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Exploring the role of conformal theories of gravity in string theory, we show that the minihial2)
gauged supergravities in five dimensions induce the multiplets and transformatiNrslofour-dimensional
conformal supergravity on the spacetime boundhby.1 Poincaresupergravity can be induced by explicitly
breaking the conformal invariance via a radial cutoff in the 5D space. The AdS/CFT correspondence relates the
maximal gauged supergravity in five dimensionsNe-4 super Yang-Mills theory on the 4D spacetime
boundary. In this context we show that the conformal anomaly of the gauge theory induces conformal gravity
on the boundary of the space and that this theory, via the renormalization group, encapsulates the gravitational
dynamics of the skin of asymptotically AdS spacetimes. Our results have several applications to the AdS/CFT
correspondence and the Randall-Sundrum scenario.
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[. INTRODUCTION super Yang-Mills(SYM) theory. This theory has a confor-
mal anomaly[12] which reconstructs the action di=4

The classic methods of Kaluza and Klg¢ih are the con-  conformal supergravity in four dimensions. By the AdS/CFT
ventional tools in supergravity for generating the dynamicscorrespondence this must be related to a logarithmic diver-
of a lower dimensional space from a higher dimensionagent term of the spacetime actiph0,13. This implies that
world with a compact factor. The light fields in the lower the asymptotically AdS solutions té=8 gauged supergrav-
dimensions arise from fluctuations that solve massless waug; induceN=4 conformal gravity on the spacetime bound-
equations on the internal space, and the symmetries govergry. Turning this analysis around, the complete gravitational
ing their dynamics are derived by appropriate restrictiongynamics of the skin of the spacetime is reproduced holo-
from the higher dimensions. Recently, string theorists an@yraphically[14—16 by the conformal anomaly of the dual

phenomenologists have studied the physics of worlds thayang-Mmills theory, thus lending further support to the holo-
exist on branes or submanifolds embedded in a higher di

mensional space. In the AdS/conformal field the@@BFT) graphic renormalization groufiRG) setup[17-22.
: Conformal gravity remains one of the few classical theo-
[2,3] and Randall-Sundrum[4] contexts, the relevant gravity ns W classt

. . . .~ ries of gravity that has not been integrated into the frame-
4-surface lies near or at the boundary of a five dimensional 9 y g

. . ) ; work of string theory. The paper concludes with speculations
space which asymptotically has a negative cosmological con- . :
stant. Such asymptotically anti—de Sitt&dS) spaces arise apout_ the role of conformal_ gravity, and discusses some ap-
naturally as solutions to 5D gauged supergravities] or as plications of our results in the AdS/CFT and Randall-
the near horizon limits of string compactifications containingSundrum contexts.

3-braneq7]. One purpose of this article is to show in detail

howN=1 supergravity is induced on such surfaces when the

bulk theory enjoysN=2 supersymmetry. When the bulk is Il. ONE SUPERSYMMETRY FROM TWO

non-compact, theN\=1 theory is conformat. Poincaresu-
pergravity can be regained by cutting off the bulk space tqut
explicitly break conformality.

The AdS/CFT correspondence states that the classical a
tion for an asymptotically AdS space, regulated by boundar%
countertermgsee, e.9.10,11)) and treated as a functional of
boundary data, is equal to the effective action forNsa 4

The pureN=2, d=5 gauged supergravifyp] admits so-
ions that asymptotically have constant negative curvature.
X\_/e seek the residual symmetries induced on the boundary of
uch spaces by the bulk theory. It will transpire that the
oundary fields transform in multiplets of tié=1, d=4,
conformal supergravitylisted in [8], Sec. 2.2 Maximally
supersymmetric gauged supergravitiedin 3,6,7 were re-
lated to conformal supergravities mh=2,5,6 in[23]. We

*Present address: David Rittenhouse Laboratories, University owill first present the fi?|d$ a_nd s.ymme.tries of the pi¥e
Pennsylvania, Philadelphia, Pennsylvania 19104. Email addresss 2 gauged supergravity in five dimensions, and then argue

vijayb@pauli.harvard.edu that the boundary values have the correct multiplicities to
TEmail address: egimon@theory.caltech.edu form the gravity multiplet of 4DN=1 conformal supergrav-
*Email address: minic@physics.usc.edu ity. Finally, we show that the radial diffeomorphisms and
SEmail address: rahmfeld@theory.caltech.edu. supersymmetries of the bulk induce the symmetries of con-
see[8,9] for reviews of conformal gravity. formal supergravity on the four dimensional boundary.
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A. N=2 gravity in five dimensions The local supersymmetry variations are
The gravity multiplet of the minimal gauged supergravity L1
in five dimensions consists of théerffbein éi, two graviti- 563: 56' Y bui (2.9
nosy;;, and a gauge field, , wherei =1,2. The gravitinos
are related by the pseudo-symplectic Majorana condition. A ”5,}1 =@A(Z)E-
U(1) subgroup of theSU(2) automorphism group of the woTH '

N=2 algebra is gauged, and the fieﬁg{ serves as the cor- iR ;5 panE e
responding gauge field. The Lagrangian of the theory is then + §(7’,1 —45, Y F e
given (up to four-fermion termsby [5]
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wherec is a constant. TypicallyN=2 theories that are ob-
tained in 5D by compactification of M theory on a Calabi- |n order to study the boundary limit of these supersymmetry

Yau threefold include additional hypermultiplets containingyariations, we will also require the radial coordinate trans-
the moduli of the compact space, including the 5D dilaton formations, parametrized by

Likewise, the multiplets of the maxim&l=8 gauged super-

gravity can be decomposed in terms ofNs 2 gravity mul- A&éé: ¥ éé to gréé 2.9
tiplet, along with some hypermultiplets and vector multi- u p TR '
plets. All of these multiplets may be studied by methods

N TN ey
similar to those used below to study the=2 gravity mul- Sp, =& o, + 9,8 (2.10
tiplet.

The normalization is chosen so that the vacuum is AdS OA,=E"0 AL+, A, . (2.11

space with radiug:
In the boundary limit {—0), these equations will act as
R2 conformal transformations, which, together with the induced
ds’=— (dx“dx"7,,,+dr?). (2.2 supersymmetries, will reproduce the symmetries of four di-
r mensional conformal supergravity.

Here,x=0,1,2,3, and is the radial direction with the space-
time boundary at =0. For reference, in the notation 5] B. Conformal supergravity multiplet
our conventions areg=3, P,=(4/R) \/Z V,=1, h; To begin we must identify what we mean by the “bound-
= (R/Z)\/g andh!=1/h;. Carets denote 5D objects, so that ary degrees of _freedom” which enjoy the symmetrieg of 4D
- ) } conformal gravity. The vacuum solution to the equations of
n=0,1,2,3,4, etc., and the signature is £ ++ +). Also,  mation of 5D gauged supergravity is AgSpace, which is
the flrs_t p_art of the Latin alphabet is r_ese_rveq for tange”hon-compact and only has a boundary in the conformal
space indices. The gauge covariant derivative is sense. In perturbation around this background, solutions to
4 the equations of motion either vanish or diverge at infinity.
[@ﬁ(&)%]i:fm(&))@br —A;L(s”fp;j (2.3  (This is the familiar split into normalizable and non-
v 3 normalizable modes in the AdS/CFT correspondefrazg.)
L Here we will argue that a similar split holds for the fully
in terms ofD (), the standard covariant derivative: non-linear equations of motion. The boundary fields are
identified as the finite residue that remains after removing the
scaling divergence of non-normalizable bulk fields. Notably,
the non-chiral fermion of the bulk theory loses half its com-
_ ponents in the process and becomes chiral. In this way, the
Finally, i,j indices are raised with the epsilon symbgl:  boundary values of bulk fields realize the gravity multiplet of
=ely;, e?=1. N=1, d=4 conformal supergravity.

SRR s Lagh i
Di(w)r=0d,4,+ Zw,&blﬁ;' (2.9
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To proceed, sefy=0 and A=0. Then Fefferman and and solving the resulting four-dimensional equation of mo-
Grahan{ZG] have shown that near the boundWr:O), a tion. The radial dlffeomorphlsm@ll) with a dilatation pa-

general solution to the equations of motion can be written as&@meterp as in Eq.(2.13 leaveA,, invariant. So we find
that the gauge field has zero weight under the boundary con-

2 R? . ) formal transformations induced by radial diffeomorphisms.
ds’=—z (dx* dx"g,,, +dr’) (212 Next we turn to the gravitino. After using Eq.14) the
four- and five-dimensional spin connections become

where gﬂ,,=g?w(x)+0(r2). In the language of24], the

O(1/r?) piece of the metric is the non-normalizable mode o= Eea

whose boundary value determines a conformal class of r’

boundary metrics: the divergencerat 0 is removed by mul-

tiplying the metric by any function scaling a asr—0, 0= 2", (2.189

giving Q(x)zgzv(x) as the boundary value of the metric. _ o
Equivalently, different rates of approachrte0 at different ~@nd the covariant derivatives reduce to
boundary positions yield a conformal factof)(x)?. 1

Hence, the radial diffeomorphisn{g.9) become confor- D =D ——

. . )23 o ’Y,u’)/l’
mal transformations of the boundary metric ms:0 pro- 2r
vided R

D,=9,. (2.19

E=r\p. (2.13 . N y

To determine the decomposition of the gravitino we use the
Such diffeomorphisms “warp” surfaces homeomorphic to (linearized gravitino equation of motion
the AdS boundary in the radial direction, producing different 3i
conformal factors in the limiting procedure that yields the 2~ Sl s
boundary metric[25]. The 1t? radial dependence of the VDT GRY ;8 =0. (220
leading term in the bulk metric determines that the boundar
metric g?w(x) has a conformal weight of 2. Similarly, we
will see that the radial dependence of other bulk fields also

%’his equation reduces, after using E¢s19, to

. ; ; 1 3i N , N
determines theolr boundary conformgl weight. yHP| 80— &ij e € s $,i+¥*""D ,ysih,i=0
We choosey,,, as the representative of the boundary con- 29
formal class, and partially fix the local symmetries. Follow- (2.2

ing existing examples constructed by Nishimura and Tanii in — S S a_ “
d=4.6.7[23], set where ys= y" squares to 1. Note that*=e} y*=(r/R) y*.

These two equations can be diagonalized by introducing

\’PpE l?/pl'f'il:bpz, (222

R
© T

o R “ r r
ei(r,x)=?e2(x)+0(1), ef=e" =0, e=
(2.14 which satisfies

=0, (2.15 3

1 ~ -
'y’”’( &r—F —575) v,+y*""D,ysV,=0. (2.23
A.=0.
¥ is then decomposed into a chiral and an anti-chiral com-
(r is the radial tangent space inde}Ve will examine the ponent with respect tes:

linearized bulk equations of motion fcko and ¢ in the
above background and gauge, and then argue that the non- PR= 3(1— v )\i’ (2.24
linear couplings between these fields and the metric do not P2 5% '
modify the asymptotic scaling of solutions.
First examine the dependence of,. Asymptotically, L E =
solutions to the equation of motion, . V= 2 (Lt ys) ¥, (229
1 . The dominating solution to Eq2.23 is then given by
f@ﬁ[b(gﬂVﬁ;Ap)zo, (216) - IR 12 i
\Pp=(7) v (2.26
are found by choosingA\M to be independent of the radial R
direction, The radial dependence Sfff combines with the radial dif-
A feomorphismg2.11) and(2.13 to give a conformal weight
A=A, (2.1 of —1/2 for the boundary valudfs.
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It is important not to forget the constrained components osupersymmetries of thisl=1 theory are induced on the
the gravitinoW’, as they enter the supersymmetry varia-SPacetime boundary by the bulk transformatiohs)—(2.7).

tions. Let
C. Conformal supergravity symmetries

Wh=(2Rn Y} (2.27 We have already shown that conformal transformations
L _ . are induced on the spacetime boundary by bulk radial diffeo-
then® satisfies the following equation: morphisms. To treat the induced supersymmet(@sSY)

we start with the fafbein. Definee=¢€;+ie,, and decom-
pose the SUSY parameteraccording to its chirality under
vs. Following the analysis of the 5D gravitino, the two com-
ponents should have appropriate scaling factors, so that

4yrrdl= (D, WE-D W], (2.28

This equation is solved by

1 [ o i 120, ~12,_R 12 L
®;=37'[D, WD, ¥il+ 575y e[ D, VT -D V. e=(2R)™Hr et r ) (239
(229 with yseR=—€R, ys7"=7". As the divergent pieces be-

comes the 4D supersymmetry parameter, whergasaram-

It only remains to argue that the asymptotic scalings antyyizes special supersymmetries. To leading order, iwe
resulting four dimensional conformal weights are unchangegarive from Eq.2.5

when the non-linear couplings between all the fields are ac-
counted for. Also, one has to ensure that Aresatzfor the

5D metric in Eqgs.(2.14 is consistent in the presence of 5822256i yaf/rm
non-trivial fields. After all, this was derived if26] only for r
pure gravity with a cosmological constant. R .
First we turn to the vierbein. To see that the asymptotic = Eeya\lfﬂ
behavior
=e"yPWR+0(r)

“ R
es(x,r)= ?eZ(x) +subleading terms  (2.30 1.
=~ 5V, e+ 0(r), (2.32

is consistent even with non-trivial fields we study the scal-

ings of terms in the bulk action. If the cosmological constantyhere we introduced Majorana spinors

dominates in the boundary limit, the Fefferman-Graham

analysis which yielded E¢2.30 will continue to hold. By %

definition, the cosmological constantrisndependent. Given X=( L), with  (x®)* =ext, (2.33
the asymptotic form of the gravitino and gauge field that we X

have derived, it is easily verified that the kinetic, interaction
and four-fermion terms of the=2 gravity actionEq. (2.1
and [5]] scale to zero at least as fast a2 whenr—0.
Hence their contribution is subleading and the asymptoti
scaling of the vielbeir{or metrig survives the nonlinear in-
teractions.

with e= —io,. This is nothing but the standard variation of
the vierbein in four dimensions. Note thatdecouples from
{he transformation e’ .

Next, we turn to the gauge field. Using EQ.7) gives

The same logic applies to the gravitino and the gauge 5AM=2i(‘E;LL€R+‘1_’577L)
field. With the scaling Andae we have made for all the - _
fields, the leading behavior of the non-normalizable modes =—i(®,yse=V,vs57m), (2.39

of the 5D gravitini is not altered when the full interaction

terms are accounted for. Neither is the asymptotic behaviowhich agrees with the transformation law given[8].

of the gauge field affected. Certainly, though, the non-linear The analysis of the gravitino is more difficult since Eq.
terms in the equations of motion give rise to interactions(2-6) is rather complicated. Fortunately, many terms drop out
between the various modes. This is precisely as expected-a the boundary limit. First of alls¥ ~r~12 5o the term
conformal supergravity is not a free theory. containing F vanishes, because it scales rd§. Also, the

aWe have shown how to extract the bogndary \_’aluesdifference betweem and w disappears, because the bilin-
(‘fu \E’Méu) of the N=2 gauged supergravity multiplet oarq in the gravitino scale with a higher powerrofne is
(ez,\PL},A;) and argued that these fields transform withleft with
specific weights under the induced conformal transforma-
tions of the spacetime boundary. In particular, although the
bulk gravitino is non-chiral, its boundary value is chiral. In
fact, (ei,\lf#,A#) is precisely the gravity multiplet oN
=1 conformal supergravity. It remains to show that even thevhere

oY, ~Di(w)ei+ 5avad e, (2.39

104009-4



FOUR-DIMENSIONAL CONFORMAL SUPERGRAVITY ... PHYSICAL REVIEW 63 104009

o3 Ill. CONFORMAL YANG-MILLS AND CONFORMAL
e+ ZAL8e. (2.36 GRAVITY

In order to study the action induced on the spacetime
With Eq. (2.22 this translates the chiral component of the boundary, it is convenient to work within the AdS/CFT cor-
gravitino to respondence with relates 4Dl=4 conformal gravity and
5D, N=8 gauged supergravitj2]. The conventional La-
grangian for Yang-Mills theory on a curved manifoldl (
=99™g"F,.F«) enjoys a generalization with local/
=4 superconformal invariancesee the reviewW8] and the
implying recent work of Liu and Tseytlii9]).2 For a singleSU(N)
vector multiplet &, %;,X;;),’ the Lagrangian is

3i
SWR=D "+ LA ey, 1", (2.37)

3i
NL:DMGL—ZAMGL—’)/#?]R. (2.39 1 1

I-SYM: - Z(e_d)anan—'—CanF:nn)_Elpl'ymmei
The last term in this expression has two origins. First, the 1 1
relation between five- and four-dimensional covariant de- __Xi'( ~D2+ZR
rivatives contains an extra term according to E@s19. 47" 6
Second, it can be shown that this term gives the same con-

X (3.1

tribution as the last term in Eq2.35). . N 1. .
We have shown in Eq$2.32), (2.37) and(2.34) that the _xiJF+mnTlr%n+Dikjl XX = §5L5”x|2
5D SUSY transformations reduce on the boundary to the
residual transformations: +..-+H.c. (3.2
1 The coupling constant,,,, ¢=e~ ¢+iC, etc., are in super-
5932— Elﬁm’af conformal representations that fill out the field content of

N=4 conformal supergravity, but appear here as constant
backgrounds rather than dynamical fields.

oV=Dye= v, (2.39 The effective action for the Euclidean field theory as a
_ _ function of coupling constants is computed by integrating
oA, =1(V,ysn— D, vs€), o.u't the Yang-Mills fields, and gives a divergent part and a
finite part:
where
3i W(Gmn, @, - - ):f DA D¢DX67%YMEWdiV+Wfin-
D,e=D e— Zyg,A#e. (2.40 (3.3

The divergences that arise despite the conformal invariance

of the theory are related to contact singularities in the defi-

nition of composite operators. Power law divergences can be

o(fancelled by local counter-terms, but the effective action will

contain a logarithmic divergenc®yy;, , associated with the

four dimensional conformal anomalyLet us regulate this

divergence by introducing a spatially uniform, covariant, Eu-

D. Summary clidean point-splitting cutoff: the end points of propagators

We have shown that the gravity multiplet and symmetriedn & Feynman diagram must be separated by a geodesic

of four-dimensional,N=1 conformal supergravity are in- length exceeding some. Whene is very small this can be

duced on the boundary of solutions to pue=2 gauged Written

supergravity in five dimensions. Similarlyy=2k gauged A 2

supergravity in five dimensions can be related to Imn(X)AXTAX"= €°. (3.4

4-dimensionaN =k conformal supergravity. It is worth ask-

ing whether the induced action on the spacetime boundary

respects the conformal gravity symmetries. This action is 2This section begins by summarizing standard results regarding

generally divergent and requires regulation. The regulatotonformal Yang-Mills theory coupled to conformal gravity, as

may be chosen to preserve Weyl invariance, yielding an intransmitted to recent audiences by Liu and Tsey#ih

duced conformal theory of gravity. We will argue that if 3i,j=1,2,3,4 are indices of the $4) R symmetry.

Weyl invariance is explicitly broken by, say, putting in a “There are potential quartic and quadratic divergences which are

radial cutoff as in the Randall-Sundrum scenario, the actiomroportional to an effective cosmological constant and the Ricci

of 4D Poincaregravity can be induced on the boundary.  scalar of the manifold.

These are precisely the transformationsdef4, N=1 con-
formal supergravity. This agrees well with the result$ 2]
where it was found that the AdS'S® superisometries re-
duce to superconformal transformations on the boundary
the AdS space.
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Wy, diverges in the limit thak vanishes. The difference in diffeomorphism invariant, but non-local, expression whose
actions computed for vector multiplets, and with cutoffs ~ Weyl variation produces the anomaly3.7) (see

ande. is® [12, 29,29). However, splitting the metric into a Weyl factor
' and a reference background,
14 €
W-=—In:fd4x L 3. e
div 4(47T)2 ( 6) \/5 CSG ( 5) gij :eZ gij , (31@
ields a local expression for the dependenc ono
Lcse= CrmnkiC™™ = E+4| D2¢* D?¢ {12,9]:6 P P Ao
—Z(Rmn—lgmnR)qua*Dncp +.- v 11—
3 Wanom:_mf d&@[(ﬁﬁm— SR?+2D?
(3.6
Here C is the Weyl tensorE is the Euler invariant, an@?2 X g*D2p+ - ) o+2G™D o Do +2DM

—E=2(RnR™—R?3). Lcgg is precisely the Lagrangian

for four dimensionaN =4 conformal supergravityWe will — -, — =

take v=N2—1~N? for an SU(N) Yang-Mills theory at XDpo D%+ (D"o Do)

large N.] Integrating out the Yang-Mills fields has “in-

duced” a Weyl invariant theory of gravity on the manifold. _ _
Classically, the Lagrangiaf8.2) is conformally invariant HereGp,, is the Einstein tensor aj,, and the terms linear

and is independent of the Weyl factor in the backgroundn o in Eq. (3.11) are precisely the conformal supergravity

metric—equivalently, the trace of the classical stress tensaiction of the reference metr@i . The trace of the stress

vanishes. However, the logarithmic divergence in Ej6) tensor can be expressed in terms ofand Emn as T=

results in an anomalous dependence on the Weyl factor Oj(ef‘l”/\/a—)(t?W/tSU)lo:o which reproduces Eq3.7). In

the metric and results in an anomalous trace in the stresfs > . .
tensor: act, the divergent part of the effective action and the qua-
dratic part of anomalous piece can be conveniently combined
" 1 into a single, closed-form, non-local action.
T= 2042 R R™— §R2+ cee ]l (3.7 The logarithmic divergence and the related finite anoma-
lous term are exact at 1 loop fdv=4 Yang-Mills theory

The ellipsis denotes terms that appear when the other coS€€ the references i8]) and so we can reliably extrapolate

; : ; : the weak coupling results above to the large 't Hooft cou-
plings in EqQ.(3.2) such asp, C, etc., are spatially varying. In ™ . .
fact, the right hand side of Eq3.7) is proportional to the pling, '6.“96’\' Yang-Mills theory il shpuld be related to
conformal supergravity Lagrangia8.6). a classical gauged supergravity. According to the AdS/CFT

Accordingly, the finite part of the effective actiolf will corresponder;ce\N,' thel efffectlve aCt.'On of tlhe ang—ll\/llllg |
contain an anomalous piece that depends on the Weyl fact(BlPe.ory as a functional of sources Is equa to the classica
of the metric and whose variation produces the tr&a). action of the bulk gauged supergravity as a functional of

. . . . : - boundary data. So we have just shown that to leadingp-
Including the Weyl invariant piec&/;,, gives the finite part ) L
of the agtion: y P inv @ P rithmic) order SDN=8 supergravity inducebl=4 confor-

mal supergravity on the spacetime boundary. However, as
Wiin=Wanonit Wiy - (3.8  We have seen, the effective action also contains finite anoma-
lous and Weyl invariant terms. According to AdS/CFT, these
The Weyl invariant piece will be a series in even powers ofterms should together reconstruct the dynamics of five di-
e because the curvature invariants forming the metricmensionalN=8 gauged supergravity.

. (3.11

dependent part of the action have dimension 2: Unfortunately, although parts of the finite, Weyl invariant
part of the actio W, in Eq. (3.8)] are fixed by the classic
Wiy =Wy + €2W,+ €*W,+ - - - (3.9 analyses of the conformal anomalyj, also contains terms

that are not under control in the strong coupling limit. For
The higher order terms vanish as the cutoff is removed andxample, the power series iin Eq. (3.9 could be greatly
are regularization scheme dependent. modified. So we will try to milk the anomaly for as much
The conformal anomaly on the other hand is essentiallyata as possible in reconstructing the bulk spacetime from
scheme independent, barring a term proportiond&Vt& in  field theory.
Eq. (3.7 whose regularization-dependent coefficient we
have set to zero. Having fixed this ambiguity,,,» has a

®Note that the standard Riegert action employed here is potentially
problematic in dimensiond>2 [29].
5See[9] and references therein. ’See[12,29,9,25 and references therein.
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A. Anomaly and the renormalization group other words, at the level of the diagrammatic computation of

The renormalization group studies the transformation off€ l0garithmic divergent part of the effective action, a small
the effective actioW as a function of the cutof. The basic  SPatially varying cutoff can be directly traded for a Weyl-
idea is that a change of the cutaff- ¢’ is equivalent to a respaled metric as in E¢3.12. The anomalous terms in the
redefinition of the couplingg—g’ at fixed cutoff. The re- aCt'O”.C?‘” be degluced from this followifitg]. In this argu-
sulting effective variation of the couplings as a function of MeNt, itis essential that we understand the cutati be both
the cutoff is described by the RG equation. small and slowly varying—EQq(3.12 is a covariant cutoff

For example, we will show that redefining the cutefin only under th_ese conditions. .
Eq. (3.4 by a spatially varying factoe*™ is equivalent, to We have just argued that that a small, slowly varying

leading order irg, to re-scaling the metric by a Weyl factor: cutoff can be traded for a .rede_flne.d mefric in a way that
leaves the sum of the logarithmic divergent and anomalous

M A N= 2 0200 5 MA  N= 2 terms in the action invariant. The other couplings appearing
Omn AXTAXT= €7 gmpAXTAXT= €7 (3.12 in the effective action are also re-scaled according to their
~ [ ; e.g. has weight 0 and remains
= 20 (g +V, V. (x.€) ?/r:/\tlagrli;/\rl]?ghts, e.g., the scalar g
+V V(X €)]. (3.13 In fact, knowing the trace anomal§d.7) of the theory
fixes the anomalous part of the action and the logarithmic
Here we have permitted generatdependent diffeomor- divergence up to Weyl invariant terms. First, it is possible to
phisms of the manifold generated by the vector figl¢, €) integrate the trace anomaly to find a diffeomorphism invari-
since these are symmetries of the theory. ant action that varies to the anom&ly2,29,29 (also see the
When\ is constant it is easy to show the equivalence inreferences ir[9]). This action is not unique—any local or
Eq. (3.12 for the leading terms in the effective action— non-local Weyl invariant may be added to it without chang-
namely, the anomalous and logarithmic pieces. Re-scaling ing the trace anomalj29,25 and other methods are required
by e\ shifts the logarithmic divergent term{3.5 by to determine these terms. Then, reversing the logic above we
Avl4(47)? times the conformal supergravity action. The can infer the presence of a divergence logarithmic in the
same shift is produced in tha/, . by re-scaling the metric ~cutoff.
by e” 2>‘_ However’Wdiv is left invariant by a Wey| re-sca"ng In essence, integrating out the Yang—MiIIs theory has “in-
of the metric as long as the other fields in the conformaiduced” a Weyl-invariant gravitational action on the mani-
gravity Lagrangian(3.6) are also re-scaled by their Weyl fold. According to the AdS/CFT correspondence, and in par-
We|ghts For examp|e, the Sca|a;f has We|ght zero and allel with Sec. Il, this action must also be induced by the
therefore remains invariant. So wheris constant, a change bulk N=8 gauged supergravity. Below we will see how far
in the cutoff can be traded, in the leading terms of the effecWe can go towards showing this directly from the bulk per-
tive action, for a Weyl re-scaling of the metric and a corre-SPective.
sponding re-scaling of all the couplings in E.2) by their
Weyl weights. However, the cutoff dependence of the Weyl
invariant finite terms(3.9) implies that keeping the entire
action invariant will require more than a Weyl transforma-  Happily, the on shell massless fields of five dimensional
tion of the fields—in the perturbative limit, the couplings A’/=8 gauged supergravity have precisely the multiplicities
have to be corrected at each ordererto keep the entire of the couplings in Eq(3.2), and transform in the same way
effective action invariant. These higher order correctionsunder the asymptoti¢super-conformalsymmetry group of
cannot be reliably extrapolated to the strong coupling limit,the gravitational theory8,30]. Following the AdS/CFT pre-
but non-renormalization of the conformal anomaly guaranscription we should compare the classical action for the

B. Gravity description

tees that ag— 0, the equivalenc€3.12) is valid. 5-dimensional supergravity as a functional of boundary data
It is a little harder to argue that this is still the case for ato the Yang-Mills effective actioW.
spatially varying cutoff, because the acti@hb) is explicitly The cutoff length scale that appears in the field theory

computed for a constant cutoff. Instead, examine the origireffective action is related to radial positions in the bulk space
of divergences and the anomaly in logarithmic singularitie§15-19. Indeed, where is small and slowly varying as a
that occur when two points in a Feynman diagram approacfunction of boundary positions, it can be directly identified
each other closely. The cutoff in E(R.12) restricts the prox-  with a radial cutoff[17,19,25. The field theory scheme de-
imity of such points by placing a lower bound on the size ofpendence of choosing spatially varying cuto#&) is di-
vectorsAX™ in the tangent space at Re-scaling the cutoff rectly related to truncations of the bulk space by “wavy”
increases the bound anX™. Since the classical Lagrangian surfaces parametrized agx)=e(x) in the coordinates

in Eq. (3.2 is both Weyl and diffeomorphism invariant, the (2.12. All of these surfaces are related by five dimensional
Feynman diagrams are not changed by a combined re-scalinfiffeomorphisms, and the metric induced on them is given
of the metric as in Eq(3.13 and the other couplings by the precisely by Eq.(3.13 [25]. In other words, diffeomor-
appropriate Weyl weights. The only effect of this redefinition phisms of the 5D spacetime are directly related to a choice of
of couplings with a fixed small cutofé is to re-scale the RG scheme for the dual field theory.

bound on the size of vectorsX™ measuring separation be- Henningson and Skendelfi$0] showed that the gravita-
tween nearby points in the Feynman diagram integrations. Itional terms in the 5D action contain quartic and quadratic
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divergences and a logarithmic divergence equal to the gravinear the boundary of AdS. With additional algebraic com-
tational terms in Eq(3.5). It was shown in10,11] that the  plexity a similar induction oN=4 boundary conformal su-
power law divergences could be canceled by local boundarpergravity should follow from bullN=8 gauged supergrav-
counterterms in the gravitational action. The leading piece ofty. This is also well motivated from our discussion of the
the bulk action as a functional of boundary data is then th@nomaly structure oN=4 SYM theory. Below we will ar-
logarithmically divergent term equal to the gravitational partgue that when we use boundaries far inside AdS, Weyl sym-
of the four dimensional conformal anomdiyThe results of Metry is strongly broken and the boundary theory is no
[25] imply that this analysis continues to hold for a genera|Ionger conformal. In this situation, which is gxploned in the
foliation of the bulk spacetime by “wavy” cutoff surfaces. Randall-Sundrum model, the induced gravity is only Poin-
In other words, the leading gravitational terms in the fiveCareinvariant.

dimensional action exactly reproduce a conformally invari-

ant action for boundary gravity as implied by the Yang-Mills A. Supersymmetric counterterms and holographic RG flows

conformal anomaly. In fact, these leading terms arise from Qyr results regardindy =2 gauged supergravity have no-
the action accumulated by the divergent behavior of the metzp|e applications to the derivation of supersymmetric
ric near the boundary of the bulk space; finite energy excitahoundary counterterms for AdS gravity and holographic RG
tions contribute subleading terms because, as implied by th@ows derived from the resulting regulated actions.
results off 11], they contribute to finite parts of the action. SO |t has been shown that the power law divergences in the
we learn that the complete gravitational dynamics of the skinyction and stress tensor of a space that is asymptotically lo-
of an asymptotically AdSspace is contained the in the four- cajly AdS can be eliminated by the introduction of intrinsic
dimensional conformal anomaly. ‘boundary counterterml1]. These methods avoid various
The above discussion was carried out purely for the gravigmbiguities and technical difficulties associated with other
tational terms in the bulk and bOUndary actions. However, ihqethods in classical gravity for Computing the action and
is expected that inclusion of the scalars, fermions and gaugggnserved charges of a space. Using the induNesdl
fields of 5SDN=8 supergravity would induce the ful=4  sysy boundary transformations that we have derived, one
conformal supergravity action on the boundary of the spacesould compute the counterterms for the entire gravity super-
In the previous section we showed that S0=2 gauged multiplet by transforming the gravitational counterterms of
supergravity induces the symmetries f=1 superconfor- [11].
mal gravity on the boundary. Here we expéaithough it is Also, the AdS/CFT correspondence states that the classi-
technically much harder to showhat the symmetries dl  cal action for the bulk space, regulated by these boundary
=4 conformal gravity are induced on the boundary. Givencounterterms and seen as a functional of boundary data, is
these symmetries, transformations of the gravitational termgqual to the effective action for &4=1 SYM theory that is
(C*~E) are expected to give the remaining terms of Be conformal in the ultraviolet. This theory has a conformal

=4 conformal gravity Lagrangian. anomaly which, in addition to the familiar Weyl tensor
squared and Euler invariant contributior®% E), includes
C. Summary terms involving scalars and fermions. By the AdS/CFT cor-

h&gspondence, this must be equal to a logarithmic divergent
N=4 conformal gravity is induced on the 4-dimensional term c_)f the 5D spacetime action. Acting Q%_E with the
explicit N=1 superconformal transformations that we have

boundary of solutions to S-dimensiorii=8 gauged super- édentified will yield the complete strong coupling supersym
ravity. Turning things around, we have also argued that th . )
g y g g g metric conformal anomaly of the dubl=1 SYM theory.

4D conformal anomaly encapsulates the gravitational dy- . ; '
y P d y In Sec. lllA we discussed the matching between field

namics of the skin of asymptotically Ad$paces. Confor- ; - . g
! ! ymptotically AgSp theory cutoffs and radial positions in the bulk space. This is

mal gravities also exist in odd dimensions where there is nth basis of the hol hi lizati 151
conformal anomaly. In these situations which arise, for ex- e basis of the holographic renormalization grotip—19.

ample, in the Ad$/CFT; correspondence, the bulk action liyl ms?jgl(n? thﬁ bUAkN=2 SUSﬁ :/vith rt]he b:)un?aFW_
does not have a logarithmic divergence and must induce a Y for the theory at each length scale of a given
finite conformally invariant action on the boundary renormalization flow, our methods can also provide useful

' tools for the holographic analysis of Shifman-Vainshtein re-

lations between supersymmetric beta functions.

We have used the AdS/CFT correspondence to argue t

IV. DISCUSSION THE ROLE OF CONFORMAL GRAVITY

To summarize, we have demonstrated, with an explicit B. Induced Poincaregravity: The N=1 supersymmetric
mapping of symmetry actions, hoM=2 gauged supergrav- Randall-Sundrum model
ity in the bulk of AdS space inducé$é=1 conformal super-
gravity on a boundary surface. The explicit breaking of Weyl
symmetry involved in restricting to a cutoff surface will only
add small perturbations to this scheme if we keep the surfa

Thus far we have discussed how Weyl-invariant gravity is
induced on the boundary of spaces governed by gauged su-
pergravity. Our considerations are also relevant to analyses
6t Randall-Sundrum models where the standard model is at-

tached to a domain wall in five dimensional AdS space on
which four dimensional Poincaievariant gravity has been
8In [28] this analysis was extended to dilatonic gravity. localized[4].
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We showed in Sec. Il that radial diffeomorphisms of five they will be able to fluctuate. This suggests that they should
dimensional gauged supergravity induce Weyl transformabecome actual dynamical fields on the cutoff surface, and
tions of the surfaces homeomorphic to the spacetime boundhat dynamical conformal gravity is the effective theory ob-
ary. If Weyl symmetry is maintained as a residual symmetryserved by an experimentalist placed on a surface of fixed
on such surfaces, the induced gravitational action is conforradius near the boundary of an asymptotically AdS sake.
mally invariant(up to an anomaly In other words, in the ~Sigma model of closed strings in AdS space presumably in-
computation of the on-shell bulk supergravity action theqludes world sheets Wlth_bounda_rles a_ttached to the space-
countertermg11], which make the bulk action finite, also time boundary. Such string conf|gurat|ons_are the natural
precisely cancel induced boundary quantities that break thgldma model analogues of the non-normalizable modes. It
residual Weyl symmetry such as the Einstein-Hilbert anle/\/ould be natural to expect that they are responsible for in-

cosmological terms. Weyl invariance is nevertheless brokegUCIng dynamical conformal gravity on surfaces near an AdS

: . oundary.
anomal_ously asin Sec. I by_ the radial cutoff dependence o The matter is subtler from the perspective of the dual
a logarithmic divergence which cannot be canceled.

However, in situations like the Randall-Sundrum scenari CFT. In the largeN limit, we usually equate the SYM effec-
' Yive action with a path integral over bulk supergravity fields

[.4]’ Wey! invaria_nce_ is explicitly broken by the c_hoice of a subject to boundary conditions on the AdS boundary. These
fixed radial position in AdS space where a brane is placed. I%gundary conditions are implemented by choosing a non-

this case, there is no reason to pick a regulation scheme su : :
. . rmalizable mode background. Regulating the SYM theory
as[11] which preserves the residual Weyl symmetry. IndeedIs equivalent to cutting off the AdS space at some finite

the Einstein-Hilbert counterterm [iL1] can be ignored com- distance. At this cutoff surface, the values of supergravity

ﬁle(t)?%)(aelg)_\;\ggﬁj;hseuﬁ:t(eto%agxcagfégﬁ?girg:é %Ira(l:\zla_n bfields are cannot be fully fixed and should be integrated over.
y - ) o N Since boundary values of the supergravity modes correspond
used to study thél=1 supersymmetric structure induced by to sources in the SYM theoiy24], it would seem that in the
th_e bulk_theory. However, the residud=1 supersymmetry .regulated SYM effective action we must integrate over both
sl forkyds the appearance of a cosmological constant. Th'?he fields and the sources, including the superconformal
reasoning also applies to extended supersymmetry.NAn gravity multiplet. The resulting path integral is not a func-

;de sltjgers()j/mmetrlcdbluIk_”Sl‘leedrgra\’/Jtyn\?)itingo.n Ot thetional of the sources anymore, but rather a functional of the
andail-sundrum model will “inquce ariv= OINCAre initial and final states. Hence, it would compute &imatrix

supergravity on the walisee alsq31)). for the modified CFT. As the cutofé—0 in this modified
) _ path integral, we require that the sources become frozen.
C. Dynamical conformal gravity? This suggests an interesting perspective: the cutaffsome

In this paper we have discussed the appearance of confosense translates to an effectitefor field theory sources
mal gravity at the boundary of spaces governed by gaugewithin the AdS/CFT correspondence.
supergravity. The fields that appeared in this discussion were
the boundary values of non-normalizable bulk modes that ACKNOWLEDGMENTS
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