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Generating non-Gaussian maps with a given power spectrum and bispectrum
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We propose two methods for generating non-Gaussian maps with a fixed power spectrum and bispectrum.
The first makes use of a recently proposed rigorous, nonperturbative, Bayesian framework for generating
non-Gaussian distributions. The second uses a simple superposition of Gaussian distributions. The former is
best suited for generating mildly non-Gaussian maps, and we discuss in detail the limitations of this method.
The latter is better suited for the opposite situation, i.e., generating strongly non-Gaussian maps. The en-
sembles produced are isotropic and the power spectrum can be jointly fixed, however, we cannot set to zero all
other higher order cumulanfan unavoidable mathematical obstrucjiowe briefly quantify the leakage into
higher order moments present in our method. We finally present an implementation of our code within the
HEALPIX package.
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[. INTRODUCTION Gaussian maps. We shall address the first of these problems
with reference to the recent work @], in which a rigorous,

In most inflationary scenarios the fluctuations in the mat-nonperturbative, Bayesian framework for generating non-
ter fields generated by the oscillating inflaton display GaussGaussian distributions was proposed. We also propose an
ian statistics. This requires the temperature fluctuations in thalternative PDF, a simple superposition of Gaussian distribu-
cosmic microwave backgroun@MB) to be Gaussian dis- tions. We then address the second problem with a rather
tributed to a very high degree of accuracy at sufficientlysimple trick for creating the required mode correlations en-
large angular scales. On smaller scales the effect of late timi@rcing isotropy.
nonlinear evolution will introduce a certain amount of non-  This paper is organized as follows. In Sec. Il we introduce
Gaussianity in the CMB. The study of the non-Gaussianitytwo exact, nonperturbative univariate distributions which
of CMB fluctuations is therefore crucial to both the under- produce non-Gaussian ensembles with fixed variance and
standing of the fundamental processes generating the fluctugrewness. In Sec. 11l we derive the higher moments for both
tions and to the understanding of the various foreground angistributions. Section IV shows how we can employ the non-
astrophysical contributions. Gaussian 1D distributions to generate isotropic ensembles of

In addl’eSSing an issue of this nature with reference tQ’lon_Gaussian maps Wlth given angu'ar power Spectra and
observational strategies it is important to be able to simulatgjispectra. We show examples of such distributions in Sec. V
CMB maps with non-Gaussian signatures. These can then kg discuss the results and applications of this work in
used in the refinement of estimation techniques and the desgc. vI.
sign of evermore accurate satellite, balloon-borne, and
ground-based experiments. It seems therefore desirable to
develop fast algorithms fo.r simulating not only Gaussian sig- Il EXACT NON-GAUSSIAN 1D DISTRIBUTIONS
nals(as extensively done in the past, e[d]), but also maps
allowing for non-Gaussianity. In the past the bispectrum has In this section we introduce two classes of distributions
proved an invaluable tool in studying CMB non-Gaussianitywhich can be employed to generate random numbers with
(see for instanc@2-7]). Also algorithms generating Gauss- exactly specified second and third moments. The first was
ian maps usually use the power spectrum as a controllinghtroduced as a nonperturbative, non-Gaussian likelihood in
parameter. We therefore seek to complement the earlier worthe Bayesian analysis of the CAT-VSA d4#. It was origi-
by producing an algorithm for generating non-Gaussiamally introduced, in a theoretical context, in the study of
maps with a fixed power spectrum and bispectrum. As aff-the-ground state perturbations in the inflaton fi¢&l.
matter of fact, the algorithm we shall propose can be exThe second class of distributions is ad hocsolution ob-
tended to fix simultaneously any higher order moment, natutained by requiring the simplest superposition of Gaussian
rally at a computational cost. PDFs that results in a distribution with a given second and

The difficulty in generating non-Gaussian maps is in parthird moments.
due to the lack of suitable probability distribution functions  Both PDF functions can be used to generate distributions
(PDFs with the required parametrization, and in part due towith fixed power spectra and bispecteand optionally higher
the requirement that nonzero higher moments require therder spectra The first is best suited for mild non-
multivariate generation of correlated sets of modes. The latSaussianity; the latter for strong departures from Gaussian-
ter is imposed by statistical isotropy in all cases except irity.
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A. The nonperturbative harmonic likelihood
We now summarize the method of Rooétzal.[7,9]. Let
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here and the advantage of using theover cumulants is that
setting all but a finite number of them to zero still leads to

x represent a general random variable. We build its distribuProper distributions. In some sense ifaig are nonperturba-
tion from the space of wave functions which are energyfiVé generalizations of cumulants.

eigenmodes of a linear harmonic oscillatsee, e.g.[10]).
We have

PX) =2, anihn(X), (1)

wheren labels the energy spectruf,=%w(n+1/2), and

X 7)(2/40'2
Un(X)=CrH, \/50_ € 0, (2
0
with normalization fixingC,, as
Ch= . ()
"2t 2may) Y2

The only constraint upon the amplitudesg is

> lanl?=1, 4

which can be eliminated explicitly by imposing the condition

ao="\/ 1_21: |an|2- 5

ag is the variance associated with tf@@aussiah probability

distribution for the ground stathy,|?. We define Hermite
polynomialsH,(x) as

2 dX 2
Ha(x)=(=1)"e" —e™*, (6)
dx"
with normalization
f e X°H (X H (x)dx=2"7"n1 6, . (7)
The most general probability density is thus
o X420} x ]2
P=|y|*=——|a,C,H (—) : (8)
|lzb| \/E n~n''n \/50’0

The ground statéor zero-point fluctuations are Gaussian,

but any admixture with other states will be reflected in a

non-Gaussian distribution function.
It can be shown9,7] that thea,, reduce to the cumulants
kn, (Up to a multiplicative constaptfor mild, perturbative,

The above probability density may be easily applied to
generate a centered distribution with a fixed variance and
skewness. Let us start with the PDF

exp( —x%/20?) ay X
P(X)= ———— 2—770- agt EH]' E
ey L>+ﬁH (_) ©
V8 “\\20) Va8 ?\ 2o/

in which all the «,, are real and we have set al,=0 for
n>3. We then calculate moments around the origin defined
as

n=(x"= Jix”P(x)dx. (10

For a normalized density we have,= a3+ ai+ a3+ aj
=1 and the first three moments given by

p1=(202) Y4 2005+ \2agar + Basas),
_ 20 2 2 2 2
mo=0(apg+3ai+bas+ 7a3+2\/§a0a2

+ 2\/601151/3), (12)

93
= Qrag

V2

3
3= (202)3/2( Ta0a1+ bajay+
2

+ \/§aoa3) .

The aim is to have a centered distribution wjith=0. This
can be achieved by setting;=0 anda,=0 in which case
we are left with the system

1=a3+ a3,
po=o*(ag+7as), (12)
pa=(20%)%%Bagas.
Setting ap= m, we then solve folo and a4 for par-

ticular values of the required second and third momeuts
and us,

non-Gaussianity. This is achieved by reducing the probabil-
ity density(8) to an asymptotic expansion around the Gauss-
ian distribution function(the so-called Edgeworth expan-

sion). Such asymptotic expansions on the space of

M3
2\6(1-a3) s’

3:

orthonormal Hermite polynomials suffer from the fact that 1
truncations at a finite order of cumulants lead to pseudodis- a’=~ B2 4 , (13
tributions which are not positive definite. This is not the case 6| o2
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FIG. 1. The left panel shows the distributi®{x) for various values for the relative skewness parame%euf,lﬂg/z (0.0<s=<0.7). The
right panel shows the distributiofi(x) for 0.0<s<10.0.

a problem we deal with numerically. Hence we arrive at a 1DIn this case the first three moments of the distribution are
centered distribution with fixed variance and skewness.  given by

By restricting ourselves to only two parameters we have
in fact constrained the space of possible distribution func-
tions. This is reflected in the fact that we cannot generate
distributions with any given variance and skewness. By

; ; ; 1
studying the function for the relative skewness o= TEETR [2+’80+260ﬁi(1+30)]’ (17)

_ns_2\6(1-ad)ay

/-LJ.:O!

2 (1+6a2)32 BoBY(B5—1)
L . . . S Y
it is easy to see that the maximal relative skewness is
s=+0.739 at az=+0.278. (15  In contrast to the previous distribution the valuesaé now

effectively unconstrained. In practice we find that in this case
In general our method can generate higher values(since  the range ofs is limited only by numerical effects in the
it can generate any distributipnbut for that purpose one random number generation process.
needs more parametetis,. The generalization of the above  Figure 1 compares the distributiof®x) and T(x) for
construction for more parameters is trivial if somewhat te-various values of the relative skewnes3he former may be
dious. considered somewhat “unphysical” since the minima in the
functions will tend to produce “holes” in the distribution of
B. A tailor made distribution function variates for each particular set of momefiss is not sur-
o ... prising since the PDF originates from the wave function of
One way to overcome the limitations of the distribution 5, gscillatoy. We should point out though that the present
described above without increasing the number of paramgyercise is aimed at producing maps for the sole purpose of
eters is to build a distribution by “summing” Gaussians. In tegting statistical tools and not to reproduce theoretically mo-
fact it is obvious that the distributioR(x) can be well ap-  {iyated models of the cosmic microwave backgrounds. The
proximated by a series of uncentered Gaussian functions %fdaptation of the method to more suitably physical non-
different heights and widths. Consider, for example, the disa,ssian distribution functions such as the PLiK) above
tribution obtained by the superposition of three Gaussian disig trivial, as we have shown.
tributions A word of caution is in order concerning the numerical
aspects of generating univariate random numbers with a
[e7x2+ef(xfﬁoﬁl)z_’_Boef(x+ﬁl)2]. given non-Gaugsian PDF. The Jacobian required to generate
the random variables using the transformation method is not
(16 easily computable in the case of the PDIHs) and T(X).

1
T -
N o s
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We advocate, instead, the use of the well known rejectiorbutions. As a result, when a likelihood constructed using
method[11] to generate the required one dimensional ranP(x) is applied to CMB maps as in Rocles al. it probes a

dom variables. combination of non-Gaussianitgnd anisotropy. Consider,
for instance, the generation of a full sky map with tempera-
IIl. LEAKAGE INTO THE HIGHER MOMENTS ture fluctuations AT/T)(n) by means of its spherical har-

L - monic components:
The distributions we have generated will in general have

nonzero moments at all orders, a feature typical of non- AT
Gaussian PDFE19]. For the two distributions we use here 7(n)=|2 AmYim(Nn). (20
we can derive general expressions for all higher order mo- m

mentsun. In principle our method can be extended to fix If we seta;#0 in the above distribution and use it to gen-

these extra degrees of freedom by introducing extra param); ; 3 ;
eters in the initial distributions, although this would be at thg%{ggl 6)13>S§t00f0f9?(?rl122 OW(TS(\;\;IrI(I) pr;avgn«tz%eagih)ef aénvt\jlltf:m_
m . L] L]

expense of increasingly more complicated analytical So'”boses “selection rules” upon correlators, in this case
tions for the moments. Given the signal to noise limitations ' '
of current and future CMB experiments in measuring higher o1, g

order moment§l5] we concentrate on fixing only the second (). m, & m,a,m >=( )
and the third order moments here and discuss how the higher thEREEoAm o my mg
moments affect their statistics. . . )

The fourth and sixth order moments are of particular in-Vhere the quantity (.. ) is thewigner 3J symbol, and the
terest since they generate the sample variance and hence §REfficientsB, ,, are the bispectrurtabbreviated td, for
cosmic variance in the observed power spectrum and bispethe casel;=1,=13). Hence the distribution we have just
trum of the realizations. Fon even we find the following generated is not only non-Gaussian but also automatically

Bl (21)

relatively simple expressions for the moments: anisotropic since all third order correlators except {fay,)
are zero.
_(20)n o[ 14N If we are to impose isotropy, we must necessarily have
Mn= \/; %o 2 correlateda,,,, a feature not allowed by the method of
Rochaet al. In the present context a correlated seiagf is
5 3+n 5+n\ 4 [7+n equivalent to a series of coupled harmonic oscillators. The
+ag) 3| —— | -4l —— |+ 30— ]|, obvious way to achieve the necessary correlations would be

to use the Hilbert space of coupled harmonic oscillators to
(18 set up the most general multivariate distribution, but this
proves to be impractical. Here we introduce a simple but

for the distributionP(x) and crucial modification which restores isotropy.

T[(1+n)/2)] , 14n 1 We propose to set up an isotropic ensemble in two steps.
pp=———| e P1B,M (_ _,Igi) First we generate an anisotropic ensemble by drawing,all
(2+ o)\ 2 2 from a Gaussian distribution with variance spectr@m ex-
1+n 1 cept for them=0 mode. The latter is given one of the PDFs
+e BBIM (_ = BeB% +1|, (190  described in the previous section, with variaend skew-
2 2 ness
for the distributionT(x) whereM(a,b,c) are the confluent | 1 1\ !
hypergeometric functiongl2]. Unfortunately the nonlinear S,=(O 0 0) B, . (22

dependence of the parameters«,, andg, on the required

ensemble moments complicates the analytical form for thq_he appropriate PDF is enforced using the rejection method,

. 2 2 .
sample variances (u2) ando(us). In practice t_herefo_re as described above. For each seCpfand B, we solve the
the sample variances would be calculated numerically via the : . .
; : : séystems given by Eq$12) or (17) numerically to obtain the
above expressions and making use of the solutions to threquired values for the parameters oy, andas or 8, and
i - i i 0 3 0
systems(12) and(17) or via Monte-Carlo simulations. B1. We label the resulting ensemlde for anisotropic.

We then apply a random rotation to each realization in the
IV. GENERATING NON-GAUSSIAN MAPS WITH FIXED ensemblea, with a uniform distribution of Euler angles. In

ANGULAR POWER SPECTRUM AND BISPECTRUM this way we arrive at an isotropic ensemble of temperature

We now propose to apply this method to the generation of"aPs, labeled by, with spherical harmonic coefficients
non-Gaussian maps with fixed angular power spect@im
and bispectrunB, . The broader context is the generation of bl => D'mm,(ma'm, (23
non-Gaussian signals to be used in simulations of upcoming m’
satellite experiments.

The distributions of the previous section have the disadwhere D}, . is the rotation matrix, and) denotes the 3
vantage that they can only generate non-Gaussian 1D distrizuler angles. The 2-point correlators are
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Gaussian

FIG. 2. HEALPIX map of a noiseless, Gauss-
ian CMB realization at COBE beam resolution
(normalized temperature unitsThe map was
generated using a standafdCDM power spec-
trum (QA=0.7,Qcpm=0.25,Q0,=0.05,h
=0.7, andng=1.0).

I I . (note that with one inder set to zero the rotation matrices
y=2 (D} (D} w(@)a(@,md )a  reduce to spherical harmonics, one of the Euler angles be-
1m3 v 2 ? coming irrelevant Again we have recovered the original
(24) bispectrum withB|=B}.
Hence the procedure we have defined produces the de-
sired isotropic ensemble with a fixed angular power spec-
hence we hav€|=C?2. trum and bispectrum. The random rotations produce the nec-
The 3-point correlators are zero for any correlator involv-8Ssary correlations between tag, coefficients to ensure
ing differentl. However we now have isotropy. However, by means of this procedure, we are un-
able to generate maps with nonvanishing irt&ispectrum
coefficients(as studied iff3—6]).
Note that we can also drawall a;, from the 1D PDFs

(bllmlblﬁzm2

= 5I1I25m1m2CI1!

. [ I |
(b,m1b|m2b,m3>i— 2 , <Dm1m1(Q)szmg(Q)Dm3mg introduced above, and then subject them to a random rota-
MMM tion. The argument presented here still goes through, and an
% (Q)>Q<almialméalmé>a isotropic ensemble is still obtained. However, as we shall see
later, the cosmic variance in the estimators for @endB,
:<D|mlo(Q)D|mzo(Q)D|m30(Q)>QXSI will be larger in this case.

= (Y, (D) Y1 (D) Y1 (D))o X S
V. SIMULATED NON-GAUSSIAN MAPS

[ | I |
:( )( S We now present CMB temperature maps using the pre-
0 0 0\m m ms scriptions detailed in the previous sections. We generate full
( | | | ) sky maps pixelized using theeAaLPIX [1] package at pixel-
[

(25)  ization levels 128 and 512, equivalent to 196608 and
3145728 pixels, respectively. We generate maps which in-

mp my; my

Non—Gaussian s=0.5

FIG. 3. A non-Gaussian realization at the
same resolution generated with the saff@DM
power spectrum and a “white” bispectrum with
s=0.5. The PDFT(x) was used as the non-
Gaussian generator.
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Non—Gaussian s=2.0

-

. FIG. 4. A similar realization witrs=2.0.

clude a cosmological signal in the form of a standa@DM  realization §=2.0) with the same power spectrum and Mi-
power spectrum computed usirgvBrFAsT [13] and finite ~ crowave Anisotropy ProbéMAP) [17] resolution.
beam sizes. Instrument specific noise and physically moti- We first make use of our maps to examine possible effects
vated profiles for the bispectrum will be treated in a furtherof non-Gaussianity upon estimation of the power spectrum.
work [14]. For this purpose we compare the observed power

For simplicity we shall assume a bispectrum which is |
fixed relative to the power spectrutie., B=sCG"?) with a cobs_ 1 " -
ratio which is the same for all scalése., with 5=s con- bT2I4+1 & |aml, (26)
stan). This is a rather artificial assumption since in practice

the host of nonlinear, secondary, and foreground contribu, the non-Gaussian ensembles with that of the usual Gauss-
tions to the CMB [15] and possible primordial non- jan ensembles. Different PDFs will produce ensembles with
Gau55|an!ty will arise at different angulg( scales_. Theoretiyifterent cosmic varianceffor the powey and in particular
cally motivated bispectra and the addition of instrumente cosmic variance will be different from that of Gaussian

specific hoise will be dlscugsed.m a further wofld], and ~ opgemples, Assuming the, modes to be Gaussian distrib-
are straightforward to obtain with our method at no extra

computational cost. We use both the PDFs discussed abO\%;Eﬁ.dhthf3 Igower specltrLIJm .W'HI have %2”1 Q|str|but|on
to generate the 1D distributions required for the productionW ich yields a particularly simple sample variance
of the initial anisotropic ensembles.

In Fig. 2 we show a Gaussian realization of a standard 2/ ~obs) _

- . (e %)=

cold dark matter model with a cosmological constant
(ACDM) model at Cosmic Background Exploré€EOBE)
Differential Microwave ratiometeDMR) [16] resolution.  for zero noise and infinitely thin beafsee, e.9.[18,19). In
The equivalent non-Gaussian realizations with the saméhe non-Gaussian case the variance will assume a more com-
power spectrum are shown in Figs. 3 and 4 which are genplicated form due to a nonzero contribution from the fourth
erated using the PDF(x) and values for the parameteof  order cumulant(or connected moments in analogy to the

0.5 and 2.0, respectively. Figure 5 shows a non-Gaussiaconnected Green’s functions of field thepry

2¢?
(21+1)°

(27)

non—Gaussian s=2.0

FIG. 5. Same as above but at the resolution of
the MAP experiment.
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FIG. 6. The estimated power spectrum for ensembles of 10 pure signal maps. The solid line is the power spectrum of & &Bhdard
model ,=0.7,Qcpu=0.25,0,=0.05,h=0.7, andhs=1.0). The dotted lines show the extent of cosmic variance of the averaged power
for the respective Gaussian ensemble. The short dashed line is for an ensemble generated using the ditxiputitns=0.5. The short
dashed dotted line is fa=0.5 but generated usinf(x) and the long dashed dotted line is fbfx) with s=5.0. The ensembles in the left
panel were generated using only #yg modes as the non-Gaussian seeds in the original anisotropic, uncorrelated ensembles whereas in the
right panel all the modes were originally non-Gaussian.

02 (o) = K4t 2u2. (28) We now turn to the issue of the detectability of non-
Gaussian bispectra, making use of our maps. In Figs. 7 and 8

In many motivated examples non-Gaussian processes displ¥§¢ Show the distribution of the value for the observed
higher cosmic variance in the power; an example is textur®iSpectrum(2]
models as studied if20].

In Fig. 6 we show the average power spectrum for an Bobs_ E (
ensemble of 10 maps for mild and extreme values for the ' mymymg
relative skewness parametrThe maps do not include any
noise contribution or beam effects. The right panel shows thas measured from 20 000 realization ensembles. Our Wigner
average power for maps where al|,, modes are non- coefficients are calculated using the recursive relations of
Gaussian in the original anisotropic, uncorrelated ensembleéschultenet al. [21] and are accurate to>3000.

The left panel instead is for the case where only dhgof We show the histograms for multipolés-2,4,6, and 8

the original modes are non-Gaussian. The dotted line showand for values o6=2.0 and 0.5. We used the distribution
the extent of the 1-sigma cosmic variance for an equivalent (x) to assign non-Gaussian values to all 8yg modes. It is
Gaussian ensemble. interesting to note that the sample variance of the estimator

We see that the sample variance of the power for the°"Sis reduced in the non-Gaussian case with respect to that
non-Gaussian variables is comparable to that of its Gaussiasf the Gaussian ensemble. This shows that the contribution
counterpart for lows and grows for a larger value of the from the connected moments to the non-Gaussian patt;of
relative skewness. This dependence is expected since Vi negative and in particular
know thatk,(o, aqg,a3) =k4(S,C)). Note that the isotropiz-
ing rotation does not affect ensemble averages, so that the | k6| > 15k 4p10+ 93, (30
sample variances of estimators in the isotropic ensemble
trace the variances of the 1D distributions generating theonfirming that the leakage into higher orders is not negli-
non-Gaussianity. In general the contribution from the con-gible for both PDFs.
nected moments can be derived analytically since they can The implications of this result are interesting. It seems
be expanded in a series of momefit8]. In this case though that, for the type of non-Gaussianity which we have gener-
the solution fora(u,) in terms ofC, is very contrived and ated, when searching for non-Gaussianity and armed with a
has no simple expression as the one above for the Gaussigingle realization, we could only rely on thejectionof the
case. Numerically estimation on a case by case basis willon-Gaussian hypothesis by observing modes whose bispec-
give a more feasible determination of the sample variance afa are (counterintuitively too large for them to be non-
the estimators being used. Gaussian. Conversely if we were to measure bispectra which

Lol ol
am A8 29
m, m, mg/ M MMs @9
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FIG. 7. Histograms for the measured value of the estirrﬁfB? for 20 000 realizations. The solid line corresponds to the non-Gaussian
ensemble generated using the distribufigix) with a value ofs=0.5 and the dashed line corresponds to the Gaussian ensemble.

are consistently too close to zero for enoligie could reject VI. DISCUSSION
Gaussianity in favor of non-Gaussianity. Even though this

remark may sound counterintuitive it is the basis of the resulgt
in [3] (in which Gaussianity was rejected on the basis of g

In this paper we proposed a method with which to gener-
e non-Gaussian maps with fixed power spectrum and
spectrum. Our strategy is as follows. We generate these

low x?). ; ; i i
maps in harmonic space, and give each of the modes, inde-

For complete_nesosbswe haggs displayed in Table | all thesengently, a 1D non-Gaussian PDF. The resulting maps are
results concernin@; ™" and By in both the Gaussian and anisotropic, but a random rotation then restores the ensemble
non-Gaussian ensembles as discussed in the previous pafgetropy. We proved that the power spectrum and bispectrum

graphs. of the isotropic ensemble is simply related to the variance
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FIG. 8. Similar to the previous plot but with=2.0.
TABLE I. The observed statistics for the first 10 even multipoles for both a Gaussian and non-Gaussian noiseless ensemble.
I CI (CIObS)G (C?bS)NG BI (BIObS)G (BIObS)NG
2 892.729 890.716 892.590 —4938.244 —325.169 —6376.174
4 259.111 258.795 257.526 426.451 —97.583 559.303
6 120.751 120.684 121.219 —160.554 —-4.521 —123.481
8 70.419 70.401 70.388 13.399 —11.157 42.092
10 46.657 46.656 46.687 —27.442 3.777 —18.385
12 33.704 33.793 33.783 5.682 —8.440 9.484
14 25.713 25.674 25.763 —6.365 —5.433 —5.449
16 20.419 20.480 20.383 1.775 0.546 3.389
18 16.747 16.737 16.730 —4.908 —-0.757 —2.245
20 14.084 14.087 14.077 2.081 0.431 1.563
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and skewness of the 1D PDFs employed. We then proposembming experiments. As we have shown it is possible to
two different PDFs for which the variance and skewness magenerate high resolution non-Gaussian maps with this
be fixed independently. One is based upon the Hilbert spaa@ethod. However they are computationally more expensive
of an harmonic oscillator; the other upon a superposition oto produce than Gaussian maps, specifically due to the ran-
Gaussian functions. In both cases we worked out the algebi@m rotation to which they must be subject. Currently the
relating the pal’ameters Controlling the distributions and theotation is carried out iri_space which requires the compu-
variance and skewness. We then drew our random numbetgtion of the rotation matrix elemenf2]. This avoids sam-
numerically using a rejection method. pling problems which would arise if it were carried out in
Even though we only considered the generation of mappixel but requires increasingly long computation times for
with a fixed power spectrum and bispectrum we stress thghcreasingl. The generation of a single realization at MAP
the extension of our method for higher order moments igesolution(e.g., Fig. 5 takes approximately 10 minutes on a
straightforward, even though it has its computational costssingle processor 500 MHz Alpha workstation. On the other
Increasing the family of parameters describing the mothepand the real bottleneck is likely to be at the analysis stage,
1D PDF allows one to fix the higher order cumulants. Werather than in the simulation of maps. Sums involving
should point out here that our method is independent of thgyigner coefficients become computationally intensivé ias
particular form of the 1D PDF and can therefore be appliedncreased.
to the simulation of any type of non-Gaussianity. Once again
a random rotation restores isotropy, and the isotropic higher-
order correlators may be simply related to the cumulants of
the original PDFs.
We close with an evaluation of the efficiency of our We would like to thank P. Ferreira and G. Rocha for
method when meeting the ever improving resolutions of up-useful discussions.
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