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Simple excision of a black hole in 3-1 numerical relativity
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We describe a simple implementation of black hole excision Hnl3numerical relativity. We apply this
technique to a Schwarzschild black hole with octant symmetry in Eddington-Finkelstein coordinates and show
how one can obtain accurate, long-term stable numerical evolutions.
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The simulation of a black hole inspiral collision is one of evolutions of a single black hole spacetime. These results are
the most important open problems facing numerical relativcurrently limited to simulations in octant symmetry as dis-
ity. Traditional techniques using singularity avoiding slicings cussed below.
will not be able to follow such a collision since problems
associated with the stretching of the slice typically cause
simulations to crash or to become extremely inaccurate in I. SIMPLE BLACK HOLE EXCISION
time scales far shorter than the orbital time scale. Black hole
excision technigues(also known as “apparent horizon Though conceptually simple, black hole excision in 3D is
boundary condition[1,2]) appear to be the most promising a complicated problem numerically. First, one has to cut a
way of eliminating the problem of the slice stretching, thushole in the computational domain that has a spherical topol-
in principle allowing numerical simulations to follow the in- ogy and is therefore not well adapted to the Cartesian coor-
spiral from well separated holes through the merger and thdinates typically used. Second, one has to apply some con-
ring-down phase. dition at the boundary of the excised region that is stable and

Black hole excision was first attempted successfully byrespects the causality of the physical system. As the excised
Seidel and Suen in spherical symmefty}, and was later region is inside a black hole, no boundary condition should
studied in more detail by Anninost al. [2]. However, the be needed since all the information required to update the
original idea is older, and Thornbuf§,4] has attributed itto  boundary comes from outside the excised region. However,
a suggestion by Unruh from 1984. The idea consists of twachieving this “boundary without a boundary condition”
parts: First, one places a boundary inside the black hole andBWBC) [1,7] in 3D is difficult, particularly if one uses a
excises its interior from the computational domain; secondformulation of the evolution equations that is not hyperbolic.
one uses a shift vector that keeps the horizon roughly in th&@he way this problem is usually approached is by using
same coordinate location during the evoluti@thorizon “causal differencing”[1,2] or “causal reconnection’[18],
tracking,” see[4]). Since no information can leave the inte- where the computational molecules are adapted to follow the
rior of the black hole, excision should have no effect on thecausal structure. The mixture of these issues makes it diffi-
physics outside. Ideally, one would like to know the positioncult in practice to identify what particular element of an al-
of the event horizon which marks the true causal boundarygorithm is responsible for causing a numerical simulation to
but the global character of its definition means that in prin-go unstable.
ciple one can only locate it once the whole evolution of the In our approach we have simplified the algorithm as much
spacetime is known. The apparent horizon, on the otheas possible, separating out what we believe is essential to the
hand, can be located on every time slice and is guaranteed &xcision problem. Our algorithm is based on the following
be inside the event horizon. In practice one therefore needsmplifications:
to find the apparent horizon and excise a region contained Excise a region adapted to Cartesian coordinates, i.e. ex-
inside it. cise a cube contained inside the horizon.

Though black hole excision has been successful in spheri- Do not attempt to satisfy the BWBC ideal, and use instead
cal symmetry{1,2,5-1Q, it has been difficult to implement a simple but stable boundary condition at the excision
with a 3+1 approach in three-dimensiof8D) [11-14,  boundary.
where instabilities typically plague the evolutiofisit some Do not use causal differencing. Use instead centered dif-
progress has been made, $46,1€]). Black hole excision ferences in all terms except the advection terms on the shift
using a characteristic formulation, on the other hand, hasgterms that look like3';). For these terms use upwind along
been very successful in 3D, allowing stable evolutions ofthe shift direction(we use the standard 1D second-order up-
perturbed black holes for thousandsMfs [17]. However, wind stencil in each of the Cartesian coordinate directions
such characteristic formulations are likely to have problemsased on the sign of the corresponding shift component at
with the development of caustics in the case of extremelyeach point This is very important, as it is the only place
distorted or colliding black holes, so the search for a stablevhere any information about causalitiye. the direction of
3+ 1 excision implementation is still of great importance. the shify enters our scheme. Using a centered approximation

Here we present a-81 approach to black hole excision for these terms results in an unstable scheme.
in 3D that has allowed us to obtain long-term stable, accurate One can worry that excising a cube will introduce arti-
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facts into the evolution, but as long as the boundary condithese functions appear. Whenever these functions are undif-
tion used at the sides of the cube is consistent those artifacferentiated, we recompute them from the conformal Christ-
will converge away with increased resolution. Similarly, oneoffel symbols. We have found this to be very important to
can argue that applying a boundary condition instead of usachieve long-term stability, but at the moment we lack a
ing causal differencing is inconsistent with the physics, butheoretical understanding as to why this is so.
since this condition is applied well inside the horizon, any Slicing conditions As a first approach to evolving the
error introduced is unlikely to propagate outside the hole. solution described above, one could think of using the exact
value of the lapse. It turns out that it is difficult to keep the
Il. STATIC BLACK HOLE SPACETIME evolution stable if the lapse is not allowed to adapt to the
(numerically induced evolution of other dynamical quanti-
As the first test of our excision algorithm we have con-ties, particularly the trace of the extrinsic curvature. In order
sidered a single static black hole written in 3l to obtain stable evolutions we have found it crucial to use a
Eddington-Finkelstein(EF) coordinates. These31 EF co-  “live” slicing condition. What is required is a slicing con-
ordinates are a simple transformation of the standard ingoingition that is well adapted to the exact solution in the sense
EF coordinate$19] to a 3+ 1 form. The resulting metric has that for this solution it recovers the exact lapse. For this we
no coordinate singularities, penetrates the event horizorstart from the Bona-Massiamily of slicing conditiong 30]
reaches the physical singularity, and is manifestly time inde-
pendent. This makes it ideal for excision tests where one can da=—a*f(a)trK, 2
excise the physical singularity and try to keep the numerical . , .
evolution stable and close to static. The 3 EF metric has  With f(«)=>0. As itis, this condition does not reproduce our

the form exact solution for which tK+# 0, butd,a=0. However, one
can easily see that for zero shift Eq2) implies d;«
ds?=—(1—2M/r)dt?>+ (4M/r)dtdr+(1+2M/r)dr? « dy(detg). For this to hold also with non-zero shift E(®)

must be generalized to
+r2dQ?, (1) _
ha=—af(a)atrK=V,;6']. 3

with M the black hole mass ardl) the solid angle element.
From this metric one can read the values of the 3-metriclor any static solution Eq(3) implies d;a=0.
lapse and shift. The extrinsic curvature can then be obtained Another natural slicing condition to consider étrK
in a straightforward way. =0. For initial data with tkKk=0 this condition leads to
maximal slicing, but), tr K=0 is a gauge choice that can be
made in general, even if k+0, as is the case for the con-
stant time slices of the black hole in EF coordinates. This “K

Formulation We comment briefly on the formulation freezing” condition leads to an elliptic equation for the
used for the simulations described below. Our simulationdapse,
have been performed using a formulation of the B evolu- L
tion equations developed by Baumgarte and Shaj2@ Aa—aK;K!=p'VitrK=0. (4)
(BS), based on previous work of Shibata and Nakanj@ig
(SN). The motivation for using this BSSN formulation e
comes from the fact that it has shown remarkable stabilit)}he lapse but we hold K constant in time by hand. Ii27]
properties when compared to the Arnowitt-Deser-Misner” the context of the evolution of strong waves we have

(ADM) formulation[22] in a wide range of numerical simu- found that otherwise a drift away from the initial value due
lations[20,23—28 to numerical errors can lead to an instability. Such drifts

The BSSN variables are defined in terms of Were one of Fhe reasons that led us to. consider trace-split

the spatial metric y;; and the extrinsic curvature formulauons like .BSSN' bgcause hereK.tns g\_/olved as an

B ~ T ~ independent variable which makes it trivial to enforce
Kij as ¢—|n(det’}/|])/12, Yij:,e~,7ij' trK—’}/JKij, A.IJ 8ttI’K=O
=e *¥(Kjj— y; trK/3), and T'=%I"}, (note that deg Shift conditions In contrast to the experience with the
=1 and trA=0). See[20] for the explicit form of the evo- lapse, we have found that using a staixach shift does
lution equations, anf28] for an analysis that indicates why allow us to get long-term stable evolutions. However, this is
the BSSN formulation should be superior to ADM at leastnot useful in general, so we have considered also live shift
for linearized perturbations of flat space. conditions. Live shifts have been studied before for black

In order to obtain the stable evolutions described belowhole spacetimes if12], where a minimal distortion shift
we have found it necessary to add the following ingredientsondition[31] led to limited stability (~100M) for a single
to the BSSN formulation: excised black hole.

(1) As discussed if29], we actively force the trace of the In our case a good choice was a conformal version of the
conformal-traceless extrinsic curvatufg to remain zero 3-harmonic shif32]. 3-harmonic shifts play a natural role
during our simulations by subtracting it after each time stepin mixed elliptic-hyperbolic systemi83]. The condition we

(2) We use the independently evolved “conformal con-impose in the BSSN system dgl =0 (“Gamma freezing”

nection functions”T" only in terms where derivatives of condition, note thal *+0), or

IIl. EVOLUTION EQUATIONS

In the numerical implementation, we solve this equation for
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As mentioned beforeg,I'" is computed from the indepen-
dent variablel"!, in other terms we us&'= T, [notice
that the momentum constraint was used to replvz@éj in
Eqg. (5)]. Equation(5) is an elliptic equation for the shift
vector. For the solution of Eq$4) and(5) we have used the
multi-grid solver from BAM, a bifunctional adaptive mesh FIG. 1. Log plot of rms of the change in the laps&x
code[34]. As in the case of K freezing, we explicitly hold =0.4, At=0.1.(a) 53 grid points, boundary at 28. (b) 103’ grid
the value ofT" constant in time in order to prevent this Points, boundary at 40.

quantity from drifting due to numerical errors. As shown in
Sec. IV, allowingl"' to drift results in an unstable evolution.

0 1000 2000 3000 4000 0 500 1000 1500 2000
time (in M) fime (in ¥}

the diagonal This condition is perfectly consistent with

We have also looked at shift prescriptions given by evo_evolving a static solution, where the time derivatives are sup-
posed to be zero. Even in a dynamical situation, this condi-

lution equations instead of elliptic conditions. One way to do™->% i . it th \uti ) . L
this is to transform an elliptic equation into a parabolic onellon 1S Still consistent with the evolution equations since it Is
by making 4,8 proportional to the given elliptic operator equivalent to just calculating the source term one grid point

(“driver” conditions, see[35]). As an example we consid- away. This means that our boundary condition should intro-
ered the following evolution equation for the shift obtainedduce a first order error, but as mentioned above, we do not

from the Gamma freezing conditiofa “Gamma driver” expect this error to affect the solution outside the horizon.
condition) One could in principle argue that nothing prevents gauge

modes and constraint violating modes from propagating out-
side the horizon, thus spoiling the second order convergence
of the exterior scheme. We have looked carefully at the con-
vergence of our simulations, and have found no evidence
%hat this happens in practice.

aB=kal' (k>0). (6)

Boundary conditionsThere are two very different bound-
aries to consider in our simulations: the outer boundary o
the numerical grid, and the inner boundary of the excised
region. In principle there should be a rigorous treatment of IV. NUMERICAL RESULTS
numerical boundaries at finite radstarting e.g. fron{36], We now present some results of our numerical simula-
the first analytic treatment of the initial boundary value prob-iions As discussed above, our simulations have been done
lem). Here we are looking for simple numerical methods thatyith 4 Jive lapse condition, and we have considered both a
are sufficient for the evolution of excised black holes. = gtatic shift, and several live shift conditions. In our runs we

At the outer boundary we have attempted to keep all field$,aye always takeM =1, so the horizon is a sphere of radius
equal to their exact values, but have found that this intro- =2, and we excise a cube of side(le have in fact also
duces late time instabilities. Using a live boundary conditionay cised cubes of different size, but the results discussed be-
allows us to eliminate these instabilities. The boundary conyg\ are not affected by this The numerical integration is
dition we use is a radiative boundary condition applied 10 th&grried out using the so-called iterative Crank-Nicholson
difference between a given variable and its exact vafue: gcheme with 3 iterationécounting the initial Euler step as
~fexac=u(r —t)/r. We apply this condition to all fields jieration 1. Because of the spherical symmetry of the prob-
(even to the lapse an~d'sh|ft in the case of the algebraic gauggy, typically only one octant was evolvevith positive
conditiong exceptthe I"* which we leave fixed to their exact x, y, andz). However, as discussed at the end of this sec-
values at the boundary. Applying this condition to tfie  tion, an unstable mode appears when the same simulations
causes a drift away from the exact solution that eventuallyare performed on the corresponding full grids.
crashes the simulatiofthe origin of this drift is not well Static shift We first consider the case when the shift re-
understood, but it seems to be related to the shift choice anahains equal to its exact value. Figure 1 shows a log plot of
is not present if one uses the Gamma driver shift describethe root mean squargms) of the change in the lapse be-
above. tween consecutive time steps for two simulations using slic-

As to what boundary condition to use at the sides of théng condition(3) with f=1/« (“1 +log” slicing [29,37), a
excision cube, we have experimented with many differengrid spacingAx=0.4, and a time stepat=0.1. Figure 1a)
conditions and have finally settled on one that simply copieshows the results of a simulation using*%8id points, with
the time derivative of every field at the boundary from its the outer boundaries at BD The change in the lapse drops
value one grid-point out along the normal direction to theas an exponentially damped oscillation untiltat3500M it
cube(at edges and corners we define the normal direction aseaches the level of round-off error (1%) and settles down
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FIG. 2. Evolution of horizon mass for the same simulations. s
ool

(other functions show a similar behaviolhe evolution was FIG. 3. Late time Hamiltonian constraint for runs with different
stopped at=4000M, but it is clear that it could have con- resolutions. The values for the higher resolution runs were multi-
tinued. Figure (b) shows a simulation with the same reso- plied by factors of 4 and 16.

lution, but using 103 grid points, with the outer boundaries
now at 40M. The simulation goes past-2000M, and seems
to have settled on an exponentially decaying oscillating pat
tern. (This simulation took 100 hours running on 16 proces-
sors of an Origin 2000 SGI machine. If the pattern continues
round-off error level would be reached Iby-1200(M, re-
quiring another 508 16 hours of computer timgeThe most
obvious differences between the run with the boundaries alt
20M and that with the boundaries atMOQis the fact that the 5
period of the oscillations increases and the rate of deca&l’ct
decreases. The period increases by a factor of 3.4 as
double the distance to the outer boundaries, so the oscillatio

time scale is not given directly by the light travel time from The 1+ log, Gamma freezing run becomes unstable if the

the boundary(which would approximately doubleWe do ) . .
not know exactly what fixes this time scale, but the fact thatboundary values of all fields are stafiein 3, crashing at

when we look at individual metric components we see that
the oscillations behave like standing wavesd not travel-
ing pulse$ would seem to indicate that we are looking at
different modes of oscillation of the whole systdmterior
plus boundaries

These simulations are not only stable for very long times,
they are also exceedingly accurate. We have located the af
parent horizon every 50 time stefissing the 3D finder de-
scribed in[38]), measured its are& and computed its mass
M = JA/(167). Figure 2 shows the behavior of the horizon
mass as a function of time. In both cases, after an initial
transient, the mass settles on a stationary value with an errc
of less than 1%.

In Fig. 3 we consider the convergence of our simulations

vergence has been checked using two grids withat@l 35
points with the outer boundary aitW¥. For 1+ log slicing a
radiative boundary condition is applied to the lapse, while
tapse and shift for the elliptic conditions are held fixed at the
exact values.

Stable runs are obtained for Gamma freezing shift with
her 1+log or K freezing slicings. Referring to Figs. 4 and
for 1+ log slicing A a, falls below 1016 at t~1500M

er four oscillationgrun 1), while for K freezing there are
ore than fifteen oscillations, which damp out at around
19 followed by a straight line decafyun 2.

Boundaries at 13 M
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by looking at the late time value of the Hamiltonian con-  _g - ‘*\»WR\; 1
straint along thex axis for simulations with 28 53, and 1
103 grid points and resolutions afx=0.4,0.2,0.1 respec- -9 \ \ \

tively (boundaries at 1@). The Hamiltonian constraint for 0 100 tim:?i?‘ " 300 400

the higher resolution runs has been multiplied by factors of 4
and 16. The fact that the three lines coincide indicates second g|G. 4. Log plot of rms of the change in the lapse for different
order convergence. lapse and shift combinations involving elliptic conditionax
Elliptic shifts We now consider results with elliptic shifts, —0.4, At=0.1, 35 points, boundary at M. Run 1: stable [

such as those that we expect will be needed in a 3D blackeezing without drift, 2+ log); run 2: stable [ freezing without
hole merger simulation. Figure 4 shows two stable and threerift, K freezing without drify; run 3: unstableI{ freezing without
unstable runs up to=400M, and Fig. 5 shows those three drift, 1+log, static outer boundarigsrun 4: unstable Il freezing
runs that lasted longer up te=3000M. Second order con- with drift, 1+log); run 5: unstabléminimal distortion, 1+log).
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ether with the corresponding full grid run.
FIG. 5. Runs 1, 2, and 3 of Fig. 4 for run times of up tto g P g g

=300QM. L .
stable mode back in time suggests that it has started as nu-

. e . ) ) merical round-off error of around 16* att=0. Increasing
~150QM, Fig. 4, or if 31" =0 is not set to zero identically the grid resolution appears to have no significant effect on
and is allowed to drift because of numerical errémsn 4,  the growth rate of the unstable mode, but the simulation now
crashing at 3781). We also tested %log slicing with @ crashes slightly sooner. However, we do see good second
minimal distortion shiff31] computed from the ADM vari- order convergence at early times, before the instability be-
ables, but this run fails already at®7(run 5). comes apparent. The situation does not improve if we im-

Algebraic shifts Fina”y, we consider a simulation USing pose the exact data at the excision bound'ﬂ]mosing exact
1+log slicing and a Gamma driver shift with=0.1. Figure  data at the excision boundary in octant mode works well and
6 shows the rms of the change in the lapse and the horizogads to stable simulationsAlso, the presence of a horizon
mass for a simulation witthx=0.4,At=0.1 and 53 grid  does not seem to be the cause of the problem since when we
points. Aftert~2500M the solution becomes static up to excise a cube that contains the horizon, as opposed to being
round-off error. contained by it, the instability is still present although it be-

Discussion The above results demonstrate that stable 3Qomes somewhat mildgnot surprising since we have ex-
black hole runs can be obtained with the simple excisiorcised a region with stronger dataVhile the achievable run
technique that we introduced in this paper, with a variety oftimes of about 5081 are roughly 10 times larger than for
different gauge conditions. However, repeating these runs osingularity avoiding slicings, we have found that introducing
a full grid as opposed to just one octant, with otherwisean artificial asymmetry on the full grid by simply off-setting
identical parameters, uncovers an unstable mode. Figure the excision box one grid point in all directions makes the
shows as an example the situation fot-fbg slicing and  runs fail much sooner. Although the slope of the blow-up is
static shift, although the problem appears for all the gaugeot significantly affected when this artificial asymmetry is
conditions considered here. Tracing the growth of the unintroduced, the exponential growth becomes evident from

the very beginning. On the other hand, the full grid runs can
Boundaries at 20 M be stabilized by setting certain terms in the BSSN equations
T to their analytic values. In particular, freezing the evolution

5 ] ) of the T while keeping the shift static suffices to obtain
] stability. In conclusion, the instability appears to be more

directly linked to the system of evolution equations than to
o ] the boundary condition, and we will investigate different
variations of the evolution system in the future.
(\ ] We have also repeated the above simulations using the

ADM equations with the same gauge and boundary condi-
tions, and the same numerical techniques, but these runs fail
already att=30M even in octant mode.

Boundaries ot 20 M
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V. CONCLUSIONS
FIG. 6. Simulation using Gamma driver shift wiki=0.1; Ax

=0.4,At=0.1, 53 points, boundary at 20. (a) Log plot of rms of We have described a black hole excision technique in 3
change in the lapséb) Horizon mass. +1 numerical relativity that has allowed us to obtain accu-
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rate, long-term stable evolutions of black hole spacetime irboth algebraic and elliptic, that can be generalized to more
3D. The main limitation is that the transition from octant interesting physical situations. We consider these results a
symmetry to full grids introduces an unstable mode, which imecessary first step towards the development of excision
currently under investigation. Our implementation of exci-techniques capable of evolving the full inspiral collision of
sion is based on the idea of simplifying all ingredients of thetwo black holes in an accurate and stable way.

excision algorithm as much as possible. In our case this
means(1) excising a cube naturally adapted to the underly-
ing Cartesian coordinate§?) imposing a simple but stable
boundary condition on the sides of this cube, #Bdusing

an upwind scheme instead of causal differencing. Crucial for We would like to thank J. Baker, D. Pollney, E. Seidel,
obtaining our long-term stable evolutions has been the use &#/.-M. Suen and J. Thornburg for useful discussions and
a live slicing condition and a radiation outer boundary con-comments. The numerical experiments were implemented
dition. Although keeping a static shift does not appear tousing BAM and the Cactus Computational ToolK9,40.
have a detrimental effect on the stability of our simulations,All computations were performed at the Max-Planck-Institut
we have also experimented with several live shift conditionsfur Gravitationsphysik.
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