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Quintessence dissipative superattractor cosmology
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We investigate the simplest quintessence dissipative dark matter attractor cosmology characterized by a
constant quintessence baryotropic index and a power-law expansion. We show a class of accelerated
coincidence-solving attractor solutions converging to this asymptotic behavior. Despite its simplicity, such a
“superattractor” regime provides a model of the recent universe that also exhibits an excellent fit to superno-
vae luminosity observations and no age conflict. Our best fit gived.71+0.29 for the power-law exponent.

We calculate for this regime the evolution of density and entropy perturbations.

DOI: 10.1103/PhysRevD.63.103508 PACS nuni$er98.80.Hw, 04.20.Jb

[. INTRODUCTION of the major problems shown by these simulations is that
galactic halos are too centrally concentrafgéd]. Confirma-

A new picture of the universe is emerging from observa-tion of this problem would imply that structure formation is
tions of large scale structure, searches for type la superng®mehow suppressed on small scales. Several scenarios ad-
vae, and measurements of the cosmic microwave bacilre€ssing this issue have been considered assuming some kind
ground anisotropy. They all suggest that the universe iQf INtéraction for dark matter particles: nonthermally pro-
undergoing cosmic acceleration and is dominated by &uced and weakly interactirig5], self-interacting 16], re-
smoothly distributed dark energy component with IargepUIS'Ve[l7]’ annihilating[18], and decaying19]. It is quite

negative pressufid—3). Moreover, recent data coming from reasonable to expect that dark matter is out of thermody-
N ! L namical equilibrium and these same interactions are at the
BOOMERANG and MAXIMA projects seem to indicate that q

. . ) - origin of the cosmological dissipative pressure. A simple es-
the density of the universe is near the critical denisy The  imation shows that a cross section of the order of magnitude

most frequently proposed candidates for this dark energy argyoposed in these halo formation scenarios, corresponding to
a cosmological constant, or vacuum energy der{§ityand 3 mean free path in the range 1 kpc to 1 Mpc, yields at

quintessenckS], a scalar field with negative pressure. On thecosmological densities a mean free path a bit lower than the
other hand, gravitationally clustered matter is usually asHubble distance. Hence a description for interacting dark

sumed to be dominated by cold, collisionless, nonbaryonignatter as a dissipative fluid is valid at cosmological scales

dark matter(CDM). [20].

In addition to the old cosmological constant problem, re- Dark matter may also have several components, from
lated to the smallness of the observational upper bound owery heavy weakly interacting massive particles to a light-
the vacuum energy density compared to particle physicsveight neutrino[21]. Even if this neutrinolike component
scales[7], a new challenge to the model with cosmological does not contribute significantly to the density budget of the
constant and CDM ACDM) is the “cosmic coincidence” universe[3], it may have nevertheless a relevant dynamical
problem: why is it that the vacuum density dominates therole as distinct components of dark matter, cooling at differ-
universe only recently8]. A dynamical self-interacting sca- ent rates, give rise to bulk viscosif22].
lar field may explain why the dark energy is small. However, Recently the relationship between dark matter clustering,
a minimally coupled scalar field combined with perfect fluid the nature of dark matter, and the origin of ultrahigh energy
matter, such as in “tracking” QCDM modelf9], cannot cosmic raySUHECRS has been explore®3]. Heavy par-
explain the observed acceleration and solve the coincidenagles (my~ 10?10 GeV) can be produced in the early
problem[10,11. On the other hand, it has been shown inuniverse in different wayg24—27 and their lifetime can be
Ref.[10] that both acceleration and coincidence can be saffinite though longer than the age of the universe. In these
isfactorily explained by a combination of quintessence andircumstances, superheavy particles can represent an appre-
dissipative dark matte(QDDM). For these models it was ciable fraction of dark matter and the decay of these particles
shown that late-time attractor solutions exist with very inter-results in the production of UHECRs, as widely discussed in
esting properties: an accelerated expansion, spatially flatnegse literaturg 25,28-3Q. In particular, if the relics cluster in
and a fixed ratio of quintessence to dark matter energy dergalactic halos, as is expected, they can explain the cosmic
sity. Recently, it has been shown that such accelerateghy observations above5x 10'° eV. The effect of decaying
coincidence-solving attractor solutions also exist in spatiallydark matter on the equation of state has been studied numeri-
flat models with an exponential self-interaction quintessenceally in Ref.[31], and the equivalence between particle pro-
potential and phenomenologically chosen couplings betweeduction and dissipative bulk viscosity has been investigated
the quintessence field and baryotropic dark mdtter13. in Ref.[32].

Consideration of dissipative effects in dark matter also All this shows that many different scenarios may occur
arises from increasing evidence that numerical simulations ofvhere significant dissipative processes develop in dark mat-
dark matter halos on sub-galactic scales based on conveter, in particular when it behaves as a viscous fluid. So a
tional CDM models lead to conflicts with observations. Onevariety of accelerated coincidence-solving attractors are pos-
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sible. In this paper we will show that for a wide class of universe expands, and the same is trueyfgisince the mas-
QDDM models attractor solutions are themselves attractedive and massless components of the matter fluid redshift at
towards a common asymptotic behavior, the “superattracdifferent rates.

tor.” The superattractor scenario is described in Sec. Il and The Friedmann equation and the energy conservation of
observational constraints on this scenario are investigated ithe normal matter fluid and quintesseng@g€lein-Gordon
Sec. Ill. These include the luminosity distance—redshift relaequation are

tion for type la supernovae and the age of the universe. We

apply the covariant gauge-invariant formalism to calculate , k 1

the evolution of density and entropy scalar perturbations in H"+ ;: §(Pm+P¢) (k=1,0,-1), (4)

the QDDM regime and solve them for the superattractor re-

gime in Sec. IV. Finally the main conclusions are discussed

in Sec. V. Units in whictt=87G=kg=1 are used through- ,')m+ 3H
out.

pPm=0, (5

+7T
Y
" Pm

Il. QDDM SUPERATTRACTOR SCENARIO Pt 3HY4p4=0, ©)

In Ref. [10] it was shown that the Friedmann-Lemaitre- Where the prime means derivative with respeciitolntro-
Robertson-WalketFLRW) universe filled with perfect nor-  dUCING2m=pm/pc, Xy, =py/pc, with p.=3H" the criti-
mal matter plus quintessence fluid, corresponding to somg@l density and},=—k/(aH) plus the definition2=Q,,
minimally coupled scalar field governed by the Klein- + 4. the set of equation&h)—(6) can be recast asf. [38])
Gordon equation, cannot at the same time drive an acceler-

ated expansion and solve the coincidence problem. To solve Ot Oyt =1, @)
it, some additional bulk dissipative pressurdn the stress- oH]

energy tensor of dark matter was considered. Any dissipation mooen _

in FLRW universes has to be scalar in nature, and in prin- Ot 3H| ym* pm+3H2 =0, ®
ciple it may be modeled as a bulk viscosity effect within a

nonequilibrium thermodynamic theory such as the Israel- _ 2H

Stewart theory[33,34]. In a certain regime, that formulation Qy+3H| y4t —2) Q,=0, 9
can be approximated by the more manageable truncated 3H

transport equation . . . :
where vy is the effective baryotropic index given by

7+ 7= —3{H, ) Y= YOt ¥4Q4 - (10
whereH=a/a denotes the Hubble factot, stands for the Equations(7)—(9) have fixed point solution§)=1, Q,
phenomenological coefficient of bulk viscosity, ands the =~ =, andQ ,=Q,,, respectively, when the partial baryo-

relaxation time associated with the dissipative presgse-  tropic indices and the dissipative pressure are related by
37]. As usual an overdot means derivative with respect to

cosmic time. s 2H
The overall stress-energy tensor of the QDDM model 7m+a:7¢:_ﬁ- (11)
reads

Asymptotical stability of (=1 occurs whenevew+ m/p
Tij=(pmt Pyt Pmt Pyt MU+ (Pmt Pyt 7)), <2/3. This condition, together with Eq11), leads to the
2 additional constraintsr<<(2/3— y,,)pm, Which is negative
for ordinary matter fluids, angt,,<<2/3. Additionally the sta-
bility of Q,=Qn, and Q=0 4,, and hence of the ratio
m/Q 4, has been established [ih0]. These solutions pro-

wherep=py,+p4 andp=pny+p,. Herep, andp,, are the
energy density and pressure of the matter whose equation

state ispy=(ym—1)pm with baryotropic index in the inter- - \iqe a natural explanation to several features observed in our
val 1< yn=<2. Likewisep, andp,, the energy density and nierse: an accelerated expansion, spatial flatness, and a
pressure of the minimally coupled se_lf-lnteractlng quintes-atio of dark energy to matter density of order unity. We
sence fieldy, are related by the equation of stag,=(vs  denote by a subindexthe asymptotic limit of magnitudes in
—1)pg, with baryotropic index the attractor regime, while the subindex 0 will denote as

] usual their current values.

¢? Combining Eq.(11) with Eq. (1) we obtain the equation

7¢=m' (3 of motion of the attractor solutions of the systé, (5), (6),
(1) satisfying flatness, acceleration, and coincidence:

where for non-negative potential4 ¢) one has 6 y,<2.
The scalar field can be properly interpreted as quintessence
provided y,<1—see, €.9.[6]. In generaly,, varies as the

" 37m 2 3§
R s

H .
ﬁ+3’ymH

H=0. (12

V*l
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Here v=(7H) ! is the number of relaxation times in a These equations together with E42) close the problem of
Hubble time—for a quasistatic expansipris proportional to  finding the potentiaV and the scalar field> as functions of
the number of particle interactions in a Hubble time. Perfect. Expressing the potentidll7) and field (18) in terms of
fluid behavior occurs in the limit—c, and a consistent cosmological time, that isy:Q¢a(3H2+ H) and ¢?=

hydrodynamical description of the fluids requires 1. Re- —2Q4.H, it is easy to find, for the superattractor solution,
writing Eq. (12) in terms of the field baryotropic indey,,

we get
2Q0)
S, 4 Vi( )= ——25(2- yge)e ", (19
Yo=3Ye~ (v +3¥m) vty Yo~ g (13 3(Ygsts)
ma’

where a prime indicates derivative with respectts In a. 404, t
When the phenomenological coefficient of bulk viscosity ds(t) = o+ 37, In—, (20

S S

satisfies{= ¢, where

(= Qmd Ym— Vo) [1=3yysv 'IH=xH, (14  where A=(3y,:/Q,,)"? is the slope parameter. Then we
find a=2/(Q¢aA2) and ¢o=(2/A)In y4. We note that in
the superattractor regime, the exponens larger, by a fac-

accelerated expansion in the late-time regime whem oy of 1/Q 45, than the exponent &7 of a scalar field domi-
<2/3. As{>0 andy,=1, the hydrodynamical parameter  ateq era. This is a particular instance of a general property

is restricted tov>37y,s. The case of constamtin the inter- ot 5 ppM models in that dissipative effects assist quintes-
val 0<«<1 arises, for instance, in a radiating fluid, and thegence driven acceleration through the negative non-

nearly linear regime, with slowly varying and y,, was equilibrium pressurer. Using Eq.(11) we can evaluate its
already investigated in the quasiperfect limit, correspondingsig to quintessence pressure:
to v~ 10 [10].

To analyze the stability of the solutiop,= vy, We insert
Eqg. (14) into Eq. (13):

Eqg. (13) admits the constant solutiop,= y,4s. It gives an

™ _ Yé6— Ym Qma

Py Yo~ 1 Qua

(21
Y5=3(¥5= 759~ (V3 (V4= vgs)- (15

AS y4s<2/3, v>max(3y4s1), andy,=>1, Eq.(15) shows Hence, in the superattractor regime, this ratio is also a con-
thatdy/y/9y,<0 in a neighborhood of 4. Hence this con- _stant(pr_ov_idt_ed thaty,, is a constant and when dark matter
stant solution is asymptotically stable, showing that all soluS cold it is just the ratio of matter to quintessence energy
tions of Eq.(12), that is, all the accelerated coincidence-9€nsity. _ _

solving attractors of the systen), (5), (6), (1), are Let us sketch the evolution of the actual universe from a
themselves attracted towards the constant solufign y,, ~ nearly thermodynamical equilibrium early efahen m/pp,
provided that they satisfy~ ¢ whent—o. As the same =0) into this superattractor stagehen /pm= 745~ ¥m)-
occurs with all solutions whose initial conditions lay within Along the radiation and matter dominated efaspp,|<1

the domain of attraction of each of these attractor solutions"d the inequalityyy,+ m/pyn>y,s holds. Then dissipative
we will refer to the constant solution as the “superattractor” Processes become more significant, the attractor condition
of this class of QDDM models. We denote with subindex (11) iS approachedy, is driven towardsy,s, and the ex-
magnitudes in the superattractor regime. As an example dfansion of the scale factor accelerates. Clearly the timescale

models satisfying/— ¢, we note the casé=xp,, investi- of this transition period depends on the details of the dissi-
gated in Refs[39—42.s m pative processes occurring in dark matter, encoded into the

Let us characterize this asymptotic stage. From @)  €volution of the dissipative magnitudégét) andv(t)—some
the superattractor solution yields a power-law evolution form0dels exhibiting this convergence stage have been investi-

the scale factor gated in Ref.[10]. The superattractor stage finally settles
when{={,. Assuming that the ratio of this transition period
t\« to the age of the universg is small and this transition pe-
as(t)=ap E ' (16) riod started early enough, we may approximate the recent

evolution ofa(t) by the superattractor solutiqi6); hence,
wherea=2/3y,, aq is the current scale factor, angis the  v40=v4s and (1+ 7) l=alay=(t/ty)“.
age of a superattractor universe. The dynamics of the scalar As Eq.(19) shows, the class of models converging to the
field in the attractor regime is obtained from E@8) and  superattractor stage h&¢)~ V() for large ¢. In addi-
(12): tion to this exponential tail, no other constraint has to be
imposed on the quintessence potential for convergence to the

V=20 ,(2— y¢)H2, 17) §uperattr_actor era. qu a wide range of initial valuea’xzfn(_j

2 ¢ the quintessence field approaches a common evolutionary
. path(20) for which y,=v,s; i.e., the late behavior is insen-
$?=3Q a7 4H. (18)  sitive to the initial conditions.
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Ill. OBSERVATIONAL CONSTRAINTS We see from Eqs(24) and (25) thatd, (z) depends on the
time evolution of dissipative processes through a double in-
tegral in7/p,(z) and on the time evolution of the quintes-

It has been found that supernovae of typg$aleld are  sence field through a double or triple integralyig(z) (we
nearly standard candles. Properly corrected, the difference ifissume tha,,=1). On the one hand, there is a degenerancy
their apparent magnitudes is only related to differences ithere as these two functions cannot be reconstructed from
luminosity distancel, and consequently to cosmological pa- knowledge of the single functiod, (z). Besides the time
rameters43,44]. Taking profit of this property, several ac- variation of these magnitudes is largely smoothed out and,
celerated expanding cosmological models lik€DM and  similarly to the analysis in Ref§49—51] for QCDM models,
QCDM have been fitted to recent observations of high redwe find that the luminosity distance is highly insensitive to
shift supernovae #<1) [43,45-47. Though they have a these variations. So we may safely replace these time-
good fit in some regions of the parameter space correspongarying magnitudes by their mean values in the interval
ing to an accelerated expansion, these models require fingg z). Assuming that the universe has already settled in the
tuning to account for the observed ratio between dark energyuperattractor regime at the age of the farthest observed su-
and clustered matter. pernova the degenerancy is eliminated and both functions

On the other hand, QDDM models provide models thathecome constant. Then, the expressiaf simplifies dras-
simultaneously provide an accelerated expansion and solMgally and we obtair(cf. [52])

the coincidence problem within the general trend of the uni-

verse towards an attractor and with it towards the superat- (1+2)[(1+2)P—1]

tractor. As in QCDM models, these scenarios depend on the di(2)= BHo ' (26)
quintessence potential and initial conditions. In addition,

they depend on the evolution of the magnitudes characterinhereB:aé/ézz 1—1/a is the acceleration parameter. So

ing the details of dissipative processes occurring in dark matg jncreases withe and 1< a<o corresponds to € 8<1.
ter. Let us examine the issue of reconstructing part of thigo, the superattractor we have

evolution through observations of distant SNela.

Ignoring gravitational lensing effects, the standard expres- 2
sion for the luminosity distance to an object at redshift a Yos=3, 317 B). (27
spatially homogeneous and isotropic universg4®]

A. Luminosity distance of supernovas

We have used the sample of 38 high redshift (618

d,(2)= 1+z S| Hol Q|22 z d7' 22) =<0.83) supernovae of Reff43], supplemented with 16 low
L HolQo| Y2\ 0 ¥ ’ redshift (z<0.1) supernovae from the Caldololo Super-
nova Survey[53]. This is described as the “primary fit” or

with S(u) = (sinu,u, sinhu) for k=(1,0—1), respectively. fit C in Ref.[43], where, for each supernova, its redslajft

oH(zZ")

Then for a QDDM universe we have the corrected magnitude; , and its dispersiowr; were com-
puted.
H(z) 2z dz' The predicted magnitude for an object at redshiftith
=1 Qo ex 3J Ym+ 1) luminosity distanced,_ is
Ho 01+27' Pm
"™ m(z)=M+5logD, (2), (28)
z dz
+Q 40 exp( SJ'O TR +Qko(1+2')2} : where M is related to the absolute magnitukieby
(23) o Holkm/s Mpc})
M=M —5log —c[km/s] +25 (29
In the case of a spatially flat univers#, has a simpler _ o ' _ '
expression in terms of the effective baryotropic index: and D, is the luminosity distance in units of the Hubble

radius.
We have determined the optimum fit of the superattractor

1+z(z 3(z dZ' T 2 —

dL(z)zH_o odz ex ~3), Ty y+; , model by minimizing ay“ function:
-3, [mom@ 8P -

i=1 o

where i

where N=54 for this data set. The most likely parameters
are (8,M)=(0.395,23.96), yieldingy2,/Npr=1.12 Npr
=52), and a goodness of fI?(XZBXern)zo.ZSS. These
2 dz numbers show that the fit of superattractor QDDM cosmol-
X exp( 3] 7¢) _ (25)  0gy to this data set is as good as the fit of h€DM model
01+2 (see Fig. 1L We note that it occurs even though the superat-

+Z + =
Y+ —=Ymt ——
p "op

m

o
Ym™t o Yo | Qgo
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FIG. 1. The magnitude residuatsm of the SNeldfit C data set |3
of Ref. [43]) from the best fit superattractor QDDM model with
(B, M)=(0.395,23.96). For comparison is shown the magnitude FIG. 2. The estimated probability density distributiorormal-
residual for the best fitACDM model, corresponding to ized likelihood for the acceleration parametgrof the superattrac-
(Qmo, Q) ,M)=(0.54,1.09,23.93)45]. tor model.

tractor model has basically only the acceleration parameter tiristics of this transition period, and hence the value of the
fit large redshift supernovae\ being largely determined by differencets—t,, are model dependent and will not be dealt
low redshift supernovaelt also means that the density of with here.

clustered matter is not constrained by measurements of Using the fit to SNela of the previous subsection and Eq.
SNela and it has to be determined through independent ol§27) we obtain a=1.711+0.288. Combined withH,=65

servations. +5 km/s Mpc[2], it yields for the age of the superattractor
We estimate the probability density distribution of the pa-universets=25.9+4.8 Gyr. This shows that the QDDM cos-
rameters by evaluation of the normalized likelihdéd] mology does not suffer of any age discrepancy and can ac-

commodate comfortably thedl interval 9—-16 Gyr for the
expl — y212) age estimate of globular clustd3].
p(BM)= : (31
J’ dﬁJ’ dM exp( — x?/2) C. Parameters of the superattractor era

Using the probability distribution foB and Eq.(27) we
obtain vy,s=0.401+0.069, in agreement with previous re-
sults for QCDM models in the limi€) ,— 0. Then, using Eq.
(11) and assuming that dark matter is cold(=1), we find

Then we obtain the probability density distribution {8r
marginalizing p(B, M) over M. This probability density

(Tstribution p(B) is plotted in Fig. 2 and it yieldsp 7l pn=—0.599+0.069. This figure implies that substantial
=0.398+0.104 (Io). Hence we can state that 0.088  yisginative processes are taking place in dark matter. This

<0.711 with a confidence level of 0.997, so that an accelerg,q is also shown by the large value of the effective baryo-
ated superattractor QDDM universe is strongly supported bYropic index. In effect, combining the estimag®, ,=0.35

this data set, in agreement with a similar analysid @DM +0.07 from cluster baryoni2] with the a priori constraint

and QCDM model343,44,55,48 Q=1 and inserting into Eq.10) we getys=0.61+0.09. For
a perfect fluid this value would correspond to a power-law
B. Age of the universe exponent 2/3,=1.1, quite lower thamv. Using Eq.(14), we

. . find that the linear relationship= x;+ x,v~* holds, where
For a QDDM model the age of the universe has the 'nte'K1=0.21t0.05 andk,= — 0.25+0.07. The requirement of
gral representation : - o
asymptotic stability of the superattractor solution imposes
o dz that v>1.20+0.21.
0= fo EESITEIR (32 Using Egs(17) and(18), we find the quintessence kinetic
energy density parameté?,,=0.13+0.03 and(,,=0.52
+0.06 for the potential energy density parameter. These fig-
whereH(z) is given by Eq.(23). Along the transition period ures show that the scalar field is moving down the potential
of the universe from an early nearly equilibrium stage to-outside the slow-roll regime. Similarly we find for the slope
wards the superattractor stage the inequality+ =/p,,  of the exponential potentigh=1.36+0.14 and for the cur-
>v4s holds. As a consequencéd(z)>Hg(z)=Hq(1 rent value of the scalar fiely=—1.3=0.3. This implies a
+2)17# (whenever),=0) andt,<t.=a/H,. The charac- mass parameter of the Planck scale.
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IV. DENSITY PERTURBATIONS are, respectively, the adiabatic speed of sound and a non-

Besides the model degenerancy of luminosity distance detgaryotroplc index. The sources on the right-hand side of Eq.

terminations, even within the superattractor cosmolo theréss) arising, respectively, from entropy perturbations, bulk
’ . P : 9y viscous stress, energy flux, and shear viscous stress are given
are some thermodynamical parameters likand the speed

. i o in [60]. Since in our case there are no shear viscous stress
of soundc, that are not fixed. For this reason we will inves-

tigate the evolution of density fluctuations in the perturbative 01j=0) andS[q] vanishes by choosing the energy frame

long-wavelength regime during the superattractor era. It iéqi:o)’ \_Ne reproduce here only the expressions Spe]
) : : ; and S| 7r]:
possible that weak lensing techniques could yield more in-

formation about these paramet¢&s).

Scalar perturbations are covariantly and gauge-invariantly S[e]=r(3kH?+D?pe, 37
characterized by the spatial gradients of scalars. Density in-
homogeneities are described by the comoving fractional den- S[#]=— (3kH?+ D?)B, (38)
sity gradient57]
aD;p where the scalar entropy perturbation
=, (33
a’nT

e=aD'g= D%s (39

where [ stands for the covariant spatial derivativeAD ..
=h*n'---V,A. .. The scalar parts=aD's,=(aD)?%p/p
corresponds to the usual gauge-invariant density perturbation . . .
scalare ,,[58,59, which encodes the total scalar contribution and the dimensionless perturbation scalar
to density inhomogeneities. Also the comoving expansion

gradient, the normalized pressure gradient, and normalized B= a’D’x 40
entropy gradient are defined 7,60 - p (40
aD;p anTD;s i i
0,=aD;0, p; :T' € :T’ (39 related to the inhomogeneous part of the bulk viscous stress,

were defined.

n being the particle number densifythe temperature, arsl Also, the entropy perturbation equation in the energy

the specific entropy per particle. The evolution equation forlf@me is
scalar density perturbations redd®]
3 e+3H(c2—y+1+r)e=—3HB. (41)
5+H(8—6y+3cd)s— SHHL+5(y- 1)2—-6c2
The coupled system that governs scalar dissipative pertur-

+[1-3(y—1)%+ 2c§]k}5— c§D25 bations in the general case is given by the density perturba-
tion equation(35), the entropy perturbation equatidal),
=S[e]+S[7]+S[q]+S[a], (39  the equation for the scalar bulk viscosit}), and the equa-
h tion for temperature perturbations.
where When only bulk viscous stress dissipation is present, the
ap 1(ap coupled system can be reduced to a pair of coupled equations
c§= (—) . r= —( —) (36) in & (third order in timg ande (second order in time For a
P/ nT\ Js p flat background, the equations d4G0|
|
76+[1+3(2— y+c2)tH]16+H{8—6y+3c2+37(c2) — L [ — 14+ 75y—48y>+ (21y—30)c2]rH}
— 2 H6—10y+59?—6c2—47(c?) —2[ — 6+ 18y— 15y°+59°+ (6 — 28y+10y?)c2]rH} 6
2 2
a . 3a‘(y—1)H . . d
=p—fD2(D25)+—(7 ) D(D?8) + 7¢;D?6+ rD%e+ | (1—-3yrH)ci+ 7(c3) +3 %) D?5
S
. a¢
+{ (1-3yrH)r+mr+3 £) D2, (42
p
and
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re+[1— 3 (—2+3y—2ci—2r)rH]e—3H

. 3H
_
Y

- = 0.
Y

24
(y— 1)§+P(%)

d
y—l—Cg—r+3y(7—C§)TH+T(Cg-l—r)'—B(—g) e
y\ds p
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We shall consider here the evolution of the density andvhich can only hold if
entropy perturbations in the superattractor stage with the

conditionsr =0 anddv/ds=0. Together with Eq(14) they

imply
74
(g) :O, (44)
p
ag\ [ 9L\  kitkalv
(%);(m);—eamH - ®

In this case, Eq(42) decouples to give
. Ci. Cp.  C : .
5+ T15+ t—225+ t—saz C4t2° D5+ ct29D* 5+ c2D25

Ce
—+c¢,|D?6,

t

+ (46)

and Eq.(43) becomes

. Cg. Cg Cqp
e+ —e+ —e= —
t t2 t2 t2

(47)

where the constant coefficients - - - ¢,; depend upon the
parameters of the model;, «q, x5, O, @, v, cg, and the

present value of the scale factag. For our purposes, only

the explicit expression foc,, cg, andcg are relevant, being

ci=av+3a(2—y— Cg),
3 2
Cg=alv— 5(37—2—205) ,

Co=—3a?[v(y—1-c2)+3y(y—c?)]. (48
We deal with the systert¥6),(47) by performing separation
of variables in the formd= 6,6, ande=e,e,, wheres, and
e, depend upon the spatial variables whidg and e, are
functions of the coordinate time Then, Eq.(46) can be
recasted as

S, €18, €8 3

5t t 51 t2 5[ t3
5 D*s S ¢ D26
_ 2a t X 2%t 6 X
= —4Cs| —— 4| B =ty | —
t (C“(st €] 75 T\ G5 T T o TS
(49

(43
|
(D?—u)8,=0, (50)
wu being an arbitrary constant. Also, E@.7) leads to
t2(e,/e) +cgt(e/e)+cg &
(t t) 8(t t) 9: X (51)

Cao( S/ +Cia( S /&) &’
which requirese,= A&, , with A an arbitrary constant which
can be absorbed into the temporal functions, resulting in the
same spatial distribution of the entropy and density perturba-
tions. Under the conditiof60) the evolution equation foé,
becomes

S

. Ci.. [Cy

+ 2t2ac— 5=0. (52

Cs Ce

—— —+c
3 I t 7
As we are interested in the asymptotic behavior for the

superattractor regime, it suffices to consider the dominant
terms in Eq.(52), a being a positive number, we have

5+ %;’st— w227, 5,— ut?%cs6,=0. (53
Equations(50) and (53) give the form of the asymptotic
density perturbations in the model. The paramegteppear-
ing in Eg. (50) depends, in principle, on the boundary con-
ditions of the problem being the quantity *2, a character-
istic coordinate length related to the range of the
exponentially decaying modes of the spatial p3yt In the
special casg. =0, Eq.(50) has the Laplace form, describing
long-range density perturbation modes. Here, we are going
to study the asymptotic evolution of the long-range modes by
performing a series expansion &8f in powers ofu?. Up to
first order we haves, =&+ u25"); then, replacing this
expression in Eq53) and retaining terms up to first order in
> we obtain

Cy.. : ey Cq..
[ B+ T8 —t29¢,5(0—129¢5 (%) | w2+ 50+ 50=0.
(54)
The zeroth-order solution gives

Ay

0) _
=Ty oy

t27C1+ At +A;, (55
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for c;¢{1,2 andA;, i=1,2,3 integration constants. Then, ACDM model, and it does not suffer from any age conflict
5§1) satisfies the inhomogeneous equation either.
Our results are quite valuable to give general statements
Cq.. . bout a large class of QDDM models that are driven towards
S =51 — t2ac, 50— t2a¢, 50 =0, 56 20 9 OIS .
tooet 4% 5%t (56) this superattractor but they are limited to the late-time re-
) gime. Undoubtedly a large variety of models arise both from
whose general solution has the form different quintessence potentials as well as from different
B dissipative processes in dark matter. The only requirement is
551):—1t2‘°1+ B,t+Bg+a t2et4 that the potential has the exponential t&ib) or, equiva-
(1-cy)(2—cy) lently, that the viscosity coefficient has the asymptotic be-

(57) havior (14). This diversity of possibilities makes the transi-
tion period of the universe from its nearly thermodynamical
where the coefficients;, i=1,2,3 are integration constants €quilibrium early stage towards the superattractor regime
depending upon the initial conditions, amad, i=1, ... 4, model dependent and requires more detailed investigation. In
depend onw, c;, and theB; . Then, the asymptotic evolution Particular it would be of importance to evaluate the effects of
of the long-range modes up to first order @3 results in a  dissipative processes on the CMB angular power spectrum.
combination of powers of time. Whemy<2 all the expo- Standard CDM models have been quite successful in de-
nents are positive, while fot;>2 there exists a decaying SCribing the evolution of cosmic structure. Hence a suffi-
mode. With the parameters of the model, because of4gy.  ciently long matter-dominated era must have taken place
this last situation is equivalent < »/3+0.999 which is during which the observed structure grew from the density
always satisfied because of the lower bound1.2 (in our fluctuations measured by CMB anisotropy experiments. As a
units c2<1). As a consequence, a decaying mode exists ifonsequence the transition to the_currently .observed aqceler—
this m(s)del and the dominant exponent is 4. Hence the ated regime should have been quite recent in the evolution of

. . the universe. For QDDM models this seems to imply that
iezr;slgw/a%ower spectrum - redshifts  asP(k,z)=(1 dissipative effects in dark matter were small until density

inhomogeneities became large. If so, it is suggestive to think
that the size of dissipative processes, as measured by the
ratio 7/p,, grows with dark matter density and became
large precisely because of the development of inhomogene-
ities. The observed smoothness of halo structure and the cor-
relation between high energy cosmic ray production and dark
(58) matter clustering might provide support for this relationship.
Even though the supernovae search is extendezi>tb,
this does not enable a precise determination of the time
1 variation in the quintessence baryotropic indgx and the
50 H ratio 7/ p,,, because the luminosity distance depends on these
ma magnitudes through a multiple-integral relation that smears
(59 out detailed information about their variability. Besides their
independent variation cannot be disentangled from the deter-
where\, , are the roots of the equatior?+ (cg— 1)\ + Cq mination of a single function. Hence further independent
=0, B4,Bs are arbitrary integration constants, aog,c;3  cosmological probes are required to investigate this issue. As
are functions of the parameters and the previously defined first step in this direction we have calculated the dominant
integration constants. In this way the entropy perturbationgarge-time long-wavelength behavior of density and entropy
may yield additional information about the parameharsﬁ, fluctuations in the superattractor regime.
and Q5. The combined distribution of dark mass and dark energy
can be investigated via its gravitational effects inducing cor-
V. DISCUSSION related shear in the images of distant galaxies. This weak
o lensing effect could, in principle, be used to probe the large-
We have shown that within the class of acceleratedscale structure and thereby vyield additional information

coincidence-solving attractor solutions of QDDM models, aghout the thermodynamical and cosmological parameters not
distinguished attractor solution exists with constant quintesconstrained by the luminosity-redshift relationship.

sence baryotropic index. This superattractor cosmology is

quite attractive because of its simplicity: the scale factor ex- ACKNOWLEDGMENTS

pansion follows a power-law, and all its parameters can be

evaluated in a model independent way. Notwithstanding its This work has been supported by the University of Bue-
simplicity, its fit to SNela observations is as good as thenos Aires under Project No. TX-93.

+ a2t2a+3+ a3t2a+5*01+ a4t2a+4,

On the other hand, Ed43) becomes, in the leading re-
gime,

. Cg. Cg
e+ —e+ —e=cpt?**?!
T g &t

3 1
1+ | y=1455— |t

whose solution is

e(t) =B, t"1+ Bgtr24 ¢ 293

NI
w7
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