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Fermions without vierbeins in curved space-time
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A general formulation of spinor fields in Riemannian space-time is given without using vierbeins. The
space-time dependence of the Dirac matrices required by the anticommutation rejatign}=2g,,, deter-
mines the spin connection. The action is invariant under any local spin base transformations in the 32 param-
eter group Gl(4) and not just under local Lorentz transformations. The Dirac equation and the energy-
momentum tensor are computed from the action.
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[. INTRODUCTION one can solve Eq1.1) by choosing the space-time depen-
dent Dirac matrices as particular linear combinations of the
The Dirac equation for spinor fields was formulated in constant Dirac matrices:
curved space in 1929 by Fock and Ivanefky who found
it convenient to employ vierbeins. That method provides a YH(X) =e5(x) ¥ 1.4

particular solution for the space-time dependent Dirac matri-_, . . . .
cesy” satisfying the anticommutation relation This is not the most general solution to Ed.1) but it does

work. The action for the fermion fields and the Dirac equa-
{y*,y"}=2g*"I. (1.1 fionis expressed in terms of these vierbdids5]. The vier-
bein method is used for both the classical Dirac figd 9]
The description of fermions in curved space-time using vierand for the quantized Dirac field0,11.
beins can be found in books by DeWj&], Weinberg[3], There are several unattractive features of the vierbein for-
Burell and Davied4], and Wald[5]. It frequently implied, mulation.(1) The 10 independent components of the metric
and sometimes explicitly stated, that fermionic fields cannotensor are replaced by the 16 components of the vierbeins.
be formulated in curved space without the use of vierbeins(2) It is necessary to introduce a special inertial frame at each
This paper will show that vierbeins are not necessary. point contrary to the basic principles that led Einstein to
The reason for eschewing vierbeins is not mere noveltyconstruct general relativity. Neither the inertial frames nor
Always using vierbeins to treat fermionic fields is rather like the constant Minkowski metric is necessary for spin 0 or spin
always using the Coulomb gauge to perform electrodynamic$ fields or for gravity itself(3) When the vierbein solution
calculations in Minkowski space. One can get the right anfor the Dirac matrices in Eq1.4) is inserted into the formula
swers in Coulomb gauge. However, it would be very puz-

zling if physics could only be done in that gauge because the N—g

” - ¥5= i —€up Y VYY" (15
Coulomb gauge condition only holds in one Lorentz frame, a 5 4 “Buv ' '
requirement which is contrary to the principle that all inertial
frames are equivalent. all the space-time dependence cancels andecomes equal

The vierbeins are the gravitational analogue of the Couto the constant matriy sy from Minkowksi space. Because
lomb gauge. At each point in a curved space-time it is of intrinsic parity violation, the matrix/s plays a central role
always possible to choose a set of four locally inertial coor-in the electroweak interactions. The coupling of quarks and
dinates£?, which depend ox. The vierbeins are defined as leptons to the weak vector bosoé™ and Z° is through a

the partial derivatives linear combination of vector currentsy*y and axial vector
a currentsyy*ysi. In the vierbein formalism, local Lorentz
e (x)= i (1.2) transformations change the space-time dependence ¢f‘the
a axH but y5 remains the same constant matrix as in Minkowski
space.

Since coordinates that are inertial at one point will not be In the standard vierbein formulation of fermion fields
inertial at a nearby point, the vierbeins have the property thagheir are two types of transformations: general coordinate

aveiaﬁ aﬂei. They automatically satisfy the two relations transformations and local Lorentz transformations. The La-
a a

?MG‘S??abZQW and eMekV’g“Vz 7?°. The inverse of Eq(1.2) grangign density must be a scalar under both types of trans-
is formations.
. General coordinate transformationdJnder a general
e (X)=g""e, 7pa- (13 transformationx*—X*(x) of the coordinate system, each of

. . . . the four vierbeins transforms as a coordinate vector
From any set of space-time independent Dirac matrices sat-

isfying P

el(x)= —ek(x). 1.6
[y2,9° =2 7201, e5(x) ox” ex(X) (1.9
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The Dirac matrices transform as a vector: mions. Section IV provides a summary. There are five ap-
_ pendixes. Appendix A summarizes the Clifford algebra ba-

~ e OXE sis. Appendix B proves a general theorem which is employed

Y%= oxt ! (%). (178 in the development of the spin connection, of the spin metric,

and of the energy-momentum tensor. Appendix C shows
which components of the general spin connection actually
appear in the action for the fermion. Appendix D develops

belonging to the group GIl(4). Because GI(4) does not h d order Di ; d rel h ;
contain as a subgroup the spinor representations of the Lof® second order Dirac equation and relates the spin curva-
ture tensor to the Riemann-Christoffel event curvature ten-

entz groufd 10,12, it is not possible for the spinor fielg(x) sor. Appendix E shows how with any fixed set of Dirac

to transform under general coordinate transformations: ti tisfving EqL.D) t fruct b ¢

Therefore the spinor field transforms as a scalar under ger?'a rices sa isfying Eq(1. ). O construct a spin base trans-

eral coordinate transformations: ormation to change the Dirac matrices to a vierbein basis.
The option of not using vierbeins has appeared in the

The transformations matricex*/dx” are 4x 4 real matrices

Zb&) = %(X). (1.79 earlier literaturd 14—18 though often without any proof that
the necessary spin connection exists and without any indica-
This is completely standaif@-5]. tion of how to compute the spin connection. Typically there

Local Lorentz transformations€onventionally the way to has been little discussion of the spin metric, the Dirac adjoint
introduce spin base transformations that act on the compdield, or the fermion Lagrangian. Understanding how the spin
nents of the spinor quantities is to mimic Minkowski space.connectionl’,, and the spin metri depend on the space-
Under local Lorentz transformations of the inertial coordi-time metricg,, makes it possible in this paper to compute
nategaHAggb the vierbeins mix according to the fermionic energy momentum tensor by varying the action

with respect to the space-time metric.
el (x)=ef(x)A2.

. . . Il. BASIC STRUCTURE
The constant Dirac matrices?® transform according to

spinor representations of the local Lorentz group: In the following it is not necessary to have an explicit
b a b 1 form for the Dirac matrices which satisfy the basic anticom-
Aa7*=SLolA) Y’Sior(A). mutation relation, Eq(1.1).
Therefore under local Lorentz transformations of the inertial _ )
coordinate, the Dirac matrices and spinor field transform as A. Spin metric
g " 1 The matricesy*", which result from taking the transpose
Y H(X) = SLor(A) Y(X) Sior(A) (1.8a and the complex conjugate of*, automatically satisfy the
Lo same anticommutation relation. As proved in Appendix B,
' (X) =S A) (X). (1.8 the two solutions must be related by a matrix transformation:
The vierbein does not appear explicitly in the transformation yAT=h y#h1, 2.1

equations. One may summarize this approach by saying that

there are two types of transformations and the action must bgr some matrixh. The adjoint of this relation can be used to
a scalar under both. Coordinate transformations employ regptain

4% 4 matricesdx*/ax”. The spin base transformations em-

ploy complex 4<4 matricesS, ,(A) that are spinor repre- [h~thT, y#]=0.

sentations of the 6-parameter Lorentz group.

Given the necessity of separate laws for general coordiA basis for the 15 nontrivial matrices of the Clifford algebra
nate transformations and for spin base transformations, tan be formed from products of thg*. Since all of these
seems natural to allow any complex4 matrix as a spin will commute withh~h', the latter must be proportional to
base transformation. To do this requires abandoning the vithe identity matrix:h ~*h"=zI for some complex numbezx
erbeins and dispensing with the privileged position of localTaking the determinant of both sides shows tizat=1 and
inertial frames and local Lorentz transformations. that (Deth)?=z"4. It is convenient to redefink by chang-

The remainder of the paper formulates the Dirac spinoing h—hyz. Thenh~*h=\zZ =1 so thath is Hermitian,
field in a Riemannian space without using vierbeins. Section
Il develops two essential ingredients: the spin mdinhich hf=h, (2.2
allows ¢"hy to be invariant under spin base transformations
and the spin connectioli, which makes §{,+1",)# trans- and Deh=1. The matrixh will be the spin metric. The
form covariantly under a general spin base transformatiomefinition in Eq.(2.1) also implies that
[13]. Section Il treats the equations of motion for the fer-
mion field. Requiring the action to be stationary under varia- y§= —hysh™ 1.
tions in ¢ gives the Dirac equation. Requiring it to be sta-
tionary under variations ofg*” gives the Einstein field It is helpful to note that the matricdsy* and hy*ys are
equation containing the energy-momentum tensor of the ferHermitian, whereatys andh[ y*, "] are anti-Hermitian.
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B. Spin connection C. Spinor fields

Covariant derivatives of tensor quantities require the The covariant derivative of the fermion field is
Riemann-Christoffel event connection
VM¢=&M¢+FM¢. (2.7

1
[in=59"(0,9an+ h\Gan ™ da9u)- (2.3 The fermion action isA;=fd*x V—g£;, where the La-
grangian density is
Covariant derivatives of spinors require the spin connection. . .
Whatever choice is made for the Dirac matrig€s one can r L Th Y = SV o thevEd—m otThe, (2 8
compute the derivatives, y”. From these derivatives one f le YVt 2( WD)yt g=mythy. 2.8

can compute the coefficients . . o
To examine the role of the spin connection it is helpful to

oB -1 N BB A write out £ in detail:
U= g Ty (7" + ] (249 _ _
[ i
L L=y d, == (3,9) hyky
V= 4—8Tr([7“, Yol 9u7") (2.4b i
. =my'hy+ Sy (hy T, =T hy")y.
a; = gTr(ysd,y" (2.49 . - . : .
wog N TSOuY When the full spin connection is substituted in the action
there are numerous cancellations so that the 16 complex pa-
_ iTr( 9. ) (2.40 rameters are reduced to 16 real paramet@se Appendix
P 32 \YsYvOu¥): ' C.) Of these cancellations, the simplest occurs in the part of

', that is proportional to the identity matrix, vizs,l. In
It is easy to check the antisymmetlﬁﬁthﬁ“:O. Forafixed particular (Res,)! does not appear in the action. It is very
choice ofu there are 15 complex coefficients: 6 independentconvenient to subtract off (Re,)| from the spin connection
values oft;',fﬁ, 4 values ofv, , 4 values ofa;,, and onep,, . and define
Under general coordinate transformations each of these

transforms as a tensor as indicated by the indi¢es: com- A 1
parison, with the vierbein solution for the Dirac matrices the L=T.= ZRe[Tr(FM)]l ' (2.99
coefficientsv, , a3, p,, ands, all vanish, and the nonva-
nishing termtzﬂ has 6 real coefficients. The subtracted spin connection satisfies
The spin connectiollr,, has the general decomposition in .
terms Dirac matrices as Re Tr(I',)]=0. (2.9b
U=ty ve) oo vatal v, ys+Puysts,l, It will be convenient to usé“M in Sec. Il for the discussion

(2.9 of the Dirac equation and the energy-momentum tensor.

wheres,, is undetermined. The lettets,a,p,s denote ten-

sor, vector, axial vector, pseudoscalar, and scalar. This for-

mula for I',, was first derived by Greefil6]. Appendix B Starting from a set of Dirac matriceg” satisfying the

shows that the spin connection given in E2.5 satisfies anticommutation relation, E@1.1), one can change to a new
set by a spin base transformation

y''=Sy"'S™H, (2.10

D. Spin base transformations

&My"-l—l";)\'y)‘-k[[‘ﬂ,'y”]:O. (2.6

It is elementary that if", is postulated to satisfy Eq2.6),
then the coefficients are as given in E8.4). Appendix B whereSis an invertible, complex %4 matrix with arbitrary
proves the converse, that E@.6) is actually satisfied. The dependence on space-time. Ti&iBelongs to the 32 param-
result is non-trivial and it is worth doing some counting to eter group Gl(4). The possibility of arbitrary spin base
appreciate what has happened. For a fixed choige @fidv  transformations goes back to ScHimger [14] and Belin-
the derivatived,, y” will generally be a linear combination of fante[15]. Under a spin base transformation the derivative of
15 Dirac matrices. If only is fixed andv runs over its four  the Dirac matrices transforms inhomogeneously:
values, then Eq(2.6) is a set of 60 linear equations. These
60 equations are solved by the 15 coefficients displayed in d9,7'"=8(d,y"+[S$ 19,8,y NS
Eq. (2.9).

Equation(2.6) also determines the derivative of products
of Dirac matrices. In particular, it gives

d,v5+[T ., ys5]=0. r,=sr,st-ss,s. (2.11

The coefficients in Eq(2.4) also change inhomogeneously
and this gives the transformed spin connection
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The transformed Dirac matrix and the transformed spin con- VA AR e v
nection satisfy Py =9y

aM,y/y_’_Flvn\,y/)\ +[F;L,,y/1/]=0. (213 (ﬂ ')’le :lﬂ’va'

The event connectioR”, does not change under a spin baseThe fwstl of these is the mass term in the fermion action, the
® second is part of the energy-momentum tensor, and the third

transformation. is the vector current for electromagnetism
Under a spin base transformation the spinor field behaves 9 '
as
E. Additional covariant derivatives
' =Sy (2.133 The covariant derivatives of various additional quantities
The covariant derivative defined in E@.7) transforms ho- will be needed. Sincey is a coordinate scalar and_a spin
mogeneously: base scalar, the Leibnitz product rule gives,(¢)
) =(V, ) g+ (V). Consequently the covariant derivative
V,'=SV . (2.130  of the Dirac adjoint field is
The adjoints of the new Dirac matrices satisfy Vb=3d,4—yT,. (2.17
y'#t=n"y #h (2.143  On the other hand, the adjoint of EQ.7) is
i ici T to ot
where the transformed spin metric is Vub'=0,4"+y'T, (2.18
h'=s'"ths (2.14b WhereFL is the complex conjugate, transpose matrix. Com-

) paring these last two results gives the covariant derivative of
There are several comparisons to be matleThe fact that the spin metric:

the spin metric changes under a spin base transformation is

analogous to the fact that the event megjg, changes as a V,h=a,h— hFM—FLh. (2.19
result of coordinate transformation®) By such a transfor-

mation it is always possible to mak€ a constant matrix It is possible to evaluate this. Taking the complex conjugate,
with a convenient form, e.g. diagonal. However, subsequertranspose of Eq(2.6) and using the definition of the spin
spin base transformations will changé, unless one arbi- metric leads to

trarily limits the allowed spin base transformatioii3) One

can rewrite the above relation as 0=[h"%9,h—T,—h"TTh, y"].

S'=hs*h' 1. By Schur’'s lemma the only matrix that commutes with all
the y” is a multiple of the identity matrix so that
This form emphasizes the relation 8f to S™. If one arti-
ficially limits the allowed spin base transformations to those h™tg,h—T,—h 'TTh=c,l.
which do not change the spin metric, tHeh= h so thatS' is
matrix equivalent toS~1. Such a choice would limiSto ~ One can evaluate, by taking the trace of both sides of this
represent a unitary group as was assumed by PEtjland  relation:
Finster [19]. In what follows this restriction will not be

made:h andh’ will not be constant and the spin base trans- c =— ERe[Tr(F )]
formations will not be required to keep the spin metric in- 2
variant. ~
Associated with each spinor fieldt is the Dirac adjoint  In terms of the subtracted spin connectiop defined in Eq.
field (2.99 this reads
=y'h. (219 h~19,h—T,~h~'T"h=o0. (2.203

The productyy is manifestly self-adjoint. Under a spin base This relation is also useful as a way of computing the adjoint
transformation the Dirac adjoint fiel¢t changes into of the spin connection:

W=y th = yths 1= s 1. 2.16 [l=-hl,h 1+ (a,hh7L (2.20H
This provides various invariants under spin base transforme® third possibility is to view Eq(2.203 as the vanishing of
tions: the covariant derivative of the spin metric:
V= V,h=3g,h—hl,~TTh=0. (2.200

104010-4



FERMIONS WITHOUT VIERBEINS IN CURVED SPACE-TIME PHYSICAL REVIEW B3 104010

Ill. FIELD EQUATIONS the Riemann-Christoffel curvature tensor, so as to simplify

The action for the fermion field iA=[d*x V—g£;, the second order wave equation.

where the Lagrangian density for fermions is
B. Energy-momentum tensor
The energy-momentum tensor, being the source of the
gravitational field, must also be computed. The fermion con-
tribution to the energy-momentum tensor requires varying
The independent variables are the fermion figldts adjoint  the fermion action with respect to general changes in the
' and the metric tensag”. The Dirac matrices, the spin metric tensor:

connection, and the spin metric depend on the event metric

9., - There is no vierbein. The Lagrangian density is a scalar L )
under general coordinate transformations and invariant under OA= 5| dXV=9g(89"") Ty, .
general spin base transformations in Gi{4,

i i —
Li=5 "y V= S (V) Thyty—myp. (3.1

(1) The theorem proved in Appendix B provides the
A. Dirac equation variational derivative of the Dirac matrices, of the spin met-
. . ric, and of the spin connection. The most general change in
.AS dlscus_sed in Sec. Il C, the_real part of thg trace O.f thhe Dirac matrices that can result from a change in the metric
spin connectior”,, does not contribute to the action and it is tensor is

convenient to discard that part by employiﬁg as defined

in Eq. (2.99 and define the matrix differential operator 1
’ P 8y"=3(59"")y,+[",G], (3.69
K=ihy*(d,+I,)—mh. (3.2
_ ' _ whereG is some 4< 4 matrix. Without loss of generality one
The fermion action can be written may restrictG to be traceless since the identity matrix com-
1 1 mutes withy*. The dependence of the mat®on the met-
A:J d*xV—q {_ K+ = (K Tt 3.3 ric tensor will depend upon how the basic anticommutator in
9|/ Kty (KilY 33 Eq.(1.1) is solved[For the vierbein solution it has the value

G=e:(5e")[ 7o, v51/8]
(2) To compute the variation in the spin methgctake the
variation of Eq.(2.1) and substitute E(.3.69 to get

By using the identity

9,(N=g hy*)==g(hy*T ,+ T Thy»),

it is easy to show that for any two spinor fielgsand y that

fall off sufficiently fast, By Schur’'s lemma the only matrix that commutes with all
the y* is a multiple of the identity. Since Tin("*sh)=0 and

f dAX‘/—QXTKlﬁZJ d*x\—g(Kx) . (3.4 Tr(G)=0, the quantity that commutes is traceless, which

0=[h"16h—G—h"1G"h,y*].

implies
Thus\—g K is a self-adjoint operator. Sh=hG+Gh. (3.6b
Extremizing the action with respect ' gives the gen-

eralized Dirac equatioK =0, or, more explicitly, The produchy* appears throughout the action. Its variation

_ . is therefore

iy, +T ) p=mi. (3.59 .
Varying the action with respect t¢ gives 8(hy*)=5(8g"")hy,+ hy*G+G'hy*.

—i(a,9) "+ iﬁ;ﬁ’“: my. (3.5 (3) Next one needs the dependence of the spin connection

o o i I",, on the metric. Varying Eq(2.6) with respect to the met-
The second equation is also implied by the first. As a conseyic tensor gives

guence of these the vector current and the axial vector cur-
rent obey the following: ozvﬂ((sva(gr;}\) yh+[51“w7v]_

3,y ) +TH gy =0 The first term can be evaluated using E8163 and the fact
B B B thatV ,*=0:
3, (Py*ysth) + Tl gy ysp=12m g, L
Yy — VA _ v
with the axial anomaly omitted. Appendix D iterates the Vu(6y)=5(V,09") 7 =[V,.C.y"].
Dirac equation(3.53 to obtain the second order form. The

commutator of the covariant derivativé¥ ,,V,]¢ intro- By taking the variation of &V , g”* this can be expressed
duces the spin curvature tensor, which is directly related tanore explicitly as
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pna

1 1 1
V#(éy”)=—§(6l"z)\)y"—§(5l“)‘ )gaV’Y)\_[VMG1’yV]- R,uv_ EgMVR:87TG T/.LV' (39)

Substituting above gives IV. SUMMARY AND CONCLUSIONS
The action for fermions that has been constructed is in-
variant under two separate transformations: general coordi-
nate transformations and local spin base transformations.
The first two terms together can be written as a commutator (1) General coordinate transformations/nder a general

with " so that transformation x*—x*(x) of the coordinate system the
Dirac matrices and the fermion field transform as

1 v A 1 A av v
O:E(éf‘“)\)y—z(ér )9 y\+[ol',—V ,G,¥"].

ma

1
0=| 8T, ~V,G= 5ol 5[ 7a.v"1.7"].

-~ OxX*
_ _ _ Y (X)=——7"(X) (4.1a
Since each term on the left hand side of the commutator is X
traceless, Schur’s lemma implies that .
H(X) = h(X). (4.1b

1
or,=d,G+[I',,G]+ §(5FMB) [va: ¥l (360 Thisis completely standard.
(2) Spin base transformation&Jnder arbitrary spin base
(4) To compute the energy-momentum tensor for a fertransformations the Dirac matrices and spinor field transform

mion field requires varying the action given in E.1): as
"H(X)=S #(x)S™ 1 4.2
5A=fd4x(5\/—_g){%¢//TKz/;+%(K¢)T¢] ¥ ()= S(x) y*(x)S™H(x) (4.2a
' (x) = S(X) (), (4.2b
1 1
+f d4X\/—_9[§l//T(5K)<//+ 5 (( 5K)¢)T¢]- whereS(x) is any matrix in GI(4g).

(3) Spin base transformations to vierbein ba&ecording
The variation of the differential operatérgiven in Eq.(3.2) o the theorem proved in Appendix B, any two sets of Dirac

with respect to the metric tensor can be computed using Eq&hatrices that solve the anticommutation relations must be
(3.6a, (3.6b), and(3.60 with the result related by a spin-base similarity transformation. Conse-

quently every solution to the anticommutation relations is
i A spin-base equivalent to a vierbein solution. Appendix E
oK=5(89*")hy,(9,+T,)+ KG+G'K shows how, starting from an arbitrary set of Dirac matrices
v#, to construct a transformation matt$and the quantities
i PR
+ 5 (5T Ny Ty, 9. @7 SN
yt=eltSyas 1 4.3
The Dirac equationK¢=0, and the self-adjoint property
Eq. (3.4) guarantees that the terrkG and G'K will make ~ The construction does not prove tedt are derivatives of a
no contribution. Consequently, for the classical theory it islocally inertial coordinate as are the vierbeins in Eh2).

not necessary to know the mati&explicitly. The last term (4) Inclusion of gauge fieldsEvery species of fermion
in Eq. (3.7) is anti-Hermitian and automatically cancels in field contains the covariant derivativeé (+T',). Under a
0A. Thus the variation gives spin base transformation every fermion field undergoes the
i i same transformationy— Siy. By contrast, non-Abelian
5A:f d*V=as ,uv(_ Ty, V ,— —(V ) Thy, it gauge trar_lsformations always tran;form each fermion in a
90 gV VY 4( w0y muliplet differently. For example, in QCD each type of

o ) ] ] quark transforms as a triplet of the &)Y color group. In the
Symmetrizing with respect ta» gives the final result for the - ejectroweak interactions the chiral projections 1/2 (1

energy-momentum tensor for any fermion field: — yg) ¢ of the quarks and leptons transform as doublets of
i the gauge group S) and these gauge transformations are
T,,== by, V 0+ iy, V, 3.9 distinct from spin base transformations. However, the full

w=g VIV ) (38 electroweak gauge group is SU(2Y(1) and the Abelian

U(1) factor requires some discussion.
It is simplest to consider QED and then return to the elec-

i — _
B Z[(Vﬂw) Vot (V) v, ). troweak U1) gauge invariance. Ley, be the field of the
electron field i, the field of the up quark, andy the field of
The Einstein field equations are, as always, the down quark. The kinetic terms in the action are
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APPENDIX A: CLIFFORD ALGEBRA

— - 1
+ 4 aM+FM—i §€AM

In the anticommutation relations, Eq1.1), the off-
Included among the spin base transformations is the phagidgonal components of the general megf¢’ mean that the
change y—exp(—ig)y of all three fields, wherep is an anticommutator is never zero. In proving various results it is

arbitrary real function. Under this spin base transformatiorPftén much easier to deal with one covariant index and one

. contravariant index so that
r,—r,+i(d,¢)! andA, does not change. By contrast,

under an electromagnetic gauge transformation each fermion n—=25"|
field transforms with a different phasei.— exp(—i®)ie,
u—expl 2/13d) i, and ypg—exp(—il/3¢p)yy. The vector Using this one can show that the space-time dependent ma-

potential changesA,—A,—d,dle, but T, does not Uix s defined in Eq(1.5 has the property
change. v oy

The behavior of the Abelian group in the SU(Y(1) YV ¥sT Y
electroweak interactions is analogous except that there is pagontracting both sides witly, gives
ity violation in the coupling to the W) vector potentiaB,, .
Included among the spin base transformatigns Sy are Y5ys=1. (A2)
those for whichS™'9,S=id,,¢(al+bys) with a andb the . _ _ .
same for all fermions. The (@) gauge transformation is dis- Taking trace of Eq(A1) and using the cyclic property gives
tinct from these spin base transformations in that the valuedf(¥")=—Tr(y") and therefore
of a andb are different for each field type and consequently Tr(y")=0 (A3)
the vector potentiaB, changes but the spin connection does L4 '
not. _ _ _ _ Becausey,y"=4, Eq.(Al) implies ys= — y,ysy"/4. Tak-

(5) Non-Riemannian spaceShis paper treats only Rie- g the trace of this and using the cyclic property gives
mann spaces. In a non-Riemannian space there are additioRg ,,.) = — Tr(.) and therefore

degrees of freedom beyond the metric that determine the
geometry. The full event connection is the sum of the Christ- Tr(ys)=0. (A4)
offel connection and an additional event connection. The full
spin connection is the sum of the Riemann spin connection The four Dirac matrices are the bases for the Clifford
used here and an additional piece representing the new dalgebra. The vector space of this algebra is spanned by 16
grees of freedom. There are no obstacles encountered in efatrices which can be chosen as the covariant tensors
tending the above treatment to this more general space with-Ya [ Yo, ¥5],¥5, @nd y,ys. All except the identity are
out using vierbeins. The full GI(d) invariance is traceless.
maintained.
(6) Possible advantage$olving the Dirac equation for a APPENDIX B: GENERAL THEOREM

particular metric is often difficult because of the space-time
dependence of the Dirac matrices. The freedom to mak
spin-base transformations can simplify the Dirac matrice
enough that the Dirac equation can be solved, as, for e
ample, in[19]. There may also be advantages to this formu-
lation in treating the quantized field theory, i.e. whgrand VoY — 9K

e : N {»". v I=29""1. (B1)
g, are operators. First, in the canonical quantization of pure
gravity by Arnowitt, Deser, and Misnd®1] it is the metric  Under an infinitesimal change in the metric tensor this be-
g,, that is quantized and not the vierbein. This makes itcomes
natural to keep the metric as the fundamental variable in the
fermionic sector. Second, in perturbative quantum gravity {Ay" y p+{y" Ay }=2A0""1. (B2)
the graviton vertex with a fermion field can be read off from
Eq. (3.7). The classical Dirac equatiod#=0 no longer
applies when the fermion field is off the mass shell. Thus théS
terms in Eq.(3.7) involving G will contribute to the vertex 1
and the value ofs that ensues from the choice of the par- Ay'==(Ag"™) v, —[M,»"], (B3)
ticular Dirac matrix will affect the perturbative expansion. 2

Uy

(A1)

There are several computations which require knowing
ow the Dirac matrices change when the metric tensor
changes in a specified way. The answer to this comes from
he fundamental anticommutation relation

This appendix proves that the most general solutiom\fef

whereM is a 4X4 matrix. The specific values of the change
Ag"* will determine the specific value ofl. Before proving

It is a pleasure to thank Richard Treat for many instruc-the theorem it may be helpful to see the actual uses of this
tive discussions regarding this paper. This work was suptheorem.
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1. Spin connection 4. Proof of the theorem

One application of the theorem is to compute the space- To prove Eq.(B3) the first step is to parametrize the most
time derivative of the Dirac matrices in terms of the deriva-general possible change in the Dirac matrices as
tives of the metric. In other words, expredy”=dx*d,y"
in terms ofAg”™ =dx*3d,g"™. In this case the matrid must 37" =8T "y, +2Ays+ B 5y, + C"ya,vpl. (B
also be proportional to the coordinate differentialg:

= dxM . SinceVMgV"=0, it follows that For a fixed value ol the expansion is a linear combination

of 15 traceless matrices. As already noted in the above ap-
Ag™= _dxu(FZKgKA+FZKgKV)_ pl|c§1t|ons, the coefﬂuen{s may or may notktransform as co-
ordinate tensors depending upon whether” is a tensor.

Then Eq.(B3) can be rearranged as (1) The coefficienfT** can be written as a trace:

1
1 THe=o5Tr (Ay") y"].
dx*(d,y"+ Ty = 5 X (T}, g™ =T 0" % 3

The symmetric part of this is

—dx*[M,,y"].
Because the two terms on the right involving the event con- TVK”LTKV:gAgVK- (B8)
nection are antisymmetric under \, the entire right hand
side can be written as commutator wifi: (2) Next substitute the expansion E®7) into Eq. (B2)
to get
3,y +I yY*=—[T,,9"]. B4
,uy M)\y [ M Y ] ( ) ZAgvkzle(TVK+TKV)+ ,}/SXVK_’_YVK,
1 X" =B"[74, 71+ B[ V4, ¥"]

Y= Cvaﬁ{[ Yar ’VB] ’ YK}

AlthoughM , is not a vector under general coordinate trans- +C Bl y,, vpl,v"}-
formations, the spin connectidn, is automatically a vector.
Because of Eq(B8), this becomes

2. Pauli’'s theorem in curved space 0= ysX " + Y ,

Given one set of Dirac matriceg” satisfying Eq.(B1)
and another sey’” also satisfying Eq(B1), it is natural to ~ From their definitions;ys commutes withX** but anticom-
ask if the two solutions are related. In Minkowski spacemutes withY". Therefore both matrices vanish:

Pauli proved that the two sets are always related by a simi-
larity transformatiorf22-24. X"=0, Y"=0.

In curved space-time, this question is equivalent to asking
what infinitesimal changeda y” are possible whem\g”“
=0. The most general solution given in E&3) is thaty”
+Avy” is of the formy”—[M,y"] for infinitesimal M. Iter-
ating this shows that the most general solution is of the form

exp(—M) y’expM). (B6) This fixesB”* to have the structure

(3) The vanishing ofX allows us to extract information
about the coefficientB”“ by evaluating the commutator

0=[X",7,]=16B""y,—4(gaB™) ¥".

B"“=—-2P g"%, (B9)
Thus any two sets of Dirac matrices satisfying anticommu-
tation relations(B1) with the same metric tensor must be whereP is unknown.
related by a similarity transformation. This is used in Sec. (4) The fact thaty =0 will yield a simplification in theC
I1C, where the spin metrit is the similarity transformation coefficients from which it is made. Define the anticommuta-
betweeny” and y"" and in Appendix E. tor

1
3. Energy-momentum tensor K__ [\yVK _

Another application occurs in the computation of the
energy-momentum tensor in Sec. Il B. There the problem igxplicit calculation gives
to compute the change in the Dirac matrices produced by an
arbitrary variation in the metria g”~. Z*=3C**P y,,v51+C" (D0l ¥5. Y1 9pl Vo, VD).
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To eliminate the Dirac matrices, compute

1
TTHZ P, 7)) =3CHMN g, ,(Cerl g - CHaNger),

PHYSICAL REVIEW B3 104010

where the matrixA, contains the “traceless” part of the
coefficients,

A,=2(Ret®®)[ y,,y5]+2(Rev?)y,

SinceZ*=0, the right hand side must vanish. Therefore the +2i(|ng) Yo¥st2i(Imp,)ys+2i(Ims,)l,

three-index coefficient has the structure
CKp)\_CK)\p:V}\ng_VpgK)\, (Blo)
with V* unknown.

(5) Using the results of EqB8), (B9), (B10) the expan-
sion in Eq.(B7) simplifies to

1
Ay'=5 (Mg +AT =Ty,

+2A"ys—2Pysy"+ VA y",y4].  (B1D)
Now define a matrixM by
M=Ty,, vl +A%Yoys+Pys+V@y,. (B12

Then Eq.(B11) can be written in the simple form

1
Ay'=5(Ag™MNn—[M,y"]. (B13)
This proves the theorem quoted in E§3).

APPENDIX C: CONTRIBUTION OF THE SPIN
CONNECTION TO THE ACTION

As mentioned in Sec. Il, the full spin connection is pa-

(C4a
and the matrixB contains the “traces”:
B=8i(Imt}*)yz+2i(Imv})l+2(Rea))ys. (C4b

The full spin connection in Eq2.5) contains 16 complex or

32 real parameters for a fixed value @f The combination
that occurs in the action contains 16 real parameters for a
fixed w.

APPENDIX D: SECOND ORDER DIRAC EQUATION AND
THE SPIN CURVATURE

If one iterates the Dirac equatiai3.53, the result is a
second-order equation

A A 1
0=g*"V,V,+m’y+ 5[y 7' IV, (DY)
where the second order covariant derivative is

V.V, =3,V — T (V) +T (V).

In the second term of EqD1) the antisymmetric combina-
tion of covariant derivatives defines the spin curvature tensor

e

rametrized by 16 complex coefficients. Some parts of the V.V =V, =,
spin connection automatically cancel out of the fermion ac-
tion. The spin connection appears in the action through thevhere

combination

STy T, = (hy T )1y, (D

When the general form for the spin connection in E45) is

®,,=3d,0',—a,l,+T,[,—T,I,. (D2)

Sincel’ , is a linear combination of the Clifford algebra ma-
trices[ ¥4, ¥gls Yar Ya¥s, Vs, @ndl, one would expect that
®,,, also contains these matricg$he part of the spin con-

substituted there are a number of cancellations. To displa§€ction that is proportional to the identity matrix will trivi-
the result it is convenient to define coefficients which areally cancel in®,, so thatl",, andI",, produce the same spin

traceless on their event indices:

— 1

e AN N (C2a
— 1.,

V=0~ Zéﬁv)\ (C2b
La a 1 a N\

a,=a,— Zéﬂa”' (C20

Then the matrix occurring in the action can be written

hy“T ,—(hy*T ,)"=h(y*A,+B), (C3

curvature tensor.
The spin curvature tensor can be related to the Riemann-
Christoffel curvature tensor
SO N N A A
Ruve =9, 015, =, A0~ (D3)

in the notation of Schoutef20]. The commutator of two
covariant derivatives acting on a vector field is
K

_p o Apx
V,V, ANV Y, AN=R. AR,

By working outV ,V =V Vvﬂyk =0 one obtains the rela-
tion

0=R,, My +[®,, Y] (D4)
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Since®,,, contains no identity component, this equation re-means that each’#(x) is actually a linear combination only
quires the spin curvature to be entirely in the Lorentz subalof the 8 constant matriceg® and y%y(s). Thus write

gebra:
Y HX)=VEyY + ALY Y s) - (E5)
® =" gRuvasl Y4, 7P1. (D5 The anticommutator of these Dirac matrices is
’ rv — v, _ab__ v, ab
When this is substituted into E¢D1) the second order form {00,y ()} =2VaVpn™ = 2A5 Ay
of the Dirac equation becomes +(V§A§+V;Ag)[ya,yb] s -
ozguv§#§v¢+ m2y+ | i ysR— %IR) ¢  (De)  Since the anticommutator equalg’2, it follows that
9" = VAV 7= ALAL 7™
where
0=(VAAL+VZAD[ Y%, 7" ¥(s)-
"F‘z: e,u.VQ,BRMVQﬁ (E6)
8V-9 The second condition can only be satisfiedhif is propor-
i M
R=0"g""R,,,5. tional to V4. Therefore set

AfL=Vitanhy
APPENDIX E: SPIN BASE TRANSFORMATION
TO VIERBEIN BASE where § is some function of space-time. E@E6) becomes

According to the theorem proved in Appendix B, any two gh'=VHV! 5 (1—tanife).
sets of Dirac matrices that solve the anticommutation rela-
tions must be related by a spin-base similarity transformaThus define the vierbein
tion. Consequently any solutiop” to the anticommutation

relations is spin-base equivalent to the vierbein solution: el =V#/coshe.
yr=Sey2S7L (ED It automatically satisfies
This appendix shows how to construct a spin base transfor- ghr=elel . (E7)
mation S which does this. _ _ _
(1) Starting with any set*, compute The Dirac matrices in EqE5) are now
Vg y'#=eLy3(l coshf+ y(s)sinh6).
Ys(X) = i €apun ¥ VPV Y (E2)

Since the matrices(?y? and y{%)y?ys5 are self-adjoint, the
. . . icesy(® i _adioint i ierbei
Since[y5(x)]2=1, the eigenvalues ofs(x) are =1. It is matricesy'~’y"# will only be self-adjoint if the vierbeires

elementary to find a matri$, that diagonalizess(x) and ~ @nd the functiory are real. , , ,
therefore transforms it to a constant matrix. It is important (2) To eliminate thed-dependent chiral rotation, define
that the transformed matrix be constant but it need not b&nother similarity transformation

diagonal for what follows. Thus let S, =1 cosl{ 012) — yg,sint 0/2).

_c1
Y5)= St 75(X) Sy (E3 This matrix has the property
where ys) is a constant matrix chosen in some convenient v3(1 coshd+ y(5)sinh0)=82yasz_1

form. Associated with this constant matrix is a set of con-

stant Dirac matrices/® which satisfy{y?,y*}=27" in a  Therefore

representation such thaty(®)y()y(@)3)=y . From S;

and the original Dirac matrices construct the set y'h=S,ety2S, . (E8)

Y H(X)=S; Ty(X)S;. (E4 (3) Combing Eqs(E4) and (E8) shows that the original
space-time dependent Dirac matrices can be expressed as
Each of the new matriceg’#(x) can be written as a linear
combination of the 15 constant matriced, y*ys), ¥(s). Y=S,S,e4y2S, 15 L. (E9)
and[ 3, y"]. However, the vanishing anticommutator
The above procedure gives an explicit method for construct-
{v6), 7" “(x)}=0 ing the required similarity transformations.
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