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Four-dimensional conformal supergravity from AdS space
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Exploring the role of conformal theories of gravity in string theory, we show that the minimal (N52)
gauged supergravities in five dimensions induce the multiplets and transformations ofN51 four-dimensional
conformal supergravity on the spacetime boundary.N51 Poincare´ supergravity can be induced by explicitly
breaking the conformal invariance via a radial cutoff in the 5D space. The AdS/CFT correspondence relates the
maximal gauged supergravity in five dimensions toN54 super Yang-Mills theory on the 4D spacetime
boundary. In this context we show that the conformal anomaly of the gauge theory induces conformal gravity
on the boundary of the space and that this theory, via the renormalization group, encapsulates the gravitational
dynamics of the skin of asymptotically AdS spacetimes. Our results have several applications to the AdS/CFT
correspondence and the Randall-Sundrum scenario.
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I. INTRODUCTION

The classic methods of Kaluza and Klein@1# are the con-
ventional tools in supergravity for generating the dynam
of a lower dimensional space from a higher dimensio
world with a compact factor. The light fields in the lowe
dimensions arise from fluctuations that solve massless w
equations on the internal space, and the symmetries gov
ing their dynamics are derived by appropriate restrict
from the higher dimensions. Recently, string theorists a
phenomenologists have studied the physics of worlds
exist on branes or submanifolds embedded in a higher
mensional space. In the AdS/conformal field theory~CFT!
@2,3# and Randall-Sundrum@4# contexts, the relevan
4-surface lies near or at the boundary of a five dimensio
space which asymptotically has a negative cosmological c
stant. Such asymptotically anti–de Sitter~AdS! spaces arise
naturally as solutions to 5D gauged supergravities@5,6# or as
the near horizon limits of string compactifications containi
3-branes@7#. One purpose of this article is to show in deta
how N51 supergravity is induced on such surfaces when
bulk theory enjoysN52 supersymmetry. When the bulk
non-compact, theN51 theory is conformal.1 Poincare´ su-
pergravity can be regained by cutting off the bulk space
explicitly break conformality.

The AdS/CFT correspondence states that the classica
tion for an asymptotically AdS space, regulated by bound
counterterms~see, e.g.,@10,11#! and treated as a functional o
boundary data, is equal to the effective action for anN54

*Present address: David Rittenhouse Laboratories, Universit
Pennsylvania, Philadelphia, Pennsylvania 19104. Email addr
vijayb@pauli.harvard.edu

†Email address: egimon@theory.caltech.edu
‡Email address: minic@physics.usc.edu
§Email address: rahmfeld@theory.caltech.edu.
1See@8,9# for reviews of conformal gravity.
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super Yang-Mills~SYM! theory. This theory has a confor
mal anomaly@12# which reconstructs the action ofN54
conformal supergravity in four dimensions. By the AdS/CF
correspondence this must be related to a logarithmic div
gent term of the spacetime action@10,13#. This implies that
the asymptotically AdS solutions toN58 gauged supergrav
ity induceN54 conformal gravity on the spacetime boun
ary. Turning this analysis around, the complete gravitatio
dynamics of the skin of the spacetime is reproduced ho
graphically @14–16# by the conformal anomaly of the dua
Yang-Mills theory, thus lending further support to the hol
graphic renormalization group~RG! setup@17–22#.

Conformal gravity remains one of the few classical the
ries of gravity that has not been integrated into the fram
work of string theory. The paper concludes with speculatio
about the role of conformal gravity, and discusses some
plications of our results in the AdS/CFT and Randa
Sundrum contexts.

II. ONE SUPERSYMMETRY FROM TWO

The pureN52, d55 gauged supergravity@5# admits so-
lutions that asymptotically have constant negative curvatu
We seek the residual symmetries induced on the boundar
such spaces by the bulk theory. It will transpire that t
boundary fields transform in multiplets of theN51, d54,
conformal supergravity~listed in @8#, Sec. 2.2!. Maximally
supersymmetric gauged supergravities ind53,6,7 were re-
lated to conformal supergravities ind52,5,6 in @23#. We
will first present the fields and symmetries of the pureN
52 gauged supergravity in five dimensions, and then ar
that the boundary values have the correct multiplicities
form the gravity multiplet of 4DN51 conformal supergrav-
ity. Finally, we show that the radial diffeomorphisms an
supersymmetries of the bulk induce the symmetries of c
formal supergravity on the four dimensional boundary.

of
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A. NÄ2 gravity in five dimensions

The gravity multiplet of the minimal gauged supergrav

in five dimensions consists of the fu¨nfbein êm̂
â , two graviti-

nosĉ r̂ i , and a gauge fieldÂm̂ , wherei 51,2. The gravitinos
are related by the pseudo-symplectic Majorana condition
U(1) subgroup of theSU(2) automorphism group of the
N52 algebra is gauged, and the fieldÂm̂ serves as the cor
responding gauge field. The Lagrangian of the theory is t
given ~up to four-fermion terms! by @5#

ê21L̂552
1

2
R̂2

1

2
ĉ̄ m̂

i
ĝ m̂n̂r̂D̂r̂ĉ r̂ i2

3R2

32
F̂ m̂n̂F̂ m̂n̂

2
3i

4R
ĉ̄ m̂

i
ĝ m̂n̂ĉ n̂

j d i j 1
6

R2
,

2
3iR

32
~ ĉ̄ m̂

i
ĝ m̂n̂r̂ŝĉ n̂ i F̂ r̂ŝ12ĉ̄ m̂ i ĉ i

n̂F̂ m̂n̂!

1
ê21

6A6
cê m̂n̂r̂ŝl̂F̂ m̂n̂F̂ r̂ŝÂl̂ , ~2.1!

wherec is a constant. Typically,N52 theories that are ob
tained in 5D by compactification of M theory on a Calab
Yau threefold include additional hypermultiplets containi
the moduli of the compact space, including the 5D dilat
Likewise, the multiplets of the maximalN58 gauged super
gravity can be decomposed in terms of anN52 gravity mul-
tiplet, along with some hypermultiplets and vector mul
plets. All of these multiplets may be studied by metho
similar to those used below to study theN52 gravity mul-
tiplet.

The normalization is chosen so that the vacuum is Ad5
space with radiusR:

ds25
R2

r 2
~dxmdxnhmn1dr2!. ~2.2!

Here,m50,1,2,3, andr is the radial direction with the space
time boundary atr 50. For reference, in the notation of@5#

our conventions areg5 3
4 , P05(4/R)A 2

3 , V151, h1

5(R/2)A 3
2 andh151/h1. Carets denote 5D objects, so th

m̂50,1,2,3,4, etc., and the signature is (21111). Also,
the first part of the Latin alphabet is reserved for tang
space indices. The gauge covariant derivative is

@D̂m̂~ v̂ !ĉ n̂# i5D̂ m̂~ v̂ !ĉ n̂
i
1

4

3
Âm̂d i j ĉ n̂ j ~2.3!

in terms ofD̂ m̂(v̂), the standard covariant derivative:

D̂ m̂~ v̂ !ĉ n̂
i
5]m̂ĉ n̂

i
1

1

4
v̂m̂

âb̂
cn̂

i . ~2.4!

Finally, i , j indices are raised with the epsilon symbol:c i

5e i j c j , e1251.
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The local supersymmetry variations are

d̂êm̂
â

5
1

2
ê̄ i ĝ âĉm i ~2.5!

d̂ĉ m̂
i

5D̂m̂~ v̂̃ !ê i

1
iR

8
~ ĝm̂

n̂r̂
24dm̂

n̂
ĝ r̂! F̂̃ n̂ r̂ê i

1
i

2R
ĝ m̂d i j ê j ~2.6!

d̂Âm̂5
i

R
ĉ̄ m̂

i
e i . ~2.7!

Here,

v̂̃ m̂âb̂5v̂m̂âb̂2
1

4
~ ĉ̄ b̂

i
ĝ m̂ĉ âi12ĉ̄ m̂

i
ĝ [ b̂ĉ â] i !

F̂̃ m̂n̂5F̂ m̂n̂1
iA6

4
ĉ̄ [ m̂

i
ĉ n̂] i . ~2.8!

In order to study the boundary limit of these supersymme
variations, we will also require the radial coordinate tran
formations, parametrized byj r :

d̂ ĵêm̂
â

5 ĵ r] r êm̂
â

1]m̂ĵ r êr
â ~2.9!

d̂ ĵĉ m̂
i

5 ĵ r] r ĉm̂
i

1]m̂ĵ r ĉ r
i ~2.10!

d̂jÂm̂5 ĵ r] r Âm̂1]m̂ĵ r Âr . ~2.11!

In the boundary limit (r→0), these equations will act a
conformal transformations, which, together with the induc
supersymmetries, will reproduce the symmetries of four
mensional conformal supergravity.

B. Conformal supergravity multiplet

To begin we must identify what we mean by the ‘‘boun
ary degrees of freedom’’ which enjoy the symmetries of 4
conformal gravity. The vacuum solution to the equations
motion of 5D gauged supergravity is AdS5 space, which is
non-compact and only has a boundary in the conform
sense. In perturbation around this background, solution
the equations of motion either vanish or diverge at infini
~This is the familiar split into normalizable and non
normalizable modes in the AdS/CFT correspondence@24#.!
Here we will argue that a similar split holds for the full
non-linear equations of motion. The boundary fields a
identified as the finite residue that remains after removing
scaling divergence of non-normalizable bulk fields. Notab
the non-chiral fermion of the bulk theory loses half its com
ponents in the process and becomes chiral. In this way,
boundary values of bulk fields realize the gravity multiplet
N51, d54 conformal supergravity.
9-2
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To proceed, setĉ50 and Â50. Then Fefferman and
Graham@26# have shown that near the boundary~at r 50), a
general solution to the equations of motion can be written

ds25
R2

r 2 ~dxm dxngmn1dr2! ~2.12!

where gmn5gmn
0 (x)1O(r 2). In the language of@24#, the

O(1/r 2) piece of the metric is the non-normalizable mo
whose boundary value determines a conformal class
boundary metrics: the divergence atr 50 is removed by mul-
tiplying the metric by any function scaling asr 2 as r→0,
giving V(x)2 gmn

0 (x) as the boundary value of the metri
Equivalently, different rates of approach tor 50 at different
boundary positionsx yield a conformal factorV(x)2.

Hence, the radial diffeomorphisms~2.9! become confor-
mal transformations of the boundary metric asr→0 pro-
vided

ĵ r[rlD . ~2.13!

Such diffeomorphisms ‘‘warp’’ surfaces homeomorphic
the AdS boundary in the radial direction, producing differe
conformal factors in the limiting procedure that yields t
boundary metric@25#. The 1/r 2 radial dependence of th
leading term in the bulk metric determines that the bound
metric gmn

0 (x) has a conformal weight of 2. Similarly, w
will see that the radial dependence of other bulk fields a
determines their boundary conformal weight.

We choosegmn
0 as the representative of the boundary co

formal class, and partially fix the local symmetries. Follo
ing existing examples constructed by Nishimura and Tani
d54,6,7 @23#, set

êm
a ~r ,x!5

R

r
em

a ~x!1O~1!, êr
a5em

r 50, êr
r5

R

r
,

~2.14!

ĉ r
i 50, ~2.15!

Âr50.

(rI is the radial tangent space index.! We will examine the
linearized bulk equations of motion forÂm and c in the
above background and gauge, and then argue that the
linear couplings between these fields and the metric do
modify the asymptotic scaling of solutions.

First examine ther dependence ofÂm . Asymptotically,
solutions to the equation of motion,

1

A2ĝ
]m̂~ ĝm̂n̂] n̂Âr!50, ~2.16!

are found by choosingÂm to be independent of the radia
direction,

Âm5Am , ~2.17!
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and solving the resulting four-dimensional equation of m
tion. The radial diffeomorphisms~2.11! with a dilatation pa-
rameterlD as in Eq.~2.13! leaveAm invariant. So we find
that the gauge field has zero weight under the boundary c
formal transformations induced by radial diffeomorphism

Next we turn to the gravitino. After using Eqs.~2.14! the
four- and five-dimensional spin connections become

v̂ar52
1

r
ea,

v̂ab5vab, ~2.18!

and the covariant derivatives reduce to

D̂m5Dm2
1

2r
gmg r

D̂ r5] r . ~2.19!

To determine the decomposition of the gravitino we use
~linearized! gravitino equation of motion

ĝ m̂n̂r̂D̂ n̂ĉ r̂ i2
3i

2R
ĝ m̂n̂ĉ n̂

j d i j 50. ~2.20!

This equation reduces, after using Eqs.~2.19!, to

gmrS d i j ] r2d i j

1

r
2

3i

2r
e i j g5D ĉr j1gmnrDng5ĉr i50

~2.21!

whereg5[g r squares to 1. Note thatĝm5êa
mga5(r /R)gm.

These two equations can be diagonalized by introducing

Ĉr[ĉr11 i ĉr2 , ~2.22!

which satisfies

gmrS ] r2
1

r
2

3

2r
g5D Ĉr1gmnrDng5Ĉr50. ~2.23!

C is then decomposed into a chiral and an anti-chiral co
ponent with respect tog5:

Ĉr
R[

1

2
~12g5!Ĉr ~2.24!

Ĉr
L[

1

2
~11g5!Ĉr . ~2.25!

The dominating solution to Eq.~2.23! is then given by

Ĉr
R5S 2R

r D 1/2

Cr
R . ~2.26!

The radial dependence ofĈr
R combines with the radial dif-

feomorphisms~2.11! and ~2.13! to give a conformal weight
of 21/2 for the boundary valueCr

R .
9-3
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It is important not to forget the constrained components

the gravitino Ĉr
L , as they enter the supersymmetry var

tions. Let

Ĉr
L5~2Rr!1/2Fr

L ; ~2.27!

thenFr
L satisfies the following equation:

4gmrFr
L5gmnr@DnCr

R2DrCn
R#. ~2.28!

This equation is solved by

Fr
L5

1

3
gn@DnCr

R2DrCn
R#1

i

12
g5glelr

st@DsCt
R2DtCs

R#.

~2.29!

It only remains to argue that the asymptotic scalings a
resulting four dimensional conformal weights are unchan
when the non-linear couplings between all the fields are
counted for. Also, one has to ensure that theAnsatzfor the
5D metric in Eqs.~2.14! is consistent in the presence
non-trivial fields. After all, this was derived in@26# only for
pure gravity with a cosmological constant.

First we turn to the vierbein. To see that the asympto
behavior

êm
a ~x,r !5

R

r
em

a ~x!1subleading terms ~2.30!

is consistent even with non-trivial fields we study the sc
ings of terms in the bulk action. If the cosmological consta
dominates in the boundary limit, the Fefferman-Grah
analysis which yielded Eq.~2.30! will continue to hold. By
definition, the cosmological constant isr independent. Given
the asymptotic form of the gravitino and gauge field that
have derived, it is easily verified that the kinetic, interacti
and four-fermion terms of theN52 gravity action@Eq. ~2.1!
and @5## scale to zero at least as fast as;r 2 when r→0.
Hence their contribution is subleading and the asympt
scaling of the vielbein~or metric! survives the nonlinear in
teractions.

The same logic applies to the gravitino and the gau
field. With the scaling Ansa¨tze we have made for all th
fields, the leading behavior of the non-normalizable mo
of the 5D gravitini is not altered when the full interactio
terms are accounted for. Neither is the asymptotic beha
of the gauge field affected. Certainly, though, the non-lin
terms in the equations of motion give rise to interactio
between the various modes. This is precisely as expecte
conformal supergravity is not a free theory.

We have shown how to extract the boundary valu
(em

a ,Cm ,Am) of the N52 gauged supergravity multiple

(êm̂
â ,Ĉm̂

i ,Âm̂) and argued that these fields transform w
specific weights under the induced conformal transform
tions of the spacetime boundary. In particular, although
bulk gravitino is non-chiral, its boundary value is chiral.
fact, (em

a ,Cm ,Am) is precisely the gravity multiplet ofN
51 conformal supergravity. It remains to show that even
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supersymmetries of thisN51 theory are induced on th
spacetime boundary by the bulk transformations~2.5!–~2.7!.

C. Conformal supergravity symmetries

We have already shown that conformal transformatio
are induced on the spacetime boundary by bulk radial diff
morphisms. To treat the induced supersymmetries~SUSY!

we start with the fu¨nfbein. Defineê5e11 i e2, and decom-
pose the SUSY parametere according to its chirality under
g5. Following the analysis of the 5D gravitino, the two com
ponents should have appropriate scaling factors, so that

ê5~2R!1/2~r 21/2eR,r 1/2hL! ~2.31!

with g5eR52eR, g5hL5hL. As the divergent piece,e be-
comes the 4D supersymmetry parameter, whereash param-
etrizes special supersymmetries. To leading order inr, we
derive, from Eq.~2.5!,

dem
a 5

R

2r
ê̄ igaĉm i

5
R

2r
ê̄gaĈm

5 ēRgaCm
R1O~r !

52
1

2
C̄mgae1O~r !, ~2.32!

where we introduced Majorana spinors

x5S xR

xL D , with ~xR!* 5exL, ~2.33!

with e52 is2. This is nothing but the standard variation
the vierbein in four dimensions. Note thath decouples from
the transformation ofem

a .
Next, we turn to the gauge field. Using Eq.~2.7! gives

dAm52i ~F̄m
L eR1C̄m

RhL!

52 i ~F̄mg5e2C̄mg5h!, ~2.34!

which agrees with the transformation law given in@8#.
The analysis of the gravitino is more difficult since E

~2.6! is rather complicated. Fortunately, many terms drop

in the boundary limit. First of all,d̂Ĉ;r 21/2, so the term
containingF vanishes, because it scales asr 1/2. Also, the

difference betweenv̂ and v̂̃ disappears, because the bilin
ears in the gravitino scale with a higher power ofr. One is
left with

d̂ĉ m̂
i
;D̂m̂~ v̂ !ê i1

i

2R
ĝ m̂d i j ê j , ~2.35!

where
9-4



he

th
de

co

th

-
y

ie
-

to
-
a

to
in
if
a

tio

me
r-

of
tant

a
ng

a

nce
efi-

be
ill

u-
rs
esic

ding
s

are
icci
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~D̂m̂ê ! i5D̂ m̂ê i1
3

4
Âm̂d i j ê j . ~2.36!

With Eq. ~2.22! this translates the chiral component of t
gravitino to

dCR5DmeR1
3i

4
AmeR2gmhL, ~2.37!

implying

dCL5DmeL2
3i

4
AmeL2gmhR. ~2.38!

The last term in this expression has two origins. First,
relation between five- and four-dimensional covariant
rivatives contains an extra term according to Eqs.~2.19!.
Second, it can be shown that this term gives the same
tribution as the last term in Eq.~2.35!.

We have shown in Eqs.~2.32!, ~2.37! and ~2.34! that the
5D SUSY transformations reduce on the boundary to
residual transformations:

dem
a 52

1

2
c̄mgae

dC5Dme2gmh, ~2.39!

dAm5 i ~C̄mg5h2F̄mg5e!,

where

Dme5Dme2
3i

4
g5Ame. ~2.40!

These are precisely the transformations ofd54, N51 con-
formal supergravity. This agrees well with the results of@27#
where it was found that the AdS53S5 superisometries re
duce to superconformal transformations on the boundar
the AdS space.

D. Summary

We have shown that the gravity multiplet and symmetr
of four-dimensional,N51 conformal supergravity are in
duced on the boundary of solutions to pureN52 gauged
supergravity in five dimensions. Similarly,N52k gauged
supergravity in five dimensions can be related
4-dimensionalN5k conformal supergravity. It is worth ask
ing whether the induced action on the spacetime bound
respects the conformal gravity symmetries. This action
generally divergent and requires regulation. The regula
may be chosen to preserve Weyl invariance, yielding an
duced conformal theory of gravity. We will argue that
Weyl invariance is explicitly broken by, say, putting in
radial cutoff as in the Randall-Sundrum scenario, the ac
of 4D Poincare´ gravity can be induced on the boundary.
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III. CONFORMAL YANG-MILLS AND CONFORMAL
GRAVITY

In order to study the action induced on the spaceti
boundary, it is convenient to work within the AdS/CFT co
respondence with relates 4D,N54 conformal gravity and
5D, N58 gauged supergravity@2#. The conventional La-
grangian for Yang-Mills theory on a curved manifold (L
5AggmkgnlFmnFkl) enjoys a generalization with localN
54 superconformal invariance~see the review@8# and the
recent work of Liu and Tseytlin@9#!.2 For a singleSU(N)
vector multiplet (Am ,c i ,Xi j ),

3 the Lagrangian is

LSYM52
1

4
~e2fFmnFmn1CFmnFmn* !2

1

2
c̄ igmDmc i

2
1

4
Xi j S 2D21

1

6
RDXi j ~3.1!

2Xi j F
1mnTmn

i j 1D i j
klS Xi j Xkl2

1

6
dk

i d l
j uXu2D

1•••1H.c. ~3.2!

The coupling constantsgmn , w5e2f1 iC, etc., are in super-
conformal representations that fill out the field content
N54 conformal supergravity, but appear here as cons
backgrounds rather than dynamical fields.

The effective action for the Euclidean field theory as
function of coupling constants is computed by integrati
out the Yang-Mills fields, and gives a divergent part and
finite part:

W~gmn ,w, . . . !5E DA Dc DXe2SSY M[Wdiv1Wfin .

~3.3!

The divergences that arise despite the conformal invaria
of the theory are related to contact singularities in the d
nition of composite operators. Power law divergences can
cancelled by local counter-terms, but the effective action w
contain a logarithmic divergence,Wdiv , associated with the
four dimensional conformal anomaly.4 Let us regulate this
divergence by introducing a spatially uniform, covariant, E
clidean point-splitting cutoff: the end points of propagato
in a Feynman diagram must be separated by a geod
length exceeding somee. Whene is very small this can be
written

gmn~x!DxmDxn>e2. ~3.4!

2This section begins by summarizing standard results regar
conformal Yang-Mills theory coupled to conformal gravity, a
transmitted to recent audiences by Liu and Tseytlin@9#.

3i , j 51,2,3,4 are indices of the SU~4! R symmetry.
4There are potential quartic and quadratic divergences which

proportional to an effective cosmological constant and the R
scalar of the manifold.
9-5
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Wdiv diverges in the limit thate vanishes. The difference in
actions computed forn vector multiplets, and with cutoffse
and ē, is5

Wdiv5
n

4~4p!2 lnS e

ē
D E d4xAg LCSG ~3.5!

LCSG5CmnklC
mnkl2E14FD2w* D2w

22S Rmn2
1

3
gmnRDDmw* DnwG1•••.

~3.6!

HereC is the Weyl tensor,E is the Euler invariant, andC2

2E52(RmnR
mn2R2/3). LCSG is precisely the Lagrangian

for four dimensionalN54 conformal supergravity.@We will
take n5N221'N2 for an SU(N) Yang-Mills theory at
large N.# Integrating out the Yang-Mills fields has ‘‘in
duced’’ a Weyl invariant theory of gravity on the manifold

Classically, the Lagrangian~3.2! is conformally invariant
and is independent of the Weyl factor in the backgrou
metric—equivalently, the trace of the classical stress ten
vanishes. However, the logarithmic divergence in Eq.~3.6!
results in an anomalous dependence on the Weyl facto
the metric and results in an anomalous trace in the st
tensor:

T5
n

2~4p!2 S RmnR
mn2

1

3
R21••• D . ~3.7!

The ellipsis denotes terms that appear when the other
plings in Eq.~3.2! such asf, C, etc., are spatially varying. In
fact, the right hand side of Eq.~3.7! is proportional to the
conformal supergravity Lagrangian~3.6!.

Accordingly, the finite part of the effective actionW will
contain an anomalous piece that depends on the Weyl fa
of the metric and whose variation produces the trace~3.7!.
Including the Weyl invariant pieceWinv gives the finite part
of the action:

Wfin5Wanom1Winv . ~3.8!

The Weyl invariant piece will be a series in even powers
e because the curvature invariants forming the met
dependent part of the action have dimension 2:

Winv5W01e2W21e4W41•••. ~3.9!

The higher order terms vanish as the cutoff is removed
are regularization scheme dependent.

The conformal anomaly on the other hand is essenti
scheme independent, barring a term proportional to¹2R in
Eq. ~3.7! whose regularization-dependent coefficient
have set to zero. Having fixed this ambiguity,Wanom has a

5See@9# and references therein.
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diffeomorphism invariant, but non-local, expression who
Weyl variation produces the anomaly~3.7! ~see
@12, 29,25#!. However, splitting the metric into a Weyl facto
and a reference background,

gi j 5e2sḡi j , ~3.10!

yields a local expression for the dependence ofWanom on s
@12,9#:6

Wanom52
n

2~4p!2E d4xAḡF S R̄mn
2 2

1

3
R̄212D̄2

3w* D̄2w1••• Ds12ḠmnD̄ms D̄ns12D̄ms

3D̄ms D̄2s1~D̄ms D̄ms!2G . ~3.11!

HereḠmn is the Einstein tensor ofḡmn and the terms linear
in s in Eq. ~3.11! are precisely the conformal supergravi
action of the reference metricḡi j . The trace of the stres
tensor can be expressed in terms ofs and ḡmn as T5

2(e24s/Aḡ)(dW/ds)us50 which reproduces Eq.~3.7!. In
fact, the divergent part of the effective action and the q
dratic part of anomalous piece can be conveniently combi
into a single, closed-form, non-local action.7

The logarithmic divergence and the related finite anom
lous term are exact at 1 loop forN54 Yang-Mills theory
~see the references in@9#! and so we can reliably extrapolat
the weak coupling results above to the large ’t Hooft co
pling, largeN Yang-Mills theory which should be related t
a classical gauged supergravity. According to the AdS/C
correspondence,W, the effective action of the Yang-Mills
theory as a functional of sources is equal to the class
action of the bulk gauged supergravity as a functional
boundary data. So we have just shown that to leading~loga-
rithmic! order 5DN58 supergravity inducesN54 confor-
mal supergravity on the spacetime boundary. However
we have seen, the effective action also contains finite ano
lous and Weyl invariant terms. According to AdS/CFT, the
terms should together reconstruct the dynamics of five
mensionalN58 gauged supergravity.

Unfortunately, although parts of the finite, Weyl invaria
part of the action@Wfin in Eq. ~3.8!# are fixed by the classic
analyses of the conformal anomaly,Wfin also contains terms
that are not under control in the strong coupling limit. F
example, the power series ine in Eq. ~3.9! could be greatly
modified. So we will try to milk the anomaly for as muc
data as possible in reconstructing the bulk spacetime f
field theory.

6Note that the standard Riegert action employed here is potent
problematic in dimensionsd.2 @29#.

7See@12,29,9,25# and references therein.
9-6
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A. Anomaly and the renormalization group

The renormalization group studies the transformation
the effective actionW as a function of the cutoffe. The basic
idea is that a change of the cutoffe→e8 is equivalent to a
redefinition of the couplingsg→g8 at fixed cutoff. The re-
sulting effective variation of the couplings as a function
the cutoff is described by the RG equation.

For example, we will show that redefining the cutoffe in
Eq. ~3.4! by a spatially varying factorel(x) is equivalent, to
leading order ine, to re-scaling the metric by a Weyl facto

gmn Dxm Dxn>e2 e2l(x)⇒g̃mnDxmDxn>e2 ~3.12!

g̃mn[e22l(x) @gmn1¹mVn~x,e!

1¹nVm~x,e!#. ~3.13!

Here we have permitted generale-dependent diffeomor-
phisms of the manifold generated by the vector fieldVi(x,e)
since these are symmetries of the theory.

Whenl is constant it is easy to show the equivalence
Eq. ~3.12! for the leading terms in the effective action—
namely, the anomalous and logarithmic pieces. Re-scaline
by el shifts the logarithmic divergent term~3.5! by
ln/4(4p)2 times the conformal supergravity action. Th
same shift is produced in theWanom by re-scaling the metric
by e22l. However,Wdiv is left invariant by a Weyl re-scaling
of the metric as long as the other fields in the conform
gravity Lagrangian~3.6! are also re-scaled by their Wey
weights. For example, the scalarw has weight zero and
therefore remains invariant. So whenl is constant, a chang
in the cutoff can be traded, in the leading terms of the eff
tive action, for a Weyl re-scaling of the metric and a cor
sponding re-scaling of all the couplings in Eq.~3.2! by their
Weyl weights. However, the cutoff dependence of the W
invariant finite terms~3.9! implies that keeping the entir
action invariant will require more than a Weyl transform
tion of the fields—in the perturbative limit, the coupling
have to be corrected at each order ine to keep the entire
effective action invariant. These higher order correctio
cannot be reliably extrapolated to the strong coupling lim
but non-renormalization of the conformal anomaly guar
tees that ase→0, the equivalence~3.12! is valid.

It is a little harder to argue that this is still the case fo
spatially varying cutoff, because the action~3.5! is explicitly
computed for a constant cutoff. Instead, examine the or
of divergences and the anomaly in logarithmic singularit
that occur when two points in a Feynman diagram appro
each other closely. The cutoff in Eq.~3.12! restricts the prox-
imity of such points by placing a lower bound on the size
vectorsDXm in the tangent space atx. Re-scaling the cutoff
increases the bound onDXm. Since the classical Lagrangia
in Eq. ~3.2! is both Weyl and diffeomorphism invariant, th
Feynman diagrams are not changed by a combined re-sc
of the metric as in Eq.~3.13! and the other couplings by th
appropriate Weyl weights. The only effect of this redefiniti
of couplings with a fixed small cutoffe is to re-scale the
bound on the size of vectorsDXm measuring separation be
tween nearby points in the Feynman diagram integrations
10400
f

f

l

-
-

l

s
,
-

in
s
h

f

ing

In

other words, at the level of the diagrammatic computation
the logarithmic divergent part of the effective action, a sm
spatially varying cutoff can be directly traded for a Wey
rescaled metric as in Eq.~3.12!. The anomalous terms in th
action can be deduced from this following@12#. In this argu-
ment, it is essential that we understand the cutoffe to be both
small and slowly varying—Eq.~3.12! is a covariant cutoff
only under these conditions.

We have just argued that that a small, slowly varyi
cutoff can be traded for a redefined metric in a way th
leaves the sum of the logarithmic divergent and anomal
terms in the action invariant. The other couplings appear
in the effective action are also re-scaled according to th
Weyl weights; e.g., the scalarw has weight 0 and remain
invariant.

In fact, knowing the trace anomaly~3.7! of the theory
fixes the anomalous part of the action and the logarithm
divergence up to Weyl invariant terms. First, it is possible
integrate the trace anomaly to find a diffeomorphism inva
ant action that varies to the anomaly@12,29,25# ~also see the
references in@9#!. This action is not unique—any local o
non-local Weyl invariant may be added to it without chan
ing the trace anomaly@29,25# and other methods are require
to determine these terms. Then, reversing the logic above
can infer the presence of a divergence logarithmic in
cutoff.

In essence, integrating out the Yang-Mills theory has ‘‘i
duced’’ a Weyl-invariant gravitational action on the man
fold. According to the AdS/CFT correspondence, and in p
allel with Sec. II, this action must also be induced by t
bulk N58 gauged supergravity. Below we will see how f
we can go towards showing this directly from the bulk pe
spective.

B. Gravity description

Happily, the on shell massless fields of five dimensio
N58 gauged supergravity have precisely the multiplicit
of the couplings in Eq.~3.2!, and transform in the same wa
under the asymptotic~super-conformal! symmetry group of
the gravitational theory@8,30#. Following the AdS/CFT pre-
scription we should compare the classical action for
5-dimensional supergravity as a functional of boundary d
to the Yang-Mills effective actionW.

The cutoff length scalee that appears in the field theor
effective action is related to radial positions in the bulk spa
@15–19#. Indeed, whene is small and slowly varying as a
function of boundary positionsx, it can be directly identified
with a radial cutoff@17,19,25#. The field theory scheme de
pendence of choosing spatially varying cutoffse(x) is di-
rectly related to truncations of the bulk space by ‘‘wavy
surfaces parametrized asr (x)5e(x) in the coordinates
~2.12!. All of these surfaces are related by five dimension
diffeomorphisms, and the metric induced on them is giv
precisely by Eq.~3.13! @25#. In other words, diffeomor-
phisms of the 5D spacetime are directly related to a choic
RG scheme for the dual field theory.

Henningson and Skenderis@10# showed that the gravita
tional terms in the 5D action contain quartic and quadra
9-7
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divergences and a logarithmic divergence equal to the gr
tational terms in Eq.~3.5!. It was shown in@10,11# that the
power law divergences could be canceled by local bound
counterterms in the gravitational action. The leading piece
the bulk action as a functional of boundary data is then
logarithmically divergent term equal to the gravitational p
of the four dimensional conformal anomaly.8 The results of
@25# imply that this analysis continues to hold for a gene
foliation of the bulk spacetime by ‘‘wavy’’ cutoff surfaces
In other words, the leading gravitational terms in the fi
dimensional action exactly reproduce a conformally inva
ant action for boundary gravity as implied by the Yang-Mi
conformal anomaly. In fact, these leading terms arise fr
the action accumulated by the divergent behavior of the m
ric near the boundary of the bulk space; finite energy exc
tions contribute subleading terms because, as implied by
results of@11#, they contribute to finite parts of the action. S
we learn that the complete gravitational dynamics of the s
of an asymptotically AdS5 space is contained the in the fou
dimensional conformal anomaly.

The above discussion was carried out purely for the gra
tational terms in the bulk and boundary actions. Howeve
is expected that inclusion of the scalars, fermions and ga
fields of 5DN58 supergravity would induce the fullN54
conformal supergravity action on the boundary of the spa
In the previous section we showed that 5D,N52 gauged
supergravity induces the symmetries ofN51 superconfor-
mal gravity on the boundary. Here we expect~although it is
technically much harder to show! that the symmetries ofN
54 conformal gravity are induced on the boundary. Giv
these symmetries, transformations of the gravitational te
(C22E) are expected to give the remaining terms of theN
54 conformal gravity Lagrangian.

C. Summary

We have used the AdS/CFT correspondence to argue
N54 conformal gravity is induced on the 4-dimension
boundary of solutions to 5-dimensionalN58 gauged super
gravity. Turning things around, we have also argued that
4D conformal anomaly encapsulates the gravitational
namics of the skin of asymptotically AdS5 spaces. Confor-
mal gravities also exist in odd dimensions where there is
conformal anomaly. In these situations which arise, for
ample, in the AdS4 /CFT3 correspondence, the bulk actio
does not have a logarithmic divergence and must induc
finite conformally invariant action on the boundary.

IV. DISCUSSION THE ROLE OF CONFORMAL GRAVITY

To summarize, we have demonstrated, with an exp
mapping of symmetry actions, howN52 gauged supergrav
ity in the bulk of AdS space inducesN51 conformal super-
gravity on a boundary surface. The explicit breaking of We
symmetry involved in restricting to a cutoff surface will on
add small perturbations to this scheme if we keep the sur

8In @28# this analysis was extended to dilatonic gravity.
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near the boundary of AdS. With additional algebraic co
plexity a similar induction ofN54 boundary conformal su
pergravity should follow from bulkN58 gauged supergrav
ity. This is also well motivated from our discussion of th
anomaly structure ofN54 SYM theory. Below we will ar-
gue that when we use boundaries far inside AdS, Weyl sy
metry is strongly broken and the boundary theory is
longer conformal. In this situation, which is exploited in th
Randall-Sundrum model, the induced gravity is only Po
caréinvariant.

A. Supersymmetric counterterms and holographic RG flows

Our results regardingN52 gauged supergravity have no
table applications to the derivation of supersymmet
boundary counterterms for AdS gravity and holographic R
flows derived from the resulting regulated actions.

It has been shown that the power law divergences in
action and stress tensor of a space that is asymptotically
cally AdS can be eliminated by the introduction of intrins
boundary counterterms@11#. These methods avoid variou
ambiguities and technical difficulties associated with oth
methods in classical gravity for computing the action a
conserved charges of a space. Using the inducedN51
SUSY boundary transformations that we have derived,
could compute the counterterms for the entire gravity sup
multiplet by transforming the gravitational counterterms
@11#.

Also, the AdS/CFT correspondence states that the cla
cal action for the bulk space, regulated by these bound
counterterms and seen as a functional of boundary dat
equal to the effective action for anN51 SYM theory that is
conformal in the ultraviolet. This theory has a conform
anomaly which, in addition to the familiar Weyl tenso
squared and Euler invariant contributions (C22E), includes
terms involving scalars and fermions. By the AdS/CFT c
respondence, this must be equal to a logarithmic diverg
term of the 5D spacetime action. Acting onC22E with the
explicit N51 superconformal transformations that we ha
identified will yield the complete strong coupling supersym
metric conformal anomaly of the dualN51 SYM theory.

In Sec. III A we discussed the matching between fie
theory cutoffs and radial positions in the bulk space. This
the basis of the holographic renormalization group@17–19#.
By matching the bulkN52 SUSY with the boundaryN
51 SUSY for the theory at each length scale of a giv
renormalization flow, our methods can also provide use
tools for the holographic analysis of Shifman-Vainshtein
lations between supersymmetric beta functions.

B. Induced Poincarégravity: The NÄ1 supersymmetric
Randall-Sundrum model

Thus far we have discussed how Weyl-invariant gravity
induced on the boundary of spaces governed by gauged
pergravity. Our considerations are also relevant to analy
of Randall-Sundrum models where the standard model is
tached to a domain wall in five dimensional AdS space
which four dimensional Poincare´ invariant gravity has been
localized@4#.
9-8
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We showed in Sec. II that radial diffeomorphisms of fi
dimensional gauged supergravity induce Weyl transform
tions of the surfaces homeomorphic to the spacetime bou
ary. If Weyl symmetry is maintained as a residual symme
on such surfaces, the induced gravitational action is con
mally invariant ~up to an anomaly!. In other words, in the
computation of the on-shell bulk supergravity action t
counterterms@11#, which make the bulk action finite, als
precisely cancel induced boundary quantities that break
residual Weyl symmetry such as the Einstein-Hilbert a
cosmological terms. Weyl invariance is nevertheless bro
anomalously as in Sec. III by the radial cutoff dependence
a logarithmic divergence which cannot be canceled.

However, in situations like the Randall-Sundrum scena
@4#, Weyl invariance is explicitly broken by the choice of
fixed radial position in AdS space where a brane is placed
this case, there is no reason to pick a regulation scheme
as@11# which preserves the residual Weyl symmetry. Inde
the Einstein-Hilbert counterterm in@11# can be ignored com
pletely, allowing the bulk to induce Poincare´ invariant grav-
ity on fixed-radius surface. Then, the results of Sec. II can
used to study theN51 supersymmetric structure induced b
the bulk theory. However, the residualN51 supersymmetry
still forbids the appearance of a cosmological constant. T
reasoning also applies to extended supersymmetry. AN
52k supersymmetric bulk supergravity extension of t
Randall-Sundrum model will ‘‘induce’’ anN5k Poincare´
supergravity on the wall~see also@31#!.

C. Dynamical conformal gravity?

In this paper we have discussed the appearance of co
mal gravity at the boundary of spaces governed by gau
supergravity. The fields that appeared in this discussion w
the boundary values of non-normalizable bulk modes t
appear in asymptotically AdS spaces@24#. These modes can
not fluctuate unless the space is truncated at a finite rad
because their action is infinite if the bulk is non-compa
Therefore, the conformal gravity induced on the boundary
AdS space is not dynamical. Equivalently, as discussed
Sec. III, conformal gravity appears from the AdS/CFT p
spective as the effective action of a field theory and is
functional of sources. Such effective actions do not desc
dynamical theories—they are merely generating functi
for correlators and should not be varied to compute equat
of motion.

However, if the bulk space is cut off at a finite distanc
the ~formerly! non-normalizable modes that we have used
induce conformal gravity will have finite actions. Therefo
th

. B
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they will be able to fluctuate. This suggests that they sho
become actual dynamical fields on the cutoff surface, a
that dynamical conformal gravity is the effective theory o
served by an experimentalist placed on a surface of fi
radius near the boundary of an asymptotically AdS space9 A
sigma model of closed strings in AdS space presumably
cludes world sheets with boundaries attached to the sp
time boundary. Such string configurations are the natu
sigma model analogues of the non-normalizable modes
would be natural to expect that they are responsible for
ducing dynamical conformal gravity on surfaces near an A
boundary.

The matter is subtler from the perspective of the d
CFT. In the largeN limit, we usually equate the SYM effec
tive action with a path integral over bulk supergravity fiel
subject to boundary conditions on the AdS boundary. Th
boundary conditions are implemented by choosing a n
normalizable mode background. Regulating the SYM the
is equivalent to cutting off the AdS space at some fin
distance. At this cutoff surface, the values of supergrav
fields are cannot be fully fixed and should be integrated ov
Since boundary values of the supergravity modes corresp
to sources in the SYM theory@24#, it would seem that in the
regulated SYM effective action we must integrate over b
the fields and the sources, including the superconfor
gravity multiplet. The resulting path integral is not a fun
tional of the sources anymore, but rather a functional of
initial and final states. Hence, it would compute anS matrix
for the modified CFT. As the cutoffe→0 in this modified
path integral, we require that the sources become froz
This suggests an interesting perspective: the cutoffe in some
sense translates to an effective\ for field theory sources
within the AdS/CFT correspondence.
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