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Generating non-Gaussian maps with a given power spectrum and bispectrum
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We propose two methods for generating non-Gaussian maps with a fixed power spectrum and bispectrum.
The first makes use of a recently proposed rigorous, nonperturbative, Bayesian framework for generating
non-Gaussian distributions. The second uses a simple superposition of Gaussian distributions. The former is
best suited for generating mildly non-Gaussian maps, and we discuss in detail the limitations of this method.
The latter is better suited for the opposite situation, i.e., generating strongly non-Gaussian maps. The en-
sembles produced are isotropic and the power spectrum can be jointly fixed, however, we cannot set to zero all
other higher order cumulants~an unavoidable mathematical obstruction!. We briefly quantify the leakage into
higher order moments present in our method. We finally present an implementation of our code within the
HEALPIX package.
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I. INTRODUCTION

In most inflationary scenarios the fluctuations in the m
ter fields generated by the oscillating inflaton display Gau
ian statistics. This requires the temperature fluctuations in
cosmic microwave background~CMB! to be Gaussian dis
tributed to a very high degree of accuracy at sufficien
large angular scales. On smaller scales the effect of late
nonlinear evolution will introduce a certain amount of no
Gaussianity in the CMB. The study of the non-Gaussian
of CMB fluctuations is therefore crucial to both the unde
standing of the fundamental processes generating the fluc
tions and to the understanding of the various foreground
astrophysical contributions.

In addressing an issue of this nature with reference
observational strategies it is important to be able to simu
CMB maps with non-Gaussian signatures. These can the
used in the refinement of estimation techniques and the
sign of evermore accurate satellite, balloon-borne,
ground-based experiments. It seems therefore desirab
develop fast algorithms for simulating not only Gaussian s
nals~as extensively done in the past, e.g.,@1#!, but also maps
allowing for non-Gaussianity. In the past the bispectrum
proved an invaluable tool in studying CMB non-Gaussian
~see for instance@2–7#!. Also algorithms generating Gaus
ian maps usually use the power spectrum as a contro
parameter. We therefore seek to complement the earlier w
by producing an algorithm for generating non-Gauss
maps with a fixed power spectrum and bispectrum. A
matter of fact, the algorithm we shall propose can be
tended to fix simultaneously any higher order moment, na
rally at a computational cost.

The difficulty in generating non-Gaussian maps is in p
due to the lack of suitable probability distribution functio
~PDFs! with the required parametrization, and in part due
the requirement that nonzero higher moments require
multivariate generation of correlated sets of modes. The
ter is imposed by statistical isotropy in all cases excep
0556-2821/2001/63~10!/103512~10!/$20.00 63 1035
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Gaussian maps. We shall address the first of these prob
with reference to the recent work in@7#, in which a rigorous,
nonperturbative, Bayesian framework for generating n
Gaussian distributions was proposed. We also propose
alternative PDF, a simple superposition of Gaussian distri
tions. We then address the second problem with a ra
simple trick for creating the required mode correlations e
forcing isotropy.

This paper is organized as follows. In Sec. II we introdu
two exact, nonperturbative univariate distributions whi
produce non-Gaussian ensembles with fixed variance
skewness. In Sec. III we derive the higher moments for b
distributions. Section IV shows how we can employ the no
Gaussian 1D distributions to generate isotropic ensemble
non-Gaussian maps with given angular power spectra
bispectra. We show examples of such distributions in Sec
and discuss the results and applications of this work
Sec. VI.

II. EXACT NON-GAUSSIAN 1D DISTRIBUTIONS

In this section we introduce two classes of distributio
which can be employed to generate random numbers w
exactly specified second and third moments. The first w
introduced as a nonperturbative, non-Gaussian likelihood
the Bayesian analysis of the CAT-VSA data@7#. It was origi-
nally introduced, in a theoretical context, in the study
off-the-ground state perturbations in the inflaton field@8#.
The second class of distributions is anad hocsolution ob-
tained by requiring the simplest superposition of Gauss
PDFs that results in a distribution with a given second a
third moments.

Both PDF functions can be used to generate distributi
with fixed power spectra and bispectra~and optionally higher
order spectra!. The first is best suited for mild non
Gaussianity; the latter for strong departures from Gauss
ity.
©2001 The American Physical Society12-1
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A. The nonperturbative harmonic likelihood

We now summarize the method of Rochaet al. @7,9#. Let
x represent a general random variable. We build its distri
tion from the space of wave functions which are ene
eigenmodes of a linear harmonic oscillator~see, e.g.,@10#!.
We have

c~x!5( ancn~x!, ~1!

wheren labels the energy spectrumEn5\v(n11/2), and

cn~x!5CnHnS x

A2s0
D e2x2/4s0

2
, ~2!

with normalization fixingCn as

Cn5
1

~2nn!A2ps0!1/2
. ~3!

The only constraint upon the amplitudesan is

( uanu251, ~4!

which can be eliminated explicitly by imposing the conditio

a05A12(
1

`

uanu2. ~5!

s0
2 is the variance associated with the~Gaussian! probability

distribution for the ground stateuc0u2. We define Hermite
polynomialsHn(x) as

Hn~x!5~21!nex2 dx

dxn
e2x2

, ~6!

with normalization

E
2`

`

e2x2
Hn~x!Hm~x!dx52np1/2n!dnm . ~7!

The most general probability density is thus

P5ucu25
e2x2/2s0

2

A2p
UanCnHnS x

A2s0
D U2

. ~8!

The ground state~or zero-point! fluctuations are Gaussian
but any admixture with other states will be reflected in
non-Gaussian distribution function.

It can be shown@9,7# that thean reduce to the cumulant
kn ~up to a multiplicative constant! for mild, perturbative,
non-Gaussianity. This is achieved by reducing the proba
ity density~8! to an asymptotic expansion around the Gau
ian distribution function~the so-called Edgeworth expan
sion!. Such asymptotic expansions on the space
orthonormal Hermite polynomials suffer from the fact th
truncations at a finite order of cumulants lead to pseudo
tributions which are not positive definite. This is not the ca
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here and the advantage of using thean over cumulants is tha
setting all but a finite number of them to zero still leads
proper distributions. In some sense thean are nonperturba-
tive generalizations of cumulants.

The above probability density may be easily applied
generate a centered distribution with a fixed variance
skewness. Let us start with the PDF

P~x!5
exp~2x2/2s2!

A2ps
Fa01

a1

A2
H1S x

A2s
D

1
a2

A8
H2S x

A2s
D 1

a3

A48
H3S x

A2s
D G 2

, ~9!

in which all thean are real and we have set allan50 for
n.3. We then calculate moments around the origin defin
as

mn5^xn&5E
2`

`

xnP~x!dx. ~10!

For a normalized density we havem05a0
21a1

21a2
21a3

2

51 and the first three moments given by

m15~2s2!1/2~2a1a21A2a0a11A6a2a3!,

m25s2~a0
213a1

215a2
217a3

212A2a0a2

12A6a1a3!, ~11!

m35~2s2!3/2S 3

A2
a0a116a1a21

9A3

A2
a2a3

1A3a0a3D .

The aim is to have a centered distribution withm150. This
can be achieved by settinga150 anda250 in which case
we are left with the system

15a0
21a3

2 ,

m25s2~a0
217a3

2!, ~12!

m35~2s2!3/2A3a0a3 .

Settinga05A12a3
2, we then solve fors and a3 for par-

ticular values of the required second and third momentsm2
andm3 ,

s35
m3

2A6~12a3
2!1/2a3

,

a3
25

1

6 S m2

s2
21D , ~13!
2-2



GENERATING NON-GAUSSIAN MAPS WITH A GIVEN . . . PHYSICAL REVIEW D63 103512
FIG. 1. The left panel shows the distributionP(x) for various values for the relative skewness parameters5m3 /m2
3/2 (0.0<s<0.7). The

right panel shows the distributionT(x) for 0.0<s<10.0.
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a problem we deal with numerically. Hence we arrive at a
centered distribution with fixed variance and skewness.

By restricting ourselves to only two parameters we ha
in fact constrained the space of possible distribution fu
tions. This is reflected in the fact that we cannot gener
distributions with any given variance and skewness.
studying the function for the relative skewnesss

s[
m3

m2
3/2

5
2A6~12a3

2!a3

~116a3
2!3/2

, ~14!

it is easy to see that the maximal relative skewness is

s560.739 at a3560.278. ~15!

In general our method can generate higher values ofs ~since
it can generate any distribution!, but for that purpose one
needs more parametersan . The generalization of the abov
construction for more parameters is trivial if somewhat
dious.

B. A tailor made distribution function

One way to overcome the limitations of the distributio
described above without increasing the number of par
eters is to build a distribution by ‘‘summing’’ Gaussians.
fact it is obvious that the distributionP(x) can be well ap-
proximated by a series of uncentered Gaussian function
different heights and widths. Consider, for example, the d
tribution obtained by the superposition of three Gaussian
tributions

T~x!5
1

~21b0!Ap
@e2x2

1e2(x2b0b1)2
1b0e2(x1b1)2

#.

~16!
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In this case the first three moments of the distribution
given by

m150,

m25
1

2~21b0!
@21b012b0b1

2~11b0!#, ~17!

m35
b0b1

3~b0
221!

21b0
.

In contrast to the previous distribution the value ofs is now
effectively unconstrained. In practice we find that in this ca
the range ofs is limited only by numerical effects in the
random number generation process.

Figure 1 compares the distributionsP(x) and T(x) for
various values of the relative skewnesss. The former may be
considered somewhat ‘‘unphysical’’ since the minima in t
functions will tend to produce ‘‘holes’’ in the distribution o
variates for each particular set of moments~this is not sur-
prising since the PDF originates from the wave function
an oscillator!. We should point out though that the prese
exercise is aimed at producing maps for the sole purpos
testing statistical tools and not to reproduce theoretically m
tivated models of the cosmic microwave backgrounds. T
adaptation of the method to more suitably physical no
Gaussian distribution functions such as the PDFT(x) above
is trivial, as we have shown.

A word of caution is in order concerning the numeric
aspects of generating univariate random numbers wit
given non-Gaussian PDF. The Jacobian required to gene
the random variables using the transformation method is
easily computable in the case of the PDFsP(x) and T(x).
2-3
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CARLO R. CONTALDI AND JOÃO MAGUEIJO PHYSICAL REVIEW D63 103512
We advocate, instead, the use of the well known rejec
method@11# to generate the required one dimensional r
dom variables.

III. LEAKAGE INTO THE HIGHER MOMENTS

The distributions we have generated will in general ha
nonzero moments at all orders, a feature typical of n
Gaussian PDFs@19#. For the two distributions we use her
we can derive general expressions for all higher order m
mentsmn . In principle our method can be extended to
these extra degrees of freedom by introducing extra par
eters in the initial distributions, although this would be at t
expense of increasingly more complicated analytical so
tions for the moments. Given the signal to noise limitatio
of current and future CMB experiments in measuring hig
order moments@15# we concentrate on fixing only the secon
and the third order moments here and discuss how the hi
moments affect their statistics.

The fourth and sixth order moments are of particular
terest since they generate the sample variance and henc
cosmic variance in the observed power spectrum and bis
trum of the realizations. Forn even we find the following
relatively simple expressions for the moments:

mn5
~2s!n

Ap
Fa0

2GS 11n

2 D
1a3

2H 3GS 31n

2 D24GS 51n

2 D1
4

3
GS 71n

2 D J G ,
~18!

for the distributionP(x) and

mn5
G@~11n!/2!]

~21b0!Ap
Fe2b1

2
b0M S 11n

2
,
1

2
,b1

2D
1e2b0

2b1
2
M S 11n

2
,
1

2
,b0

2b1
2D11G , ~19!

for the distributionT(x) whereM (a,b,c) are the confluent
hypergeometric functions@12#. Unfortunately the nonlinea
dependence of the parameterss, an , andbn on the required
ensemble moments complicates the analytical form for
sample variancess2(m2) ands2(m3). In practice therefore
the sample variances would be calculated numerically via
above expressions and making use of the solutions to
systems~12! and ~17! or via Monte-Carlo simulations.

IV. GENERATING NON-GAUSSIAN MAPS WITH FIXED
ANGULAR POWER SPECTRUM AND BISPECTRUM

We now propose to apply this method to the generation
non-Gaussian maps with fixed angular power spectrumCl
and bispectrumBl . The broader context is the generation
non-Gaussian signals to be used in simulations of upcom
satellite experiments.

The distributions of the previous section have the dis
vantage that they can only generate non-Gaussian 1D d
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butions. As a result, when a likelihood constructed us
P(x) is applied to CMB maps as in Rochaet al. it probes a
combination of non-Gaussianityand anisotropy. Consider
for instance, the generation of a full sky map with tempe
ture fluctuations (DT/T)(n) by means of its spherical har
monic components:

DT

T
~n!5(

lm
almYlm~n!. ~20!

If we seta3Þ0 in the above distribution and use it to ge
erate a set ofR(al0) we will have ^(Ral0)3&Þ0, with
^(Ralm)3&50 for mÞ0. Isotropy, on the other hand, im
poses ‘‘selection rules’’ upon correlators, in this case,

^al 1m1
al 2m2

al 3m3
&5S l 1 l 2 l 3

m1 m2 m3
DBl 1l 2l 3

, ~21!

where the quantity (. . . ) is theWigner 3J symbol, and the
coefficientsBl 1l 2l 3

are the bispectrum~abbreviated toBl for

the casel 15 l 25 l 3). Hence the distribution we have jus
generated is not only non-Gaussian but also automatic
anisotropic since all third order correlators except for^al0&
are zero.

If we are to impose isotropy, we must necessarily ha
correlatedalm , a feature not allowed by the method o
Rochaet al. In the present context a correlated set ofalm is
equivalent to a series of coupled harmonic oscillators. T
obvious way to achieve the necessary correlations would
to use the Hilbert space of coupled harmonic oscillators
set up the most general multivariate distribution, but t
proves to be impractical. Here we introduce a simple
crucial modification which restores isotropy.

We propose to set up an isotropic ensemble in two ste
First we generate an anisotropic ensemble by drawing allalm
from a Gaussian distribution with variance spectrumCl , ex-
cept for them50 mode. The latter is given one of the PDF
described in the previous section, with varianceCl and skew-
ness

Sl5S l l l

0 0 0D
21

Bl . ~22!

The appropriate PDF is enforced using the rejection meth
as described above. For each set ofCl andBl we solve the
systems given by Eqs.~12! or ~17! numerically to obtain the
required values for the parameterss, a0, anda3 or b0 and
b1. We label the resulting ensemblea, for anisotropic.

We then apply a random rotation to each realization in
ensemblea, with a uniform distribution of Euler angles. In
this way we arrive at an isotropic ensemble of temperat
maps, labeled byi, with spherical harmonic coefficients

bm
l 5(

m8
D mm8

l
~V!am8

l ~23!

where D mm8
l is the rotation matrix, andV denotes the 3

Euler angles. The 2-point correlators are
2-4
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GENERATING NON-GAUSSIAN MAPS WITH A GIVEN . . . PHYSICAL REVIEW D63 103512
FIG. 2. HEALPIX map of a noiseless, Gaus
ian CMB realization at COBE beam resolutio
~normalized temperature units!. The map was
generated using a standardLCDM power spec-
trum (VL50.7, VCDM50.25,Vb50.05,h
50.7, andns51.0).
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^bl 1m1
bl 2m2

! & i5 (
m18m28

^D
m1m

18

l 1 ~V!D
m2m

28

l 2!
~V!&V^al 1m

18
al 2m

28
!

&a

5d l 1l 2
dm1m2

Cl 1
, ~24!

hence we haveCl
i[Cl

a .
The 3-point correlators are zero for any correlator invo

ing different l. However we now have

^blm1
blm2

blm3
& i5 (

m18m28m38
^D m1m

18
l

~V!D m2m
28

l
~V!D m3m

38
l

3~V!&V^alm
18
alm

28
alm

38
&a

5^D m10
l ~V!D m20

l ~V!D m30
l ~V!&V3Sl

5^Ym1

l ~V!Ym2

l ~V!Ym3

l ~V!&V3Sl

5S l l l

0 0 0D S l l l

m1 m2 m3
DSl

5S l l l

m1 m2 m3
DBl ~25!
10351
-

~note that with one indexm set to zero the rotation matrice
reduce to spherical harmonics, one of the Euler angles
coming irrelevant!. Again we have recovered the origina
bispectrum withBl

i[Bl
a .

Hence the procedure we have defined produces the
sired isotropic ensemble with a fixed angular power sp
trum and bispectrum. The random rotations produce the n
essary correlations between thealm coefficients to ensure
isotropy. However, by means of this procedure, we are
able to generate maps with nonvanishing inter-l bispectrum
coefficients~as studied in@3–6#!.

Note that we can also drawall alm from the 1D PDFs
introduced above, and then subject them to a random r
tion. The argument presented here still goes through, an
isotropic ensemble is still obtained. However, as we shall
later, the cosmic variance in the estimators for theCl andBl
will be larger in this case.

V. SIMULATED NON-GAUSSIAN MAPS

We now present CMB temperature maps using the p
scriptions detailed in the previous sections. We generate
sky maps pixelized using theHEALPIX @1# package at pixel-
ization levels 128 and 512, equivalent to 196 608 a
3 145 728 pixels, respectively. We generate maps which
e

-

FIG. 3. A non-Gaussian realization at th
same resolution generated with the sameLCDM
power spectrum and a ‘‘white’’ bispectrum with
s50.5. The PDFT(x) was used as the non
Gaussian generator.
2-5
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FIG. 4. A similar realization withs52.0.
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clude a cosmological signal in the form of a standardLCDM
power spectrum computed usingCMBFAST @13# and finite
beam sizes. Instrument specific noise and physically m
vated profiles for the bispectrum will be treated in a furth
work @14#.

For simplicity we shall assume a bispectrum which
fixed relative to the power spectrum~i.e., Bl5sCl

3/2) with a
ratio which is the same for all scales~i.e., with sl[s con-
stant!. This is a rather artificial assumption since in pract
the host of nonlinear, secondary, and foreground contr
tions to the CMB @15# and possible primordial non
Gaussianity will arise at different angular scales. Theor
cally motivated bispectra and the addition of instrume
specific noise will be discussed in a further work@14#, and
are straightforward to obtain with our method at no ex
computational cost. We use both the PDFs discussed a
to generate the 1D distributions required for the product
of the initial anisotropic ensembles.

In Fig. 2 we show a Gaussian realization of a stand
cold dark matter model with a cosmological consta
(LCDM) model at Cosmic Background Explorer~COBE!
Differential Microwave ratiometer~DMR! @16# resolution.
The equivalent non-Gaussian realizations with the sa
power spectrum are shown in Figs. 3 and 4 which are g
erated using the PDFT(x) and values for the parameters of
0.5 and 2.0, respectively. Figure 5 shows a non-Gaus
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realization (s52.0) with the same power spectrum and M
crowave Anisotropy Probe~MAP! @17# resolution.

We first make use of our maps to examine possible effe
of non-Gaussianity upon estimation of the power spectru
For this purpose we compare the observed power

Cl
obs5

1

2l 11 (
m52 l

l

uam
l2u, ~26!

in the non-Gaussian ensembles with that of the usual Ga
ian ensembles. Different PDFs will produce ensembles w
different cosmic variances~for the power! and in particular
the cosmic variance will be different from that of Gaussi
ensembles. Assuming theam

l modes to be Gaussian distrib
uted the power spectrum will have ax2l 11

2 distribution
which yields a particularly simple sample variance

s2~Cl
obs!5

2Cl
2

~2l 11!
, ~27!

for zero noise and infinitely thin beam~see, e.g.,@18,19#!. In
the non-Gaussian case the variance will assume a more c
plicated form due to a nonzero contribution from the fou
order cumulant~or connected moments in analogy to th
connected Green’s functions of field theory!,
of
FIG. 5. Same as above but at the resolution
the MAP experiment.
2-6
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GENERATING NON-GAUSSIAN MAPS WITH A GIVEN . . . PHYSICAL REVIEW D63 103512
FIG. 6. The estimated power spectrum for ensembles of 10 pure signal maps. The solid line is the power spectrum of a standaLCDM
model (VL50.7, VCDM50.25,Vb50.05,h50.7, andns51.0). The dotted lines show the extent of cosmic variance of the averaged p
for the respective Gaussian ensemble. The short dashed line is for an ensemble generated using the distributionP(x) with s50.5. The short
dashed dotted line is fors50.5 but generated usingT(x) and the long dashed dotted line is forT(x) with s55.0. The ensembles in the le
panel were generated using only theal0 modes as the non-Gaussian seeds in the original anisotropic, uncorrelated ensembles where
right panel all the modes were originally non-Gaussian.
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s2~m2!5k412m2. ~28!

In many motivated examples non-Gaussian processes dis
higher cosmic variance in the power; an example is text
models as studied in@20#.

In Fig. 6 we show the average power spectrum for
ensemble of 10 maps for mild and extreme values for
relative skewness parameters. The maps do not include an
noise contribution or beam effects. The right panel shows
average power for maps where allalm modes are non-
Gaussian in the original anisotropic, uncorrelated ensem
The left panel instead is for the case where only theal0 of
the original modes are non-Gaussian. The dotted line sh
the extent of the 1-sigma cosmic variance for an equiva
Gaussian ensemble.

We see that the sample variance of the power for
non-Gaussian variables is comparable to that of its Gaus
counterpart for lows and grows for a larger value of th
relative skewness. This dependence is expected since
know thatk4(s,a0 ,a3)[k4(s,Cl). Note that the isotropiz-
ing rotation does not affect ensemble averages, so tha
sample variances of estimators in the isotropic ensem
trace the variances of the 1D distributions generating
non-Gaussianity. In general the contribution from the co
nected moments can be derived analytically since they
be expanded in a series of moments@19#. In this case though
the solution fors(m2) in terms ofCl is very contrived and
has no simple expression as the one above for the Gau
case. Numerically estimation on a case by case basis
give a more feasible determination of the sample varianc
the estimators being used.
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We now turn to the issue of the detectability of no
Gaussian bispectra, making use of our maps. In Figs. 7 a
we show the distribution of the value for the observ
bispectrum@2#

Bl
obs5 (

m1m2m3
S l l l

m1 m2 m3
D am1

l am3

l am3

l , ~29!

as measured from 20 000 realization ensembles. Our Wig
coefficients are calculated using the recursive relations
Schultenet al. @21# and are accurate tol .3000.

We show the histograms for multipolesl 52,4,6, and 8
and for values ofs52.0 and 0.5. We used the distributio
T(x) to assign non-Gaussian values to all thealm modes. It is
interesting to note that the sample variance of the estim
Bl

obs is reduced in the non-Gaussian case with respect to
of the Gaussian ensemble. This shows that the contribu
from the connected moments to the non-Gaussian part om6
is negative and in particular

uk6u.15k4m219k3
2 , ~30!

confirming that the leakage into higher orders is not ne
gible for both PDFs.

The implications of this result are interesting. It seem
that, for the type of non-Gaussianity which we have gen
ated, when searching for non-Gaussianity and armed wi
single realization, we could only rely on therejectionof the
non-Gaussian hypothesis by observing modes whose bis
tra are ~counterintuitively! too large for them to be non
Gaussian. Conversely if we were to measure bispectra w
2-7
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FIG. 7. Histograms for the measured value of the estimatorBl
obs for 20 000 realizations. The solid line corresponds to the non-Gaus

ensemble generated using the distributionT(x) with a value ofs50.5 and the dashed line corresponds to the Gaussian ensemble.
hi
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and
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nde-
are
ble
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ce
are consistently too close to zero for enoughl we could reject
Gaussianity in favor of non-Gaussianity. Even though t
remark may sound counterintuitive it is the basis of the re
in @3# ~in which Gaussianity was rejected on the basis o
low x2).

For completeness we have displayed in Table I all
results concerningCl

obs and Bl
obs in both the Gaussian an

non-Gaussian ensembles as discussed in the previous
graphs.
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VI. DISCUSSION

In this paper we proposed a method with which to gen
ate non-Gaussian maps with fixed power spectrum
bispectrum. Our strategy is as follows. We generate th
maps in harmonic space, and give each of the modes, i
pendently, a 1D non-Gaussian PDF. The resulting maps
anisotropic, but a random rotation then restores the ensem
isotropy. We proved that the power spectrum and bispect
of the isotropic ensemble is simply related to the varian
2-8
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FIG. 8. Similar to the previous plot but withs52.0.

TABLE I. The observed statistics for the first 10 even multipoles for both a Gaussian and non-Gaussian noiseless ensem

l Cl (Cl
obs)G (Cl

obs)NG Bl (Bl
obs)G (Bl

obs)NG

2 892.729 890.716 892.590 24938.244 2325.169 26376.174
4 259.111 258.795 257.526 426.451 297.583 559.303
6 120.751 120.684 121.219 2160.554 24.521 2123.481
8 70.419 70.401 70.388 13.399 211.157 42.092

10 46.657 46.656 46.687 227.442 3.777 218.385
12 33.704 33.793 33.783 5.682 28.440 9.484
14 25.713 25.674 25.763 26.365 25.433 25.449
16 20.419 20.480 20.383 1.775 0.546 3.389
18 16.747 16.737 16.730 24.908 20.757 22.245
20 14.084 14.087 14.077 2.081 0.431 1.563
103512-9
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and skewness of the 1D PDFs employed. We then propo
two different PDFs for which the variance and skewness m
be fixed independently. One is based upon the Hilbert sp
of an harmonic oscillator; the other upon a superposition
Gaussian functions. In both cases we worked out the alg
relating the parameters controlling the distributions and
variance and skewness. We then drew our random num
numerically using a rejection method.

Even though we only considered the generation of m
with a fixed power spectrum and bispectrum we stress
the extension of our method for higher order moments
straightforward, even though it has its computational co
Increasing the family of parameters describing the mot
1D PDF allows one to fix the higher order cumulants. W
should point out here that our method is independent of
particular form of the 1D PDF and can therefore be appl
to the simulation of any type of non-Gaussianity. Once ag
a random rotation restores isotropy, and the isotropic high
order correlators may be simply related to the cumulants
the original PDFs.

We close with an evaluation of the efficiency of o
method when meeting the ever improving resolutions of
.
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coming experiments. As we have shown it is possible
generate high resolution non-Gaussian maps with
method. However they are computationally more expens
to produce than Gaussian maps, specifically due to the
dom rotation to which they must be subject. Currently t
rotation is carried out inl-space which requires the compu
tation of the rotation matrix elements@22#. This avoids sam-
pling problems which would arise if it were carried out
pixel but requires increasingly long computation times
increasingl. The generation of a single realization at MA
resolution~e.g., Fig. 5! takes approximately 10 minutes on a
single processor 500 MHz Alpha workstation. On the ot
hand the real bottleneck is likely to be at the analysis sta
rather than in the simulation of maps. Sums involvi
Wigner coefficients become computationally intensive asl is
increased.
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