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Simple excision of a black hole in 3¿1 numerical relativity

Miguel Alcubierre and Bernd Bru¨gmann
Max-Planck-Institut fu¨r Gravitationsphysik, Albert-Einstein-Institut, Am Mu¨hlenberg 1, 14476 Golm, Germany

~Received 6 September 2000; published 5 April 2001!

We describe a simple implementation of black hole excision in 311 numerical relativity. We apply this
technique to a Schwarzschild black hole with octant symmetry in Eddington-Finkelstein coordinates and show
how one can obtain accurate, long-term stable numerical evolutions.

DOI: 10.1103/PhysRevD.63.104006 PACS number~s!: 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf
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The simulation of a black hole inspiral collision is one
the most important open problems facing numerical rela
ity. Traditional techniques using singularity avoiding slicin
will not be able to follow such a collision since problem
associated with the stretching of the slice typically cau
simulations to crash or to become extremely inaccurate
time scales far shorter than the orbital time scale. Black h
excision techniques~also known as ‘‘apparent horizo
boundary condition’’@1,2#! appear to be the most promisin
way of eliminating the problem of the slice stretching, th
in principle allowing numerical simulations to follow the in
spiral from well separated holes through the merger and
ring-down phase.

Black hole excision was first attempted successfully
Seidel and Suen in spherical symmetry@1#, and was later
studied in more detail by Anninoset al. @2#. However, the
original idea is older, and Thornburg@3,4# has attributed it to
a suggestion by Unruh from 1984. The idea consists of
parts: First, one places a boundary inside the black hole
excises its interior from the computational domain; seco
one uses a shift vector that keeps the horizon roughly in
same coordinate location during the evolution~‘‘horizon
tracking,’’ see@4#!. Since no information can leave the int
rior of the black hole, excision should have no effect on
physics outside. Ideally, one would like to know the positi
of the event horizon which marks the true causal bound
but the global character of its definition means that in pr
ciple one can only locate it once the whole evolution of t
spacetime is known. The apparent horizon, on the o
hand, can be located on every time slice and is guarantee
be inside the event horizon. In practice one therefore ne
to find the apparent horizon and excise a region contai
inside it.

Though black hole excision has been successful in sph
cal symmetry@1,2,5–10#, it has been difficult to implemen
with a 311 approach in three-dimensions~3D! @11–14#,
where instabilities typically plague the evolutions~but some
progress has been made, see@15,16#!. Black hole excision
using a characteristic formulation, on the other hand,
been very successful in 3D, allowing stable evolutions
perturbed black holes for thousands ofM ’s @17#. However,
such characteristic formulations are likely to have proble
with the development of caustics in the case of extrem
distorted or colliding black holes, so the search for a sta
311 excision implementation is still of great importance.

Here we present a 311 approach to black hole excisio
in 3D that has allowed us to obtain long-term stable, accu
0556-2821/2001/63~10!/104006~6!/$20.00 63 1040
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evolutions of a single black hole spacetime. These results
currently limited to simulations in octant symmetry as d
cussed below.

I. SIMPLE BLACK HOLE EXCISION

Though conceptually simple, black hole excision in 3D
a complicated problem numerically. First, one has to cu
hole in the computational domain that has a spherical top
ogy and is therefore not well adapted to the Cartesian co
dinates typically used. Second, one has to apply some
dition at the boundary of the excised region that is stable
respects the causality of the physical system. As the exc
region is inside a black hole, no boundary condition sho
be needed since all the information required to update
boundary comes from outside the excised region. Howe
achieving this ‘‘boundary without a boundary condition
~BWBC! @1,7# in 3D is difficult, particularly if one uses a
formulation of the evolution equations that is not hyperbol
The way this problem is usually approached is by us
‘‘causal differencing’’ @1,2# or ‘‘causal reconnection’’@18#,
where the computational molecules are adapted to follow
causal structure. The mixture of these issues makes it d
cult in practice to identify what particular element of an a
gorithm is responsible for causing a numerical simulation
go unstable.

In our approach we have simplified the algorithm as mu
as possible, separating out what we believe is essential to
excision problem. Our algorithm is based on the followi
simplifications:

Excise a region adapted to Cartesian coordinates, i.e.
cise a cube contained inside the horizon.

Do not attempt to satisfy the BWBC ideal, and use inste
a simple but stable boundary condition at the excis
boundary.

Do not use causal differencing. Use instead centered
ferences in all terms except the advection terms on the s
~terms that look likeb i] i). For these terms use upwind alon
the shift direction~we use the standard 1D second-order u
wind stencil in each of the Cartesian coordinate directio
based on the sign of the corresponding shift componen
each point!. This is very important, as it is the only plac
where any information about causality~i.e. the direction of
the shift! enters our scheme. Using a centered approxima
for these terms results in an unstable scheme.

One can worry that excising a cube will introduce ar
©2001 The American Physical Society06-1
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facts into the evolution, but as long as the boundary con
tion used at the sides of the cube is consistent those arti
will converge away with increased resolution. Similarly, o
can argue that applying a boundary condition instead of
ing causal differencing is inconsistent with the physics,
since this condition is applied well inside the horizon, a
error introduced is unlikely to propagate outside the hole

II. STATIC BLACK HOLE SPACETIME

As the first test of our excision algorithm we have co
sidered a single static black hole written in ‘‘311
Eddington-Finkelstein’’~EF! coordinates. These 311 EF co-
ordinates are a simple transformation of the standard ingo
EF coordinates@19# to a 311 form. The resulting metric ha
no coordinate singularities, penetrates the event horiz
reaches the physical singularity, and is manifestly time in
pendent. This makes it ideal for excision tests where one
excise the physical singularity and try to keep the numer
evolution stable and close to static. The 311 EF metric has
the form

ds252~122M /r !dt21~4M /r !dtdr1~112M /r !dr2

1r 2dV2, ~1!

with M the black hole mass anddV the solid angle element
From this metric one can read the values of the 3-met
lapse and shift. The extrinsic curvature can then be obta
in a straightforward way.

III. EVOLUTION EQUATIONS

Formulation. We comment briefly on the formulatio
used for the simulations described below. Our simulatio
have been performed using a formulation of the 311 evolu-
tion equations developed by Baumgarte and Shapiro@20#
~BS!, based on previous work of Shibata and Nakamura@21#
~SN!. The motivation for using this BSSN formulatio
comes from the fact that it has shown remarkable stab
properties when compared to the Arnowitt-Deser-Misn
~ADM ! formulation@22# in a wide range of numerical simu
lations @20,23–28#.

The BSSN variables are defined in terms
the spatial metric g i j and the extrinsic curvature
Ki j as f5 ln(detg i j )/12, g̃ i j 5e24fg i j , tr K5g i j Ki j , Ãi j

5e24f(Ki j 2g i j tr K/3), and G̃ i5g̃ jkG jk
i ~note that detg̃

51 and trÃ50). See@20# for the explicit form of the evo-
lution equations, and@28# for an analysis that indicates wh
the BSSN formulation should be superior to ADM at lea
for linearized perturbations of flat space.

In order to obtain the stable evolutions described belo
we have found it necessary to add the following ingredie
to the BSSN formulation:

~1! As discussed in@29#, we actively force the trace of th
conformal-traceless extrinsic curvatureÃi j to remain zero
during our simulations by subtracting it after each time st

~2! We use the independently evolved ‘‘conformal co
nection functions’’ G̃ i only in terms where derivatives o
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these functions appear. Whenever these functions are u
ferentiated, we recompute them from the conformal Chr
offel symbols. We have found this to be very important
achieve long-term stability, but at the moment we lack
theoretical understanding as to why this is so.

Slicing conditions. As a first approach to evolving th
solution described above, one could think of using the ex
value of the lapse. It turns out that it is difficult to keep th
evolution stable if the lapse is not allowed to adapt to
~numerically induced! evolution of other dynamical quanti
ties, particularly the trace of the extrinsic curvature. In ord
to obtain stable evolutions we have found it crucial to us
‘‘live’’ slicing condition. What is required is a slicing con
dition that is well adapted to the exact solution in the se
that for this solution it recovers the exact lapse. For this
start from the Bona-Masso´ family of slicing conditions@30#

] ta52a2 f ~a!tr K, ~2!

with f (a).0. As it is, this condition does not reproduce o
exact solution for which trKÞ0, but] ta50. However, one
can easily see that for zero shift Eq.~2! implies ] ta
}] t(detg). For this to hold also with non-zero shift Eq.~2!
must be generalized to

] ta52a f ~a!@a tr K2¹ ib
i #. ~3!

For any static solution Eq.~3! implies ] ta50.
Another natural slicing condition to consider is] t tr K

50. For initial data with trK50 this condition leads to
maximal slicing, but] t tr K50 is a gauge choice that can b
made in general, even if trKÞ0, as is the case for the con
stant time slices of the black hole in EF coordinates. This
freezing’’ condition leads to an elliptic equation for th
lapse,

Da2aKi j K
i j 2b i¹ i tr K50. ~4!

In the numerical implementation, we solve this equation
the lapse but we hold trK constant in time by hand. In@27#
in the context of the evolution of strong waves we ha
found that otherwise a drift away from the initial value du
to numerical errors can lead to an instability. Such dri
were one of the reasons that led us to consider trace-
formulations like BSSN, because here trK is evolved as an
independent variable which makes it trivial to enfor
] t tr K50.

Shift conditions. In contrast to the experience with th
lapse, we have found that using a static~exact! shift does
allow us to get long-term stable evolutions. However, this
not useful in general, so we have considered also live s
conditions. Live shifts have been studied before for bla
hole spacetimes in@12#, where a minimal distortion shift
condition@31# led to limited stability (t;100M ) for a single
excised black hole.

In our case a good choice was a conformal version of
3-harmonic shift@32#. 3-harmonic shifts play a natural rol
in mixed elliptic-hyperbolic systems@33#. The condition we
impose in the BSSN system is] tG̃

k50 ~‘‘Gamma freezing’’
condition, note thatG̃kÞ0), or
6-2
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g̃ jk] j]kb
i1

1

3
g̃ i j ] j]kb

k2G̃ j] jb
i1

2

3
G̃ i] jb

j1b j] j G̃
i

22Ãi j ] ja22aS 2

3
g̃ i j ] j trK26Ãi j ] jf2G̃ jk

i Ã jkD50.

~5!

As mentioned before,]kG̃
i is computed from the indepen

dent variableG̃ i , in other terms we useG̃ i5g̃ jkG̃ jk
i @notice

that the momentum constraint was used to replace] j Ã
i j in

Eq. ~5!#. Equation ~5! is an elliptic equation for the shif
vector. For the solution of Eqs.~4! and~5! we have used the
multi-grid solver from BAM, a bifunctional adaptive mes
code@34#. As in the case of K freezing, we explicitly hol
the value of G̃ i constant in time in order to prevent th
quantity from drifting due to numerical errors. As shown
Sec. IV, allowingG̃ i to drift results in an unstable evolution

We have also looked at shift prescriptions given by e
lution equations instead of elliptic conditions. One way to
this is to transform an elliptic equation into a parabolic o
by making ] tb

i proportional to the given elliptic operato
~‘‘driver’’ conditions, see@35#!. As an example we consid
ered the following evolution equation for the shift obtain
from the Gamma freezing condition~a ‘‘Gamma driver’’
condition!

] tb
i5k ] tG̃

i ~k.0!. ~6!

Boundary conditions. There are two very different bound
aries to consider in our simulations: the outer boundary
the numerical grid, and the inner boundary of the excis
region. In principle there should be a rigorous treatmen
numerical boundaries at finite radii~starting e.g. from@36#,
the first analytic treatment of the initial boundary value pro
lem!. Here we are looking for simple numerical methods th
are sufficient for the evolution of excised black holes.

At the outer boundary we have attempted to keep all fie
equal to their exact values, but have found that this int
duces late time instabilities. Using a live boundary condit
allows us to eliminate these instabilities. The boundary c
dition we use is a radiative boundary condition applied to
difference between a given variable and its exact valuef
2 f exact5u(r 2t)/r . We apply this condition to all fields
~even to the lapse and shift in the case of the algebraic ga
conditions! exceptthe G̃ i which we leave fixed to their exac
values at the boundary. Applying this condition to theG̃ i

causes a drift away from the exact solution that eventu
crashes the simulation~the origin of this drift is not well
understood, but it seems to be related to the shift choice
is not present if one uses the Gamma driver shift descri
above!.

As to what boundary condition to use at the sides of
excision cube, we have experimented with many differ
conditions and have finally settled on one that simply cop
the time derivative of every field at the boundary from
value one grid-point out along the normal direction to t
cube~at edges and corners we define the normal directio
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the diagonal!. This condition is perfectly consistent wit
evolving a static solution, where the time derivatives are s
posed to be zero. Even in a dynamical situation, this con
tion is still consistent with the evolution equations since it
equivalent to just calculating the source term one grid po
away. This means that our boundary condition should int
duce a first order error, but as mentioned above, we do
expect this error to affect the solution outside the horiz
One could in principle argue that nothing prevents gau
modes and constraint violating modes from propagating o
side the horizon, thus spoiling the second order converge
of the exterior scheme. We have looked carefully at the c
vergence of our simulations, and have found no evide
that this happens in practice.

IV. NUMERICAL RESULTS

We now present some results of our numerical simu
tions. As discussed above, our simulations have been d
with a live lapse condition, and we have considered bot
static shift, and several live shift conditions. In our runs w
have always takenM51, so the horizon is a sphere of radiu
r 52, and we excise a cube of side 1~we have in fact also
excised cubes of different size, but the results discussed
low are not affected by this!. The numerical integration is
carried out using the so-called iterative Crank-Nichols
scheme with 3 iterations~counting the initial Euler step a
iteration 1!. Because of the spherical symmetry of the pro
lem typically only one octant was evolved~with positive
x, y, andz). However, as discussed at the end of this s
tion, an unstable mode appears when the same simula
are performed on the corresponding full grids.

Static shift. We first consider the case when the shift r
mains equal to its exact value. Figure 1 shows a log plo
the root mean square~rms! of the change in the lapse be
tween consecutive time steps for two simulations using s
ing condition~3! with f 51/a ~‘‘1 1 log’’ slicing @29,37#!, a
grid spacingDx50.4, and a time stepDt50.1. Figure 1~a!
shows the results of a simulation using 533 grid points, with
the outer boundaries at 20M . The change in the lapse drop
as an exponentially damped oscillation until att;3500M it
reaches the level of round-off error (10216) and settles down

FIG. 1. Log plot of rms of the change in the lapse;Dx
50.4, Dt50.1. ~a! 533 grid points, boundary at 20M . ~b! 1033 grid
points, boundary at 40M .
6-3
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MIGUEL ALCUBIERRE AND BERND BRÜGMANN PHYSICAL REVIEW D 63 104006
~other functions show a similar behavior!. The evolution was
stopped att54000M , but it is clear that it could have con
tinued. Figure 1~b! shows a simulation with the same res
lution, but using 1033 grid points, with the outer boundarie
now at 40M . The simulation goes pastt;2000M , and seems
to have settled on an exponentially decaying oscillating p
tern. ~This simulation took 100 hours running on 16 proce
sors of an Origin 2000 SGI machine. If the pattern continu
round-off error level would be reached byt;12000M , re-
quiring another 500316 hours of computer time.! The most
obvious differences between the run with the boundarie
20M and that with the boundaries at 40M is the fact that the
period of the oscillations increases and the rate of de
decreases. The period increases by a factor of 3.4 as
double the distance to the outer boundaries, so the oscilla
time scale is not given directly by the light travel time fro
the boundary~which would approximately double!. We do
not know exactly what fixes this time scale, but the fact t
when we look at individual metric components we see t
the oscillations behave like standing waves~and not travel-
ing pulses! would seem to indicate that we are looking
different modes of oscillation of the whole system~interior
plus boundaries!.

These simulations are not only stable for very long tim
they are also exceedingly accurate. We have located the
parent horizon every 50 time steps~using the 3D finder de-
scribed in@38#!, measured its areaA and computed its mas
M5AA/(16p). Figure 2 shows the behavior of the horizo
mass as a function of time. In both cases, after an in
transient, the mass settles on a stationary value with an e
of less than 1%.

In Fig. 3 we consider the convergence of our simulatio
by looking at the late time value of the Hamiltonian co
straint along thex axis for simulations with 283, 533, and
1033 grid points and resolutions ofDx50.4,0.2,0.1 respec
tively ~boundaries at 10M ). The Hamiltonian constraint fo
the higher resolution runs has been multiplied by factors o
and 16. The fact that the three lines coincide indicates sec
order convergence.

Elliptic shifts. We now consider results with elliptic shifts
such as those that we expect will be needed in a 3D b
hole merger simulation. Figure 4 shows two stable and th
unstable runs up tot5400M , and Fig. 5 shows those thre
runs that lasted longer up tot53000M . Second order con

FIG. 2. Evolution of horizon mass for the same simulations.
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vergence has been checked using two grids with 193 and 353

points with the outer boundary at 7M . For 11 log slicing a
radiative boundary condition is applied to the lapse, wh
lapse and shift for the elliptic conditions are held fixed at t
exact values.

Stable runs are obtained for Gamma freezing shift w
either 11 log or K freezing slicings. Referring to Figs. 4 an
5, for 11 log slicing Da rms falls below 10216 at t;1500M
after four oscillations~run 1!, while for K freezing there are
more than fifteen oscillations, which damp out at arou
10210 followed by a straight line decay~run 2!.

The 11 log, Gamma freezing run becomes unstable if t
boundary values of all fields are static~run 3, crashing att

FIG. 3. Late time Hamiltonian constraint for runs with differe
resolutions. The values for the higher resolution runs were mu
plied by factors of 4 and 16.

FIG. 4. Log plot of rms of the change in the lapse for differe
lapse and shift combinations involving elliptic conditions;Dx
50.4, Dt50.1, 353 points, boundary at 13M . Run 1: stable (G
freezing without drift, 11 log); run 2: stable (G freezing without
drift, K freezing without drift!; run 3: unstable (G freezing without
drift, 11 log, static outer boundaries!; run 4: unstable (G freezing
with drift, 11 log); run 5: unstable~minimal distortion, 11 log).
6-4
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SIMPLE EXCISION OF A BLACK HOLE IN 311 . . . PHYSICAL REVIEW D 63 104006
;1500M , Fig. 4, or if ] tG̃
i50 is not set to zero identically

and is allowed to drift because of numerical errors~run 4,
crashing at 375M ). We also tested 11 log slicing with a
minimal distortion shift@31# computed from the ADM vari-
ables, but this run fails already at 27M ~run 5!.

Algebraic shifts. Finally, we consider a simulation usin
11 log slicing and a Gamma driver shift withk50.1. Figure
6 shows the rms of the change in the lapse and the hor
mass for a simulation withDx50.4, Dt50.1 and 533 grid
points. After t;2500M the solution becomes static up
round-off error.

Discussion. The above results demonstrate that stable
black hole runs can be obtained with the simple excis
technique that we introduced in this paper, with a variety
different gauge conditions. However, repeating these run
a full grid as opposed to just one octant, with otherw
identical parameters, uncovers an unstable mode. Figu
shows as an example the situation for 11 log slicing and
static shift, although the problem appears for all the ga
conditions considered here. Tracing the growth of the

FIG. 5. Runs 1, 2, and 3 of Fig. 4 for run times of up tot
53000M .

FIG. 6. Simulation using Gamma driver shift withk50.1; Dx
50.4, Dt50.1, 533 points, boundary at 20M . ~a! Log plot of rms of
change in the lapse.~b! Horizon mass.
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stable mode back in time suggests that it has started as
merical round-off error of around 10214 at t50. Increasing
the grid resolution appears to have no significant effect
the growth rate of the unstable mode, but the simulation n
crashes slightly sooner. However, we do see good sec
order convergence at early times, before the instability
comes apparent. The situation does not improve if we
pose the exact data at the excision boundary~imposing exact
data at the excision boundary in octant mode works well a
leads to stable simulations!. Also, the presence of a horizo
does not seem to be the cause of the problem since whe
excise a cube that contains the horizon, as opposed to b
contained by it, the instability is still present although it b
comes somewhat milder~not surprising since we have ex
cised a region with stronger data!. While the achievable run
times of about 500M are roughly 10 times larger than fo
singularity avoiding slicings, we have found that introduci
an artificial asymmetry on the full grid by simply off-settin
the excision box one grid point in all directions makes t
runs fail much sooner. Although the slope of the blow-up
not significantly affected when this artificial asymmetry
introduced, the exponential growth becomes evident fr
the very beginning. On the other hand, the full grid runs c
be stabilized by setting certain terms in the BSSN equati
to their analytic values. In particular, freezing the evoluti
of the G̃ i while keeping the shift static suffices to obta
stability. In conclusion, the instability appears to be mo
directly linked to the system of evolution equations than
the boundary condition, and we will investigate differe
variations of the evolution system in the future.

We have also repeated the above simulations using
ADM equations with the same gauge and boundary con
tions, and the same numerical techniques, but these runs
already att.30M even in octant mode.

V. CONCLUSIONS

We have described a black hole excision technique i
11 numerical relativity that has allowed us to obtain acc

FIG. 7. Unstable mode on a full grid for 11 log slicing with a
static shift. Shown is a log plot of the rms of the change in the la
for an octant run withDx50.4, Dt50.1, and 283 grid points to-
gether with the corresponding full grid run.
6-5
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MIGUEL ALCUBIERRE AND BERND BRÜGMANN PHYSICAL REVIEW D 63 104006
rate, long-term stable evolutions of black hole spacetime
3D. The main limitation is that the transition from octa
symmetry to full grids introduces an unstable mode, which
currently under investigation. Our implementation of ex
sion is based on the idea of simplifying all ingredients of t
excision algorithm as much as possible. In our case
means~1! excising a cube naturally adapted to the under
ing Cartesian coordinates,~2! imposing a simple but stabl
boundary condition on the sides of this cube, and~3! using
an upwind scheme instead of causal differencing. Crucial
obtaining our long-term stable evolutions has been the us
a live slicing condition and a radiation outer boundary co
dition. Although keeping a static shift does not appear
have a detrimental effect on the stability of our simulatio
we have also experimented with several live shift conditio
ia,

ev

is

a-

10400
in

s
-

is
-

r
of
-
o
,
,

both algebraic and elliptic, that can be generalized to m
interesting physical situations. We consider these resul
necessary first step towards the development of excis
techniques capable of evolving the full inspiral collision
two black holes in an accurate and stable way.
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