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Large extra dimensions and cosmological problems
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We consider a variant of the brane-world model in which the universe is the direct product of a Friedmann-
Robertson-Walker~FRW! space and a compact hyperbolic manifold of dimensiond>2. Cosmology in this
space is particularly interesting. The dynamical evolution of the space-time leads to the injection of a large
entropy into the observable~FRW! universe. The exponential dependence of surface area on distance in
hyperbolic geometry makes this initial entropy very large, even if the CHM has a relatively small diameter~in
fundamental units!. The very large statistical averaging inherent in the collapse of the initial entropy onto the
brane acts to smooth out initial inhomogeneities. This smoothing is then sufficient to account for the current
homogeneity of the universe. With only mild fine-tuning, the current flatness of the universe can also then be
understood. Finally, recent brane-world approaches to the hierarchy problem can be readily realized within this
framework.
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I. INTRODUCTION

The standard initial value problems of big bang cosm
ogy are usually addressed by a period of cosmic inflation@1#,
to which viable alternatives have been elusive.~See however
@2,3#.! In this paper, we will consider the status of the
problems in the context of the idea that o
(311)-dimensional universe is only a submanifold~3-
brane! on which standard model fields are confined insid
higher dimensional space@4–7#. In such models, only gravi
tons and other geometric degrees of freedom may propa
in the bulk space-time. An important motivation for the
theories has been to solve the so-called hierarchy problem
explaining the largeness of the Planck mass compared to
scales characterizing other interactions, in particular to
weak scale. IfMF is the actual fundamental scale of grav
tational interactions, and if the volume of the extra dime
sional d-manifold isVextra, then @4–7# by Gauss’s law, at
distances larger than the inverse mass of the lightest Kal
Klein ~KK ! mode in the theory, the gravitational force w
follow an inverse square law with an effective coupling o

Mpl
225MF

2(d12)Vextra
21 . ~1!

The canonical realization of this scenario@5# assumed tha
the extra-dimensional manifold,Mextra, was a d-torus of
large spatial extent~in fundamental units,MF

21). In that case,
MF*50 TeV is consistent with existing particle physics a
cosmological phenomenology ford>2. However, from
many points of viewd-tori are special. Because they adm
flat ~Euclidean! geometries, they have no intrinsic geomet
scale, and so there is noa priori reason that they should hav
such a large extent. There is also no gap in the grav
spectrum to the first KK mode. Further, compact manifo
which admit a flat geometry are a set of measure zero in
space ofd-manifolds.
0556-2821/2001/63~10!/103511~6!/$20.00 63 1035
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Recently, it was argued@8# that if the extra dimensions
comprised a compact hyperbolic manifold~CHM! then the
same volume suppression of gravity could be obtained,
all constraints avoided with a manifold whose radius is o
O(30)MF

21 . In this caseMF*1 TeV is allowed and the
observed gauge hierarchy is a consequence of the topo
of space. Ford52 and 3, most manifolds are compact h
perbolic. ~For d.3, there is no complete classification o
compact manifolds; indeed, most compact manifolds pr
ably admit no homogeneous geometry.! These manifolds can
be obtained from their better known universal covering sp
Hd by ‘‘modding-out’’ by a~freely-acting! discrete subgroup
G of the isometry group ofHd. ~Just asd-tori are obtained by
modding out d-dimensional Euclidean spaceEd by a freely-
acting discrete subgroup of the Galilean group
d-dimensions.! If the structure of the full manifold is

Sd145R3MFRW3Mextra , ~2!

then the metric on such a space can be written as

ds25gmn
(4)~x!dxmdxn1Rc

2gi j
(d)~y!dyidyj . ~3!

Here Rc is the physical curvature radius of the CHM, an
gi j (y) is therefore the metric on the CHM normalized so th
its Ricci scalar isR521.

Clearly, unlike Euclidean geometry, hyperbolic geome
has an intrinsic scale — the radius of curvatureRc . One
therefore expects that if there is a gap in the graviton sp
trum, then

mgap5O~Rc
21!. ~4!

In d52 and 3 ~and probably ind.3 as well!, there is a
countable infinity of CHMs with volumes distributed ap
proximately uniformly from a finite minimum value to infin
ity ~in units of Rc

d). An important property of hyperbolic
geometry is that at large distances volume grows expon
©2001 The American Physical Society11-1
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tially with radius. As an example, note that inHd, the vol-
ume internal to a (d21)-sphere of radiusL@Rc is given by

V~L !;Rc
deb, ~5!

where

b[F ~d21!L

Rc
G . ~6!

The volume of a CHM is therefore of the same form~5!,
whereb is a constant determined by topology and related
the maximum spatial extent of the manifold.eb is a measure
of the manifold’s ‘‘complexity;’’ in d52, it is proportional
to the Euler characteristic of the manifold.

While primarily motivated by attractive particle physic
features, this construction admits a host of interesting c
mological possibilities. In this paper we address the entro
flatness and homogeneity problems in the context of mo
with compact hyperbolic extra dimensions. We argue tha
this particular class of spatial manifolds, with gene
particle-physics content, well-motivated initial condition
lead to observable universes that are old, flat and homo
neous, like our own.

II. COSMOLOGICAL PROBLEMS AND EXTRA
DIMENSIONS

To understand how this picture works, let us first revie
why inflation is so successful. During an inflationary epo
@1# the universe expands superluminally by a large fac
meanwhile supercooling and ‘‘storing’’ energy in the infl
ton field. After inflation, decay of the inflaton field results
the release of this stored energy into relativistic particles
an enormous increase in the total entropy of the unive
This leaves the entropy density of the universe everywh
much higher than if the universe had cooled adiabatic
while undergoing a standard FRW expansion by the sa
factor. As a result of this expansion and entropy producti
the large-scale homogeneity, flatness and entropy probl
of cosmology are resolved~for a discussion see, for exampl
@9#!. It is not possible to obtain such a result from ordina
subluminal expansion, since this would require maintainin
constant entropy density through the expansion, in violat
of the (311)-dimensional Einstein equations.

A. Preliminaries

One alternative attempt to solve at least some of the c
mological problems involves traditional Kaluza-Klein the
ries @10–13#. The idea is that the universe possesses e
spatial dimensions beyond the three that we observe. S
of these extra dimensions may be contracting while ou
dimensions are expanding. In this process, entropy could
squeezed out of the contracting extra dimensions, filling
three expanding ones, although it remains to understand
existence of the large total entropy in the universe.

In the model of@12# the metric is taken to be
10351
o

s-
y,
ls
n

e-

r,

d
e.
re
y
e
,
s

a
n

s-

ra
e

3
be
e
he

ds252dt21a~ t !2dxmdxm1b~ t !2dyidyi , ~7!

with m50, . . . ,3, i 51, . . . ,d. Both scale factors (a for the
ordinary andb for the extra space! are dynamical, and the
evolution begins from zero volume, i.e., an initial singularit
The scale factor of the extra space reaches a maximum v
and recollapses to a final singularity. Asb approaches the
final singularity,a goes to infinity. This dynamics is suc
that the total volume,

VTOT}a3bd[sd13, ~8!

actually decreases, i.e., the extra scale factor is decrea
more rapidly than the ordinary one is increasing.~Here,s is
the geometric mean scale factor.!

It should be mentioned that the classical equations are
to be believed all the way back to the initial timet050,
where quantum effects could change the whole pictu
Therefore, one imagines starting from some finite time, p
haps at an energy scale close to the fundamental energy
of MF . Also, for a realistic theory some stabilization mech
nism for the extra dimensions is required. This mechan
would preventb from becoming arbitrarily small. Since th
fundamental physics is governed by the scale ofMF , it
seems reasonable to expectb to stabilize close toMF

21 . Nev-
ertheless, despite these considerations, a careful analys
such cosmologies@12# shows that there is insufficient (3
11)-dimensional entropy production in these models
solve the entropy problems.

However, in the context of large extra dimensions, t
very large volume of the extra dimensions is a source
much greater entropy than in traditional Kaluza-Klein the
ries. Also, there is a new effect. Entropy will continue to fa
onto the brane even after the stabilization of the extra dim
sions. The massive gravitational modes~Kaluza-Klein exci-
tations!, which are nevertheless massless from the 41d
point of view, cannot decay into two other massless partic
if the extra-dimensional momentum is conserved. This i
plies that the massive gravitons can live for a very long ti
since they cannot decay into the empty bulk. However,
presence of the brane breaks the translational invariance
allows momentum non-conservation in the extra dimensi
if decay takes place on the brane. The decay of these m
would be preferentially to standard model particles propag
ing on the brane, or to these plus the graviton zero mo
which is just the ordinary 4-dimensional graviton. The co
pling of gravitational modes to non-gravitational modes
typically unsuppressed compared to the coupling to ot
gravitational modes. Since there are many light no
gravitational modes on the brane, and only one light gra
tational mode on the brane, we expect most decays of b
gravitational modes to deposit their entropy in stand
model fields. Finally, given thatMF> TeV, the universe will
~as shown below! thermalize before nucleosynthesis and th
evolve normally after the end of the entropy condensat
era.

We will consider this phenomenon in detail, in the sp
cific case the extra dimensions are described by CHM. Th
we will write the volumes as
1-2
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LARGE EXTRA DIMENSIONS AND COSMOLOGICAL PROBLEMS PHYSICAL REVIEW D63 103511
VFRW5a~ t !3 ~9!

Vextra5b~ t !deb,

wherea(t) andb(t) are the respective curvature scales, a
b is topological constants. To understand this better, le
divide the evolution of the universe into several differe
eras. We imagine that the universe appears, in the sense
its geometry can first be treated classically, at timet0. The
era of dynamical evolution of the ordinary and extra spa
begins att0 and ends att1 when the extra dimensions ar
stabilized. After stabilization, the era during which mass
KK modes dominate follows fromt1 to t2, at which point the
massive KK modes decay, and the entropy moves from
bulk to the brane. This leads into the usual radiation do
nated era, fromt2 to t3, and the matter dominated era, fro
t3 to t4 ~see Fig. 1!.

The total entropy in the universe fort1,t,t2 is

S15g1a1
3b1

debT1
31d , ~10!

whereai , bi denotea(t i) andb(t i) respectively. Now, ast
→t2 the universe approaches a temperatureT* , at which the
massive KK modes decay. During this decay, entropy is
conserved, and so we must estimate the temperature o
brane after decay. To do this, note that energy densit
conserved during the decay, and make the approxima
that the decay is instantaneous, so that att5t2 the tempera-
ture undergoes a rapid change fromT* to T2, after which the
universe ceases to be matter dominated~since the massive
KK modes responsible for this have now decayed!. Equating
the energy densities att2, before and after the decay of th
KK modes yields

r* [g* T
*
3 MKK5g2T2

4[r2 , ~11!

whereg* T
*
3 measures the number density of KK modes

temperatureT* . Thus,

T* 5S g2

g*
D 1/3S T2

4

MKK
D 1/3

. ~12!

We must now require thatT2>1 MeV, when the usua
radiation-dominated era begins, so that the results of s
dard big bang nucleosynthesis are not changed.

B. The flatness problem

Let us now turn to the flatness problem — the fact th
observations today show no trace of a curvature of the
verse although Einstein’s equations dictate that even a s

FIG. 1. Dynamical evolution of a universe with large extra d
mensions.
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initial curvature term quickly dominates over matter or r
diation density in the evolution of the universe.

Expressed in fundamental units, the initial energy dens
of the universe is

G41dr05
g0

MF
d12

T0
41d , ~13!

whereG41d is the fundamental@~41d!-dimensional# gravi-
tational constant andg0 is the density of states. The appro
priately redshifted energy density today is

G41dr45
g0

MF
d12

T0
41dS s0

s1
D d14S a1

a2
D 3S a2

a3
D 4S a3

a4
D 3

,

~14!

where we have usedrsd145constant fort0,t,t1 and cor-
respondingly redshifted powers in the matter and radiat
dominated eras. On the other hand, the magnitude of
appropriately redshifted curvature term today is

1

a4
2

5
1

a0
2 S a0

a1
D 2S a1

a2
D 2S a2

a3
D 2S a3

a4
D 2

. ~15!

Note that unlike inflationary models where the solutions
the entropy problem and flatness problem are closely link
the large volume of the extra dimensions implied by o
reformulation of the entropy problem does not imply a sm
value for the initial curvaturea0

22, nor consequently the
present curvaturea4

22. The flatness problem therefore re
quires further consideration.

If we require that the evolution of the extra dimensio
not disturb the usual thermal history of our universe we ne

T451023 eV

T3510 eV ~16!

T2*1 MeV.

Now, if we assume that the total entropy is conserved
t0,t,t1, i.e., S05S1, we obtain

S s0

s1
D5S g1

g0
D 1/(31d)S T1

T0
D . ~17!

A similar consideration fort1,t,t* yields

S a2

a1
D 3

5S a*
a1

D 3

5S g1

g*
D S T1

T*
D d13

. ~18!

We usedb25b* 5b1 whereb1, the curvature scale at lat
times ~including currently!, characterizes the low-energ
mass of KK modes

MKK;b1
21 , ~19!

with b constrained by relation~1!
1-3
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eb5S M Pl

MF
D 2S MKK

MF
D d

. ~20!

On the other hand, during the matter dominated erat1,t
,t2, when the extra dimensions are frozen, the relations
between the scale factor and the age of the universe is

S a2

a1
D5S t2

t1
D 2/3

, ~21!

with

t2[tKK;
M Pl

2

MKK
3

~22!

t1;~G41dr1!21/2

5F g0

MF
d12

T0
41dS s0

s1
D d14G21/2

.

Eliminating T1 using Eqs.~18! and ~21!, we can express al
the relevant quantities in terms of dynamical variables. Th

s0

s1
5

1

g*
S MKK

6 MF
d12

T
*
d13M Pl

4 T0
D , ~23!

S a2

a0
D 3

5S g0

g*
D S b0

b1
D dS T0

T*
D d13

, ~24!

S a2

a1
D 3

5S M Pl
4

MKK
6 D g0

MF
(d12)

T0
(41d)S s0

s1
D (d14)

. ~25!

We can now calculate the ratio of the two terms relevant
the flatness problem:

G41dr4

~1/a4
2!

;S MKK

T2
D 14/318d/9S MKK

2 T3T4

M Pl
4 D

3~b0T0!2d/3~a0T0!2
g0

2/3g
*
2d/9

g2
2(d13)/9

. ~26!

It is not difficult to choose generic values of paramet
which yield this ratio significantly greater than one. How
ever, by requiring a consistent dynamical evolution~for ex-
ample a0,a1,a2, values ofT0 and T1 not much greater
than the fundamental quantum gravity scaleMF , etc.! we
considerably narrow the choice. One possible choice~ne-
glecting the contribution from the density of states! a0

21

;MF;TeV, MKK;27MF , d57, T0;4MF , b0;5
3105MF

21 and T2;130 MeV gives the numerical value o
this ratio to be about 10 which reproduces the current fl
ness of the universe. Note that although some fine tunin
b0 is present, the situation is much better than in the ordin
3-dimensional case where we needed to tunea0 to about 30
orders of magnitude.
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More heuristically, the explanation of cosmological fla
ness in this picture is the enormous injection of entropy i
the brane by the combination of the collapse of the ex
dimensions to their final value, and the subsequent deca
the KK modes in the bulk into modes on the brane.

We should briefly comment on the possibility that in th
context of extra dimensions the flatness problem may no
presentab initio. This is because the structure of spacetim
may be a solution of the highly non-linear string equations
motion with some configuration of sources~e.g. D-branes!.
Suppose that the structure of the total space-time is

S41d11d2
5R3MFRW

3 3M extra1
d1 3M extra2

d2 , ~27!

whereM extra1
d1 is CHM. The source configuration may the

require some specificM extra1
d2 , such as a hypersphere. Th

zero-global-curvature ofMFRW
3 may then be merely a con

sistency condition of the solution, and we would then ne
only explain the absence of local inhomogeneities.

C. The homogeneity problem

Now consider the homogeneity problem. We will see th
the process of entropy injection from extra dimensions e
beds a huge number of initially uncorrelated regions into
brane universe. Thus, the homogeneity of the brane univ
today may be greatly enhanced over that expected from
standard cosmology.

We assume that in the formation of the universe, th
exists some correlation scalej.MF

21 , on which fluctuations
in all quantities~e.g.r) are correlated, but above which a
fluctuations are independent. We assume further that
fluctuations on this scale areO(1). In theabsence of a com
plete underlying theory of the formation of the universe, w
offer no proof of this assumption. Other equally reasona
assumptions could undoubtedly be made.

Consider then a primordial fluctuation in homogene
dr0 /r0. The magnitude of this fluctuation, when evolved
the present day, is suppressed by a huge numberAn, wheren
is the number of appropriately redshifted fundamental v
umes~of radii 1/MF) contained in the horizon volume of th
3-space at some late timet4 ~which we take to be the time o
last scattering, whenT4;1 eV!

n5
ebb0

d~ t4 /t3!3~ t3 /t2!3~ t2 /t1!3~ t1 /t0!3t0
3

j31d~s1 /s0!d13~a2 /a1!3~a3 /a2!3~a4 /a3!3
. ~28!

In addition, the primordial fluctuations contain a fact
which grows in time. In the radiation and matter dominat
eras, the growth factors aret f /t in and (t f /t in)2/3 respectively,
where the subscripts ‘‘in’’ and ‘‘f’’ stand for ‘‘initial’’ and
‘‘final’’ @14#. Thus, the fluctuations at the horizon scale a

S dr

r D
Hor(t4)

;
1

An
S t4

t3
D 2/3S t3

t2
D S t2

t1
D 2/3S t1

t0
D kS dr

r D
Hor(t0)

,

~29!
1-4
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where we have assumed that the universe was effecti
matter dominated fort1,t,t2, when the radius of extra di
mensions was frozen and most of the KK excitations w
massive. We leave the coefficientk undetermined for now.
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Using the relation between the scale factor and time
t0,t,t1 (t1 /t0)5(a1 /a0)m, where the coefficientm is also
undetermined for now, we obtain
ers are
e,
S dr

r D
Hor(t4)

;e2b/2~b0MF!2d/2~ t0MF!23/2~jMF!(31d)/2S s1

s0
D (d13)/2S a4

a3
D 1/4S a3

a2
D 1/2S a2

a1
D 1/4S a1

a0
D m(k23/2)S dr

r D
Hor(t0)

.

~30!

The values for the unknown coefficientsm andk, in the ordinary 3-dimensional universe arem53/2, k52/3 for the matter
dominated andm52, k51 for the radiation dominated universe. In the presence of the extra dimensions these numb
different but we assume thatm>1 andk<1 in order not to violate the causality. Thus, in the most conservative casm
5k51, we have

S dr

r D
Hor(t4)

;S T2

MF
D d2/3117d/9119/6S MF

MKK
D d2/12195d/36131/6S M Pl

MF
D d12S T0

MF
D (d13)/3S MF

2

T3T4
D 1/4

3~b0MF!22d/3~ t0MF!23/2~jMF!(31d)/2
g0

1/12g2
(1/36)(24117d13d2)

g
*
(1/36)(8d13d2)

. ~31!
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Unlike the flatness of the universe, it is much easier
explain its homogeneity without any fine tuning. For e
ample, neglecting the contribution from the density of sta
if d57, thenT2;100 MeV with

T0;b0
21;t0

21;
MKK

10
;MF;TeV, ~32!

gives

S dr

r D
Hor(t4)

51028S dr

r D
Hor(t0)

, ~33!

which reproduces the current cosmological homogeneit
(dr/r)Hor(t0) is of order one, i.e. if initially the energy den
sity distribution in the universe was peaked around the r
sonable value ofT0

41d . Note that if we use the same num
bers which explain flatness then we obtain an even m
homogeneous universe~with the 1028 above replaced by
10240). Any initial inhomogeneities are thus smoothed o
beyond detection purely by the very large statistical aver
ing inherent in the collapse of entropy onto the brane.

For comparison, a similar calculation for the ordina
FRW case, without the extra dimensions, and in which
fundamental volume has radiusMpl

21 , gives

S dr

r D
Hor(t4)

;
Mpl

1/2

T3
1/4T4

1/4
;1014S dr

r D
Hor(t0)

. ~34!
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III. CONCLUSIONS

We have examined the problems of standard cosmol
in a class of brane-world models in which the extra dime
sions are compact hyperbolic manifold. In this context, so
of the problems of the standard cosmology are addressed
new way. The evolution of the extra-dimensional space
early cosmic times can inject a huge entropy onto
standard-model-supporting brane, greatly enhancing the
tropy inside the effective 3-dimensional horizon. Injection
the large initial entropy onto the brane from the extra dime
sions results in a very homogeneous brane universe to
Finally, for reasonable parameters of the model~with a mild
fine tuning in the extra space curvature scale!, the curvature
of the 3-manifold is small today, and so the flatness of
universe can be understood. Thus, the evolution of the e
dimensional space in these models can result in a low-en
universe, as seen from our brane, which is flat, full, a
homogeneous. Moreover, within this framework, the rec
solutions to the hierarchy problem can be readily realiz
We have offered no detailed fundamental model of the
namics of the spacetime during the period before the e
dimensions are frozen, nor have we offered any calcula
of the spectrum of primordial fluctuations that would arise
such a model. We suggest that the appropriate dynam
models could and should be found, and that sources for fl
tuations do exist, at least in the dynamics of the brane.
also do not explain the origin of the large entropy in t
universe. This, and many other outstanding questions are
subject of ongoing and future investigations.
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