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We consider systems of two concentric spherical shells—the interior carrying arbitrary ahérgeno
mass, the exterior carrying arbitrary madsbut no charge—and calculate the draggiagd partly antidrag-
ging) effects and the induced magnetic fields which are produce@hbgpendentrotations of these shells in
first order. We compare with results from the literature which usually are based only on first order approxi-
mations inq and/orM, and we clear up a discrepancy between these results concerning their Machian inter-
pretation. We examine some new interaction effects between strong electric and gravitational fields, and we
study especially the collapse limit of this rotating two-shell system.
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I. INTRODUCTION netic field to be “in fact Mach-negative or, at best, Mach-
neutral.”
The standard Thirring problem describes {m®nloca) We treat these electromagnetic Thirring problems in more

influence of rotating masses on the inertial properties ofletail, with the goal to resolve, e.g., the obvious discrepancy
space-time, especially the so-called dragging of inertiabetween the results and interpretations of Cohen and Ehlers
frames inside a rotating mass shell relative to the asymptotignd Rindler by examining a more comprehensive class of
frames. It is then a natural question to ask whether and howharged two-shell systems which comprises the models of
properties other than inertial ones are also influenced by rdcohen and Ehlers and Rindler as special cases. We consider
tating masses, and the fifstoninertial and nongravitational @ class of models consisting of two spherical shells of radii
properties which come here to one’s mind are surely electro@nd R=2a, the first one carrying a nearly arbitrary chamge
magnetic phenomena. Since the coupled Einstein-Maxwelput N0 rest mass, the second one being nearly arbitrary mas-
equations are structurally not much more complicated thaf'Ve but electrically neutral. The only restriction on the pa-

the pure Einstein equations, one can also expect that an clameters is that the systems should be free of singularities

tension of the Thirring problem to electromagnetic phenom—and horizons. To these shells we app!yasnrgaal)llIburteggheir_wse

ena is technically manageable. Indeed, in the period 1962_qrb|trary stlrrmg_ angular veIOC|t|es<g I
1971 some authors considered the influence of a rotatintlyely corresponding an_gular momertaandJ”. More pre-
glsely, we have the picture of a two-parameter family of

spherical mass shell on charges in its interior, where thesgyy ions of the full Einstein-Maxwell equations depending
charges usually are distributed also on a shell concentric t

- hell. The oh ol i Triri €moothly onw' ande' from whose power series expansion
the mass shell. The phrase “electromagnetic Thirring probyy 1 ang,!" we keep only the first order terms. This picture

lem” was coined by Ehlers and Rindlgt,2]. We use this  geems to be justified by calculations for the standard Thirring
expression in our title in the plural because we consider Problem (one rotating, uncharged mass shelthere it was
much more comprehensive class of such two-shell systeMghown[5-7] that this problem has a unique solution in any
than Ehlers and Rindler and the other authors did. orderw" if we allow for a (centrifugally) deformed and dif-

To our knowledge, the first paper on this issue was byferentially rotating mass shell such that the space-time inside
Hofmann[3] who considers a charged shell within a rotatingthe mass shell stays flat. In analogy, for the electromagnetic
mass shell in the first orders of mags chargeg, and angu-  Thirring problem flat space-time inside the charged shell
lar velocity w, and gets a magnetic dipole field induced by should be realizable with appropriate mass- and charge-
the rotating mass shell. Cohf#i] considers a similar system dependent “deformations” of both shells in each orderbf
exactly in M, but explicitly states that the interior charged and o' .
shell should have negligible mass. He calculates and dis- In Sec. Il we give the solutions for this model class in
cusses especially the case where the mass shell approactzesoth order ofw' and ' (static two-shell mode)s Obvi-
its collapse limit, and can then be considered as an idealizedusly, these consist of three pieces of the Reissner-
substitute for the overall masses in our universe. In this limitNordstran solution for the exterior region, the region be-
he gets the completely Machian result that “one cannot distween both shells, and the region inside the charged shell.
tinguish (even with electromagnetic fields reaching beyondSince, however, a globally continuous metric is desirable for
the mass shellwhether the charged shell is rotating or the the interpretation of the global dragging effects, and was also
mass shell is rotating in the opposite direction.” Ehlers andused in the papeifd—4]|, we have to transform the Reissner-
Rindler [1,2] claim to consider a similar system exactly in Nordstran pieces(separatelyto, e.g., isotropic coordinates.
the chargeg, and in first order of the mass, equivalently in For a Machian interpretation of the dragging effects, the ex-
first order of the gravitational constant. In the detailed calcuterior mass shell is often seen as an idealized substitute for
lations and discussions, they restrict themselves, howevepart of or all of the cosmic masses. For this interpretation to
also to the first order ig. They interpret the resulting mag- be valid, a minimal condition seems to be that the energy-

0556-2821/2001/630)/10400418)/$20.00 63 104004-1 ©2001 The American Physical Society



MARKUS KING AND HERBERT PFISTER PHYSICAL REVIEW D63 104004

momentum tensor of this mass shell satisfy the weak energgquations is automatically static and asymptotically flat, and
condition. This analysis, which for arbitrary mabs and can be represented by the Reissner-Nordstnoetric
chargeq is highly nontrivial but physically interesting by
itself, is also performed in Sec. Il. d?=—F(p)dr2+F(p) tdp2+ p2dQ?, 1)

In Sec. lll we solve the coupled Einstein-Maxwell equa-
tions in first order of an angular velocity representingy'

i 1 2 2 2_ 4921 «i 2
and/or ''. Surprisingly, the relevant differential equations with F(p)=1-2M/p+q?p? anddQ?=dd*+sir*dde?.

_Therefore, our model of two concentric, spherically symmet-

are exactly solvable, and this not only for our rotational per- . T . d
turbations of the Reissner-Nordamometric but for general '¢: charged mass shells is simply given by three pieces of
this Reissner-Nordstro metric: one for the region outside

stationary perturbations with arbitrary angular momentumth terior shell for th ion bet both shell q
“quantum number”l. We then calculate the solutions ex- € exterior shetl, one for the region between both Shells, an

T : : : ne for the interior region.
plicitly i.e., we determine all integration constants, separatel)? ; . .
for the case of a rotating exterior shell, and for a rotating . However, a maiching of these Reissner-Nordstnet-

charged interior shell. For the general case where both shelficS With different mass and charge parameters obviously

have nonzero angular momentum, the results for the dra Tould not be continuous at the shell positions. A global con-

ging effect and for the induced magnetic fields are just th Inuous metric is, hovyever, desi'rable for the physical inter-
sums of the above results, due to the linearity of the perturpretaﬂon of the dragging effects in the later sections, and was

bation analysis of first order im. The interesting relations also used Refd2-4] and[8]. It can be reached by a trans-

between the angular momenta and the angular velocities (;?rmatlon of the metrid1) to the isotropic form
the two shells are also explicitly worked out.
In order to compare our results with the work [df-4], ds?=—e?Vd 2+ eV (dr?+r2dO?). 2)
we have to make the appropriate approximations concerning
the parameters$! and/orq. In Sec. IVA we consider the |dentification of Eqs(2) and (1) results in
terms of first order ing, and find generally agreement with
the results and physical interpretation of Colidh but we 1
give the results for generdl values, and not only for the [(p)= == (Vp?2—2Mp+2+p—M), 3)
collapse limit, and we consider also the magnetic field in the 2D
exterior region which approaches the Kerr-Newman figid
first order ofq and w) in the collapse limit. Section IVB with an arbitrary constanb. For F(p)>0, i.e., outside of
provides the results for the dragging function in second ordeRorizonsy (p) is real. We simplify the following calculations
of g. These are of interest under the aspect of the influence Gomewhat by using dimensionless variables:
the electrostatic energy density on the curvature of space-
time, and they prepare for the explicit dispraof Sec. IV Q a
of the claim by Ehlers and RindI¢2] that the Thirring drag- a=——=, PB=—=<1, y=
ging effect and the Reissner-Nordstrodescription of the 2R R
charge effects act additively in first order Mt Furthermore,
we find that an angular momentudh of the charged shell Here, M denotes the mass parametet in the exterior re-
can, due to its violation of the usual energy conditions, leadjion, andr =a is the position of the inner shell. A scaling of
to an “antidragging” phenomenon. In Sec. IV C we perform all parameters and variables by the radRisf the exterior
the weak field limit(first order approximation itM) on top  shell seems appropriate becat®ehould definitely be non-
of the results of Secs. IVA and IV B. Mathematically we zero in our models whereas we may consider the lirkits
find agreement with the results #,3] but we hope to con- 0, a—0, andg—0. In the exterior regiox=1 we set
vince the reader that these results are in perfect agreemept=D, =1 (thenr andp coincide asymptotically and iden-
with Machian expectations and by no means “Mach-tify t with 7. Then the potentials read
negative or, at best, Mach-neutra[2]. Section IVD pre-
sents some results for valuesfandq which are not nec- > 9 2> 2. o
. . . L (Xta)—vy Xe—a‘+y
essarily small. Especially we examine the collapse limit of a v/, (x)=log —2} Uy(x)=log ———5—|.
massive, highly charged two-shell system and find, e.g., that X (Xt a)* =y
the important result by Brill and Cohd®8] that in this limit ®)
we have complete dragging of the inertial frames inside the
mass shell extends to the inertial frames inside the mass shell In the regiona<r=<R between both shells we sei
of an electromagnetic Thirring system. In the exterior region=M, and a=M/2R, parameters which will be fixed only
of the system we find, as expected, the Kerr-Newman field inater on. The charge parameter should have the same galue
first order ofw. as in the exterior region because the shelr &R is un-
charged. It turns ou(in accordance witj10]) that a non-
trivial time transformatiori=C, 7 is necessary in this region
in order to guarantee continuity of the potenti&(r) at r
According to a generalizatid®] of the Birkhoff theorem, =R. Denoting the constard in Eq. (3) now by D,, the
a spherically symmetric solution of the Einstein-Maxwell potentialsV andU in the regiong=x=<1 read:

q r
ﬁl X_ﬁ' (4)

Il. STATIC TWO-SHELL MODEL
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(Dox+ &)z—yz 8wr§(a)=8wr§(a)

V,(x)=log 2 '
DX = e 2Vs@[v4(a)—V4(a) +Uja)—Uja)].
D3x?— a?+ y? (13
Ua(x)=log SYENE ®  (Here and in the following, sometimes the indices 0,1,2,3 are
Co((Dox+a)”—¥%) 9 e

used to denote, respectively, the variatllgsd, ¢.) Equiva-

for D,, with the solution 79(a)=0 reads now, Adue t3(x) = const, dV,(x)/dx|y—
=0 orD,=(y?*—a?)/aB. Comparison with Eq(7) and in-
2D,=(1+a)?—2a—v? troduction of the abbreviations

+\/[(1"‘&)2_2&_'y2]2+4(')’2_2¥2) (7) 5:(1+a)2_,y2, Ai:%(\/ﬁ252+472(1_,8)2iﬁ5)

(We omit the negative sign of the square root, since we wish (14
to have the resulb,=1 in the limitsq—0 andM,M<R.)

e results in
Continuity of U(x) atx=1 produces
. a=A_/(1-B)> (15)
D%— a’+ 'y2
CZ:Dz(l—a2+ ) (8) [The second solutionv=—A, /(1—B)? of the quadratic

equation fore is negative, and therefore has to be exclutled.
Of course there are restrictions on the paramaigra, and |f_ a dengtes the ir!variant radius of the_charged stedin-
v such thaD, andC, are real and positive. We will analyze ciding with the Reissner-Nordstmo coordinatea= p(r = a)

these conditions after fixing. =RA ), its mass energy i#1=2Ra=q%2a, which, for

In the interior region 6sr=<a, we have to sefM=0 and  small @ and y, reaches the limiM —q?/2a, i.e., the energy
g=0 in order to guarantee regularity at the origisr 0. The  of a charged shell with radiua in classical electrostatics.
interior metric is then automatically flat. The transformationsThe condition7(a)=0 has the additional simplifying con-

r=p/D3,t=C57 produce in the region €x=< 3 the poten- sequence that £2N1/p+q?p?=1 for p=p(a). With the

tials expressiorn(15) for a, the constant®; andC; read
V3(x)=logD3=const, Uj;(x)=—logCz;=const, (9) (1-B)2A, —A_ A,
P e P W
and the continuity o (x) andU(x) atx= g leads to
~ ~ (1-BA—(1+B)A_
D.B+ a)2— v2 DB+ a)2—~2 C,=Cx= . 1
D3=( 2:3 C!) Y C3=C ( Zﬁ 0[) Y 2 3 B(l_ﬁ)(l_a2+'}/2) ( 7)

D.B* 2 D2B2—a2+42
(100 Where necessary, one can also exprgssand & through
A,, A_, andB: y*=A,A_I(1-B)%,6=(A,—A_)IB.

We now specify the parameter In our models, the func-  The singularities of the expressio(i5), (17) for 5—1 are
tion of the inner shell is mainly to provide a charge, and notonly of a formal nature. The equalit¢,=Cs; means that
so much to provide additional mass. It seems therefore redhere is, due taj(a)=0, no time change between the inter-
sonable to simplify our modelén accordance witt1,3,4)) mediate and interior regions. An extension of our work to the

by setting the rest mass density of the inner shell to zero. Itaserg(a)aﬁo would be possible but it would be algebra-

we write Einstein’s field equations in the form ically considerably more involved.
In order that the metri¢2) with the potentialg5), (6), and
Gl=8m(Th+S), (11) (9 really describes the static two-shell models, which we

have in mind, and does, e.g., not have any horizons, the
with S* being the electromagnetic energy-momentum tensornodel parameters, 3,y have to satisfy some inequalities:
then T# in our two-shell models consists of two parts In order thatV;(x) andU,(x) be real for alx=1, we have
7(a)8(r—a) and 7(R)8(r —R). Since in our isotropic 0 have
metric form (2) the potentialsvV(r) and U(r) are by con- _ >
struction continuous at both shell positions, the components [A-1sa<Vl+y" (18)

7, are essentially determined by the discontinuities of therpe constant®; andC; from formulas(16), (17) obviously

radial derivatives ol andU denoted byv’ andU": are all real. However, in order that the charged shell be in-
0 @ ) terior to the mass shell, that the origis-0 be interior to the
8mro(a)=2e "' ¥[Vy(a)—Vi(a)], 12 charged shell, and that time run in the same direction in all
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regions, all these constants have tq&eleast non-negative. a sixth-order polynomial inequality fof which, however,
WhereasD; is automatically non-negative, the conditions has the form (85— 6;)P4(8;a,8)=0, with §;=1+«(2
D,=0 andC,=C3=0 sharpen the inequaliti€48) to —B), andP, a fourth-order polynomial i5. HereP,=0 is

T 2=B) - 1=a=\IT 2. equivalent to B=pB,(6,a), with a=a+1, Bs(5,a)=1

~Q1(8,a)/Qy(8,a), and Q(8,a)=35(2a~d)[(2a
According to the formula$12), (13) we get, for the non-  — 8)(5— ) +246], Qx(8,a)=(2a—8)2(2a— 5)?
zero components of the matter tensor densities +78(a—1)]+45%(2a—1-6). For a typical valugg=0.7,

Fig. 1 shows the §,a) region where8= 3,(5,a) becomes

19

2 _ 3. __ B effective, i.e., whereB,(5,a)>B,(8,«). The fact that for
m2(3)=75(2) 4m7RAS” 20 ¥?>a? the energy condition$23) set lower limits to the
radiusa= B8R of the inner, charged shell is physically intui-
O(R) = (1+ a)(l—ﬂ)+A+—5, (21) tive: For smallB typically Ehe mass energqf/Za of this
27R&%(1—- B) shell gets large and can “overcompensate” the total mass
M =2Ra of the two-shell systenfwith ?<y?) in the way
) 3 D, that the energy conditions for the mass shellr atR are
m(R)=73(R)= 47R&Z(1— a2+ 1?) 1- C,)’ violated.
(22 The electromagnetic field tensor belonging to the

Reissner-Nordstra metric (1) has only a radial component
—F.,= Ep=q/p2. Transformation of this component to our
y=0 we recover, observing the different definitionsaodnd  isotropic coordinates, under the condition that the chayge
7, the results of5]. In Secs. Il and IV we will analyze a be concentrated solely on the inner shellrata, leads to
first order rotation of our two-shell systems, and we will try —F,,=E,=(q/r?)eY"VH(r—a), where H(r—a) is the

to discuss the results for dragging and induction of a magHeaviside function, and the potentidl) or (6) have to be
netic field under Machian aspects. In order that this can bénserted in the respective regions. Herewith and with the
successful, we have to make sure that the mass shell atinhomogeneous Maxwell equation (f_]_—,t_g)(\/—_gFtM)’M
=R—notwithstanding its unrealistic shell structure—can=4sj!, the charge densityo=j' at the inner shell
mimic in some way the overall masses of the universe. Ar=a) can be calculated: For the metri@), we have
minimal condition for this obviously is the weak energy con- \/__g: e3VeVr2sin 9, and onlyF"=e 2U*V)E, is nonzero.
dition. [Since the charged shell et a has a totally different Therefore,/—gF" is equal togsin® (independent of) for
function in our models, it should not matter too much that, ag =R and fora<r<R, and zero for &r<a. Ther deriva-

a result of7g(a)=0 andr5(a) = r3(a)<0, this shell nearly tive of this expression gives then, as is expected in our shell

violates all energy conditionsThe weak energy condition models, as-function-type charge density:
(see, e.g.[11]) consists of two parts which, for the mass

shell atr=R and in our metriq2), read

with D, andC, from Egs.(16), (17). In the uncharged case

apCs

o(X)= 5333 0(X—B), (25)
7(R)<0 and 73(R)—75(R)=0. (23) 47R3A3
In Sec. Ill we will see that at least in one model class theWith Cs_from Eq. (17). [This corresponds toj”

induced magnetic field inside the charged shell is directly=(a/4ma®) 5(p—a) in the Reissner-Nordstmo variables}
proportional to[ 73(R) — 75(R)], and therefore the sign of

this expression is central to the physical interpretation of this
field. The detailed analysis of the inequaliti@8), especially . . .
of the second one, turns out to be algebraically quite in-. VWhereas a general stationary and axially symmetric met-
volved. The conditionrg(R)sO leads to a further sharpen- ric for a system with matter requires at least four metric

ing of the lower limit for the mass parameterin inequality f_unctlons, depe_ndlng on two _vangibles, €.9., roand_ﬁ, a
(19): first order rotational perturbatiofwith angular velocity pa-

rameterw) of a spherically symmetric system requires only
three metric functions, solely depending gnbecause cen-
trifugal deformations of the spherical system appear only in
ordersw? and higher. We write the corresponding extension
of our metric(2) for physical intuition in the form

lll. FIRST ORDER ROTATION OF THE SHELLS

1
a= E(\/ﬁz+ 44°—pB) or

y’—a® 2a+1-6

a o

B= =:B1(6,a). (29)

ds?=—e?Y(0dt2+e?V{dr2+r2d 92+ r2sirtd

In the overextreme Reissner-Nordstrocase y?>a? the X[de— wA(r)dt]2,
stresses3(R) = 73(R) in the mass shell can become nega-

tive, and then the condition3(R) — 79(R)=0 can lead to a neglecting, however, in the following all terms of second and
further sharpening of inequaliti24): Eliminating the square higher order inw. Since as a result of the very definition of

root coming fromA . in Eq. (14), rg(R)— Tg(R)BO leads to an angular velocityw, a stationary rotating system is invari-

(26)

104004-4



ELECTROMAGNETIC THIRRING PROBLEMS PHYSICAL REVIEW 53 104004

1 3 2423 7 9 11 13
FIG. 1. The graphic shows the parameter domair @ind 5= (1+ «)?— 72 in the overextreme Reissner-Nordstraasey?> «?, where

the first and second parts of the weak-energy condi@®n for =0.7 are valid: the conditiomg(R)sO is satisfied for all values ofd, 8)

between the line$; andé,. In order to ensureg(R) - Tg(R)BO, «a and § have to be restricted to the grey shadowed regions. The darker

one lies inside thédashedl hyperbola branclB,(8,«)=B1(4,a), where the conditior8=B,(8,a), following from 73(R) — 75(R)=0, is

more resrictive thaB= B,(8,a) from Eq.(24). The picture looks essentially similiar for all other values@# [0,1].

ant under the common substitutiobs: —t and w——w,  componenB,=F,, is identically zero according to the in-
and since the metric functions, V, andA are independent of homogeneous Maxwell equations. Therefore, in the first or-
t, they have to be even functions @f Since we assume that der of w, there remains besides EQ7) only one nontrivial

all these functions can be expanded in power series, ifior ~ homogeneous Maxwell equatigwith the overdot denoting
our first order perturbation the functiokir) andV(r) can the J derivative

be taken over unchanged from Sec. Il, ak(@) is indepen-

dent of w. Here and in the following, the symbal should B, + By=0 (28)
denote a general angular velocity in our systems. Later on we

will introduce more specific angular velocities' for the  and one nontrivial inhomogeneous Maxwell equation
interior shell andw'' for the exterior shell. All these angular

velocities are of the same order, or they are zero. d 1 B
i alF OB
A. Integration of the field equations P P
In the following we often change between the varigh)e +2 i( 2AE ) 29
in which the field equations and their solutions are simplest, p? dp P AE):

and the variable, necessary for the conditions at the shells

and for the physical interpretation of the results. The radial |, the exterior region and in the intermediate region be-

dependence of the dragging functiénis essentially given 1 een both shells Eq27) reads, WithE = q/ p?
by the Einstein equation ’ ' L '

wsitd d wsin'd d
- —(p‘EA(p)):sw(T%s%), (27) 4 dp

d
- (p“$A<p>) =qB,. (30

This equation, together with the fact that in the limit-0
where S3= (1/47)F)F} denotes the electromagnetic contri- also the magnetic field should vanish in our models, suggests
bution to the energy-momentum tensor. Since the electri¢he ansatB ;= wqf(r)sir? 9, with a dimensionless function
components of the field tensbr,, are time symmetric, they f(r). Equation (28) then enforces the formB,
are even functions oby, and therefore reduce in our first =wqRg(r)sindcosd, with f(r)=(—R/2)g’'(r). Because
order perturbation inw to the fieldE,. The magnetic com- of continuity across the charged shell, the formsBgrand
ponents ofF,, are time antisymmetric, and therefore startB, are also valid in the interior of this shell. Then E¢&7)
with orderw terms. However, since there are no electric cur-and (29) constitute two coupled ordinary differential equa-
rents in ther and ¥ directions in our models, the magnetic tions for the unknown functiond andg.
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In the interior of the charged shell, these equations detion of Eq. (33) into Eq. (29), together withj¥=0 in the
couple and read exterior and intermediate regions, results in the differential
equation forg(p):

2
(r’A’)'=0, g"——g=0. (31 d 292 8 MR\
f & PP g, 90|~ 2| 1+ r|alr=——"%
The solutions, which are regular et 0, are given by (34
As(r)=ps/Cs, ga(r)=7sr2/R2 (32  We write the general solution of this equation in the form
where 13 and 75 are dimensionless constants, which have g(r)=\g(p(r)+ 7g(p(r))+£g(p(r)), (39

later to be fixed by continuity at the charged shéllhe o ) . ) A )
factor C; ! is introduced for later conveniengeBecause of with dimensionless integration constants, whereg(p) is

As(r)=const, the interior region stays flat in first order per-__ a speC|aI solution of the inhomogeneous equaidf), and

turbation inw, as is physically to be expected. The magneticd(p), g(p) are fundamental solutions of the corresponding

field components, and B, represent in Cartesian coordi- homogeneous equation. Luckily, there exist quite simple so-

nates a constant fiel,= (0q/R) 73 along thez axis, as is  lutions g(p) and g(p) as polynomials inp and p~?, and

well known for the interior of a charged, rotating shell from

classical electrodynamics. = — ) 1 s

In the intermediate and exterior regions, due Bg  cedureg(p)~g(p)S"dp’[F(p")] " T9(p")] =

~f(r)~g’(r), one integration of Eq30) is trivial: AR _ 1 2q%

6p)== . o >=—( 232+ i) (36)
p 3p! p R2 p Mp ’

?(p) can then be found by the d’Alembert’s reduction pro-

9 )= L12?Ra(p) - 4AMR2
dpA(p)—p4[2q Rg(p) —4MR\], (33 SM?R  [2q2 22
o) =gy 3—( VL

—p—M
with a dimensionless integration constagtwhich will be
denoted byx,; and\, for the exterior and intermediate re- .

gions, respectively(The factor —4MR? in front of \ is +R29(P)3(P;M,Q)}, (37
chosen with a view of the well-known exterior dragging term

A(r)=%MR?r 3 in the standard Thirring probleinlnser-  with

1 - M
= arccol A for g®>M?
9*=M? q*=M?
S(p; M,q)=
1 (p—M+\/M2—q2) or qPeM?
10 .
2NMP= 2\ p— M=M=

In the intermediate region we havel=M, and as a result of pected. On the other hand, in the lingt— M 2, the expres-
D,=(y*—a?)/aBf=0, M is never greater thafg|, andS  Sion(37) produces the relatively simple limit function
reduces to the arccot case. Furthermore, the asymptotically

diverging solutiong(p) is missing in the exterior region: 90l ZZR(ZP—M)(5P2_5MP+ 2M?) 39
7:=0. For small values ofe=(JM?—qg?%)/(p— M) the 9ip)la2=m 10p(p—M)3 '

function S has the series expansion

The homogeneous solutiok36) and(38) have already been
given by Bigk and Dvoek [12,13 within a more general
analysis of stationary perturbations of the Reissner-
Nordstran metric.[There is, however, a misprint in the so-
lution g(p).] The solutions(36), (37) have already been
from which it is seen that we have chosen the normalizatiodound by Briggset al. [14]. Also for an arbitrary(natura)

of g(p) such that it behaves asymptotically Bp~* (inde- ~ Value of the angular momentum parameiehere exists one
pendent ofM andq). After transformation to Cartesian co- homogeneous solutiog(p) of the correspondingly modified
ordinates, all components of the magnetic field have thequation(34) in the form of a ponnomaELﬁl,lakp with
asymptotic behavioB;~p 3~r~3, as is physically ex- a;=0.
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Having now available the general magnetic field functioncould be transferred in this process from one shell to the
g(r) in the intermediate and exterior regions, we can alsmther. (In higher orders ofw, nonspherical deformations of
calculate the general “dragging functiom&(r) in these re- the shells have to be taken into account, and if their quadru-
gions by integrating Eq(33). If we write A(p) in the sug- pole moments change rapidly during a nonadiabatic

gestive form switch-on process, gravitational waves are produced, and
they will transfer angular momentum from one shell to the

A(p)=CiA(r) other) It seems therefore reasonable to define the angular
22 . B _ momental' andJ'", imprinted on the systems in this way, as

= ?[)\A(p(l’))-f- 7A(p(r))+ {A(p(r))] the two independent physical sources of the rotation effects.

In contrast to the angular momenta, the angular velocities of
the two shells are not in the same way independent, because

2
+m+ﬂ, (39) the rotation of one shell leads by dragging to a nonzero an-
3[p(n)]°® gular velocity also of the other shellln this connection it
. should be said that the complicated interplay between the
with C;=1 andC,=Cj; from Eq. (17), we get dragging of two rotating uncharged mass shell, as analyzed
4 ) 4 by Cohen and Bril[10], results mainly from their descrip-
Alp)=— R_ Alp)=R| — E+ a- q tion in terms of the angular velocities instead of the angular
P 3p*’ P p ;3 2Mp* ’ momenta). Since, however, a prescription of the valu¥s

(40) andJ'"" does not seem to be a useful starting point for the

determination of the integration constants, we find it advan-

— 3MR*4 1 M g*+2M? tageous to divide the general problem of rotation of both

Alp) sMZI—2)2| P p2 37 shells into the following two steps: We introduce nonsingu

lar “stirring” angular velocitiesw' andw'' separately for the
92(M2+20?) interior _charged shgll and for the ex.terior Lﬂcharged_ shell,
I E— respectively, wherdin accordance witH4]) o'=Cjw0' is
measured in proper timei(1/C3)t. For the cases |d'
2M— _ #0,0"=0) and Il (0" #0,0'=0) we separately determine
1+?A(P) S(piM.q) |- (4D the integration constants, and herewith the dragging fields
A" A" and the magnetic field8',B". (The notation is here
adapted td[2].)_Thereafter we find unique and linear rela-

3Mp?

J’_

In the extreme Reissner-NordénnocaseX(p) has the sim-

pler form tions betweenw' and J'=CsJ' and between'' and J",
respectively, so that it is justified to start with the mathemati-
A N RY(5p2—4Mp+M?) 42 cally more useful pargmete@ andw' instead of the physi-
Pllaz=m 20p%(p— M)? cal source parameted$ andJ'. (In Sec. Il B we will come

back to the reasons why the relations betweémandJ', and

In the exterior region, we demand th&fr) vanish asymp- betweenw!' andJ", respectively, can only be give pos-

totically, expressing the fact that there is no dragging of in-~~ "~ — I
ertial systems at infinity and that any rotation in our model isteriori.) Finally, for the general caseb#0 andJ"#0, the

defined relative tahypothetical static observers at infinity, discussion in the beginning of this paragraph, together with
respectively. Therefore, together with the asymptotic de!n€ general linearity of a first order perturbation of an exact
crease of the function&40), (41), we haveu;=0. In the solution, justifies writing the general dragging and magnetic

. H 4 A — Al 1Al Rl
intermediate region we will have a nonzeidimensionless f|eld“s as linear superpositionssA=w' A’ +w A",B=B
constantu. +B'". (The same was done without much discussiof2h

In the process of integration of the magnetic field function@"d[4].) Since the detailed calculations are somewhat sim-
g and of the dragging factoA in the different regions, we pIer. for case Il(rotation stirred by the exterior shgllwe
had to introduce a total of eight nontrivial integration con-Pegin with this case.
stantsiu,, w3, N1, N2, 72, 73, {1, and{,. These constants
have now to be fixed according to the physical and math-
ematical properties of our model systems. First, we have to
define our two-shell systems in more detail. Especially we According to the notation introduced in Sec. Il A, all
have to say what the “real” physical sources of the draggingguantities in this section should in principle carry an upper
effects and of the magnetic fields are. For this we have inndex Il. For simplicity we omit these indices in most for-
mind the following picture: Imagine starting with the static mulas and add them only in the final expressions for the
two-shell models of Sec. II, and then to turn on slovdglia-  integration constants in the Appendix. The energy-
batically) a rotation of the shells by exerting independentmomentum tensof 4= 74/(R) 6(r —R) of the exterior shell
torques(e.g., by appropriate hand)esn the two shells at has of course to satisfy the eigenvalue equatidfjia’=
=a andr=R. As long as we consider only first order rota- —gou*, whereu“=u’(R)(1,0,0w(R)) is the purely axial
tion effects, we see no mechanism how angular momenturfour-velocity vector of the shell matter, arg, is the rest-

B. Boundary conditions for a rotating exterior shell
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energy density. Moreover, since our models shall consist oNow we come to the continuity or discontinuity conditions
rigidly rotating shells, the componentg* are constant, i.e., for the magnetic field functiomg(r) at the positiong =R
independent of} (compare[5]). Comparison of the compo- andr=a of the two shells. Before going into details, we

nentsu=0 andu =3 of the eigenvalue equations, together,ye to remark quite generally that the functignsy, andg.
with the metric form(26), gives, in first order of the rotation, in Egs. (36), (37) are given in the variablg, whereas the

0/ B — a2V(R)—2U(R) 2 _ continuity of the metric is only guaranteed in the variahle
s(R)=e RTo(R) = 0AR)] Therefore we have to transform these functions and their
X[rg(R)— Tg(R)]sinzﬁ, (43) derivatives to the variablg, according to Eq(3). The posi-

tion r=R of the mass shell is in the variabje given by
with 73(R) and 73(R) from Egs.(21), (22). From Eq.(43)it  p(R)=R4, and this, as a result of the continuity w{r),
is seen, on the one hand, th@(R) is zero if the angular coming both from the exterior and intermediate reg{drhis
velocity w(R) of the exterior shell coincides with the drag- Was already used in E¢47).] Similarly, the positiorr =a of
ging term wA(R) coming from any other rotating sources, the charged shell is giverifrom both sides by p(a)
e.g., from a rotating interior shell[ln the language of =RA,. In analogy to the boundary conditions of classical
Bardeen[15] this means that the exterior shell then consistselectrodynamics, saying that the magnetic figldt an inter-
of so-called zero-angular-momentum observg@8MOs).]  face(with normal vecton) between two media has to satisfy
This result can be understood as a mathematical confirmation (B,—B;) =0, our radial magnetic field functiog(r) has
of the argument in Sec. lll A that in first order of rotation to be continuous at=R andr=a:
there can be no transfer of angular momentum from one shell
to the other. On the other hand, if we really stick to our case 4 4 — = —
II, where only the exterior shell rotates with angular velocity ~ 3z M1+ 35827 92(R8) 7~ 91(R) {1+ 95(RS) £=0,
o(R)=0"+#0 and no other rotating matter is in the game (49)

(especiallya =0), then Eq.43) reads
— 4 —_— ==
(R =010 2hPR 1 - A(R)] K)\2+92(RA+)772_,327]3+92(RA+)§2:0-
+
X[ 73(R)— 79(R)]sin?d. (44 (50)

Now, the component3(R) can, in agalogy to the determi- Similarly, the boundary conditiomx (B,— B,)=(4/cC)]
nation of the componentg) and 5= 73 in Sec. lI[Egs.(12,  from classical electrodynamics, together with the fact that

(13)], also be calculated from the Einstein equati@i), the shell atr =R carries no charge and therefore no electric
1 current, results in the continuity of the magnetic field com-
2AR)=— Ewu R2e~2V1(R[ Al (R) — A}(R) Jsin?®, EZnF(:.ntBﬂ~f(r) and therefore in the continuity af’ (r) at
(45)
. . A 2 2
and withA’(r) from Eq.(33) and with the continuity of(r) 4l-aty) 4 —
[to be substantiated in E¢49)]: 352 M 352VF2(R5))\2+ Rg,(Rd) 7,
. —a = =
A(R)= L ReMZ o) g 46) ~ROL(R&)¢1+RY(RS)(,=0. (51)

27 (1— a2+ 2 °

Equations(46) and (44) lead, with the abbreviatiodr=  [Here and in the following, e.g., an expressigh(R9) is
—(27R&®)[73(R)— 73(R)1/(1— a®+ ¥?), to a first linear, understood in the way that we take the derivativeggfp)
inhomogeneous equation between the integration constant§fom Eq. (36) with respect top and multiply, due to the
chain rule, bydp/dr|g , similarly at the positiorr =a.] At
—[8(y2— ad)A1/38*+ a]\;+ ak,+8y2ATAL(RS) the positionr=a, a first sight gives the impression that
g’(r) should be discontinuous there because, due to drag-
=Ar. (47) ging, the charged shell acquires a nonzero angular velocity

I it i ;
Since in the present case Il the interior charged shell does nﬁf A(a) and, connected with it, a nonzero el_ectrlc current. It

— = i as, however, to be observed that the relation(B,—B;)
have an own angular momenturd' €0 andw'=0) but is

. . | =(4x/c)j is only valid in the local inertial frame, and this is
only dragged by the rotating exterior shell, we have, in anaI]ust the frame corotating with angular velocity' A(a). If

ogy to Eq.(43), Tg(f%)zo- Again this has to be compared then (in accordance witf2]) the charged shell consists of
with the result of an integration of the Einstein equati@®  jhsylating material, its charge elements have the same angu-
fromr=a—etor=ate: lar velocity ''A(a) as the matter elements, so that in the
©'REC, ) presently considered case Il there is no electric current rela-
@)= — —— 3~ (y?Bn3—a\,)siP9=0. (48  five to the local inertial frame, and the magnetic fidig
2mAY ~g’(r) is continuous across the charged shell:
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'RaBC,(Cs—
0 RaBCs(Com13) io (55)
47A

— 10 =
RG(RA )72~ 7 BnstRG(RA,)(=0. (52) m(a)=—

[This can also be mathematically confirmed by comparingrhe continuity equation§49)—(51) for the magnetic field
the currentj¢(a) following from Eq. (29) with the expres- function g(r) and its derivative at =R are of course un-

sion j?(a)=w''Az(a)o(x), with o(x) from Eq.(25).] changed. However, now the charged shell carries a “real”
After determining(in the Appendix the integration con- current, which is not only induced by dragging?(a)
stants from the linear equatiort47)—(52), we can also ex- = w'c(x) with o(x) from Eq.(25). This has to be compared

plicitly calculate the total angular momentudtl contained with an evaluation of the inhomogeneous Maxwell equation
in this system. Because of the axial symmetry of the system(29) atr=a, to which obviously only the termB), and E/

J" is given by the integral contribute localized currents proportional &r —a):
’ 0 T 2m o ol o _ wquC3 IBRZ woe
J :fo drfo dw‘}fo deyV—g[ (R 8(r—R)+S3"1. ] (61)—47TR3A3+ “3a.C,Y (r=a)+As(a)d(x—p)|.
(53) (56)
With Tg(R) from Eq. (46) and with The total angular momentud! of the system |, measured

in proper timer, is given by the equivalent to E¢53), and
0 a'(r) has the result
on_ Y 5o —U=3V(r ave
S;'=-5-Rq e H(r —a)sird, 2 2
J=§MRw)\2=§MRw)\1, (57)

we get the surprisingly simple result o ) )
which is formally the same as in E(54) but of course with

’ S e a constant\} totally different from\}' . If both sources)'
JT=3MR% Ay . (549 andJ" are active at the same time, the combined angular
velocities of the shells are

Therefore, the “driving” inhomogeneity\'l' , introduced in

Eq. (33), describes the departure of the angular momentum

J"" from the Newtonian valu MR?w'" of a shell with mass

M, radiusR, and angular yel_ocityw”, due to strong gravita- e guantities are denoted by and w. in the work of

tional and electromagnetic fields. It should not be overlookecbohen[d’]

that the constan)&'l' from Eqg. (A10) in the Appendix has '

quite a complicated dependence on the model parameters

B, andy which cannot be foreseempriori, but can only be

calculated by analyzing in detail all the junction conditions  From Sec. Il A ther dependence of the magnetic field

for the dragging field\(r) and the magnetic field(r) atthe  functiong(r) and of the dragging functioA(r) is explicitly

two shells. This “difficulty” is mainly due to the nonlocal- known in the whole space-time, and the Appendix gives ex-

ized electromagnetic contributicﬁg” to the angular momen- plicitly all coefficients contained im(r) and A(r). There-

tum J''. And since this term contair(®bviously a factorq?,  fore, all questions concerning the magnetic field and the

the problem simplifies very much in an analysis of a similardragging properties of our two-shell models can in principle

system in first order off which was performed by Cohen, be answered, and this in the whole “physical” region of the

Tiomno, and Wald16]. dimensionless parametedsg, v, given by inequalitie$19),

(24), by B=B,(4,a), and by Fig. 1. It is, however, evident

that most formulas are algebraically so involved that it is not

] easy to extract the physically interesting properties of our
Many results from Sec. IlIB transfer essentially un- mode| systems in the general case, and even in the limiting

changed to the present case |, only that all quantities haV@asesB—>0 and 8—1 for the radius of the inner, charged

now to be thought of carr_ying an upper indfax | instead pf I, shell the formulas do not simplify drastically.

which, however, we again omit until the final expressions. |t is therefore appropriate to consider first some approxi-

The four-velocity of the interior shell elements readS  mations to our formulas. Because of the fact that in all as-

=u’(a)(1,0,0m(a)), with w(a) = w'. Instead of Eq(44) we  trophysical and cosmological circumstances charges seem to

have 75(R)=0, because now the exterior mass shell has N®e small and also in order to make contact with the work of

angular momentum'=0 andw'' =0) but is only dragged Hofmann[3], Cohen4], and Ehlers and RindI¢2], a power

by the rotating interior shellA similar system was consid- series expansion of our formulas with respecitis espe-

ered by Wald[17] in first order ofg.) In contrast, now the cially important and useful. Quite generally, the magnetic

expressionrg(a) is nonzero, and is given in analogy to Eq. field is an odd function i and therefore receives contribu-

(44), and with73(a)=0 and73(a) from Eq.(20), by tions from the ordersy®,q%,q°, ..., whereas the dragging

o(R)=0"+C;'0'A(R), w(a)=o'+Cs0"A'(a).
(58)

IV. RESULTS AND DISCUSSION

C. Boundary conditions for a rotating charged interior shell
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term A(r) is even ing, with contributions from orders =gj(r): The magnetic fiel®'" is constantin thez direction

a%a%,g% ... . Since we have divided out a factin the  in the whole regiorr <R, as is physically expected in this

definitions of the magnetic field functions, all our expres-approximation because the fieB!' is purely induced by
sions for the functiong;(r) andA(r), and for the integra- dragging, and in first order of the dragging function is
tion constants appearing in them, have expansions in powetsnstant in this region. In the case | of a rotating charged
of 2. . . _ interior shell, the situation is, as expected, more complicated:
In Sec. IV A we consider in detail the terms of ordgr The termsx'z(jz(p) and 5'252(p) do not cancel, but produce

which provide the first nontrivial contributions to the mag- = o
netic field, and we compare our results with the work oftcgether with,;g,(p) the magnetic field component

Cohen[4]. The terms of ordeg? (in Sec. IVB allow to

(. 21
study the interesting back reaction of the electrostatic energy B=aR(1+a)%0

S3(r) on the geometry, especially on the dragging function g 2|12 2p?R
A(r). In Sec. IV C we perform on top of the approximations SR ) o _] sind cosd.
of Secs. IVA and IV B a weak-field approximation; i.e., we (I+@) 3BJR° 3 r

keep only terms up to first order M, and we compare these (59
results with the work of Hofmanp3], and we perform a

detailed analysis of the work of Ehlers and Rindlg}, es- Here, the second term represefttsgether with the accom-
pecially under Machian aspects. In Sec. IVD we presenpanying componerB',;,) the expected dipolar magnetic field
some results without approximationshhandq, for instance outside a rotating charged sphere. The correction term to

for the interesting collapse limit. 75/(1+ a)? in the first term(leading to a constant fielB,)
has the function to cancel the second term=at= R and
A. Results in first order of the chargeq to guarantee in this way the continuity Bf atr=a. In the

Inside the charged shell the functigir) is, according to  exterior region we havey; =0, Ql(p):4R/3p, and
Eq. (32), given bygs(r) = 73r?/R? which represents a con-

stant field B,=(g/R)wn3 along thez axis. Since in our TN SR
91(p) aM2

p? 2M
p+M+ 1—7

= . —lo
model class there appear the two “stirring” angular veloci- 2M ¢
ties o' and ', we write the magnetic field in the R 3M 12M2
interior region in the form B,=(q/R)(o' 75+ o' 7%) ~;(1+E+5—pz—+ )

=(q/R)(0' 75+ 0" 74), with the quantity 7= 75/Cs. In
the region between both shells we have the representation ahd
Eqg. (35), and in zeroth order i we get, from Eqs(36), L

(37), G2(p)=4R/3p,02(p)=p?IR?, G2(p)=R/p=5£02(p). p==
Consideration of the constars, 7,,¢, has now to be per- r

f%rnrbednzelﬁ)(a:re}[ti:)rl] forX:h?i ?aiei{]rg\tﬁ‘tt;]nt% ChaLg?dn'tm?r”?r: Therefore all Cartesian components of the magnetic fidlds
shel) a otaling exterior she € constants rom - and B! fall off asymptotically liker 3, as expected.

the Appendix we see that the tern§g,(p) and £, g,(p) Concerning the integration constants appearing in these
cancel in this order, with the resulg'z'(r)z 77'3'r2/R2 first order magnetic field functions, we get the following:

M 2

r+?

1+a)%(1+ 2)_ S o 1+ a)*(1- 2iI g—1+a
”_3(1+a)2(2—a)( @) (1t af)=za’=(1+a)(1-a) 5 logr—

7 2a(3-a) (60

—14+2a+a?+(1+a)3(1—a) ilogl_'——a
20 Cl-«a

In the physical region & a<1 of the ratioa=M/2R, 7} a=0 to the value 24 atr=1. The quantity/; can be ex-
grows monotonically from the behavidra at «=0 to the  pressed throughy3 in the form
value 8 ate=1. Furthermore,

4 2(1+ a)*(1-a)*(2—a)
d=-Fall-a)g) - =,

59 _
i _3(1+a)°2-a) ©1 62

! 2(3—a) '
a quantity which decreases from the valué ata=0 to a
a quantity which increases monotonically from the value 1 atninimum ¢}, . ~—1.56 ata~0.35, and then reaches the
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value 0 ata= 1. Therefore, whereas the term%l(p) and We compare the first terms proportional?b with Cohen’s

£'g1(p) exactly cancel for—0, for «=0.5, and especially results in his Eqs(44), (45) which are proportional tav,
for «—1, the first term is absolutely dominant. Quite gener-—ws. But according to our Eq(58) we have w.— wg
a_llly W(Iel ob_servg @hat in t_he lowest order qfthe magnetic =Z(a)—$(R)=[1—A'(R)]Z‘+(,u'3' —~Cy)w'", and A'(R)
field B", since it is only induced by.draggmg and does notjs zerg in lowest order off and us —Cs is zero in lowest
have "real sources,” is everywhere independengeta/R, - o orq and for a—1, so thatw,— ws coincides in this
i.e., independent of the distribution of the charpeithin the i — T € s .
mass shell, as long as it is spherically symmefis a result ~ Case With ourw'. Transforming our isotropic coordinates to
of S“~q?2 and 74(a)~ g2, the exact position of the charged Cohen's frames, we see that auf terms in Eqs(65), (66)
shell matters, however, in the higher ordersydfThe inte- ~ €xactly coincide with Cohen’s results. The second terms pro-
—_ . Il . . . . 3y
gration constanfy, can in zeroth order ing be expressed Portional tow™ in Egs. (65~(67) are missing in Cohen's
throughn” in the form work because he finally scales all quantities to the interior
s proper time
~ 21+ a)?

73~ 3ﬁ 2

4a(l+ a)? (3—a) "
33+a)  (2-a)3ta) B 1 _1-a

TG Tran
(63

and considers only the “rotating universe” represented by

the interior of the mass shellw{' =0 if "' stays finite) It is
~ g'l 8a,82(1+ @)’(1—a) nevertheless worthwhile to discuss also the magnetic field
§1=C—3: 1 1tal’ proportional tow'', especially in the exterior region. Taking
3[—1+2a+ @+ (1+ a)3(1— o) =—log—— into account the relatioit54) betweeno'' and the angular
200 "l-a momentum J"' which reads in the collapse limit)"
(64 =32R%", we see thaB,(r=R) from Eq. (67) (together
with the accompanying componeBt;) constitutes just the
whereas)\'1 vanishes in zeroth order of Therefore the mag- Kerr-Newman field in first order off and w (see, e.g.[18],
netic field B'Z inside the charged shell diverges lijg® in Chaps. 33.2-33)3as is physically expected according to the
the point charge limits—0, as is expected from classical no hair theorem. The'' terms in Eqgs(65), (66) represent
electrodynamics. In the region between both shells, the dithe continuation of this field to the interior of the mass shell.
vergent term 2/8 in Eq. (59) is just canceled, and the re-  Since thew' terms in Eqs(65), (66) exactly correspond
maining magnetic field, like the magnetic field in the exteriorto the results of Cohej], also the Machian interpretation of
region, is proportional t@?=a?/R?, as is again well known these results can be taken over unchanged; especially, an
from classical electrodynamics. Thedependent factors in interior observer “cannot distinguisteven with electromag-
front of theseB? terms go forp, from 0 ata=0 monotoni-  netic fields reaching beyond the mass shethether the
cally decreasing to-8/3 ata=1, and forZIl from 2/3 ata charg(—;-d sr_]ell is ro}atlng or the mass shell is rotating in the
— 0 through a maximum=0.74 ata~0.32 to zero akr=1. opposite dwecuoyn. For complt_eteness, we.shquld, howe\{er,
Of special interest is of course the limiting case>1 of add that Cohen’s paper contains some misprints and minor

the collapse of the exterior mass shell, since in this limit theefrors: In his Eq(4) the factor ¢/r)® has to be substituted
mass shell represents a simple cosmological model of ousy (r/r;) 3. Equation(37) has to readF(r)=2a(r¢?) !
universe, and as a result of the electromagnetic test-field ap;4§2(r_¢2)*2+|n V, in order thatn(r_) fall off asymp-
proximation used here, the whole space inside the mass sh Htically like T3 and coincide in the limita—0 with
is flat. Therefore we can expect to see close analogies wit .~ .

results from classical electrodynamics. The collapse limit i g. (4). In Eq. (45) the quantityp(r) has according to Eq.

also the only case for which Cohé#] gives explicit results.  (28) to read p(r)=(qr&/3r®)(w.— w){3+2[(ro—r)/

Furthermore, we get

In this limit the above formulas reduce to (ro+r)[1—(r/ry)®]}, an expression which coincides with
8 2 a3 a Cghen’s expression gnly f(F=r_o_.. Fggre 2 obviously con-
B/(rsa)= §qg[ 1— 2 w'+3§w”]sinﬁcosf}, tains a scale error. Since the ratig/'r . is chogen as 2.5, th_e
65 ratio between the curved and flat space radial magnetic fields

n for r_<r_C is 1—(r_C/r_0)3~0.936 instead of Cohen’s value

8 a2 r\31_ r3 0.62. The last remark is not only a pedantic criticism of
Br(asrsR)z—q—[ 1—(—) w|+3—zw”] Cohen’s figure but is of immediate “observational” rel-
30 R Ra evance: If we ascribe to the cosmological model of a mass

X sin?d cosv, (66) shell with M =2R and;=r_o, respectively, any, howsoever
approximate reality, then the dimensioasandr., respec-

P R?r sin g cosd 67) tively, of all laboratory and even solar system “equipment”
(r=R)= 2q(r+R)7w S cosv. satisfy r.<r,. Therefore the “cosmological correction
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f(x;a.,B)
X
1 1 1
-02 | 3 ¢
FIG. 2. A plot of the

dimensionless and y-indepen-
dent function f(x;a,B8)

gL =y 2 (A Q1A (v = 0))—1]
for a=3%, B=%,% in the region
0=x<1, i=2,3. The dark line

ixl212) shows the constant zeroth order
d £(x;1/2,1/3) dragging term of case .
-14

term” (r./r)3, i.e., the relative difference between curved The dominant terntfor y=0) coincides of coursén differ-
and flat space results, is, for good or bad, in all conceivabl€nt notation with the results in(5] and[8]. The correction
cases beyond measurability, and we get the perfectly Materms of ordery” vanish in the collapse limit— 1, andA;
chian result that the magnetic fiekl well inside the mass attains the value 1. In the limi#—0 some of the correction
shell is the field of a rotating charged shell as known fromterms formally diverge and lead to a finite valag(a=0)
classical electrodynamicéwith respect to an inertial ob- =—87°/3B. This is to be understood in the following way:

servey:

a2

3 3
Bl(p)=1 P

??i[;(a)—z(R)]cosﬁ for p=a.

B. Results in second order of the chargey

As mentioned in the introduction to Sec. 1V, in ordgr

[©(a)— o(R)]cosd for

as=p<R,

(68)

there are only contributions to the dragging functié(r).

According to Eq.(39), it suffices to know the functions

Ai(p), Ai(p), andA;(p) in zeroth order ofg, equally the
integration constants,, 7,, {1, and{,. Only the constants
N1, Mo, @andus have to be calculated up to second ordeg.in
We start with case I{rotating exterior shell Using the for-

If for finite chargeq we force the total maddl of our system

to go to zero, the positive electrostatic enefi’;yt g°/2a has
to be compensated for by a negative mass density of the
exterior mass shellin violation of the energy condition
(24)], which then leads to negative draggiwd(a=0)=
—4M/3R= —842/3B, and this dragging is greater, the
smaller the radius of the charged shell is. The sum of the
correction terms in Eq(69) is always negativethe third
correction term is equal or smaller than the absolute value of
the first correction terpn as is physically intuitive: If for
fixed total masdM we increase the charggfrom zero to a
finite (small value, this means that we ‘“substitute” some
mass density of the exterior mass shell by electrostatic en-
ergy, thereby reducing the overall dragging and again reduc-
ing the dragging, the more smaller the radius of the charged
shell is.

In case I(rotating charged interior she¢lthe same argu-
mentation concerning zeroth and second order termg in
leads to

mulas from the Appendix, we get, for the constant dragging ~ ,ul3
factor inside the charged shell, '“3:C_3
A||_ 40((2_04) [ 72(1_a) 8’}/2 3 1
37 _ - - =7 T2 - 3
(1+a)(3—a) a 31t a3+ a) 2,8 (l+3a)+3(3+a+8aﬂ )

3(2+9a—4a’+ad)

6(1—a)?

Nt (2—a)(3ta)
(3—a)(3+5a)

B(1+ a)4(2—a)(3—a)

4(3—a+apd

T Ba(lta)(2—a) B

3B(1+a)(2—a) B

I

(69

(a_ﬁ_i>_ B(3—a) 73
1-a p?2] 4a(l+a)’(2-a)

23l

X|3+16a+ a’+8ap (70
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2R
3a

R
? .
(72)

| I 201 _ Il
X'=E A”(r):M_s 8y (l—a)n;
27 Cy 2 Cs (1+a)’

a‘2
3r2

B(1+a)*|3+ta 4 B-a)p*
T (3Fa) | 68 tzab— m’h : As a result of the continuity ofA''(r) andA’"'(r) atr=a,
A'z'(r) starts atr=a horizontally from the valueﬁ\'g)I [Eq.
(71) (69)], then increases according to the functiofr)=—(1
—a®/3r?)RI/r, but always(until r=R) stays below the zero
According to the metric forn26) the decisive dragging term order termAY (q=0)=4a(2— a)/(1+ a)(3— «). Now, an
inside the charged shell in case lddALdt=w'sd7. With  increasing dragging functiom\;(r) (in the regiona<r
7k from Eq. (70) this term would diverge in the collapse =<R) is at first sight hardly comprehensible. The explanation
limit @— 1. For a rotating charged shell inside a very mas-S€ems to come from thgpositive and nonrotatingelectro-
sive or even collapsing mass shell it is, however, physicallystatic energy densit;(r): Quite generally, the degree of
much more appropriate to relate the dragging term to th&lragging is determined, at least qualitatively, by the ratio
(invariany angular momenturd' instead of the angular ve- between the rotating mass energy and the nonrotating mass

o o energy.(E.g., in the standard Thirring problem: which part of
locity w'. Indeed Eq.(57) together with; from Eq. (71 he cosmic masses is sitting on a rotating mass 3tithen

leads to a very unusual relation betwe#nand »' for our  (for fixed M) a small part of therotating exterior shell is
model system:(i) As a result of the masslessness of the“substituted” by electrostatic energy, the dragging constant
charged shelly is proportional toy?; i.e., for small charge a inside the charged she(!l is reducell; (q+0)<AY (q=0).
finite angular momenturd' produces an arbitrarily large an- For r=ro>a, the partSy(r<ry) hag only a reduced effect
gular velocity '. (ii) A}, diverges in the collapse limit l{)ecal{s;)e_qU|te.genera}lly the draggmlg due to masses falls off
—1; i.e., an infinite angular momentud! is necessary to I|ke.r <|n t<h;|rTehxter|?r.eAT\|rl1 erif%re\z ((;) .|ncrr]eases n thne
produce a finite angular velocity, because the extremely mad€9lona=r=r. the vaiu 2 (r=R,q#0) is, however, sti

sive exterior shell has also to be dragged aldiig. The @~ SMaller thanA, (r=R,q=0) because there is still electro-
andg dependence of} has the effect that for=0.7 andg static energyS) outside the mass shell. Figure 2 shows the

- C - . . . ” .

approaching the value 1! andw' have different signs, and t%pm?]l behaylor of the .functlo_nh (IflgR) n seconfd ord_er c;f

. o Tl ional t the chargeg in conlwparlson vlntl the zero order unction for
in the csollapse limita=1 the ratioJ'/w' is proportional 10 he parametera=1 and 8=1,%. In case | we have, in the
(1—4pB°). If we now express the dragging term throughregiOn between both shells

the angular momentumJ', it reads 3J'/R™3y~23(1

— a?)(us/\5)d7, so that at least “difficulties”(i) and (ii) 8,2 [R? da  a¥(r+a?)
are eliminated: The/? factor in ,u'3 is canceled, and in the A'2(r)=ﬁ'3+ —loaz 3
collapse limita=1 the factor (1 48°%) is exactly canceled, (1+a)*(9a" 3(3+a) Rr
and thE dragging term attains the finite g@dndependent R?a(r —a) (3—a) ,7131

form (3'/32R%)dr. (Compare the relatiod" =32R3w"" for

4 ! _
the exterior shell in the collapse limitFor all <1 there or (1+a)(2-a)(3+a)

are, however, smap values, below which the dragging term a%(r’+a? 2R
is negative; fore<0.5 the dragging term is even negative for XI—RE " 3all (73

all B, reaching the value {4J'/R3g3)dr for a—0. Our
interpretation of this unusual “antidragging” phenomenon is
the following: The charged shell in our model has zero mas

density 7o(a)=0, and, according to Eq(20), negative At least for smalle, A'z(r) starts increasing at=a. Outside

““ " 2 — 3 1
pressure 75(a) = 75(a) (b_alancmg the Coulomk.J. repul- the exterior mass shell all functiodgr) decrease, according
sion), and therefore nearly violates all energy conditions. In a0 Eq. (39), dominantly like {AMRZ3[p(r)]5I\; with

forthcoming papef19] it is proved that such a shélvithout 2 ; ; ~4
the exterior mass shelproduces a negative dragging term q”-correction terms decreasing at least llxgr)] .

(antidragging if it rotates, and this dragging is greater, the

'Z(r) generally does not start horizontally ata; i.e.,
?A"z(r) is discontinuous at=a, due tors(a) #0 [Eq. (55)].

smaller the radius of the charged shell[iGompare Eq(20) C. Results in the weak-field limit

which in Reissner-Nordstro variables reads T3(p) In this section we restrict the results of Secs. IVA and
=(—q%16ma’) 5(p—a).] An example of antidragging was |V B to the weak-field limit; i.e., we keep only linear terms
also given in[14]. in the masaM of the exterior mass shell. In this approxima-

In the region between both shells the deviation oftion a considerable simplification of all expressions and a
C,A} (r) from the constant, begins according to E439),  simpler interpretation in terms of classical electrodynamics
with terms of orderg?, as is intuitively clear becausera are to be expected. Furthermore, this approximation enables
dependence of the dragging term can only be caused by tredirect comparison of our results with the work of Hofmann
electrostatic energy density in this region: [3] and of Ehlers and Rindlgg]. It has, however, to be kept
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in mind that a consideration of finitg® contributions in the B! under Machian aspects. It should, however, be immedi-
limit M—0 may violate the energy conditions for the exte- ately clear that this field satisfies all Machian expectations: It
rior mass shell. is constant in the interior and has dipole character in the
We begin with a consideration of the magnetic fi@d.  exterior, like the field of a rotating charged shell. And also
The approximations of the relevant integration constants reathe sign and the strength of this field are in full accord with
ma=%a, N\ =1+Za, {!=—%(1+2a). Herewith we get Mach’s ideas: For an inertial observer in the regisaR the

in the whole regiorr <R the constant field charged shell is nonrotating, and the asymptotic observers
and the distant cosmic masses, respectively, are rotating with

B!(r<R)= 2I\/I_qw“. (74y ~ angular velocity- (4M/3R) &. The magnetic field. of Eq.
z 3R? (74), produced by this system, is then the same as it would

be produced in a “Mach-equivalent situation” by a shell
In the exterior regiomr >R, the a-independent parts df'l' with chargeg and radius &/3, rotating with angular velocity
- (4M/3R) w in a static cosmos. It should also be stressed that
the existence of a magnetic fieRl' in a system where there
are nowhere localized currenti® the local inertial systemn
IR R2 makes especially evident that this “Machian” field, induced
B!'(r=R)=2M q(__ _2)w||sinﬁcosﬁ_ (75) by dragging due to the exterior mass shell and by rotating
3r s cosmic masses, respectively, has a nonlocal chardétis
well known—see, e.g.J20]—also in time-dependent sys-
After transformation from our isotropic coordinates to Car-tems Machian effects are connected with the nonlocal con-
tesian vector notation, these results coincide with the resultstraint equations.
of Hofmann[ [3], Eqs.(23), (24)] and, observing the refation  |n case I(rotating charged shelive have contributions in
Q=(—-4M/3R)w, with the results of Ehlers and Rindler zeroth order ofM: 75=2/38, 4\b={ =382 7b=\}=0,
[[2], Egs.(4.1D), (4.12]. Notwithstanding this agreement in (=% 32, and therefore &-independent field':
the mathematical results, we should like to add some critical
remarks about the method of calculation of these authors and 2q 2032
about parts of their physical discussion: In both papéis Bir<sa)=-—o', By(r=a)= 3
Co . : ) r
and[2] the electromagnetic field equations are written in a
form such that on the left-hand side only the flat differential

operators appear, and the curvature induced “corrections’. denl o . .
appear on the right-hand side as so-called “fictitious chargeTogether withB,(r=a), this represents, as expected, just

and currents.” Besides the fact that this separation compli-ﬁqe magnetic field of a rotating shell with chargand radius
from classical electrodynamics. In order to connect this

cates all calculations, it has the misleading consequence that .
the (fictitious) charge and current distributions extend overW'th the work of Ehlers and Rmd_le{Q], we have to obser\‘/‘e .

. that these authors do not consider two independent “stir-
the whole space, and have even jumps at (tmecharged o L |
exterior mass shell. Quite generally, such a separation {§ng” angular velocitiesw andw * but only the case where
against the spirit of general relativity. If these authors wouldN€Se two sources work together in such a way that the
perform their calculations in higher orders or even exact irfharged shell stays at rest relative to the asymptotic observ-
the strength of the gravitational fielis we do in Secs. II ©€rS- As explained, e.g., in Fig. 1.3 of Rindler's bodl],
and 111), they had to introduce new fictitious sources in eachthis case allows one to describe a Mach-equivalent view of
order. But as is well knowisee, e.g.[18], box 17.2, these the usual rotating charged shell in flat space-time. According
terms finally sum up to a “renormalization” of theunob-  to Eq. (58), w(a)=0 leads in the weak-field limit taw' =
servablg flat metric to the “real” curved metric, in our case (—4M/3R)w'' [compare Eq(2.9) in [2]], and herewith Eq.
the rotationally disturbed Reissner-Nordstranetric. Hof-  (76) exactly coincide with the fiel®' in Eq. (4.11) of [2].
mann [3] introduces his model as containing a chargedWe should, however, like to argue that also this field, like the
sphere with radius but later speaks about a point charge. Itfield B", satisfies all Machian expectations, and is by no
should, however, be clear that the model of a point charge isieans “Mach-negative or, at best, Mach-neutral,” as Ehlers
inconsistent already in classical electrodynamics. And indeednd Rindlef 2] state: On the one hand, a locally nonrotating
the resulting magnetic fielflour Egs.(74), (75)] is com-  observer(ZAMO) inside the mass shelsystemS’ in the
pletely independent of the radiasbecause the charged shell notation of [2]) is dragged with angular velocity
does not carry a “real current{in the local inertial system  (4M/3R)w'"; i.e., he sees the charged shell rotating with
Ehlers and Rindler state in their first short papErexplic-  velocity (—4M/3R)w'", and expects therefore to measure
itly that the charged shell has no material mass. In contrasgxactly the magnetic fiel@' of Eq. (76). On the other hand,
in the second pap¢R] they claim that “we need not restrict an asymptotic observésystemSin the notation of 2]) sees
the relative magnitudes of the two shell masses and of tha nonrotating charged shell, and therefore no current. But as
charge.” However, their detailed calculations and resultshe notices the rotating mass shell, he knows that according to
[e.g., their Eqs(2.9) and(4.11), (4.12)] are only valid for a the standard Thirring effect the interior shell should in fact
massless charged shell, and in first ordeMadindq. Neither  rotate with angular velocity (/3R)w'". So he concludes
Hofmann nor Ehlers and Rindler discuss the magnetic fieldhat in order to keep the inner shell at rest, this velocity

and 7! cancel in the combination!'g,(p) + 1 g1(p), and
we are left with

'sin®d cosy.
(76)
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has to be compensated by an angular velocity also in higher orders ob, with the consequence that, e.g.,
=(—4M/3R)w', which in turn is connected with a nonzero the quadrupolar electric field extends even to the interior of
angular momentum of the charged shell. So he is by ndhe charged shellsee Fig. 2 i 2]).

means surprised about the magnetic fldvithout observ-

ing any currenj'. (The situation here is in some respect just D. Results exact in mas and chargeq

the revglrlse of case II: there an asymptohc observer notices a As remarked in the introduction to Sec. IV, the formulas
currentj”, whereas the local inertial observers see no cur;

: : . for the magnetic field8' andB" and for the dragging func-
rents producing''.) Ehlers and Rindler did not analyze how . | Hron
the four-velocity u#(a)~(1,0,0,0) of the charged shell is tionsA'(r) andA"(r) in the case of general valudsandg

actually realized, and therefore came to the wrong conclu?'® too complicated for extracting much obvious physical

sion that the magnetic fiel' “as expected on Machian interpretation. Therefore we restrict ourselves here to a com-

i o ment on the general case(tbtating exterior shelland to a
%\rltr)gr?;sfrf;)rrntesq,ragged frang, should in fact arise in the broader discussion of the important case of the collapse limit

Concemning the terms in second order of the chayge of the two-shell systen{lt may, however, be that there exist
from Sec. IVB in the weak-field limit, we find it especially other physically interesting examples or effects within this

; X . . . class of strong-field rotating two-shell models.
yvorthwhl_le to C‘”.‘S'der the dragging functldhz(r_) in the We observe that in case Il all eight integration constants
intermediate regiona<r<R. The total dragging term

: : _ e are proportional to the expressidr~ 73(R)— 73(R), ap-
@Ay(r) in the metric form(26), and in the cas@(a)=0,  pearing in the energy conditior@3). Therefore, the mag-

considered by Ehlers and Rindl], is given by netic field B" and the dragging functiod!" are zero for
8a 64 R 64  R? A7=0, and change sign A7 changes sign; e.g.A"
wAy(r)=o" [ M's' - —,TL'3+ — Y —— —y*a— changes from dragging to antidragging. This emphasizes the
3 9% a 27 a importance of the discussion of the energy conditions for the

mass shell in Sec. Il. A similar behavior shows up in the
] . (7D analysis of the Thirring problem with cosmological boundary
conditions[22].

Now we come to the collapse limit of our two-shell sys-
tem, i.e., to the case where a horizon appears at the position
r=R. In our metric form(2) and with the expressiofb) for
U4(x), this obviously happens foy?=a’—1+€ and, e

32,

A

3R RaR—a) R%a?
T 7 T

We see that andependence dk,(r), as, e.g., shown in Fig.
2, survives also in the weak-field limit, and in the special
model considered if2], and it begins withy? terms, repre-
momentum tensas? . This mplies, contrary 6 the ciam of | —0- I tis mit Some quantiiegparty rom the Appendix
Ehlers and Rindler, that the deviation of the full metric from 9IVerge: A7 and (Det) like €% Cp, Cs, _73(R),
the flat metric is not the sum of the corresponding contribuR3g;(Ré), N, N and 35(Det)"'/A7 like e, and g;(RJ)
tions from the pure Thirring problem and the Reissner-ynga,(Rs) like loge ™. Inserting these results into the for-
Nordstran problem. . mulas for the integration constants in the Appendix, we see
Finally, we should |Ik.e to make critical renjarks. about thehat in both cases (rotating charged sheliand Il (rotating
terms of second order in the angular velodiywhich are  mass shejithe constantg; are zero whereas the constants
calculated and dlscusse_zd by Ehlers and Rinf2¢r We do ,, N, and 7,(i=2,3) attain finite values(in contrast, we
not doubt the mathematlca_l correctness of t_he_relevant resulfsyve seen in Secs. IVA and IV B that in the limit of weak
for the quadrupolar corrections to the electric field. The queséhar esq e the constanbl=»L/C. and. equally. the
tion is, however, whether these calculations are physically g q,~| .g.~,| ~ Y3 i 73 3 €4 y,. )
relevant, especially under a Machian viewpoint, since theyponstantsz,, Xz, and{; stay finite in the collapse limit.
“suffer” from the notoriously wrong “centrifugal forces” in  This “conflict” obviously shows that the collapse limit and
the work of Thirring and followers(See footnote 4 ifi2].)  the limit of small charges are not interchangeabfoncern-
In contrast, it was shown iff] that it is possible to realize ing the constantg;, we see that the expressions—C; are
flat space-time and, therefore, a correct centrifugal force infinite; i.e., the constanta; diverge likee™* in the collapse
side a rotating mass shell if one allows for a nonsphericalimit. From Egs.(32) and (39) it results then that in both
deformation of the shell in ordew?. In [6] and[7] it was  cases | and Il we have
demonstrated in addition that this flathess can be preserved -
. I . . : A(r<R)=1. (78)
in any orderw" if appropriate(uniquely determineddefor-

mations and differential rotation corrections are introducedIf both “stirring” angular velocitiesa' and " are active
In analogy, it should in principle be possible for our systems > @ @
oy princip P Y have finite, nonzero valugswe havewA=w'A'+ 0" A"

of a charged shell within a rotating mass shell to realize ) L o
flatness inside the charged shell in any or@@my introduc- = (@ /C3)A'+w A"=w A" in the collapse limit. We
ing appropriateM- andg-dependent deformations and differ- therefore see that the important result by Brill and Coff&n
ential rotation corrections for both shells. And we should likethat inside a rotating collapsing mass shell one has total
to argue that this realization of an electromagnetic Thirringdragging of the inertial systems, transfers also to our highly
problem is much more natural under Machian aspects than tharged two-shell system. By a similar reasoning=0, if
stick artificially to exactly spherical, rigidly rotating shells o' is finite, and scaling of all magnetic fields by proper time
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7=1/C3~ et instead of coordinate time¢ inside the mass A3

shel) we see that all “physical” magnetic fields vanish in- P=— 1202 — 72 S5—

side the mass shell in the collapse limit, and therefore the +7

detailed(finite) values of the constants,, 7,, 73, and{, 3A2 A2 — 2.2

are not of much interest in this limifConfined to the first + h _arccot 14

order ofg, a comparable discussion was performed1f] zyx/Ai— 2'y\/A2

and[17]: the “intrinsic” magnetic dipole moment vanishes

in the collapse limit, and only the “induced” dipole moment 4

survives) Q= §Ai , (A2)
In the exterior region the essential nonzero integration

constant in the collapse limit &s'l' =6(1+ «)?, which, with

272
A%

2

Eq. (54), gives, for the angular momentum per mass param- y — 4B°A 4 + sz(R5)+Q?z(R5) (A3)
eter (usually denoted by), J"'/M=4(1+ a)’R%e'". With 35 ’
g} (p)=4\R/3p from Eq. (35) in the collapse limit, the N
magnetic field components read then L= ,3 \/WJF PR5g2(R6)+QR592(R5)

g2 AL (A4)

Bl (p)= Hino cosd, (p)— —qzsmzﬂ
M p M p 2A2
(19 K=Pg,(R9)+Q0x(RO) + 3_<(a—a), (AS)

Similarly, Eq.(39) results in this limit in T I
L=PR&g5(RS) +QRSg;(RS)

N\ 8R2(1+a)2( qz) 2A2 a(l—a?+ 2
Al(p)——pg— M > (80 n 3+ m_ o 55 ¥ ' (A6)
Observing that up to the first order in the angular velocity the ., > — - P
Reissner-Nordsira coordinatep coincides with the Boyer- N=7"PlA2(RA )= Ax(RO)]+ v QLAARA )
Lindquist radial coordinate, we see that E¢&9), (80) ex- _ 3292 52
actly represent the Kerr-Newman field in lowest ordedbf —Ay(RS) |+ {Cg’( o— —) —(6—A4)|,
(see, e.g.[18], Chaps. 33.2-33)3as is expected according @
to the no-hair theorem. (A7)
-1 - — - =
ACKNOWLEDGMENTS N= 5 +7?P[Ax(RA )~ A(RO) 1+ ¥ Q[ A(RA 1)
We are extremely grateful to J. Ehlers and W. Rindler for
intensive, sometimes controversial, but always friendly dis- _ Y2A V2
cussions. We thank J. Bik and C. Klein for helpful com- —A>x(RS)]— C3( 65— —) —(6—AL)|.
ments. We thank J. Cohen for reading a preliminary version 65" @
of this paper and for the hint to Refl4]. (A8)

We start as in Sec. IlIB with case II: The linear homoge-

neous equationgt8), (50), and(52) can be easily solved for

N2, 75, @and{, as functions ofp; (noticing that the determi-
Before we give explicit solutions of the system of the nant of the system of equatior§0) and (52) is just the

eight linear continuity and discontinuity conditions for the \wronskian of Eq. (34): (92R92 92R92)|p RA,

eight integration constanjs,, w3, A1, A2, 72, 73, {1, and —3A,1B):

{, in both cases | and Il, we introduce some useful abbre- *

APPENDIX: DETERMINATION OF THE INTEGRATION
CONSTANTS

viations: No=B2ALmy, nh=Pny, 5=Qu3. (A9
- B2A2 - A2 +247 A2 —272 Equations(47), (49), and (51) constitute then a complete
T AAZ— )2 2y Al—y Jrccolzy\/Az , \?V)i/fr':etrr?eosfol:zﬁgasequatlons for the constants ¢, and 73,
4>, . —A7 —
Q=- 3A+(A +29%), (A1) Ay = 4(Det )”[ 9:(R8)—KR3g;(RS)],  (AL0)
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1 [(1—a?+y*)K+L],

" 35(Det"
(A11)
=T [(1-a?+ y)gy(R0)
® 35(Det)" '
+R8g(RS)], (A12)

where (Det) is the 3x 3 determinant of the system

35(Dey" | 2(y*—ad) 5| = =
Ar 5 + 747 |[L91(RO) —KR4Gy (RI)]
By = —
+ [(1-a®+9)91(RS) +RG1(RS)]

AT

+872A(RO[(1—a?+y)K+L].  (A13)

The remaining integration constanis and i3 can easily be
calculated from the continuity conditions for the dragging
function A(r) at the positions =R andr=a:

2

1, e e I
gMz:CBW)\l-FCg’y A1(RO) ¢y
2(5—A — =
— 2 'B(—+)+pAZ(R5)+QA2(R5) 73
(Al4)
1 1" 1 1 2ro A A !
gH3=gus+YIPA(RAL)+QA(RAL)] 7.
(A15)

In case | we get, from Ed46), A} =(a/a)\}. Similar to the
situation in case Il, the linear homogeneous equati&es
(55) [together with the equivalent to E¢5)], and(56) can
again be solved fok,, 7,, and{, as functions ofyp; and
(Cz—u3):

AZ
Ny=B%A  ms= - (Ca— pb),

£b=Qns+Q(Ca— ).
(A16)

75=Pn3+P(Cz—pub),

PHYSICAL REVIEW 53 104004

Since in Egs(49) and(51) then also the integration constant
M3 appears, these equations have to be combined with the
equivalent of Eq(A15):

= ~ 1
N73+7*CaAL(RS) {1+ N(Cs—pg) = gCs. (ALD)

These three equations constitute a complete system of linear
equations for the constan{s, 73, and us,

_ G el @ _4327’2 TN I
1= 8(Det)'[(LK KL) 300 [(1=a“+y)K+L]¢,
(A18)
b= —2 _[T5(R8)—KRGLRI)], (A19)
8(Det)' !
Mle,:C3+&D—ZD'{[LE(R&—KR(SE(R@]
+4’82y2 1—a?+ 42)g.(RS) + RS (RS
55 (1= a?+9)01(RO) +RGI(RI]|,
(A20)

where (Det) is again the X 3 determinant of this system of
equations:
(Det)' =C37%A,(RS)

432y
3ad

x{ (LK—KL)— [(1—a?+y?)K+L1]

48297

55 NL(1—a?+7%)91(R0) + ROGI(R)]

+N[Lg,(R6)—KRSg,(R&)]

—N[Lg1(R8)—KRSg,(RS)]. (A21)

It is noteworthy that the constarks L, K, andL are free of
arccot terms, but all integration constants »;,{; ,x#; con-
tain such terms. The remaining constast can in principle
be calculated from the equivalent of H@14).
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