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Electromagnetic Thirring problems
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~Received 4 August 2000; revised manuscript received 17 January 2001; published 4 April 2001!

We consider systems of two concentric spherical shells—the interior carrying arbitrary chargeq but no
mass, the exterior carrying arbitrary massM but no charge—and calculate the dragging~and partly antidrag-
ging! effects and the induced magnetic fields which are produced by~independent! rotations of these shells in
first order. We compare with results from the literature which usually are based only on first order approxi-
mations inq and/orM, and we clear up a discrepancy between these results concerning their Machian inter-
pretation. We examine some new interaction effects between strong electric and gravitational fields, and we
study especially the collapse limit of this rotating two-shell system.
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I. INTRODUCTION

The standard Thirring problem describes the~nonlocal!
influence of rotating masses on the inertial properties
space-time, especially the so-called dragging of iner
frames inside a rotating mass shell relative to the asympt
frames. It is then a natural question to ask whether and h
properties other than inertial ones are also influenced by
tating masses, and the first~noninertial and nongravitational!
properties which come here to one’s mind are surely elec
magnetic phenomena. Since the coupled Einstein-Maxw
equations are structurally not much more complicated t
the pure Einstein equations, one can also expect that an
tension of the Thirring problem to electromagnetic pheno
ena is technically manageable. Indeed, in the period 196
1971 some authors considered the influence of a rota
spherical mass shell on charges in its interior, where th
charges usually are distributed also on a shell concentri
the mass shell. The phrase ‘‘electromagnetic Thirring pr
lem’’ was coined by Ehlers and Rindler@1,2#. We use this
expression in our title in the plural because we conside
much more comprehensive class of such two-shell syst
than Ehlers and Rindler and the other authors did.

To our knowledge, the first paper on this issue was
Hofmann@3# who considers a charged shell within a rotati
mass shell in the first orders of massM, chargeq, and angu-
lar velocity v, and gets a magnetic dipole field induced
the rotating mass shell. Cohen@4# considers a similar system
exactly in M, but explicitly states that the interior charge
shell should have negligible mass. He calculates and
cusses especially the case where the mass shell appro
its collapse limit, and can then be considered as an ideal
substitute for the overall masses in our universe. In this li
he gets the completely Machian result that ‘‘one cannot d
tinguish ~even with electromagnetic fields reaching beyo
the mass shell! whether the charged shell is rotating or t
mass shell is rotating in the opposite direction.’’ Ehlers a
Rindler @1,2# claim to consider a similar system exactly
the chargeq, and in first order of the mass, equivalently
first order of the gravitational constant. In the detailed cal
lations and discussions, they restrict themselves, howe
also to the first order inq. They interpret the resulting mag
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netic field to be ‘‘in fact Mach-negative or, at best, Mac
neutral.’’

We treat these electromagnetic Thirring problems in m
detail, with the goal to resolve, e.g., the obvious discrepa
between the results and interpretations of Cohen and Eh
and Rindler by examining a more comprehensive class
charged two-shell systems which comprises the models
Cohen and Ehlers and Rindler as special cases. We con
a class of models consisting of two spherical shells of rada
andR>a, the first one carrying a nearly arbitrary chargeq
but no rest mass, the second one being nearly arbitrary m
sive but electrically neutral. The only restriction on the p
rameters is that the systems should be free of singular
and horizons. To these shells we apply small but otherw
arbitrary ‘‘stirring’’ angular velocitiesv I and v II , respec-
tively corresponding angular momentaJI andJII . More pre-
cisely, we have the picture of a two-parameter family
solutions of the full Einstein-Maxwell equations dependi
smoothly onv I andv II from whose power series expansio
in v I andv II we keep only the first order terms. This pictu
seems to be justified by calculations for the standard Thirr
problem~one rotating, uncharged mass shell!, where it was
shown@5–7# that this problem has a unique solution in a
ordervn if we allow for a ~centrifugally! deformed and dif-
ferentially rotating mass shell such that the space-time ins
the mass shell stays flat. In analogy, for the electromagn
Thirring problem flat space-time inside the charged sh
should be realizable with appropriate mass- and cha
dependent ‘‘deformations’’ of both shells in each order ofv I

andv II .
In Sec. II we give the solutions for this model class

zeroth order ofv I and v II ~static two-shell models!. Obvi-
ously, these consist of three pieces of the Reissn
Nordström solution for the exterior region, the region b
tween both shells, and the region inside the charged s
Since, however, a globally continuous metric is desirable
the interpretation of the global dragging effects, and was a
used in the papers@1–4#, we have to transform the Reissne
Nordström pieces~separately! to, e.g., isotropic coordinates
For a Machian interpretation of the dragging effects, the
terior mass shell is often seen as an idealized substitute
part of or all of the cosmic masses. For this interpretation
be valid, a minimal condition seems to be that the ener
©2001 The American Physical Society04-1
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MARKUS KING AND HERBERT PFISTER PHYSICAL REVIEW D63 104004
momentum tensor of this mass shell satisfy the weak ene
condition. This analysis, which for arbitrary massM and
chargeq is highly nontrivial but physically interesting b
itself, is also performed in Sec. II.

In Sec. III we solve the coupled Einstein-Maxwell equ
tions in first order of an angular velocityv representingv I

and/or v II . Surprisingly, the relevant differential equation
are exactly solvable, and this not only for our rotational p
turbations of the Reissner-Nordstro¨m metric but for genera
stationary perturbations with arbitrary angular moment
‘‘quantum number’’ l. We then calculate the solutions e
plicitly i.e., we determine all integration constants, separa
for the case of a rotating exterior shell, and for a rotat
charged interior shell. For the general case where both sh
have nonzero angular momentum, the results for the d
ging effect and for the induced magnetic fields are just
sums of the above results, due to the linearity of the per
bation analysis of first order inv. The interesting relations
between the angular momenta and the angular velocitie
the two shells are also explicitly worked out.

In order to compare our results with the work of@1–4#,
we have to make the appropriate approximations concer
the parametersM and/or q. In Sec. IV A we consider the
terms of first order inq, and find generally agreement wit
the results and physical interpretation of Cohen@4# but we
give the results for generalM values, and not only for the
collapse limit, and we consider also the magnetic field in
exterior region which approaches the Kerr-Newman field~in
first order of q and v) in the collapse limit. Section IV B
provides the results for the dragging function in second or
of q. These are of interest under the aspect of the influenc
the electrostatic energy density on the curvature of spa
time, and they prepare for the explicit disproof~in Sec. IV C!
of the claim by Ehlers and Rindler@2# that the Thirring drag-
ging effect and the Reissner-Nordstro¨m description of the
charge effects act additively in first order ofM. Furthermore,
we find that an angular momentumJI of the charged shel
can, due to its violation of the usual energy conditions, le
to an ‘‘antidragging’’ phenomenon. In Sec. IV C we perfor
the weak field limit~first order approximation inM ) on top
of the results of Secs. IV A and IV B. Mathematically w
find agreement with the results of@2,3# but we hope to con-
vince the reader that these results are in perfect agree
with Machian expectations and by no means ‘‘Mac
negative or, at best, Mach-neutral’’@2#. Section IV D pre-
sents some results for values ofM andq which are not nec-
essarily small. Especially we examine the collapse limit o
massive, highly charged two-shell system and find, e.g.,
the important result by Brill and Cohen@8# that in this limit
we have complete dragging of the inertial frames inside
mass shell extends to the inertial frames inside the mass
of an electromagnetic Thirring system. In the exterior reg
of the system we find, as expected, the Kerr-Newman fiel
first order ofv.

II. STATIC TWO-SHELL MODEL

According to a generalization@9# of the Birkhoff theorem,
a spherically symmetric solution of the Einstein-Maxw
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equations is automatically static and asymptotically flat, a
can be represented by the Reissner-Nordstro¨m metric

ds252F~r!dt21F~r!21dr21r2dV2, ~1!

with F(r)5122M/r1q2/r2, and dV25dq21sin2qdw2.
Therefore, our model of two concentric, spherically symm
ric, charged mass shells is simply given by three pieces
this Reissner-Nordstro¨m metric: one for the region outsid
the exterior shell, one for the region between both shells,
one for the interior region.

However, a matching of these Reissner-Nordstro¨m met-
rics with different mass and charge parameters obviou
would not be continuous at the shell positions. A global co
tinuous metric is, however, desirable for the physical int
pretation of the dragging effects in the later sections, and
also used Refs.@2–4# and @8#. It can be reached by a trans
formation of the metric~1! to the isotropic form

ds252e2U(r )dt21e2V(r )~dr21r 2dV2!. ~2!

Identification of Eqs.~2! and ~1! results in

r ~r!5
1

2D
~Ar222Mr1q21r2M!, ~3!

with an arbitrary constantD. For F(r).0, i.e., outside of
horizons,r (r) is real. We simplify the following calculations
somewhat by using dimensionless variables:

a5
M

2R
, b5

a

R
<1, g5

q

2R
, x5

r

R
. ~4!

Here,M denotes the mass parameterM in the exterior re-
gion, andr 5a is the position of the inner shell. A scaling o
all parameters and variables by the radiusR of the exterior
shell seems appropriate becauseR should definitely be non-
zero in our models whereas we may consider the limitsM
→0, a→0, andq→0. In the exterior regionx>1 we set
D5D151 ~thenr andr coincide asymptotically!, and iden-
tify t with t. Then the potentials read

V1~x!5 logF ~x1a!22g2

x2 G , U1~x!5 logF x22a21g2

~x1a!22g2G .
~5!

In the regiona<r<R between both shells we setM
5M̂ , and â5M̂ /2R, parameters which will be fixed only
later on. The charge parameter should have the same vaq
as in the exterior region because the shell atr 5R is un-
charged. It turns out~in accordance with@10#! that a non-
trivial time transformationt5C2t is necessary in this region
in order to guarantee continuity of the potentialU(r ) at r
5R. Denoting the constantD in Eq. ~3! now by D2, the
potentialsV andU in the regionb<x<1 read:
4-2
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ELECTROMAGNETIC THIRRING PROBLEMS PHYSICAL REVIEW D63 104004
V2~x!5 logF ~D2x1â !22g2

D2x2 G ,

U2~x!5 logF D2
2x22â21g2

C2~~D2x1â !22g2!
G . ~6!

Continuity ofV(x) at x51 produces a quadratic equatio
for D2, with the solution

2D25~11a!222â2g2

1A@~11a!222â2g2#214~g22â2!. ~7!

~We omit the negative sign of the square root, since we w
to have the resultD251 in the limitsq→0 andM ,M̂!R.!
Continuity of U(x) at x51 produces

C25
D2

22â21g2

D2~12a21g2!
. ~8!

Of course there are restrictions on the parametersa, â, and
g such thatD2 andC2 are real and positive. We will analyz
these conditions after fixingâ.

In the interior region 0<r<a, we have to setM50 and
q50 in order to guarantee regularity at the originr50. The
interior metric is then automatically flat. The transformatio
r 5r/D3 ,t5C3t produce in the region 0<x<b the poten-
tials

V3~x!5 logD35const, U3~x!52 logC35const, ~9!

and the continuity ofV(x) andU(x) at x5b leads to

D35
~D2b1â !22g2

D2b2 , C35C2

~D2b1â !22g2

D2
2b22â21g2

.

~10!

We now specify the parameterâ: In our models, the func-
tion of the inner shell is mainly to provide a charge, and n
so much to provide additional mass. It seems therefore
sonable to simplify our models~in accordance with@1,3,4#!
by setting the rest mass density of the inner shell to zero
we write Einstein’s field equations in the form

Gn
m58p~Tn

m1Sn
m!, ~11!

with Sn
m being the electromagnetic energy-momentum ten

then Tn
m in our two-shell models consists of two par

tn
m(a)d(r 2a) and tn

m(R)d(r 2R). Since in our isotropic
metric form ~2! the potentialsV(r ) and U(r ) are by con-
struction continuous at both shell positions, the compone
tn

m are essentially determined by the discontinuities of
radial derivatives ofV andU denoted byV8 andU8:

8pt0
0~a!52e22V3(a)@V28~a!2V38~a!#, ~12!
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8pt2
2~a!58pt3

3~a!

5e22V3(a)@V28~a!2V38~a!1U28~a!2U38~a!#.

~13!

~Here and in the following, sometimes the indices 0,1,2,3
used to denote, respectively, the variablest,r ,q,w.! Equiva-
lent relations are valid at the positionr 5R. The condition
t0

0(a)50 reads now, due toV3(x)5const, dV2(x)/dxux5b

50 or D25(g22â2)/âb. Comparison with Eq.~7! and in-
troduction of the abbreviations

d5~11a!22g2, D65
1

2
~Ab2d214g2~12b!26bd!

~14!

results in

â5D2 /~12b!2. ~15!

@The second solutionâ52D1 /(12b)2 of the quadratic
equation forâ is negative, and therefore has to be exclude#
If a denotes the invariant radius of the charged shell~coin-
ciding with the Reissner-Nordstro¨m coordinate,a5r(r 5a)
5RD1), its mass energy isM̂52Râ5q2/2a, which, for
small a andg, reaches the limitM̂→q2/2a, i.e., the energy
of a charged shell with radiusa in classical electrostatics
The conditiont0

0(a)50 has the additional simplifying con

sequence that 122M̂ /r1q2/r251 for r5r(a). With the
expression~15! for â, the constantsDi andCi read

D25
~12b!2D12D2

b~12b!2 , D35
D1

b
, ~16!

C25C35
~12b!D12~11b!D2

b~12b!~12a21g2!
. ~17!

Where necessary, one can also expressg2 and d through
D1 , D2 , and b: g25D1D2 /(12b)2,d5(D12D2)/b.
The singularities of the expressions~16!, ~17! for b→1 are
only of a formal nature. The equalityC25C3 means that
there is, due tot0

0(a)50, no time change between the inte
mediate and interior regions. An extension of our work to t
caset0

0(a)Þ0 would be possible but it would be algebr
ically considerably more involved.

In order that the metric~2! with the potentials~5!, ~6!, and
~9! really describes the static two-shell models, which
have in mind, and does, e.g., not have any horizons,
model parametersa,b,g have to satisfy some inequalities
In order thatV1(x) andU1(x) be real for allx>1, we have
to have

ugu21<a<A11g2. ~18!

The constantsDi andCi from formulas~16!, ~17! obviously
are all real. However, in order that the charged shell be
terior to the mass shell, that the originr 50 be interior to the
charged shell, and that time run in the same direction in
4-3
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MARKUS KING AND HERBERT PFISTER PHYSICAL REVIEW D63 104004
regions, all these constants have to be~at least! non-negative.
WhereasD3 is automatically non-negative, the condition
D2>0 andC25C3>0 sharpen the inequalities~18! to

Ag~g122b!21<a<A11g2. ~19!

According to the formulas~12!, ~13! we get, for the non-
zero components of the matter tensor densitiestn

m ,

t2
2~a!5t3

3~a!52
bâ

4pRD1
3 , ~20!

t0
0~R!5

~11a!~12b!1D12d

2pRd3~12b!
, ~21!

t2
2~R!5t3

3~R!5
1

4pRd2~12a21g2! S 12
D2

C2
D ,

~22!

with D2 andC2 from Eqs.~16!, ~17!. In the uncharged cas
g50 we recover, observing the different definitions ofa and
tn

m , the results of@5#. In Secs. III and IV we will analyze a
first order rotation of our two-shell systems, and we will t
to discuss the results for dragging and induction of a m
netic field under Machian aspects. In order that this can
successful, we have to make sure that the mass shellr
5R—notwithstanding its unrealistic shell structure—c
mimic in some way the overall masses of the universe
minimal condition for this obviously is the weak energy co
dition. @Since the charged shell atr 5a has a totally different
function in our models, it should not matter too much that,
a result oft0

0(a)50 andt2
2(a)5t3

3(a)<0, this shell nearly
violates all energy conditions.# The weak energy condition
~see, e.g.,@11#! consists of two parts which, for the mas
shell atr 5R and in our metric~2!, read

t0
0~R!<0 and t3

3~R!2t0
0~R!>0. ~23!

In Sec. III we will see that at least in one model class
induced magnetic field inside the charged shell is direc
proportional to@t3

3(R)2t0
0(R)#, and therefore the sign o

this expression is central to the physical interpretation of
field. The detailed analysis of the inequalities~23!, especially
of the second one, turns out to be algebraically quite
volved. The conditiont0

0(R)<0 leads to a further sharpen
ing of the lower limit for the mass parametera in inequality
~19!:

a>
1

2
~Ab214g22b! or

b>
g22a2

a
5

2a112d

a
5:b1~d,a!. ~24!

In the overextreme Reissner-Nordstro¨m caseg2.a2 the
stressest2

2(R)5t3
3(R) in the mass shell can become neg

tive, and then the conditiont3
3(R)2t0

0(R)>0 can lead to a
further sharpening of inequality~24!: Eliminating the square
root coming fromD6 in Eq. ~14!, t3

3(R)2t0
0(R)>0 leads to
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a sixth-order polynomial inequality ford which, however,
has the formd(d2d1)P4(d;a,b)>0, with d1511a(2
2b), andP4 a fourth-order polynomial ind. HereP4>0 is
equivalent to b>b2(d,ã), with ã5a11, b2(d,ã)51
2Q1(d,ã)/Q2(d,ã), and Q1(d,ã)53d(2ã2d)@(2ã

2d)(d2ã)12d#, Q2(d,ã)5(2ã2d)2@2(2ã2d)2

17d(ã21)#14d2(2ã212d). For a typical valueb50.7,
Fig. 1 shows the (d,a) region whereb>b2(d,ã) becomes
effective, i.e., whereb2(d,a).b1(d,a). The fact that for
g2.a2 the energy conditions~23! set lower limits to the
radiusa5bR of the inner, charged shell is physically intu
tive: For smallb typically the mass energyq2/2a of this
shell gets large and can ‘‘overcompensate’’ the total m
M52Ra of the two-shell system~with a2,g2) in the way
that the energy conditions for the mass shell atr 5R are
violated.

The electromagnetic field tensor belonging to t
Reissner-Nordstro¨m metric ~1! has only a radial componen
2Ftr5Er5q/r2. Transformation of this component to ou
isotropic coordinates, under the condition that the chargq
be concentrated solely on the inner shell atr 5a, leads to
2Ftr5Er5(q/r 2)eU2VH(r 2a), where H(r 2a) is the
Heaviside function, and the potentials~5! or ~6! have to be
inserted in the respective regions. Herewith and with
inhomogeneous Maxwell equation (1/A2g)(A2gFtm) ,m
54p j t, the charge densitys5 j t at the inner shell
(r 5a) can be calculated: For the metric~2!, we have
A2g5e3VeUr 2sinq, and onlyFtr5e22(U1V)Er is nonzero.
Therefore,A2gFtr is equal toqsinq ~independent ofr ) for
r>R and fora<r<R, and zero for 0<r ,a. The r deriva-
tive of this expression gives then, as is expected in our s
models, ad-function-type charge density:

s~x!5
qbC3

4pR3D1
3 d~x2b!, ~25!

with C3 from Eq. ~17!. @This corresponds to j t

5(q/4pa2)d(r2a) in the Reissner-Nordstro¨m variables.#

III. FIRST ORDER ROTATION OF THE SHELLS

Whereas a general stationary and axially symmetric m
ric for a system with matter requires at least four met
functions, depending on two variables, e.g., onr and q, a
first order rotational perturbation~with angular velocity pa-
rameterv) of a spherically symmetric system requires on
three metric functions, solely depending onr, because cen-
trifugal deformations of the spherical system appear only
ordersv2 and higher. We write the corresponding extensi
of our metric~2! for physical intuition in the form

ds252e2U(r )dt21e2V(r )$dr21r 2dq21r 2sin2q

3@dw2vA~r !dt#2%, ~26!

neglecting, however, in the following all terms of second a
higher order inv. Since as a result of the very definition o
an angular velocityv, a stationary rotating system is invar
4-4
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FIG. 1. The graphic shows the parameter domain ofa andd5(11a)22g2 in the overextreme Reissner-Nordstro¨m caseg2.a2, where
the first and second parts of the weak-energy condition~23! for b50.7 are valid: the conditiont0

0(R)<0 is satisfied for all values of (a,d)
between the linesd1 andd2. In order to ensuret3

3(R)2t0
0(R)>0, a andd have to be restricted to the grey shadowed regions. The da

one lies inside the~dashed! hyperbola branchb2(d,ã)5b1(d,ã), where the conditionb>b2(d,ã), following from t3
3(R)2t0

0(R)>0, is

more resrictive thanb>b1(d,ã) from Eq. ~24!. The picture looks essentially similiar for all other values ofbP @0,1#.
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ant under the common substitutionst→2t and v→2v,
and since the metric functionsU, V, andA are independent o
t, they have to be even functions ofv. Since we assume tha
all these functions can be expanded in power series inv, for
our first order perturbation the functionsU(r ) andV(r ) can
be taken over unchanged from Sec. II, andA(r ) is indepen-
dent ofv. Here and in the following, the symbolv should
denote a general angular velocity in our systems. Later on
will introduce more specific angular velocitiesv I for the
interior shell andv II for the exterior shell. All these angula
velocities are of the same orderv, or they are zero.

A. Integration of the field equations

In the following we often change between the variabler,
in which the field equations and their solutions are simple
and the variabler, necessary for the conditions at the she
and for the physical interpretation of the results. The rad
dependence of the dragging functionA is essentially given
by the Einstein equation

G3
052

v sin2q

2r2

d

dr S r4
d

dr
A~r! D58p~T3

01S3
0!, ~27!

whereS3
05(1/4p)Fl

0F3
l denotes the electromagnetic cont

bution to the energy-momentum tensor. Since the elec
components of the field tensorFmn are time symmetric, they
are even functions ofv, and therefore reduce in our firs
order perturbation inv to the fieldEr . The magnetic com-
ponents ofFmn are time antisymmetric, and therefore sta
with order-v terms. However, since there are no electric c
rents in ther andq directions in our models, the magnet
10400
e
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l
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t
-

componentBw5Frq is identically zero according to the in
homogeneous Maxwell equations. Therefore, in the first
der of v, there remains besides Eq.~27! only one nontrivial
homogeneous Maxwell equation~with the overdot denoting
the q derivative!

Br81Ḃq50 ~28!

and one nontrivial inhomogeneous Maxwell equation

4p j w5
1

r2 sin2q

d

dr
@F~r!Bq#2

1

r4 sinq
S Br

sinq D •

1
v

r2

d

dr
~r2AEr!. ~29!

In the exterior region and in the intermediate region b
tween both shells, Eq.~27! reads, withEr5q/r2,

2
v sin2q

4

d

dr S r4
d

dr
A~r! D5qBq . ~30!

This equation, together with the fact that in the limitq→0
also the magnetic field should vanish in our models, sugg
the ansatzBq5vq f(r )sin2 q, with a dimensionless function
f (r ). Equation ~28! then enforces the form Br
5vqRg(r )sinq cosq, with f (r )5(2R/2)g8(r ). Because
of continuity across the charged shell, the forms forBq and
Br are also valid in the interior of this shell. Then Eqs.~27!
and ~29! constitute two coupled ordinary differential equ
tions for the unknown functionsA andg.
4-5
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In the interior of the charged shell, these equations
couple and read

~r 4A8!850, g92
2

r 2 g50. ~31!

The solutions, which are regular atr 50, are given by

A3~r !5m3 /C3 , g3~r !5h3r 2/R2, ~32!

wherem3 and h3 are dimensionless constants, which ha
later to be fixed by continuity at the charged shell.~The
factor C3

21 is introduced for later convenience.! Because of
A3(r )5const, the interior region stays flat in first order pe
turbation inv, as is physically to be expected. The magne
field componentsBr and Bq represent in Cartesian coord
nates a constant fieldBz5(vq/R)h3 along thez axis, as is
well known for the interior of a charged, rotating shell fro
classical electrodynamics.

In the intermediate and exterior regions, due toBq

; f (r );g8(r ), one integration of Eq.~30! is trivial:

d

dr
A~r!5

1

r4
@2q2Rg~r!24MR2l#, ~33!

with a dimensionless integration constantl, which will be
denoted byl1 and l2 for the exterior and intermediate re
gions, respectively.~The factor 24MR2 in front of l is
chosen with a view of the well-known exterior dragging te
A(r )5 4

3 MR2r 23 in the standard Thirring problem.! Inser-
f

ca
:

tio

-
th

10400
-

e

-
c

tion of Eq. ~33! into Eq. ~29!, together with j w[0 in the
exterior and intermediate regions, results in the differen
equation forg(r):

d

dr FF~r!
d

dr
g~r!G2

2

r2 S 11
2q2

r2 Dg~r!52
8MRl

r4 .

~34!

We write the general solution of this equation in the form

g~r !5lĝ„r~r !…1hḡ„r~r !…1z ḡ̄„r~r !…, ~35!

with dimensionless integration constantsh,z, whereĝ(r) is
a special solution of the inhomogeneous equation~34!, and

ḡ(r), ḡ̄(r) are fundamental solutions of the correspondi
homogeneous equation. Luckily, there exist quite simple
lutions ĝ(r) and ḡ(r) as polynomials inr and r21, and

ḡ̄(r) can then be found by the d’Alembert’s reduction pr

cedure,ḡ̄(r);ḡ(r)*rdr8@F(r8)#21@ ḡ(r8)#22:

ĝ~r!5
4R

3r
, ḡ~r!5

1

R2 S r223q21
2q4

Mr D , ~36!

ḡ̄~r!5
3M 2R

4~M 22q2!2F2q2

3r S 11
2q2

M 2D2r2M

1R2ḡ~r!S~r;M,q!G , ~37!

with
S~r;M,q!55
1

Aq22M 2
arccotS r2M

Aq22M 2D for q2.M 2,

1

2AM 22q2
logS r2M1AM 22q2

r2M2AM 22q2D for q2,M 2.
er-
-

In the intermediate region we haveM5M̂ , and as a result o
D25(g22â2)/âb>0, M̂ is never greater thanuqu, and S
reduces to the arccot case. Furthermore, the asymptoti
diverging solutionḡ(r) is missing in the exterior region
h150. For small values ofe5(AM 22q2)/(r2M) the
function S has the series expansion

S5
1

r2M S 11
e2

3
1

e4

5
1••• D ,

from which it is seen that we have chosen the normaliza

of ḡ̄(r) such that it behaves asymptotically asRr21 ~inde-
pendent ofM andq). After transformation to Cartesian co
ordinates, all components of the magnetic field have
asymptotic behaviorBi;r23;r 23, as is physically ex-
lly

n

e

pected. On the other hand, in the limitq2→M 2, the expres-
sion ~37! produces the relatively simple limit function

ḡ̄~r!uq25M 25
R~2r2M!~5r225Mr12M 2!

10r~r2M!3 . ~38!

The homogeneous solutions~36! and~38! have already been
given by Bičák and Dvořák @12,13# within a more general
analysis of stationary perturbations of the Reissn
Nordström metric. @There is, however, a misprint in the so
lution ḡ(r).# The solutions~36!, ~37! have already been
found by Briggset al. @14#. Also for an arbitrary~natural!
value of the angular momentum parameterl, there exists one
homogeneous solutionḡ(r) of the correspondingly modified
equation~34! in the form of a polynomial(k521

l 11 akr
k, with

a150.
4-6
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Having now available the general magnetic field functi
g(r ) in the intermediate and exterior regions, we can a
calculate the general ‘‘dragging function’’A(r ) in these re-
gions by integrating Eq.~33!. If we write A(r) in the sug-
gestive form

A~r!5CiA~r !

5
2q2

R2 @lÂ„r~r !…1hĀ„r~r !…1z Ā̄„r~r !…#

1
4MR2l

3@r~r !#3
1m, ~39!

with C151 andC25C3 from Eq. ~17!, we get

Â~r!52
R4

3r4 , Ā~r!5RS 2
1

r
1

q2

r3 2
q4

2Mr4D ,

~40!

Ā̄~r!5
3MR4

8~M 22q2!2 F2
1

r
1

M
r2

1
q212M 2

3r3

2
q2~M 212q2!

3Mr4

1S 11
2M
R

Ā~r! DS~r;M,q!G . ~41!

In the extreme Reissner-Nordstro¨m case,Ā̄(r) has the sim-
pler form

Ā̄~r!uq25M 252
R4~5r224Mr1M 2!

20r4~r2M!2 . ~42!

In the exterior region, we demand thatA(r ) vanish asymp-
totically, expressing the fact that there is no dragging of
ertial systems at infinity and that any rotation in our mode
defined relative to~hypothetical! static observers at infinity
respectively. Therefore, together with the asymptotic
crease of the functions~40!, ~41!, we havem150. In the
intermediate region we will have a nonzero~dimensionless!
constantm2.

In the process of integration of the magnetic field functi
g and of the dragging factorA in the different regions, we
had to introduce a total of eight nontrivial integration co
stants:m2 , m3 , l1 , l2 , h2 , h3 , z1, andz2. These constants
have now to be fixed according to the physical and ma
ematical properties of our model systems. First, we have
define our two-shell systems in more detail. Especially
have to say what the ‘‘real’’ physical sources of the dragg
effects and of the magnetic fields are. For this we have
mind the following picture: Imagine starting with the stat
two-shell models of Sec. II, and then to turn on slowly~adia-
batically! a rotation of the shells by exerting independe
torques~e.g., by appropriate handles! on the two shells atr
5a and r 5R. As long as we consider only first order rot
tion effects, we see no mechanism how angular momen
10400
o

-
s

-

-
to
e
g
in

t

m

could be transferred in this process from one shell to
other. ~In higher orders ofv, nonspherical deformations o
the shells have to be taken into account, and if their quad
pole moments change rapidly during a nonadiaba
switch-on process, gravitational waves are produced,
they will transfer angular momentum from one shell to t
other.! It seems therefore reasonable to define the ang
momentaJI andJII , imprinted on the systems in this way, a
the two independent physical sources of the rotation effe
In contrast to the angular momenta, the angular velocitie
the two shells are not in the same way independent, bec
the rotation of one shell leads by dragging to a nonzero
gular velocity also of the other shell.~In this connection it
should be said that the complicated interplay between
dragging of two rotating uncharged mass shell, as analy
by Cohen and Brill@10#, results mainly from their descrip
tion in terms of the angular velocities instead of the angu
momenta.! Since, however, a prescription of the valuesJI

and JII does not seem to be a useful starting point for
determination of the integration constants, we find it adv
tageous to divide the general problem of rotation of bo
shells into the following two steps: We introduce nonsing
lar ‘‘stirring’’ angular velocitiesv̄ I andv II separately for the
interior charged shell and for the exterior uncharged sh
respectively, where~in accordance with@4#! v̄ I5C3v I is
measured in proper timet5(1/C3)t. For the cases I (v̄ I

Þ0,v II 50) and II (v II Þ0,v̄ I50) we separately determin
the integration constants, and herewith the dragging fie
AI ,AII , and the magnetic fieldsBI ,BII . ~The notation is here
adapted to@2#.! Thereafter we find unique and linear rel
tions betweenv̄ I and J̄I5C3JI and betweenv II and JII ,
respectively, so that it is justified to start with the mathema
cally more useful parametersv̄ I andv II instead of the physi-
cal source parametersJ̄I andJII . ~In Sec. III B we will come
back to the reasons why the relations betweenv̄ I andJ̄I , and
betweenv II andJII , respectively, can only be givena pos-

teriori.! Finally, for the general casesJ̄IÞ0 andJII Þ0, the
discussion in the beginning of this paragraph, together w
the general linearity of a first order perturbation of an ex
solution, justifies writing the general dragging and magne
fields as linear superpositions:vA5v IAI1v II AII ,B5BI

1BII . ~The same was done without much discussion in@2#
and @4#.! Since the detailed calculations are somewhat s
pler for case II~rotation stirred by the exterior shell!, we
begin with this case.

B. Boundary conditions for a rotating exterior shell

According to the notation introduced in Sec. III A, a
quantities in this section should in principle carry an upp
index II. For simplicity we omit these indices in most fo
mulas and add them only in the final expressions for
integration constants in the Appendix. The energ
momentum tensorTn

m5tn
m(R)d(r 2R) of the exterior shell

has of course to satisfy the eigenvalue equationsTn
mun5

2%0um, whereum5u0(R)„1,0,0,v(R)… is the purely axial
four-velocity vector of the shell matter, and%0 is the rest-
4-7
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energy density. Moreover, since our models shall consis
rigidly rotating shells, the componentsum are constant, i.e.
independent ofq ~compare@5#!. Comparison of the compo
nentsm50 andm53 of the eigenvalue equations, togeth
with the metric form~26!, gives, in first order of the rotation

t3
0~R!5e2V(R)22U(R)R2@v~R!2vA~R!#

3@t3
3~R!2t0

0~R!#sin2q, ~43!

with t0
0(R) andt3

3(R) from Eqs.~21!, ~22!. From Eq.~43! it
is seen, on the one hand, thatt3

0(R) is zero if the angular
velocity v(R) of the exterior shell coincides with the drag
ging termvA(R) coming from any other rotating source
e.g., from a rotating interior shell.@In the language of
Bardeen@15# this means that the exterior shell then consi
of so-called zero-angular-momentum observers~ZAMOs!.#
This result can be understood as a mathematical confirma
of the argument in Sec. III A that in first order of rotatio
there can be no transfer of angular momentum from one s
to the other. On the other hand, if we really stick to our ca
II, where only the exterior shell rotates with angular veloc
v(R)5v II Þ0 and no other rotating matter is in the gam
~especiallyv̄ I50), then Eq.~43! reads

t3
0~R!5v II e2V1(R)22U1(R)R2@12A1~R!#

3@t3
3~R!2t0

0~R!#sin2q. ~44!

Now, the componentt3
0(R) can, in analogy to the determ

nation of the componentst0
0 andt2

25t3
3 in Sec. II@Eqs.~12!,

~13!#, also be calculated from the Einstein equation~27!,

t3
0~R!52

1

16p
v II R2e22U1(R)@A18~R!2A28~R!#sin2q,

~45!

and withA8(r ) from Eq.~33! and with the continuity ofg(r )
@to be substantiated in Eq.~49!#:

t3
0~R!5

v II R~al12âl2!

2pd2~12a21g2!
sin2q. ~46!

Equations~46! and ~44! lead, with the abbreviationDt5
2(2pRd6)@t3

3(R)2t0
0(R)#/(12a21g2), to a first linear,

inhomogeneous equation between the integration consta

2@8~g22ad!Dt/3d41a#l11âl218g2Dt Ā̄1~Rd!z1

5Dt. ~47!

Since in the present case II the interior charged shell does
have an own angular momentum (J̄I50 and v̄ I50) but is
only dragged by the rotating exterior shell, we have, in an
ogy to Eq.~43!, t3

0(a)50. Again this has to be compare
with the result of an integration of the Einstein equation~27!
from r 5a2e to r 5a1e:

t3
0~a!52

v II RbC3

2pD1
3 ~g2b2h32âl2!sin2q50. ~48!
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Now we come to the continuity or discontinuity condition
for the magnetic field functiong(r ) at the positionsr 5R
and r 5a of the two shells. Before going into details, w

have to remark quite generally that the functionsĝ, ḡ, andḡ̄
in Eqs. ~36!, ~37! are given in the variabler, whereas the
continuity of the metric is only guaranteed in the variabler.
Therefore we have to transform these functions and th
derivatives to the variabler, according to Eq.~3!. The posi-
tion r 5R of the mass shell is in the variabler given by
r(R)5Rd, and this, as a result of the continuity ofV(r ),
coming both from the exterior and intermediate region.@This
was already used in Eq.~47!.# Similarly, the positionr 5a of
the charged shell is given~from both sides! by r(a)
5RD1 . In analogy to the boundary conditions of classic
electrodynamics, saying that the magnetic fieldB at an inter-
face~with normal vectorn) between two media has to satis
n•(B22B1)50, our radial magnetic field functiong(r ) has
to be continuous atr 5R and r 5a:

2
4

3d
l11

4

3d
l21ḡ2~Rd!h22 ḡ̄1~Rd!z11 ḡ̄2~Rd!z250,

~49!

4

3D1
l21ḡ2~RD1!h22b2h31 ḡ̄2~RD1!z250.

~50!

Similarly, the boundary conditionn3(B22B1)5(4p/c) j
from classical electrodynamics, together with the fact t
the shell atr 5R carries no charge and therefore no elect
current, results in the continuity of the magnetic field co
ponentBq; f (r ) and therefore in the continuity ofg8(r ) at
r 5R:

4~12a21g2!

3d2 l12
4

3d2
AF2~Rd!l21Rḡ28~Rd!h2

2Rḡ̄18~Rd!z11Rḡ̄28~Rd!z250. ~51!

@Here and in the following, e.g., an expressionḡ28(Rd) is

understood in the way that we take the derivative ofḡ2(r)
from Eq. ~36! with respect tor and multiply, due to the
chain rule, bydr/druR2

, similarly at the positionr 5a.# At

the position r 5a, a first sight gives the impression tha
g8(r ) should be discontinuous there because, due to d
ging, the charged shell acquires a nonzero angular velo
v II A(a) and, connected with it, a nonzero electric current
has, however, to be observed that the relationn3(B22B1)
5(4p/c) j is only valid in the local inertial frame, and this i
just the frame corotating with angular velocityv II A(a). If
then ~in accordance with@2#! the charged shell consists o
insulating material, its charge elements have the same a
lar velocity v II A(a) as the matter elements, so that in t
presently considered case II there is no electric current r
tive to the local inertial frame, and the magnetic fieldBq

;g8(r ) is continuous across the charged shell:
4-8
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Rḡ28~RD1!h22
10

3
bh31Rḡ̄28~RD1!z250. ~52!

@This can also be mathematically confirmed by compar
the currentj w(a) following from Eq. ~29! with the expres-
sion j w(a)5v II A3(a)s(x), with s(x) from Eq. ~25!.#

After determining~in the Appendix! the integration con-
stants from the linear equations~47!–~52!, we can also ex-
plicitly calculate the total angular momentumJII contained
in this system. Because of the axial symmetry of the syst
JII is given by the integral

JII 5E
0

`

drE
0

p

dqE
0

2p

dwA2g@t3
0~R!d~r 2R!1S3

0II #.

~53!

With t3
0(R) from Eq. ~46! and with

S3
0II 52

v II

8p
Rq2

g8~r !

r 2
e2U23VH~r 2a!sin2q,

we get the surprisingly simple result

JII 5
2

3
MR2v II l1

II . ~54!

Therefore, the ‘‘driving’’ inhomogeneityl1
II , introduced in

Eq. ~33!, describes the departure of the angular momen
JII from the Newtonian value23 MR2v II of a shell with mass
M, radiusR, and angular velocityv II , due to strong gravita-
tional and electromagnetic fields. It should not be overlook
that the constantl1

II from Eq. ~A10! in the Appendix has
quite a complicated dependence on the model parametea,
b, andg which cannot be foreseena priori, but can only be
calculated by analyzing in detail all the junction conditio
for the dragging fieldA(r ) and the magnetic fieldg(r ) at the
two shells. This ‘‘difficulty’’ is mainly due to the nonlocal
ized electromagnetic contributionS3

0II to the angular momen
tum JII . And since this term contains~obviously! a factorq2,
the problem simplifies very much in an analysis of a simi
system in first order ofq which was performed by Cohen
Tiomno, and Wald@16#.

C. Boundary conditions for a rotating charged interior shell

Many results from Sec. III B transfer essentially u
changed to the present case I, only that all quantities h
now to be thought of carrying an upper index I instead of
which, however, we again omit until the final expressio
The four-velocity of the interior shell elements readsum

5u0(a)„1,0,0,v(a)…, with v(a)5v I . Instead of Eq.~44! we
havet3

0(R)50, because now the exterior mass shell has
angular momentum (JII 50 andv II 50) but is only dragged
by the rotating interior shell.~A similar system was consid
ered by Wald@17# in first order ofq.! In contrast, now the
expressiont3

0(a) is nonzero, and is given in analogy to E
~44!, and witht0

0(a)50 andt3
3(a) from Eq. ~20!, by
10400
g
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m
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r

ve
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o

t3
0~a!52

v IRâbC3~C32m3!

4pD1
sin2q. ~55!

The continuity equations~49!–~51! for the magnetic field
function g(r ) and its derivative atr 5R are of course un-
changed. However, now the charged shell carries a ‘‘re
current, which is not only induced by dragging:j w(a)
5v Is(x) with s(x) from Eq.~25!. This has to be compare
with an evaluation of the inhomogeneous Maxwell equat
~29! at r 5a, to which obviously only the termsBq8 andEr8
contribute localized currents proportional tod(r 2a):

j w~a!5
v IqbC3

4pR3D1
3 F2

bR2

2D1C3
g9~r 5a!1A3~a!d~x2b!G .

~56!

The total angular momentumJ̄I of the system I, measure
in proper timet, is given by the equivalent to Eq.~53!, and
has the result

J̄I5
2

3
M̂R2v̄ Il2

I 5
2

3
MR2v̄ Il1

I , ~57!

which is formally the same as in Eq.~54! but of course with
a constantl1

I totally different froml1
II . If both sourcesJ̄I

and JII are active at the same time, the combined angu
velocities of the shells are

v~R!5v II 1C3
21v̄ IAI~R!, v̄~a!5v̄ I1C3v II AII ~a!.

~58!

These quantities are denoted byvs and v̄c in the work of
Cohen@4#.

IV. RESULTS AND DISCUSSION

From Sec. III A ther dependence of the magnetic fie
functiong(r ) and of the dragging functionA(r ) is explicitly
known in the whole space-time, and the Appendix gives
plicitly all coefficients contained ing(r ) and A(r ). There-
fore, all questions concerning the magnetic field and
dragging properties of our two-shell models can in princip
be answered, and this in the whole ‘‘physical’’ region of th
dimensionless parametersa,b,g, given by inequalities~19!,
~24!, by b>b2(d,a), and by Fig. 1. It is, however, eviden
that most formulas are algebraically so involved that it is n
easy to extract the physically interesting properties of
model systems in the general case, and even in the limi
casesb→0 andb→1 for the radius of the inner, charge
shell the formulas do not simplify drastically.

It is therefore appropriate to consider first some appro
mations to our formulas. Because of the fact that in all
trophysical and cosmological circumstances charges see
be small and also in order to make contact with the work
Hofmann@3#, Cohen@4#, and Ehlers and Rindler@2#, a power
series expansion of our formulas with respect toq is espe-
cially important and useful. Quite generally, the magne
field is an odd function inq and therefore receives contribu
tions from the ordersq1,q3,q5, . . . , whereas the dragging
4-9
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MARKUS KING AND HERBERT PFISTER PHYSICAL REVIEW D63 104004
term A(r ) is even in q, with contributions from orders
q0,q2,q4, . . . . Since we have divided out a factorq in the
definitions of the magnetic field functions, all our expre
sions for the functionsgi(r ) andAi(r ), and for the integra-
tion constants appearing in them, have expansions in pow
of q2.

In Sec. IV A we consider in detail the terms of orderq
which provide the first nontrivial contributions to the ma
netic field, and we compare our results with the work
Cohen @4#. The terms of orderq2 ~in Sec. IV B! allow to
study the interesting back reaction of the electrostatic ene
S0

0(r ) on the geometry, especially on the dragging funct
A(r ). In Sec. IV C we perform on top of the approximatio
of Secs. IV A and IV B a weak-field approximation; i.e., w
keep only terms up to first order inM, and we compare thes
results with the work of Hofmann@3#, and we perform a
detailed analysis of the work of Ehlers and Rindler@2#, es-
pecially under Machian aspects. In Sec. IV D we pres
some results without approximations inM andq, for instance
for the interesting collapse limit.

A. Results in first order of the chargeq

Inside the charged shell the functiong(r ) is, according to
Eq. ~32!, given byg3(r )5h3r 2/R2 which represents a con
stant field Bz5(q/R)vh3 along thez axis. Since in our
model class there appear the two ‘‘stirring’’ angular velo
ties v̄ I and v II , we write the magnetic field in the
interior region in the form Bz5(q/R)(v Ih3

I 1v II h3
II )

5(q/R)(v̄ I h̃3
I 1v II h3

II ), with the quantityh̃3
I 5h3

I /C3. In
the region between both shells we have the representatio
Eq. ~35!, and in zeroth order inq we get, from Eqs.~36!,

~37!, ĝ2(r)54R/3r,ḡ2(r)5r2/R2, ḡ̄2(r)5R/r5 3
4 ĝ2(r).

Consideration of the constantsl2 ,h2 ,z2 has now to be per-
formed separately for the cases I~rotating charged interior
shell! and II ~rotating exterior shell!. With the constants from

the Appendix we see that the termsl2
II ĝ2(r) and z2

II ḡ̄2(r)
cancel in this order, with the resultg2

II (r )5h3
II r 2/R2
a

10400
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5g3
II(r): The magnetic fieldBII is constant~in thez direction!

in the whole regionr<R, as is physically expected in thi
approximation because the fieldBII is purely induced by
dragging, and in first order ofq the dragging function is
constant in this region. In the case I of a rotating charg
interior shell, the situation is, as expected, more complica

The termsl2
I ĝ2(r) andz2

I ḡ̄2(r) do not cancel, but produce

together withh2
I ḡ2(r) the magnetic field component

Br
I 5qR~11a!2v̄ I

3H F h̃3
I

~11a!2 2
2

3b
G r 2

R2 1
2b2

3

R

r J sinq cosq.

~59!

Here, the second term represents~together with the accom
panying componentBq

I ) the expected dipolar magnetic fiel
outside a rotating charged sphere. The correction term
h̃3

I /(11a)2 in the first term~leading to a constant fieldBz)
has the function to cancel the second term atr 5a5bR and
to guarantee in this way the continuity ofBr

I at r 5a. In the

exterior region we haveh150, ĝ1(r)54R/3r, and

ḡ̄1~r!52
3R

4M2Fr1M1
r2

2M
logS 12

2M

r D G
'

R

r S 11
3M

2r
1

12M2

5r2 1••• D ,

and

r5
1

r S r 1
M

2 D 2

.

Therefore all Cartesian components of the magnetic fieldsBI

andBII fall off asymptotically liker 23, as expected.
Concerning the integration constants appearing in th

first order magnetic field functions, we get the following:
h3
II 5

3~11a!2~22a!

2a~32a!

~11a!2~11a2!2
8

3
a22~11a!4~12a!2

1

2a
log

11a

12a

2112a1a21~11a!3~12a!
1

2a
log

11a

12a

. ~60!
e

In the physical region 0<a<1 of the ratioa5M /2R, h3
II

grows monotonically from the behavior4
3 a at a50 to the

value 8 ata51. Furthermore,

l1
II 5

3~11a!5~22a!

2~32a!
, ~61!

a quantity which increases monotonically from the value 1
 t

a50 to the value 24 ata51. The quantityz1
II can be ex-

pressed throughh3
II in the form

z1
II 52

4

3
a~12a!h3

II 2
2~11a!3~12a!2~22a!

32a
,

~62!

a quantity which decreases from the value2 4
3 at a50 to a

minimum z1min.
II '21.56 at a'0.35, and then reaches th
4-10
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value 0 ata51. Therefore, whereas the termsl1
II ĝ1(r) and

z1
II ḡ̄1(r) exactly cancel fora→0, for a*0.5, and especially

for a→1, the first term is absolutely dominant. Quite gen
ally we observe that in the lowest order ofq the magnetic
field BII , since it is only induced by dragging and does n
have ‘‘real sources,’’ is everywhere independent ofb5a/R,
i.e., independent of the distribution of the chargeq within the
mass shell, as long as it is spherically symmetric.@As a result
of Sn

m;q2 andtn
m(a);q2, the exact position of the charge

shell matters, however, in the higher orders ofq.# The inte-
gration constanth̃3

I can in zeroth order inq be expressed
throughh3

II in the form

h̃3
I 5

2~11a!2

3b
1b2F4a~11a!2

3~31a!
2

~32a!

~22a!~31a!
h3

II G .
~63!

Furthermore, we get

z̃1
I 5

z1
I

C3
5

8ab2~11a!2~12a!

3F2112a1a21~11a!3~12a!
1

2a
log

11a

12aG ,

~64!

whereasl1
I vanishes in zeroth order ofq. Therefore the mag-

netic field Bz
I inside the charged shell diverges likeb21 in

the point charge limitb→0, as is expected from classic
electrodynamics. In the region between both shells, the
vergent term 2/3b in Eq. ~59! is just canceled, and the re
maining magnetic field, like the magnetic field in the exter
region, is proportional tob25a2/R2, as is again well known
from classical electrodynamics. Thea-dependent factors in
front of theseb2 terms go forh̃3

I from 0 ata50 monotoni-

cally decreasing to28/3 ata51, and forz̃1
I from 2/3 ata

50 through a maximum'0.74 ata'0.32 to zero ata51.
Of special interest is of course the limiting casea→1 of

the collapse of the exterior mass shell, since in this limit
mass shell represents a simple cosmological model of
universe, and as a result of the electromagnetic test-field
proximation used here, the whole space inside the mass
is flat. Therefore we can expect to see close analogies
results from classical electrodynamics. The collapse limi
also the only case for which Cohen@4# gives explicit results.
In this limit the above formulas reduce to

Br~r<a!5
8

3
q

r 2

a H F12S a

RD 3G v̄ I13
a

R
v II J sinq cosq,

~65!

Br~a<r<R!5
8

3
q

a2

r H F12S r

RD 3G v̄ I13
r 3

Ra2 v II J
3sinq cosq, ~66!

Br~r>R!532q
R2r

~r 1R!2 v II sinq cosq. ~67!
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We compare the first terms proportional tov̄ I with Cohen’s
results in his Eqs.~44!, ~45! which are proportional tov̄c

2v̄s . But according to our Eq.~58! we have v̄c2v̄s

5v̄(a)2v̄(R)5@12AI(R)#v̄ I1(m3
II 2C3)v II , and AI(R)

is zero in lowest order ofq and m3
II 2C3 is zero in lowest

order orq and for a→1, so thatv̄c2v̄s coincides in this
case with ourv̄ I . Transforming our isotropic coordinates t
Cohen’s frames, we see that ourv̄ I terms in Eqs.~65!, ~66!
exactly coincide with Cohen’s results. The second terms p
portional to v II in Eqs. ~65!–~67! are missing in Cohen’s
work because he finally scales all quantities to the inte
proper time

t5
1

C3
t5

12a

11a
t,

and considers only the ‘‘rotating universe’’ represented
the interior of the mass shell. (v II 50 if v̄ II stays finite.! It is
nevertheless worthwhile to discuss also the magnetic fi
proportional tov II , especially in the exterior region. Takin
into account the relation~54! betweenv II and the angular
momentum JII which reads in the collapse limitJII

532R3v II , we see thatBr(r>R) from Eq. ~67! ~together
with the accompanying componentBq) constitutes just the
Kerr-Newman field in first order ofq andv ~see, e.g.,@18#,
Chaps. 33.2–33.3!, as is physically expected according to th
no hair theorem. Thev II terms in Eqs.~65!, ~66! represent
the continuation of this field to the interior of the mass she

Since thev̄ I terms in Eqs.~65!, ~66! exactly correspond
to the results of Cohen@4#, also the Machian interpretation o
these results can be taken over unchanged; especially
interior observer ‘‘cannot distinguish~even with electromag-
netic fields reaching beyond the mass shell! whether the
charged shell is rotating or the mass shell is rotating in
opposite direction.’’ For completeness, we should, howev
add that Cohen’s paper contains some misprints and m
errors: In his Eq.~4! the factor (r̄ / r̄ c)

3 has to be substituted
by (r̄ / r̄ c)

23. Equation~37! has to readF( r̄ )52ā( r̄c2)21

14ā2( r̄c2)221 ln V, in order that n( r̄ ) fall off asymp-
totically like r̄ 23 and coincide in the limitā→0 with
Eq. ~4!. In Eq. ~45! the quantityp( r̄ ) has according to Eq
~28! to read p( r̄ )5(qr̄c

2/3r̄ 3)(v̄c2v̄s)$312@( r̄ 02 r̄ )/

( r̄ 01 r̄ )#@12( r̄ / r̄ 0)3#%, an expression which coincides wit
Cohen’s expression only forr̄ 5 r̄ 0. Figure 2 obviously con-
tains a scale error. Since the ratior̄ 0 / r̄ c is chosen as 2.5, the
ratio between the curved and flat space radial magnetic fi
n for r̄ , r̄ c is 12( r̄ c / r̄ 0)3'0.936 instead of Cohen’s valu
0.62. The last remark is not only a pedantic criticism
Cohen’s figure but is of immediate ‘‘observational’’ re
evance: If we ascribe to the cosmological model of a m
shell with M52R and ā5 r̄ 0, respectively, any, howsoeve
approximate reality, then the dimensionsa and r̄ c , respec-
tively, of all laboratory and even solar system ‘‘equipmen
satisfy r̄ c! r̄ 0. Therefore the ‘‘cosmological correctio
4-11
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FIG. 2. A plot of the
dimensionless and g-indepen-
dent function f (x;a,b)
5g22 @(Ai

II(x)/A3
II (g 5 0))21#

for a5
1
2 , b5

1
3 , 1

2 in the region
0<x<1, i 52,3. The dark line
shows the constant zeroth orde
dragging term of case II.
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term’’ ( r̄ c / r̄ 0)3, i.e., the relative difference between curv
and flat space results, is, for good or bad, in all conceiva
cases beyond measurability, and we get the perfectly
chian result that the magnetic fieldBI well inside the mass
shell is the field of a rotating charged shell as known fro
classical electrodynamics~with respect to an inertial ob
server!:

Br
I ~r!55

2qa2

3r3
@v̄~a!2v̄~R!#cosq for a<r!R,

2q

3a
@v̄~a!2v̄~R!#cosq for r<a.

~68!

B. Results in second order of the chargeq

As mentioned in the introduction to Sec. IV, in orderq2

there are only contributions to the dragging functionA(r ).
According to Eq. ~39!, it suffices to know the functions

Âi(r), Āi(r), and Ā̄i(r) in zeroth order ofq, equally the
integration constantsl2 , h2 , z1, andz2. Only the constants
l1 , m2, andm3 have to be calculated up to second order inq.
We start with case II~rotating exterior shell!: Using the for-
mulas from the Appendix, we get, for the constant dragg
factor inside the charged shell,

A3
II 5

4a~22a!

~11a!~32a! H 12
g2~12a!

a

3F 3~219a24a21a3!

~11a!4~22a!~31a!
1

6~12a!2

b~11a!4~22a!~32a!

2
~32a!~315a!

6a~11a!5~22a!
h3

II 1
4~32a1ab3!

3b~11a!6~22a!
h3

II G J .

~69!
10400
le
a-

g

The dominant term~for g50) coincides of course~in differ-
ent notation! with the results in@5# and @8#. The correction
terms of orderg2 vanish in the collapse limita→1, andA3

II

attains the value 1. In the limita→0 some of the correction
terms formally diverge and lead to a finite valueA3

II (a50)
528g2/3b. This is to be understood in the following way
If for finite chargeq we force the total massM of our system
to go to zero, the positive electrostatic energyM̂5q2/2a has
to be compensated for by a negative mass density of
exterior mass shell@in violation of the energy condition
~24!#, which then leads to negative draggingA3

II (a50)5

24M̂ /3R528g2/3b, and this dragging is greater, th
smaller the radius of the charged shell is. The sum of
correction terms in Eq.~69! is always negative~the third
correction term is equal or smaller than the absolute valu
the first correction term!, as is physically intuitive: If for
fixed total massM we increase the chargeq from zero to a
finite ~small! value, this means that we ‘‘substitute’’ som
mass density of the exterior mass shell by electrostatic
ergy, thereby reducing the overall dragging and again red
ing the dragging, the more smaller the radius of the char
shell is.

In case I~rotating charged interior shell! the same argu-
mentation concerning zeroth and second order terms iq
leads to

m̃3
I 5

m3
I

C3

5
8g2

3~11a!4~31a!
H 3

2
b2~113a!1

1

3
~31a18ab3!

3S ab

12a
2

1

b2D 2
b2~32a!h3

II

4a~11a!2~22a!

3F3116a1a218abS ab

12a
2

1

b2D G J , ~70!
4-12
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l̃2
I 5

l2
I

C3

5
b3~11a!4

~31a! F31a

6b
1

4

3
ab22

~32a!b2

~11a!2~22a!
h3

II G .

~71!

According to the metric form~26! the decisive dragging term
inside the charged shell in case I isv IA3

I dt5v̄ Im̃3
I dt. With

m̃3
I from Eq. ~70! this term would diverge in the collaps

limit a→1. For a rotating charged shell inside a very ma
sive or even collapsing mass shell it is, however, physic
much more appropriate to relate the dragging term to
~invariant! angular momentumJ̄I instead of the angular ve
locity v̄ I . Indeed Eq.~57! together withl2

I from Eq. ~71!

leads to a very unusual relation betweenJ̄I and v̄ I for our
model system:~i! As a result of the masslessness of t
charged shell,â is proportional tog2; i.e., for small charge a
finite angular momentumJ̄I produces an arbitrarily large an
gular velocity v̄ I . ~ii ! l2

I diverges in the collapse limita

→1; i.e., an infinite angular momentumJ̄I is necessary to
produce a finite angular velocity, because the extremely m
sive exterior shell has also to be dragged along.~iii ! The a
andb dependence ofl2

I has the effect that fora*0.7 andb

approaching the value 1,J̄I andv̄ I have different signs, and
in the collapse limita51 the ratioJ̄I /v̄ I is proportional to
(124b3). If we now express the dragging term throug
the angular momentumJ̄I , it reads 3

4 J̄IR23g22b(1
2a2)(m3

I /l2
I )dt, so that at least ‘‘difficulties’’~i! and ~ii !

are eliminated: Theg2 factor in m3
I is canceled, and in the

collapse limita51 the factor (124b3) is exactly canceled
and the dragging term attains the finite andb independent
form (J̄I /32R3)dt. ~Compare the relationJII 532R3v II for
the exterior shell in the collapse limit.! For all a,1 there
are, however, smallb values, below which the dragging term
is negative; fora&0.5 the dragging term is even negative f
all b, reaching the value (24J̄I /R3b3)dt for a→0. Our
interpretation of this unusual ‘‘antidragging’’ phenomenon
the following: The charged shell in our model has zero m
density t0

0(a)50, and, according to Eq.~20!, negative
‘‘pressure’’ t2

2(a)5t3
3(a) ~balancing the Coulomb repul

sion!, and therefore nearly violates all energy conditions. I
forthcoming paper@19# it is proved that such a shell~without
the exterior mass shell! produces a negative dragging ter
~antidragging! if it rotates, and this dragging is greater, th
smaller the radius of the charged shell is.@Compare Eq.~20!
which in Reissner-Nordstro¨m variables reads T3

3(r)
5(2q2/16pa3)d(r2a).# An example of antidragging wa
also given in@14#.

In the region between both shells the deviation
C2A2

II (r ) from the constantm2
II begins according to Eq.~39!,

with terms of orderq2, as is intuitively clear because ar
dependence of the dragging term can only be caused by
electrostatic energy density in this region:
10400
-
y
e

s-

s

a

f

he

A2
II ~r !5

m3
II

C3
1

8g2~12a!h3
II

~11a!7 F2R

3a
2S 12

a2

3r 2D R

r G .
~72!

As a result of the continuity ofAII (r ) andA8II (r ) at r 5a,
A2

II (r ) starts atr 5a horizontally from the valueA3
II @Eq.

~69!#, then increases according to the functionh(r )52(1
2a2/3r 2)R/r , but always~until r 5R) stays below the zero
order termA3

II (q50)54a(22a)/(11a)(32a). Now, an
increasing dragging functionA2

II (r ) ~in the region a<r
<R) is at first sight hardly comprehensible. The explanat
seems to come from the~positive and nonrotating! electro-
static energy densityS0

0(r ): Quite generally, the degree o
dragging is determined, at least qualitatively, by the ra
between the rotating mass energy and the nonrotating m
energy.~E.g., in the standard Thirring problem: which part
the cosmic masses is sitting on a rotating mass shell.! If then
~for fixed M ) a small part of the~rotating! exterior shell is
‘‘substituted’’ by electrostatic energy, the dragging consta
inside the charged shell is reduced:A3

II (qÞ0),A3
II (q50).

For r 5r 0.a, the partS0
0(r ,r 0) has only a reduced effec

because quite generally the dragging due to masses fall
like r 23 in their exterior. ThereforeA2

II (r ) increases in the
regiona<r<R. The valueA2

II (r 5R,qÞ0) is, however, still
smaller thanA2

II (r 5R,q50) because there is still electro
static energyS0

0 outside the mass shell. Figure 2 shows t
typical behavior of the functionAII (r<R) in second order of
the chargeq in comparison with the zero order function fo
the parametersa5 1

2 andb5 1
3 , 1

2 . In case I we have, in the
region between both shells,

A2
I ~r !5m̃3

I 1
8g2

~11a!4 H R2

9a2 2
4a

3~31a!

a2~r 21a2!

Rr3

1
R2a~r 2a!

6r 4 1
~32a!h3

II

~11a!~22a!~31a!

3Fa2~r 21a2!

Rr3 2
2R

3aG J . ~73!

A2
I (r ) generally does not start horizontally atr 5a; i.e.,

A82
I (r ) is discontinuous atr 5a, due tot3

0(a)Þ0 @Eq. ~55!#.
At least for smalla, A2

I (r ) starts increasing atr 5a. Outside
the exterior mass shell all functionsA(r ) decrease, according
to Eq. ~39!, dominantly like $4MR2/3@r(r )#3%l1 with
q2-correction terms decreasing at least like@r(r )#24.

C. Results in the weak-field limit

In this section we restrict the results of Secs. IV A a
IV B to the weak-field limit; i.e., we keep only linear term
in the massM of the exterior mass shell. In this approxim
tion a considerable simplification of all expressions and
simpler interpretation in terms of classical electrodynam
are to be expected. Furthermore, this approximation ena
a direct comparison of our results with the work of Hofma
@3# and of Ehlers and Rindler@2#. It has, however, to be kep
4-13
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in mind that a consideration of finiteq2 contributions in the
limit M→0 may violate the energy conditions for the ext
rior mass shell.

We begin with a consideration of the magnetic fieldBII .
The approximations of the relevant integration constants r
h3

II 5 4
3 a, l1

II 511 29
6 a, z1

II 52 4
3 (11 5

6 a). Herewith we get
in the whole regionr<R the constant field

Bz
II ~r<R!5

2Mq

3R2 v II . ~74!

In the exterior regionr .R, the a-independent parts ofl1
II

and z1
II cancel in the combinationl1

II ĝ1(r)1z1
II ḡ̄1(r), and

we are left with

Br
II ~r>R!52MqS 4R

3r
2

R2

r 2 Dv II sinq cosq. ~75!

After transformation from our isotropic coordinates to Ca
tesian vector notation, these results coincide with the res
of Hofmann@ @3#, Eqs.~23!, ~24!# and, observing the relation
VW 5(24M /3R)vW , with the results of Ehlers and Rindle
@@2#, Eqs.~4.11!, ~4.12!#. Notwithstanding this agreement i
the mathematical results, we should like to add some crit
remarks about the method of calculation of these authors
about parts of their physical discussion: In both papers@3#
and @2# the electromagnetic field equations are written in
form such that on the left-hand side only the flat different
operators appear, and the curvature induced ‘‘correctio
appear on the right-hand side as so-called ‘‘fictitious char
and currents.’’ Besides the fact that this separation com
cates all calculations, it has the misleading consequence
the ~fictitious! charge and current distributions extend ov
the whole space, and have even jumps at the~uncharged!
exterior mass shell. Quite generally, such a separatio
against the spirit of general relativity. If these authors wo
perform their calculations in higher orders or even exac
the strength of the gravitational field~as we do in Secs. II
and III!, they had to introduce new fictitious sources in ea
order. But as is well known~see, e.g.,@18#, box 17.2!, these
terms finally sum up to a ‘‘renormalization’’ of the~unob-
servable! flat metric to the ‘‘real’’ curved metric, in our cas
the rotationally disturbed Reissner-Nordstro¨m metric. Hof-
mann @3# introduces his model as containing a charg
sphere with radiusa but later speaks about a point charge
should, however, be clear that the model of a point charg
inconsistent already in classical electrodynamics. And ind
the resulting magnetic field@our Eqs. ~74!, ~75!# is com-
pletely independent of the radiusa because the charged she
does not carry a ‘‘real current’’~in the local inertial system!.
Ehlers and Rindler state in their first short paper@1# explic-
itly that the charged shell has no material mass. In contr
in the second paper@2# they claim that ‘‘we need not restric
the relative magnitudes of the two shell masses and of
charge.’’ However, their detailed calculations and resu
@e.g., their Eqs.~2.9! and ~4.11!, ~4.12!# are only valid for a
massless charged shell, and in first order ofM andq. Neither
Hofmann nor Ehlers and Rindler discuss the magnetic fi
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BII under Machian aspects. It should, however, be imme
ately clear that this field satisfies all Machian expectations
is constant in the interior and has dipole character in
exterior, like the field of a rotating charged shell. And al
the sign and the strength of this field are in full accord w
Mach’s ideas: For an inertial observer in the regionr<R the
charged shell is nonrotating, and the asymptotic observ
and the distant cosmic masses, respectively, are rotating
angular velocity2(4M /3R)v. The magnetic fieldBz

II of Eq.
~74!, produced by this system, is then the same as it wo
be produced in a ‘‘Mach-equivalent situation’’ by a she
with chargeq and radius 4R/3, rotating with angular velocity
(4M /3R)v in a static cosmos. It should also be stressed t
the existence of a magnetic fieldBII in a system where there
are nowhere localized currents~in the local inertial system!
makes especially evident that this ‘‘Machian’’ field, induce
by dragging due to the exterior mass shell and by rotat
cosmic masses, respectively, has a nonlocal character.~As is
well known—see, e.g.,@20#—also in time-dependent sys
tems Machian effects are connected with the nonlocal c
straint equations.!

In case I~rotating charged shell! we have contributions in
zeroth order ofM: h3

I 52/3b, 4l2
I 5z1

I 5 2
3 b2, h2

I 5l1
I 50,

z2
I 5 4

3 b2, and therefore aM-independent fieldBI :

Bz
I ~r<a!5

2q

3a
v I , Br

I ~r>a!5
2qa2

3r
v Isinq cosq.

~76!

Together withBq
I (r>a), this represents, as expected, ju

the magnetic field of a rotating shell with chargeq and radius
a from classical electrodynamics. In order to connect t
with the work of Ehlers and Rindler@2#, we have to observe
that these authors do not consider two independent ‘‘s
ring’’ angular velocitiesv̄ I andv II but only the case where
these two sources work together in such a way that
charged shell stays at rest relative to the asymptotic obs
ers. As explained, e.g., in Fig. 1.3 of Rindler’s book@21#,
this case allows one to describe a Mach-equivalent view
the usual rotating charged shell in flat space-time. Accord
to Eq. ~58!, v̄(a)50 leads in the weak-field limit tov I5
(24M /3R)v II @compare Eq.~2.9! in @2##, and herewith Eq.
~76! exactly coincide with the fieldBI in Eq. ~4.11! of @2#.
We should, however, like to argue that also this field, like t
field BII , satisfies all Machian expectations, and is by
means ‘‘Mach-negative or, at best, Mach-neutral,’’ as Ehl
and Rindler@2# state: On the one hand, a locally nonrotati
observer~ZAMO! inside the mass shell~systemS8 in the
notation of @2#! is dragged with angular velocity
(4M /3R)v II ; i.e., he sees the charged shell rotating w
velocity (24M /3R)v II , and expects therefore to measu
exactly the magnetic fieldBI of Eq. ~76!. On the other hand
an asymptotic observer~systemS in the notation of@2#! sees
a nonrotating charged shell, and therefore no current. Bu
he notices the rotating mass shell, he knows that accordin
the standard Thirring effect the interior shell should in fa
rotate with angular velocity (4M /3R)v II . So he concludes
that in order to keep the inner shell at rest, this veloc
4-14
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has to be compensated by an angular velocityv I

5(24M /3R)v II , which in turn is connected with a nonzer
angular momentum of the charged shell. So he is by
means surprised about the magnetic fieldBI without observ-
ing any currentj I . ~The situation here is in some respect ju
the reverse of case II: there an asymptotic observer notic
current j II , whereas the local inertial observers see no c
rents producingBII .! Ehlers and Rindler did not analyze ho
the four-velocity um(a);(1,0,0,0) of the charged shell i
actually realized, and therefore came to the wrong con
sion that the magnetic fieldBI ‘‘as expected on Machian
grounds for the dragged frameS8, should in fact arise in the
‘wrong’ frame,S.’’

Concerning the terms in second order of the chargq
from Sec. IV B in the weak-field limit, we find it especiall
worthwhile to consider the dragging functionA2(r ) in the
intermediate regiona<r<R. The total dragging term
vA2(r ) in the metric form~26!, and in the casev̄(a)50,
considered by Ehlers and Rindler@2#, is given by

vA2~r !5v II H m3
II 2

8a

3
m̃3

I 1
64

9
g2

R

a
2

64

27
g2a

R2

a2

2
32

9
g2aF3R

r
1

Ra~R2a!

r 3 2
R2a2

r 4 G J . ~77!

We see that anr dependence ofA2(r ), as, e.g., shown in Fig
2, survives also in the weak-field limit, and in the spec
model considered in@2#, and it begins withg2 terms, repre-
senting the influence of the electromagnetic ener
momentum tensorSn

m . This implies, contrary to the claim o
Ehlers and Rindler, that the deviation of the full metric fro
the flat metric is not the sum of the corresponding contri
tions from the pure Thirring problem and the Reissn
Nordström problem.

Finally, we should like to make critical remarks about t
terms of second order in the angular velocityv which are
calculated and discussed by Ehlers and Rindler@2#. We do
not doubt the mathematical correctness of the relevant re
for the quadrupolar corrections to the electric field. The qu
tion is, however, whether these calculations are physic
relevant, especially under a Machian viewpoint, since th
‘‘suffer’’ from the notoriously wrong ‘‘centrifugal forces’’ in
the work of Thirring and followers.~See footnote 4 in@2#.!
In contrast, it was shown in@5# that it is possible to realize
flat space-time and, therefore, a correct centrifugal force
side a rotating mass shell if one allows for a nonspher
deformation of the shell in orderv2. In @6# and @7# it was
demonstrated in addition that this flatness can be prese
in any ordervn if appropriate~uniquely determined! defor-
mations and differential rotation corrections are introduc
In analogy, it should in principle be possible for our syste
of a charged shell within a rotating mass shell to real
flatness inside the charged shell in any ordervn by introduc-
ing appropriateM- andq-dependent deformations and diffe
ential rotation corrections for both shells. And we should li
to argue that this realization of an electromagnetic Thirr
problem is much more natural under Machian aspects tha
stick artificially to exactly spherical, rigidly rotating shel
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also in higher orders ofv, with the consequence that, e.g
the quadrupolar electric field extends even to the interior
the charged shell~see Fig. 2 in@2#!.

D. Results exact in massM and chargeq

As remarked in the introduction to Sec. IV, the formul
for the magnetic fieldsBI andBII and for the dragging func-
tionsAI(r ) andAII (r ) in the case of general valuesM andq
are too complicated for extracting much obvious physi
interpretation. Therefore we restrict ourselves here to a c
ment on the general case II~rotating exterior shell! and to a
broader discussion of the important case of the collapse l
of the two-shell system.~It may, however, be that there exis
other physically interesting examples or effects within th
class of strong-field rotating two-shell models.!

We observe that in case II all eight integration consta
are proportional to the expressionDt;t3

3(R)2t0
0(R), ap-

pearing in the energy conditions~23!. Therefore, the mag-
netic field BII and the dragging functionAII are zero for
Dt50, and change sign ifDt changes sign; e.g.,AII

changes from dragging to antidragging. This emphasizes
importance of the discussion of the energy conditions for
mass shell in Sec. II. A similar behavior shows up in t
analysis of the Thirring problem with cosmological bounda
conditions@22#.

Now we come to the collapse limit of our two-shell sy
tem, i.e., to the case where a horizon appears at the pos
r 5R. In our metric form~2! and with the expression~5! for
U1(x), this obviously happens forg25a2211e and, e
→0. In this limit some quantities~partly from the Appendix!
diverge: Dt and (Det)I like e22, C2 , C3 , t3

3(R),

Rd ḡ̄18(Rd), N, Ñ and 3d(Det)II /Dt like e21, and ḡ̄18(Rd)

and Ā̄1(Rd) like loge21. Inserting these results into the fo
mulas for the integration constants in the Appendix, we
that in both cases I~rotating charged shell! and II ~rotating
mass shell! the constantsz1 are zero whereas the constan
z2 , l2 and h i( i 52,3) attain finite values.~In contrast, we
have seen in Secs. IV A and IV B that in the limit of wea
chargesq, e.g., the constanth̃3

I 5h3
I /C3 and, equally, the

constantsh̃2
I , l̃2

I , and z̃2
I stay finite in the collapse limit.

This ‘‘conflict’’ obviously shows that the collapse limit an
the limit of small charges are not interchangeable.! Concern-
ing the constantsm i , we see that the expressionsm i2C3 are
finite; i.e., the constantsm i diverge likee21 in the collapse
limit. From Eqs. ~32! and ~39! it results then that in both
cases I and II we have

A~r<R![1. ~78!

If both ‘‘stirring’’ angular velocitiesv̄ I and v II are active
~have finite, nonzero values!, we havevA5v IAI1v II AII

5(v̄ I /C3)AI1v II AII 5v II AII in the collapse limit. We
therefore see that the important result by Brill and Cohen@8#,
that inside a rotating collapsing mass shell one has t
dragging of the inertial systems, transfers also to our hig
charged two-shell system. By a similar reasoning (v I50, if
v̄ I is finite, and scaling of all magnetic fields by proper tim
4-15
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t5t/C3;et instead of coordinate timet inside the mass
shell! we see that all ‘‘physical’’ magnetic fields vanish in
side the mass shell in the collapse limit, and therefore
detailed~finite! values of the constantsl2 , h2 , h3, andz2
are not of much interest in this limit.~Confined to the first
order of q, a comparable discussion was performed in@16#
and @17#: the ‘‘intrinsic’’ magnetic dipole moment vanishe
in the collapse limit, and only the ‘‘induced’’ dipole momen
survives.!

In the exterior region the essential nonzero integrat
constant in the collapse limit isl1

II 56(11a)2, which, with
Eq. ~54!, gives, for the angular momentum per mass para
eter ~usually denoted bya), JII /M54(11a)2R2v II . With
g1

II (r)54l1
II R/3r from Eq. ~35! in the collapse limit, the

magnetic field components read then

Br
II ~r!5

JII

M

2q

r
sinq cosq, Bq

II ~r!5
JII

M

q

r2sin2q.

~79!

Similarly, Eq. ~39! results in this limit in

A1
II ~r!5

8R2~11a!2

r3 S M2
q2

2r D . ~80!

Observing that up to the first order in the angular velocity
Reissner-Nordstro¨m coordinater coincides with the Boyer-
Lindquist radial coordinate, we see that Eqs.~79!, ~80! ex-
actly represent the Kerr-Newman field in lowest order ofJII

~see, e.g.,@18#, Chaps. 33.2–33.3!, as is expected accordin
to the no-hair theorem.
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APPENDIX: DETERMINATION OF THE INTEGRATION
CONSTANTS

Before we give explicit solutions of the system of th
eight linear continuity and discontinuity conditions for th
eight integration constantsm2 , m3 , l1 , l2 , h2 , h3 , z1, and
z2 in both cases I and II, we introduce some useful abb
viations:

P5
b2D1

2

4~D1
2 2g2!2 F31

D1
2 12g2

2gAD1
2 2g2

arccot
D1

2 22g2

2gAD1
2 2g2G ,

Q52
4b2

3D1
~D1

2 12g2!, ~A1!
10400
e

n

-

e

r
-

n

-

P̃52
D1

3

12~D1
2 2g2!2 F52

2g2

D1
2

1
3D1

2

2gAD1
2 2g2

arccot
D1

2 22g2

2gAD1
2 2g2G ,

Q̃5
4

3
D1

2 , ~A2!

K5
4b2D1

3d
1Pḡ2~Rd!1Qḡ̄2~Rd!, ~A3!

L52
4b2D1

3
AF2~Rd!1PRdḡ28~Rd!1QRd ḡ̄28~Rd!,

~A4!

K̃5 P̃ḡ2~Rd!1Q̃ḡ̄2~Rd!1
2D1

2

3ad
~â2a!, ~A5!

L̃5 P̃Rdḡ28~Rd!1Q̃Rd ḡ̄28~Rd!

1
2D1

2

3
FAF2~Rd!2

â~12a21g2!

ad
G , ~A6!

N5g2P@Ā2~RD1!2Ā2~Rd!#1g2Q@ Ā̄2~RD1!

2 Ā̄2~Rd!#1
b2g2

3d4 FC3S d2
g2

a D2~d2D1!G ,
~A7!

Ñ5
1

8
1g2P̃@Ā2~RD1!2Ā2~Rd!#1g2Q̃@ Ā̄2~RD1!

2 Ā̄2~Rd!#2
g2D1

6d4 FC3S d2
g2

a D2~d2D1!G .
~A8!

We start as in Sec. III B with case II: The linear homog
neous equations~48!, ~50!, and~52! can be easily solved fo
l2 , h2, andz2 as functions ofh3 ~noticing that the determi-
nant of the system of equations~50! and ~52! is just the

Wronskian of Eq. ~34!: (ḡ2Rḡ̄282 ḡ̄2Rḡ28)ur5RD1
5

23D1 /b):

l2
II 5b2D1h3

II , h2
II 5Ph3

II , z2
II 5Qh3

II . ~A9!

Equations~47!, ~49!, and ~51! constitute then a complet
system of linear equations for the constantsl1 , z1, andh3,
with the solutions

l1
II 5

2Dt

4~Det! II
@Lḡ̄1~Rd!2KRd ḡ̄18~Rd!#, ~A10!
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z1
II 5

Dt

3d~Det! II
@~12a21g2!K1L#,

~A11!

h3
II 5

Dt

3d~Det! II
@~12a21g2! ḡ̄1~Rd!

1Rd ḡ̄18~Rd!#, ~A12!

where (Det)II is the 333 determinant of the system

3d~Det! II

Dt
5F2~g22ad!

d3
1

3ad

4DtG @Lḡ̄1~Rd!2KRd ḡ̄18~Rd!#

1
b2g2

Dt
@~12a21g2! ḡ̄1~Rd!1Rd ḡ̄18~Rd!#

18g2Ā̄1~Rd!@~12a21g2!K1L#. ~A13!

The remaining integration constantsm2 andm3 can easily be
calculated from the continuity conditions for the draggi
function A(r ) at the positionsr 5R and r 5a:

1

8
m2

II 5C3

ad2g2

3d4 l1
II 1C3g2Ā̄1~Rd!z1

II

2g2Fb2~d2D1!

3d4
1PĀ2~Rd!1QĀ̄2~Rd!Gh3

II ,

~A14!

1

8
m3

II 5
1

8
m2

II 1g2@PĀ2~RD1!1QĀ̄2~RD1!#h3
II .

~A15!

In case I we get, from Eq.~46!, l1
I 5(â/a)l2

I . Similar to the
situation in case II, the linear homogeneous equations~50!,
~55! @together with the equivalent to Eq.~45!#, and~56! can
again be solved forl2 , h2, andz2 as functions ofh3 and
(C32m3):

l2
I 5b2D1h3

I 2
D1

2

2
~C32m3

I !,

h2
I 5Ph3

I 1 P̃~C32m3
I !, z2

I 5Qh3
I 1Q̃~C32m3

I !.
~A16!
10400
Since in Eqs.~49! and~51! then also the integration consta
m3 appears, these equations have to be combined with
equivalent of Eq.~A15!:

Nh31g2C3Ā̄1~Rd!z11Ñ~C32m3!5
1

8
C3 . ~A17!

These three equations constitute a complete system of li
equations for the constantsz1 , h3, andm3,

z1
I 5

C3

8~Det! I H ~ L̃K2K̃L !2
4b2g2

3ad
@~12a21g2!K̃1L̃#J ,

~A18!

h3
I 5

C3

8~Det! I
@ L̃ ḡ̄1~Rd!2K̃Rd ḡ̄18~Rd!#, ~A19!

m3
I 5C31

C3

8~Det! I H @Lḡ̄1~Rd!2KRd ḡ̄18~Rd!#

1
4b2g2

3ad
@~12a21g2! ḡ̄1~Rd!1Rd ḡ̄18~Rd!#J ,

~A20!

where (Det)I is again the 333 determinant of this system o
equations:

~Det! I5C3g2Ā̄1~Rd!

3H ~ L̃K2K̃L !2
4b2g2

3ad
@~12a21g2!K̃1L̃#J

2
4b2g2

3ad
Ñ@~12a21g2! ḡ̄1~Rd!1Rd ḡ̄18~Rd!#

1N@ L̃ ḡ̄1~Rd!2K̃Rd ḡ̄18~Rd!#

2Ñ@Lḡ̄1~Rd!2KRd ḡ̄18~Rd!#. ~A21!

It is noteworthy that the constantsK, L, K̃, andL̃ are free of
arccot terms, but all integration constantsl i ,h i ,z i ,m i con-
tain such terms. The remaining constantm2

I can in principle
be calculated from the equivalent of Eq.~A14!.
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