEIN BASE

According to the theorem proved in Appendix B, any tw
sets of Dirac matrices that solve the anticommutation re
tions must be related by a spin-base similarity transform
tion. Consequently any solutiongm to the anticommutation
relations is spin-base equivalent to the vierbein solution:

gm5Sea
mgaS21. ~E1!

This appendix shows how to construct a spin base trans
mationS which does this.

~1! Starting with any setgm, compute

g5~x!52 i
A2g

4!
eabmngagbgmgn. ~E2!

Since @g5(x)#25I , the eigenvalues ofg5(x) are 61. It is
elementary to find a matrixS1 that diagonalizesg5(x) and
therefore transforms it to a constant matrix. It is importa
that the transformed matrix be constant but it need not
diagonal for what follows. Thus let

g (5)5S1
21g5~x!S1 ~E3!

whereg (5) is a constant matrix chosen in some conveni
form. Associated with this constant matrix is a set of co
stant Dirac matricesga which satisfy$ga,gb%52hab in a
representation such thatig (0)g (1)g (2)g (3)5g (5) . From S1
and the original Dirac matrices construct the set

g8m~x!5S1
21gm~x!S1 . ~E4!

Each of the new matricesg8m(x) can be written as a linea
combination of the 15 constant matricesga, gag (5) , g (5) ,
and @ga,gb#. However, the vanishing anticommutator

$g (5) ,g8m~x!%50
10401
-
l-

-
-

r-

t
e

t
-

means that eachg8m(x) is actually a linear combination only
of the 8 constant matricesga andgag (5) . Thus write

g8m~x!5Va
mga1Aa

mgag (5) . ~E5!

The anticommutator of these Dirac matrices is

$g8m~x!,g8n~x!%52Va
mVb

nhab22Aa
mAb

nhab

1~Va
mAb

n1Va
nAb

m!@ga,gb#g (5) .

Since the anticommutator equals 2gmn, it follows that

gmn5Va
mVb

nhab2Aa
mAb

nhab

05~Va
mAb

n1Va
nAb

m!@ga,gb#g (5).
~E6!

The second condition can only be satisfied ifAa
m is propor-

tional to Va
m . Therefore set

Aa
m5Va

mtanhu

whereu is some function of space-time. Eq.~E6! becomes

gmn5Va
mVb

nhab~12tanh2u!.

Thus define the vierbein

ea
m5Va

m/coshu.

It automatically satisfies

gmn5ea
meb

nhab. ~E7!

The Dirac matrices in Eq.~E5! are now

g8m5ea
mga~ I coshu1g (5)sinhu!.

Since the matricesg (0)ga andg (0)gag (5) are self-adjoint, the
matricesg (0)g8m will only be self-adjoint if the vierbeinea

m

and the functionu are real.
~2! To eliminate theu-dependent chiral rotation, defin

another similarity transformation

S25I cosh~u/2!2g (5)sinh~u/2!.

This matrix has the property

ga~ I coshu1g (5)sinhu!5S2gaS2
21 .

Therefore

g8m5S2ea
mgaS2

21 . ~E8!

~3! Combing Eqs.~E4! and ~E8! shows that the origina
space-time dependent Dirac matrices can be expressed

gm5S1S2 ea
mgaS2

21S1
21 . ~E9!

The above procedure gives an explicit method for constru
ing the required similarity transformations.
0-10
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