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Large extra dimensions and cosmological problems

Glenn D. Starkman and Dejan Stojkovic
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079

Mark Trodden
Department of Physics, Syracuse University, Syracuse, New York 13244-1130
(Received 23 December 2000; revised manuscript received 30 March 2001; published 24 April 2001

We consider a variant of the brane-world model in which the universe is the direct product of a Friedmann-
Robertson-WalkefFRW) space and a compact hyperbolic manifold of dimengler2. Cosmology in this
space is particularly interesting. The dynamical evolution of the space-time leads to the injection of a large
entropy into the observabléFRW) universe. The exponential dependence of surface area on distance in
hyperbolic geometry makes this initial entropy very large, even if the CHM has a relatively small didimeter
fundamental units The very large statistical averaging inherent in the collapse of the initial entropy onto the
brane acts to smooth out initial inhomogeneities. This smoothing is then sufficient to account for the current
homogeneity of the universe. With only mild fine-tuning, the current flatness of the universe can also then be
understood. Finally, recent brane-world approaches to the hierarchy problem can be readily realized within this

framework.
DOI: 10.1103/PhysRevD.63.103511 PACS nuni$er98.80.Cq, 98.80.Es
I. INTRODUCTION Recently, it was arguefB] that if the extra dimensions

comprised a compact hyperbolic manifagl@HM) then the

The standard initial value problems of big bang cosmol-same volume suppression of gravity could be obtained, and
ogy are usually addressed by a period of cosmic infldtign  all constraints avoided with a manifold whose radius is only
to which viable alternatives have been elusii&ee however O(30)M ;1. In this caseMg=1 TeV is allowed and the
[2,3].) In this paper, we will consider the status of theseobserved gauge hierarchy is a consequence of the topology
problems in the context of the idea that our of space. Fod=2 and 3, most manifolds are compact hy-
(3+1)-dimensional universe is only a submanifol8-  perbolic. (For d>3, there is no complete classification of
brang on which standard model fields are confined inside acompact manifolds; indeed, most compact manifolds prob-
higher dimensional spadéd—7]. In such models, only gravi- ably admit no homogeneous geomethese manifolds can
tons and other geometric degrees of freedom may propagake obtained from their better known universal covering space
in the bulk space-time. An important motivation for theseH? by “modding-out” by a(freely-acting discrete subgroup
theories has been to solve the so-called hierarchy problem —F of the isometry group ofi®. (Just agi-tori are obtained by
explaining the largeness of the Planck mass compared to thRodding out d-dimensional Euclidean spdgtby a freely-
scales characterizing other interactions, in particular to th@cting discrete subgroup of the Galilean group in
weak scale. IfMg is the actual fundamental scale of gravi- d-dimensions. If the structure of the full manifold is
tational interactions, and if the volume of the extra dimen-
sional d-manifold iV, then[4—7] by Gauss's law, at %+ 4= RXMerwX Mextras 2
distances larger than the inverse mass of the lightest Kaluz
Klein (KK) mode in the theory, the gravitational force will

follow an inverse square law with an effective coupling of dsz:g(zt)()()olxﬂdx,,+ R(Z:gi(jd)(y)dyidyj @)
nv :

?ﬁen the metric on such a space can be written as

M&ZZME(MZ)V&%@ 1) Here R, is the physical curvature radius of the CHM, and
gij(y) is therefore the metric on the CHM normalized so that
) o ) its Ricci scalar isR=—1.

The canom_cal regllzatlon o_f this scenaf® assumed that Clearly, unlike Euclidean geometry, hyperbolic geometry
the extra-dimensional manifoldMexia, was ad-torus of  pag an intrinsic scale — the radius of curvat®e. One
large spatial exter(in fundamental unitsM ). In that case,  therefore expects that if there is a gap in the graviton spec-
Mg=50 TeV is consistent with existing particle physics andrym, then
cosmological phenomenology fod=2. However, from
many points of viewd-tori are special. Because they admit Mya= O(R¢ b, 4
flat (Euclidean geometries, they have no intrinsic geometric
scale, and so there is ropriori reason that they should have In d=2 and 3 (and probably ind>3 as wel), there is a
such a large extent. There is also no gap in the gravitogountable infinity of CHMs with volumes distributed ap-
spectrum to the first KK mode. Further, compact manifoldsproximately uniformly from a finite minimum value to infin-
which admit a flat geometry are a set of measure zero in th#gy (in units of R‘C’). An important property of hyperbolic
space ofd-manifolds. geometry is that at large distances volume grows exponen-
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tially with radius. As an example, note that ki, the vol- ds?= —dt?+ a(t)zdxﬂdxf% b(t)zdyidy‘, 7
ume internal to aq— 1)-sphere of radiuk>R; is given by
with u=0,...,3,i=1, ... d. Both scale factorsg for the

V(L)~R%”, (5  ordinary andb for the extra spageare dynamical, and the
evolution begins from zero volume, i.e., an initial singularity.
where The scale factor of the extra space reaches a maximum value
and recollapses to a final singularity. Asapproaches the
final singularity,a goes to infinity. This dynamics is such
E[(d;_l)l‘} (6) that the total volume,
C

VTOTOC adeE(Td+3, (8)
The volume of a CHM is therefore of the same fotB),
whereg is a constant determined by topology and related tcctually decreases, i.e., the extra scale factor is decreasing
the maximum spatial extent of the manifolef. is a measure more rapidly than the ordinary one is increasiftdere, o is
of the manifold’s “complexity;” in d=2, it is proportional ~ the geometric mean scale facjor.
to the Euler characteristic of the manifold. It should be mentioned that the classical equations are not

While primarily motivated by attractive particle physics to be believed all the way back to the initial timg=0,
features, this construction admits a host of interesting coswhere quantum effects could change the whole picture.
mological possibilities. In this paper we address the entropyl'herefore, one imagines starting from some finite time, per-
flatness and homogeneity problems in the context of model8aps at an energy scale close to the fundamental energy scale
with compact hyperbolic extra dimensions. We argue that irof Mg . Also, for a realistic theory some stabilization mecha-
this particular class of spatial manifolds, with generichism for the extra dimensions is required. This mechanism
particle-physics content, well-motivated initial conditions would prevento from becoming arbitrarily small. Since the
lead to observable universes that are old, flat and homogdundamental physics is governed by the scaleM, it
neous, like our own. seems reasonable to expbdb stabilize close td - *. Nev-
ertheless, despite these considerations, a careful analysis of
such cosmologie$12] shows that there is insufficient (3
+1)-dimensional entropy production in these models to
solve the entropy problems.

To understand how this picture works, let us first review However, in the context of large extra dimensions, the
why inflation is so successful. During an inflationary epochvery large volume of the extra dimensions is a source of
[1] the universe expands superluminally by a large factormuch greater entropy than in traditional Kaluza-Klein theo-
meanwhile supercooling and “storing” energy in the infla- ries. Also, there is a new effect. Entropy will continue to fall
ton field. After inflation, decay of the inflaton field results in onto the brane even after the stabilization of the extra dimen-
the release of this stored energy into relativistic particles angions. The massive gravitational modé&aluza-Klein exci-
an enormous increase in the total entropy of the universdations, which are nevertheless massless from thed4
This leaves the entropy density of the universe everywhergoint of view, cannot decay into two other massless particles
much higher than if the universe had cooled adiabaticallyf the extra-dimensional momentum is conserved. This im-
while undergoing a standard FRW expansion by the samgplies that the massive gravitons can live for a very long time
factor. As a result of this expansion and entropy productionsince they cannot decay into the empty bulk. However, the
the large-scale homogeneity, flatness and entropy problengesence of the brane breaks the translational invariance and
of cosmology are resolvedor a discussion see, for example, allows momentum non-conservation in the extra dimensions
[9]). It is not possible to obtain such a result from ordinaryif decay takes place on the brane. The decay of these modes
subluminal expansion, since this would require maintaining avould be preferentially to standard model particles propagat-
constant entropy density through the expansion, in violatioing on the brane, or to these plus the graviton zero mode,
of the (3+1)-dimensional Einstein equations. which is just the ordinary 4-dimensional graviton. The cou-
pling of gravitational modes to non-gravitational modes is
typically unsuppressed compared to the coupling to other
gravitational modes. Since there are many light non-

One alternative attempt to solve at least some of the coggravitational modes on the brane, and only one light gravi-
mological problems involves traditional Kaluza-Klein theo- tational mode on the brane, we expect most decays of bulk
ries [10-13. The idea is that the universe possesses extrgravitational modes to deposit their entropy in standard
spatial dimensions beyond the three that we observe. Sommodel fields. Finally, given tha?l .= TeV, the universe will
of these extra dimensions may be contracting while our 3as shown belojwthermalize before nucleosynthesis and then
dimensions are expanding. In this process, entropy could bevolve normally after the end of the entropy condensation
squeezed out of the contracting extra dimensions, filling thera.
three expanding ones, although it remains to understand the We will consider this phenomenon in detail, in the spe-
existence of the large total entropy in the universe. cific case the extra dimensions are described by CHM. Thus,

In the model of[12] the metric is taken to be we will write the volumes as

II. COSMOLOGICAL PROBLEMS AND EXTRA
DIMENSIONS

A. Preliminaries
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evolution of massive KK radiation matter initial curvature term quickly dominates over matter or ra-
extra dimensions  domination domination domination diation density in the evolution of the universe.
[ [ [ [ [ Expressed in fundamental units, the initial energy density
' ' ' ! of the universe is

t0 tl 2 3
KK decay 9o
4+d
. . . . . GaraPo=—g3T0 (13
FIG. 1. Dynamical evolution of a universe with large extra di- Mg

mensions.
whereG,, 4 is the fundamentdl(4+d)-dimensional gravi-
Verw=a(t)? (99  tational constant and, is the density of states. The appro-
priately redshifted energy density today is

d+4
Jo 4+d( @)

dr2 10
ME+2 oy

Vextra=b(1) deﬁ'

3 4 3

ai

ax
ar

as

a
wherea(t) andb(t) are the respective curvature scales, and Gyraps= a_3
B is topological constants. To understand this better, let us 4
divide the evolution of the universe into several different (14

eras. We imagine that the universe appears, in the sense that dia_
its geometry can first be treated classically, at tigmeThe Where we have usgglo™ " =constant forto<t<t, and cor-

era of dynamical evolution of the ordinary and extra Spaceéespondmgly redshifted powers in the matter and radiation

beai ) ; dominated eras. On the other hand, the magnitude of the
egins atty and ends at,; when the extra dimensions are aoprooriately redshifted curvature term today is
stabilized. After stabilization, the era during which massive pprop y Y
KK modes dominate follows frory to t,, at which point the 1 1
massive KK modes decay, and the entropy moves from the ~
bulk to the brane. This leads into the usual radiation domi- aj; aj
nated era, fron, to t3, and the matter dominated era, from
t3 to t, (see Fig. 1L Note that unlike inflationary models where the solutions of
The total entropy in the universe for<t<t, is the entropy problem and flatness problem are closely linked,
the large volume of the extra dimensions implied by our
S,=g;a;bJefT e, (100 reformulation of the entropy problem does not imply a small
value for the initial curvatureagz, nor consequently the
present curvature, 2 The flatness problem therefore re-
(f‘|uires further consideration.
If we require that the evolution of the extra dimensions
t disturb the usual thermal history of our universe we need

2 2 2 2

az

Qo
as

ay

ai
ax

as

2, (15

wherea;, b; denotea(t;) andb(t;) respectively. Now, as

— 1, the universe approaches a temperaiyre at which the
massive KK modes decay. During this decay, entropy is no
conserved, and so we must estimate the temperature on t%
brane after decay. To do this, note that energy density is

conserved during the decay, and make the approximation T,=10 3eV
that the decay is instantaneous, so that=at, the tempera-
ture undergoes a rapid change frdip to T, after which the _
) 2 , T;=10eV (16)
universe ceases to be matter dominatgidce the massive
KK modes responsible for this have now decgyétjuating
" T,=1 MeV.
the energy densities &3, before and after the decay of the
KK modes yields Now, if we assume that the total entropy is conserved for
to<t<ty, i.e.,Sy=S;, we obtain
Po=0. TS M =0, Té=p2, ay sthleS=S
o g UE+d) T
whereg, T2 measures the number density of KK modes at (_0 :(_l) <_1) (17)
temperatureT, . Thus, o1 9o To
9, \ Y3 T4 13 A similar consideration fot,;<t<t, yields
nelgl T
0. Mk % 3_ a_* 3:(%)(2)(”3 s
We must now require thal,=1 MeV, when the usual a; a; Ox )\ Ty '

radiation-dominated era begins, so that the results of stan-
dard big bang nucleosynthesis are not changed. We usedb,=b, =b; whereb,, the curvature scale at late
times (including currently, characterizes the low-energy

B. The flatness problem mass of KK modes

Let us now turn to the flatness problem — the fact that MKK~bI1, (19
observations today show no trace of a curvature of the uni-
verse although Einstein’s equations dictate that even a smallith 8 constrained by relatiofil)

103511-3



GLENN D. STARKMAN, DEJAN STOJKOVIC, AND MARK TRODDEN PHYSICAL REVIEW D63 103511

5 Mg\ %[ Mk
ef=|—
Me) | Mg

d More heuristically, the explanation of cosmological flat-
(20) ness in this picture is the enormous injection of entropy into

the brane by the combination of the collapse of the extra

On the other hand, during the matter dominated terat dimensions to their final value, and the subsequent decay of

<t,, when the extra dimensions are frozen, the relationshifii® KK modes in the bulk into modes on the brane.
between the scale factor and the age of the universe is We should briefly comment on the possibility that in the
context of extra dimensions the flatness problem may not be

presentab initio. This is because the structure of spacetime

a t 2/3
a—2 = (t_z) , (21 may be a solution of the highly non-linear string equations of
1 L motion with some configuration of sourcés.g. D-branes
with Suppose that the structure of the total space-time is
Mg,
L=k~ 3 (22) Savdpra, = RXMBRW X M GraX MG (27)
KK

where M &% . is CHM. The source configuration may then
require some specific1 gimﬂ, such as a hypersphere. The
zero-global-curvature oMz, may then be merely a con-
sistency condition of the solution, and we would then need

only explain the absence of local inhomogenetities.

t1~(Gyargp1) M2

d+4
9o 4+d( 2)

0
ME+2 o1

—-1/2

Eliminating T4 using Eqs(18) and(21), we can express all
the relevant quantities in terms of dynamical variables. Thus, C. The homogeneity problem
Now consider the homogeneity problem. We will see that
the process of entropy injection from extra dimensions em-
' 23 pedsa huge number of initially uncorrelated regions into the
brane universe. Thus, the homogeneity of the brane universe
3 /g0 (bg 9 To| o2 today may be greatly enhanced over that expected from the
= <_°) (_") <_°) , (24)  standard cosmology.
0. /\bg) | Ty We assume that in the formation of the universe, there
exists some correlation scafe=M -, on which fluctuations
o) @4 in all quantities(e.g. p) are correlated, but above which all
(_) (29 fluctuations are independent. We assume further that the
fluctuations on this scale at®(1). In theabsence of a com-
Plete underlying theory of the formation of the universe, we
offer no proof of this assumption. Other equally reasonable
assumptions could undoubtedly be made.

Consider then a primordial fluctuation in homogeneity
6po/po- The magnitude of this fluctuation, when evolved to
the present day, is suppressed by a huge nuribewheren
is the number of appropriately redshifted fundamental vol-

oo 1 [ MyME?
S| P
T*+3Mé’ITO

o1 Ok

a;
Qo

[ Mg

ax
2 —=
Mgk

ai

9 ng)
d+2
ME*2)

We can now calculate the ratio of the two terms relevant fo
the flatness problem:

14/3+8d/9
Gatdpa ( M KK)

MikTsTs
(1/a3) T,

M,

(BT )293( 5. T )2 g5 ga " 26 umes(of radii 1/M¢) contained in the horizon volume of the
(boTo) ™ (agTo) gﬁ(d”)’g' (26) 3-space at some late timig (which we take to be the time of

last scattering, wheii,~1 eV)

It is not difficult to choose generic values of parameters
which yield this ratio significantly greater than one. How- _ eﬁbg(t4/t3)3(t3/t2)3(t2/t1)3(t1/to)3t8
ever, by requiring a consistent dynamical evolutifor ex- 190, 109)9 3 (ay/a;)3(as/a,)3(as/as)®
ampleag<a;<a,, values ofT, and T, not much greater

than the fundamental quantum gravity scMe, etc) we  |n addition, the primordial fluctuations contain a factor
considerably narrow the choice. One possible chdiwe  \which grows in time. In the radiation and matter dominated
glecting the contribution from the density of statex,*  eras, the growth factors arg/t,, and ; /t;,)?° respectively,
~Mg~TeV, Myk~27Mg, d=7, To~4Mg, be~5  where the subscripts “in” and “f” stand for “initial” and

X 10°M¢* and T,~130 MeV gives the numerical value of “final” [14]. Thus, the fluctuations at the horizon scale are
this ratio to be about 10 which reproduces the current flat-

(28)

ness of the universe. Note that although some fine tuning of Sp 1 [t 23 ts) [ )23 t,\ X[ 6p

by is present, the situation is much better than in the ordinary —) ~ —(—) (— —) —) (—) ,
3-dimensional case where we needed to tan¢o about 30 P Thorty) Vnlts )\t to) 1 p Hor(ty)
orders of magnitude. (29
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where we have assumed that the universe was effectively Using the relation between the scale factor and time for
matter dominated for, <t<t,, when the radius of extra di- ty<t<t; (t;/ty)=(a;/ay)™, where the coefficienn is also
mensions was frozen and most of the KK excitations weraindetermined for now, we obtain

massive. We leave the coefficiehtundetermined for now.

1/4 1/2 1/4

ay
as

az\ Y4 a,

ai

a

op op
- a_o -

_ _ _ 01
) ~e ﬁlz(bOMF) d/Z(tOMF) 3/2(§MF)(3+d)/2(_
p Hor(t,)

(d+3)/2
(To)

m(k—3/2) (

az p )Hor(to)

(30

The values for the unknown coefficientsandk, in the ordinary 3-dimensional universe ane= 3/2, k=2/3 for the matter
dominated anan=2, k=1 for the radiation dominated universe. In the presence of the extra dimensions these numbers are
different but we assume that=1 andk<1 in order not to violate the causality. Thus, in the most conservative oase,
=k=1, we have

(@) N( T, )d2/3+17d/9+19/6( Mg )d2/12+95d/36+31/6( Mp|)d+2( To )(d+3)/3( M;Zr )1/4
Hor(t,)

p F Mgk Mg M T3T,

9 é/lzg(zl/se)(m 17d+3d?)
X (boMg) 2¥(toMg) I EM ) 12

(1/36)(8d+3d?) (3D
Ox

Unlike the flatness of the universe, it is much easier to Ill. CONCLUSIONS
explain its homogeneity without any fine tuning. For ex-
ample, neglecting the contribution from the density of states
if d=7, thenT,~100 MeV with

We have examined the problems of standard cosmology
in a class of brane-world models in which the extra dimen-
sions are compact hyperbolic manifold. In this context, some
of the problems of the standard cosmology are addressed in a
new way. The evolution of the extra-dimensional space at
~Mg~TeV, (32 early cosmic times can inject a huge entropy onto the

standard-model-supporting brane, greatly enhancing the en-
tropy inside the effective 3-dimensional horizon. Injection of
gives the large initial entropy onto the brane from the extra dimen-
sions results in a very homogeneous brane universe today.
Finally, for reasonable parameters of the moa@éth a mild
op _10°8 op 33 fine tuning in_the extra space curvature sgallee curvature
p - p ’ of the 3-manifold is small today, and so the flatness of the
Hor(ty) Hor(to) universe can be understood. Thus, the evolution of the extra
dimensional space in these models can result in a low-energy
which reproduces the current cosmological homogeneity itNiverse, as seen from our brane, which is flat, full, and
(5o hn 15 of order e, i, i il he energy - Momageneous Moreover, witn hs fameuior e rocery
sity distribution in the universe was peaked around the reaWe have offered no detailed fundamental model of the dy-

4+d :
sonable value oo . Note that if we use the same num namics of the spacetime during the period before the extra

Eers which epra|_n flgér\ﬁisﬂt]herigvxge ct))btaln anl evedn t;’nor‘aimensions are frozen, nor have we offered any calculation
omogeneous universevi N above replaced by 4t e spectrum of primordial fluctuations that would arise in

10°%). Any |n!t|al inhomogeneities are thus s.mc')othed OUIsuch a model. We suggest that the appropriate dynamical
beyond detection purely by the very large statistical averadm odels could and should be found, and that sources for fluc-

|ngF|nherent n _the collap_se_l of enTrorlJyt_ont(; thethbranz._ tuations do exist, at least in the dynamics of the brane. We
or comparison, a similar: caiculation for the ordinary 45, 4o not explain the origin of the large entropy in the
Qniverse. This, and many other outstanding questions are the

subject of ongoing and future investigations.

Mk
10

To~by ~ty 1~

fundamental volume has raditg,*, gives
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