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Quintessence dissipative superattractor cosmology
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We investigate the simplest quintessence dissipative dark matter attractor cosmology characterized by a
constant quintessence baryotropic index and a power-law expansion. We show a class of accelerated
coincidence-solving attractor solutions converging to this asymptotic behavior. Despite its simplicity, such a
‘‘superattractor’’ regime provides a model of the recent universe that also exhibits an excellent fit to superno-
vae luminosity observations and no age conflict. Our best fit givesa51.7160.29 for the power-law exponent.
We calculate for this regime the evolution of density and entropy perturbations.
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I. INTRODUCTION

A new picture of the universe is emerging from observ
tions of large scale structure, searches for type Ia supe
vae, and measurements of the cosmic microwave ba
ground anisotropy. They all suggest that the universe
undergoing cosmic acceleration and is dominated by
smoothly distributed dark energy component with lar
negative pressure@1–3#. Moreover, recent data coming from
BOOMERANG and MAXIMA projects seem to indicate tha
the density of the universe is near the critical density@4#. The
most frequently proposed candidates for this dark energy
a cosmological constant, or vacuum energy density@5#, and
quintessence@6#, a scalar field with negative pressure. On t
other hand, gravitationally clustered matter is usually
sumed to be dominated by cold, collisionless, nonbaryo
dark matter~CDM!.

In addition to the old cosmological constant problem,
lated to the smallness of the observational upper bound
the vacuum energy density compared to particle phy
scales@7#, a new challenge to the model with cosmologic
constant and CDM (LCDM) is the ‘‘cosmic coincidence’’
problem: why is it that the vacuum density dominates
universe only recently@8#. A dynamical self-interacting sca
lar field may explain why the dark energy is small. Howev
a minimally coupled scalar field combined with perfect flu
matter, such as in ‘‘tracking’’ QCDM models@9#, cannot
explain the observed acceleration and solve the coincide
problem @10,11#. On the other hand, it has been shown
Ref. @10# that both acceleration and coincidence can be
isfactorily explained by a combination of quintessence a
dissipative dark matter~QDDM!. For these models it wa
shown that late-time attractor solutions exist with very int
esting properties: an accelerated expansion, spatially flatn
and a fixed ratio of quintessence to dark matter energy d
sity. Recently, it has been shown that such accelera
coincidence-solving attractor solutions also exist in spatia
flat models with an exponential self-interaction quintesse
potential and phenomenologically chosen couplings betw
the quintessence field and baryotropic dark matter@12,13#.

Consideration of dissipative effects in dark matter a
arises from increasing evidence that numerical simulation
dark matter halos on sub-galactic scales based on con
tional CDM models lead to conflicts with observations. O
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of the major problems shown by these simulations is t
galactic halos are too centrally concentrated@14#. Confirma-
tion of this problem would imply that structure formation
somehow suppressed on small scales. Several scenario
dressing this issue have been considered assuming some
of interaction for dark matter particles: nonthermally pr
duced and weakly interacting@15#, self-interacting@16#, re-
pulsive@17#, annihilating@18#, and decaying@19#. It is quite
reasonable to expect that dark matter is out of thermo
namical equilibrium and these same interactions are at
origin of the cosmological dissipative pressure. A simple
timation shows that a cross section of the order of magnit
proposed in these halo formation scenarios, correspondin
a mean free path in the range 1 kpc to 1 Mpc, yields
cosmological densities a mean free path a bit lower than
Hubble distance. Hence a description for interacting d
matter as a dissipative fluid is valid at cosmological sca
@20#.

Dark matter may also have several components, fr
very heavy weakly interacting massive particles to a lig
weight neutrino@21#. Even if this neutrinolike componen
does not contribute significantly to the density budget of
universe@3#, it may have nevertheless a relevant dynami
role as distinct components of dark matter, cooling at diff
ent rates, give rise to bulk viscosity@22#.

Recently the relationship between dark matter clusteri
the nature of dark matter, and the origin of ultrahigh ene
cosmic rays~UHECRs! has been explored@23#. Heavy par-
ticles (mX;1012– 1014 GeV! can be produced in the earl
universe in different ways@24–27# and their lifetime can be
finite though longer than the age of the universe. In th
circumstances, superheavy particles can represent an a
ciable fraction of dark matter and the decay of these partic
results in the production of UHECRs, as widely discussed
the literature@25,28–30#. In particular, if the relics cluster in
galactic halos, as is expected, they can explain the cos
ray observations above;531019 eV. The effect of decaying
dark matter on the equation of state has been studied num
cally in Ref. @31#, and the equivalence between particle pr
duction and dissipative bulk viscosity has been investiga
in Ref. @32#.

All this shows that many different scenarios may occ
where significant dissipative processes develop in dark m
ter, in particular when it behaves as a viscous fluid. S
variety of accelerated coincidence-solving attractors are p
©2001 The American Physical Society08-1
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sible. In this paper we will show that for a wide class
QDDM models attractor solutions are themselves attrac
towards a common asymptotic behavior, the ‘‘superattr
tor.’’ The superattractor scenario is described in Sec. II a
observational constraints on this scenario are investigate
Sec. III. These include the luminosity distance–redshift re
tion for type Ia supernovae and the age of the universe.
apply the covariant gauge-invariant formalism to calcul
the evolution of density and entropy scalar perturbations
the QDDM regime and solve them for the superattractor
gime in Sec. IV. Finally the main conclusions are discus
in Sec. V. Units in whichc58pG5kB51 are used through
out.

II. QDDM SUPERATTRACTOR SCENARIO

In Ref. @10# it was shown that the Friedmann-Lemaitr
Robertson-Walker~FLRW! universe filled with perfect nor-
mal matter plus quintessence fluid, corresponding to so
minimally coupled scalar field governed by the Klei
Gordon equation, cannot at the same time drive an acce
ated expansion and solve the coincidence problem. To s
it, some additional bulk dissipative pressurep in the stress-
energy tensor of dark matter was considered. Any dissipa
in FLRW universes has to be scalar in nature, and in p
ciple it may be modeled as a bulk viscosity effect within
nonequilibrium thermodynamic theory such as the Isra
Stewart theory@33,34#. In a certain regime, that formulatio
can be approximated by the more manageable trunc
transport equation

p1tṗ523zH, ~1!

whereH[ȧ/a denotes the Hubble factor,z stands for the
phenomenological coefficient of bulk viscosity, andt is the
relaxation time associated with the dissipative pressure@35–
37#. As usual an overdot means derivative with respec
cosmic time.

The overall stress-energy tensor of the QDDM mo
reads

Ti j 5~rm1rf1pm1pf1p!uiuj1~pm1pf1p!gi j ,
~2!

wherer5rm1rf andp5pm1pf . Hererm andpm are the
energy density and pressure of the matter whose equatio
state ispm5(gm21)rm with baryotropic index in the inter-
val 1<gm<2. Likewiserf andpf , the energy density and
pressure of the minimally coupled self-interacting quint
sence fieldf, are related by the equation of state,pf5(gf
21)rf , with baryotropic index

gf5
ḟ2

ḟ2/21V~f!
, ~3!

where for non-negative potentialsV(f) one has 0<gf<2.
The scalar field can be properly interpreted as quintesse
providedgf,1—see, e.g.,@6#. In generalgf varies as the
10350
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universe expands, and the same is true forgm since the mas-
sive and massless components of the matter fluid redshi
different rates.

The Friedmann equation and the energy conservation
the normal matter fluid and quintessence~Klein-Gordon
equation! are

H21
k

a2
5

1

3
~rm1rf! ~k51,0,21!, ~4!

ṙm13HS gm1
p

rm
D rm50, ~5!

ṙf13Hgfrf50, ~6!

where the prime means derivative with respect tof. Intro-
ducingVm[rm /rc , Vf ,[rf /rc , with rc[3H2 the criti-
cal density andVk[2k/(aH)2 plus the definitionV[Vm
1Vf , the set of equations~4!–~6! can be recast as~cf. @38#!

Vm1Vf1Vk51, ~7!

V̇m13HS gm1
p

rm
1

2Ḣ

3H2D Vm50, ~8!

V̇f13HS gf1
2Ḣ

3H2D Vf50, ~9!

whereg is the effective baryotropic index given by

gV5gmVm1gfVf . ~10!

Equations~7!–~9! have fixed point solutionsV51, Vm
5Vma andVf5Vfa , respectively, when the partial baryo
tropic indices and the dissipative pressure are related by

gm1
p

rm
5gf52

2Ḣ

3H2
. ~11!

Asymptotical stability ofV51 occurs wheneverg1p/r
,2/3. This condition, together with Eq.~11!, leads to the
additional constraintsp,(2/32gm)rm , which is negative
for ordinary matter fluids, andgf,2/3. Additionally the sta-
bility of Vm5Vma and Vf5Vfa , and hence of the ratio
Vm /Vf , has been established in@10#. These solutions pro-
vide a natural explanation to several features observed in
universe: an accelerated expansion, spatial flatness, a
ratio of dark energy to matter density of order unity. W
denote by a subindexa the asymptotic limit of magnitudes in
the attractor regime, while the subindex 0 will denote
usual their current values.

Combining Eq.~11! with Eq. ~1! we obtain the equation
of motion of the attractor solutions of the system~4!, ~5!, ~6!,
~1! satisfying flatness, acceleration, and coincidence:

n21S Ḧ

H
13gmḢ D 1Ḣ1

3gm

2
H22

3z

2Vma
H50. ~12!
8-2
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Here n5(tH)21 is the number of relaxation times in
Hubble time—for a quasistatic expansionn is proportional to
the number of particle interactions in a Hubble time. Perf
fluid behavior occurs in the limitn→`, and a consisten
hydrodynamical description of the fluids requiresn.1. Re-
writing Eq. ~12! in terms of the field baryotropic indexgf ,
we get

gf8 53gf
2 2~n13gm!gf1nS gm2

z

VmaH
D , ~13!

where a prime indicates derivative with respect toh5 ln a.
When the phenomenological coefficient of bulk viscos

satisfiesz5zs , where

zs5Vma~gm2gfs!@123gfsn
21#H[kH, ~14!

Eq. ~13! admits the constant solutiongf5gfs . It gives an
accelerated expansion in the late-time regime whengfs
,2/3. Asz.0 andgm>1, the hydrodynamical parametern
is restricted ton.3gfs . The case of constantk in the inter-
val 0,k,1 arises, for instance, in a radiating fluid, and t
nearly linear regime, with slowly varyingn and gm , was
already investigated in the quasiperfect limit, correspond
to n21→0 @10#.

To analyze the stability of the solutiongf5gfs we insert
Eq. ~14! into Eq. ~13!:

gf8 53~gf
2 2gfs

2 !2~n13gm!~gf2gfs!. ~15!

As gfs,2/3, n.max(3gfs,1), andgm>1, Eq. ~15! shows
that]gf8 /]gf,0 in a neighborhood ofgfs . Hence this con-
stant solution is asymptotically stable, showing that all so
tions of Eq. ~12!, that is, all the accelerated coincidenc
solving attractors of the system~4!, ~5!, ~6!, ~1!, are
themselves attracted towards the constant solutiongf5gfs
provided that they satisfyz;zs when t→`. As the same
occurs with all solutions whose initial conditions lay with
the domain of attraction of each of these attractor solutio
we will refer to the constant solution as the ‘‘superattracto
of this class of QDDM models. We denote with subindexs
magnitudes in the superattractor regime. As an exampl
models satisfyingz→zs we note the casez}Arm, investi-
gated in Refs.@39–42#.

Let us characterize this asymptotic stage. From Eq.~11!
the superattractor solution yields a power-law evolution
the scale factor

as~ t !5a0S t

ts
D a

, ~16!

wherea52/3gfs , a0 is the current scale factor, andts is the
age of a superattractor universe. The dynamics of the sc
field in the attractor regime is obtained from Eqs.~3! and
~11!:

V5
3

2
Vfa~22gf!H2, ~17!

ḟ253VfagfH2. ~18!
10350
t

g

-

s,
’

of

r

lar

These equations together with Eq.~12! close the problem of
finding the potentialV and the scalar fieldf as functions of
t. Expressing the potential~17! and field ~18! in terms of
cosmological time, that is,V5Vfa(3H21Ḣ) and ḟ25

22VfaḢ, it is easy to find, for the superattractor solution

Vs~f!5
2Vfa

3~gfsts!
2
~22gfs!e

2Af, ~19!

fs~ t !5f01A4Vfa

3gfs
ln

t

ts
, ~20!

where A5(3gfs /Vfa)1/2 is the slope parameter. Then w
find a52/(VfaA2) and f05(2/A)ln gfs. We note that in
the superattractor regime, the exponenta is larger, by a fac-
tor of 1/Vfa , than the exponent 2/A2 of a scalar field domi-
nated era. This is a particular instance of a general prop
of QDDM models in that dissipative effects assist quinte
sence driven acceleration through the negative n
equilibrium pressurep. Using Eq.~11! we can evaluate its
ratio to quintessence pressure:

p

pf
5

gf2gm

gf21

Vma

Vfa
. ~21!

Hence, in the superattractor regime, this ratio is also a c
stant~provided thatgm is a constant!, and when dark matte
is cold it is just the ratio of matter to quintessence ene
density.

Let us sketch the evolution of the actual universe from
nearly thermodynamical equilibrium early era~when p/rm
.0) into this superattractor stage~when p/rm5gfs2gm).
Along the radiation and matter dominated erasup/rmu!1
and the inequalitygm1p/rm.gfs holds. Then dissipative
processes become more significant, the attractor cond
~11! is approached,gf is driven towardsgfs , and the ex-
pansion of the scale factor accelerates. Clearly the times
of this transition period depends on the details of the dis
pative processes occurring in dark matter, encoded into
evolution of the dissipative magnitudesz(t) andn(t)—some
models exhibiting this convergence stage have been inv
gated in Ref.@10#. The superattractor stage finally settl
whenz.zs . Assuming that the ratio of this transition perio
to the age of the universet0 is small and this transition pe
riod started early enough, we may approximate the rec
evolution ofa(t) by the superattractor solution~16!; hence,
gf0.gfs and (11z)215a/a0.(t/t0)a.

As Eq. ~19! shows, the class of models converging to t
superattractor stage hasV(f);Vs(f) for largef. In addi-
tion to this exponential tail, no other constraint has to
imposed on the quintessence potential for convergence to
superattractor era. For a wide range of initial values off and
ḟ the quintessence field approaches a common evolutio
path~20! for which gf5gfs ; i.e., the late behavior is insen
sitive to the initial conditions.
8-3
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III. OBSERVATIONAL CONSTRAINTS

A. Luminosity distance of supernovas

It has been found that supernovae of type Ia~SNeIa! are
nearly standard candles. Properly corrected, the differenc
their apparent magnitudes is only related to differences
luminosity distancedL and consequently to cosmological p
rameters@43,44#. Taking profit of this property, several ac
celerated expanding cosmological models likeLCDM and
QCDM have been fitted to recent observations of high r
shift supernovae (z&1) @43,45–47#. Though they have a
good fit in some regions of the parameter space corresp
ing to an accelerated expansion, these models require
tuning to account for the observed ratio between dark ene
and clustered matter.

On the other hand, QDDM models provide models th
simultaneously provide an accelerated expansion and s
the coincidence problem within the general trend of the u
verse towards an attractor and with it towards the supe
tractor. As in QCDM models, these scenarios depend on
quintessence potential and initial conditions. In additio
they depend on the evolution of the magnitudes characte
ing the details of dissipative processes occurring in dark m
ter. Let us examine the issue of reconstructing part of
evolution through observations of distant SNeIa.

Ignoring gravitational lensing effects, the standard expr
sion for the luminosity distance to an object at redshiftz in a
spatially homogeneous and isotropic universe is@48#

dL~z!5
11z

H0uVk0u1/2
SS H0uVk0u1/2E

0

z dz8

H~z8!
D , ~22!

with S(u)5(sinu,u, sinhu) for k5(1,0,21), respectively.
Then for a QDDM universe we have

H~z!

H0
5H Vm0 expF3E

0

z dz8

11z8
S gm1

p

rm
D G

1Vf0 expS 3E
0

z dz8

11z8
gfD 1Vk0~11z8!2J 1/2

.

~23!

In the case of a spatially flat universe,dL has a simpler
expression in terms of the effective baryotropic index:

dL~z!5
11z

H0
E

0

z

dz8 expF2
3

2E0

z8 dz9

11z9
S g1

p

r D G ,

~24!

where

g1
p

r
5gm1

p

rm
2S gm1

p

rm
2gfDVf0

3expS 3E
0

z dz8

11z8
gfD . ~25!
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We see from Eqs.~24! and ~25! that dL(z) depends on the
time evolution of dissipative processes through a double
tegral inp/rm(z) and on the time evolution of the quintes
sence field through a double or triple integral ingf(z) ~we
assume thatgm.1). On the one hand, there is a degeneran
here as these two functions cannot be reconstructed f
knowledge of the single functiondL(z). Besides the time
variation of these magnitudes is largely smoothed out a
similarly to the analysis in Refs.@49–51# for QCDM models,
we find that the luminosity distance is highly insensitive
these variations. So we may safely replace these ti
varying magnitudes by their mean values in the inter
(0,z). Assuming that the universe has already settled in
superattractor regime at the age of the farthest observed
pernova the degenerancy is eliminated and both functi
become constant. Then, the expression~24! simplifies dras-
tically and we obtain~cf. @52#!

dL~z!5
~11z!@~11z!b21#

bH0
, ~26!

whereb5aä/ȧ25121/a is the acceleration parameter. S
b increases witha and 1,a,` corresponds to 0,b,1.
On the superattractor we have

gfs5
2

3a
5

2

3
~12b!. ~27!

We have used the sample of 38 high redshift (0.18<z
<0.83) supernovae of Ref.@43#, supplemented with 16 low
redshift (z,0.1) supernovae from the Cala´n/Tololo Super-
nova Survey@53#. This is described as the ‘‘primary fit’’ or
fit C in Ref. @43#, where, for each supernova, its redshiftzi ,
the corrected magnitudemi , and its dispersions i were com-
puted.

The predicted magnitude for an object at redshiftz with
luminosity distancedL is

m~z!5M15 logDL~z!, ~28!

whereM is related to the absolute magnitudeM by

M5M25logS H0@km/s Mpc#

c@km/s# D125 ~29!

and DL is the luminosity distance in units of the Hubb
radius.

We have determined the optimum fit of the superattrac
model by minimizing ax2 function:

x25(
i 51

N
@mi2m~zi ;b,M!#2

s i
2

, ~30!

whereN554 for this data set. The most likely paramete
are (b,M)5(0.395,23.96), yieldingxmin

2 /NDF51.12 (NDF

552), and a goodness of fitP(x2>xmin
2 )50.253. These

numbers show that the fit of superattractor QDDM cosm
ogy to this data set is as good as the fit of theLCDM model
~see Fig. 1!. We note that it occurs even though the super
8-4
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tractor model has basically only the acceleration paramete
fit large redshift supernovae (M being largely determined by
low redshift supernovae!. It also means that the density o
clustered matter is not constrained by measurements
SNeIa and it has to be determined through independent
servations.

We estimate the probability density distribution of the p
rameters by evaluation of the normalized likelihood@54#

p~b,M!5
exp~2x2/2!

E dbE dM exp~2x2/2!

. ~31!

Then we obtain the probability density distribution forb
marginalizing p(b,M) over M. This probability density
distribution p(b) is plotted in Fig. 2 and it yieldsb
50.39860.104 (1s). Hence we can state that 0.085,b
,0.711 with a confidence level of 0.997, so that an acce
ated superattractor QDDM universe is strongly supported
this data set, in agreement with a similar analysis ofLCDM
and QCDM models@43,44,55,46#.

B. Age of the universe

For a QDDM model the age of the universe has the in
gral representation

t05E
0

` dz

~11z!H~z!
, ~32!

whereH(z) is given by Eq.~23!. Along the transition period
of the universe from an early nearly equilibrium stage
wards the superattractor stage the inequalitygm1p/rm
.gfs holds. As a consequenceH(z).Hs(z)5H0(1
1z)12b ~wheneverVk>0) and t0,ts5a/H0. The charac-

FIG. 1. The magnitude residualsDm of the SNeIa~fit C data set
of Ref. @43#! from the best fit superattractor QDDM model wit
(b,M)5(0.395,23.96). For comparison is shown the magnitu
residual for the best fit LCDM model, corresponding to
(Vm0 ,VL ,M)5(0.54,1.09,23.93)@45#.
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teristics of this transition period, and hence the value of
differencets2t0, are model dependent and will not be de
with here.

Using the fit to SNeIa of the previous subsection and E
~27! we obtain a51.71160.288. Combined withH0565
65 km/s Mpc@2#, it yields for the age of the superattracto
universets525.964.8 Gyr. This shows that the QDDM cos
mology does not suffer of any age discrepancy and can
commodate comfortably the 1s interval 9–16 Gyr for the
age estimate of globular clusters@3#.

C. Parameters of the superattractor era

Using the probability distribution forb and Eq.~27! we
obtain gfs50.40160.069, in agreement with previous re
sults for QCDM models in the limitVm→0. Then, using Eq.
~11! and assuming that dark matter is cold (gm51), we find
p/rm520.59960.069. This figure implies that substanti
dissipative processes are taking place in dark matter. T
fact is also shown by the large value of the effective bar
tropic index. In effect, combining the estimateVm050.35
60.07 from cluster baryons@2# with the a priori constraint
V51 and inserting into Eq.~10! we getgs50.6160.09. For
a perfect fluid this value would correspond to a power-l
exponent 2/3gs.1.1, quite lower thana. Using Eq.~14!, we
find that the linear relationshipk5k11k2n21 holds, where
k150.2160.05 andk2520.2560.07. The requirement o
asymptotic stability of the superattractor solution impos
that n.1.2060.21.

Using Eqs.~17! and~18!, we find the quintessence kineti
energy density parameterVK050.1360.03 andVV050.52
60.06 for the potential energy density parameter. These
ures show that the scalar field is moving down the poten
outside the slow-roll regime. Similarly we find for the slop
of the exponential potentialA51.3660.14 and for the cur-
rent value of the scalar fieldf0521.360.3. This implies a
mass parameter of the Planck scale.

e FIG. 2. The estimated probability density distribution~normal-
ized likelihood! for the acceleration parameterb of the superattrac-
tor model.
8-5



d
e

s-
iv
t
in

nt
i

e

ti
n

io
iz

fo

non-
Eq.
lk

given
ress
e

ess,

gy

rtur-
rba-

the
tions

CHIMENTO, JAKUBI, AND ZUCCALÁ PHYSICAL REVIEW D 63 103508
IV. DENSITY PERTURBATIONS

Besides the model degenerancy of luminosity distance
terminations, even within the superattractor cosmology th
are some thermodynamical parameters liken and the speed
of soundcs that are not fixed. For this reason we will inve
tigate the evolution of density fluctuations in the perturbat
long-wavelength regime during the superattractor era. I
possible that weak lensing techniques could yield more
formation about these parameters@56#.

Scalar perturbations are covariantly and gauge-invaria
characterized by the spatial gradients of scalars. Density
homogeneities are described by the comoving fractional d
sity gradient@57#

d i5
aDir

r
, ~33!

where Di stands for the covariant spatial derivative DjAi •••
5hj

khi
l
•••¹kAl ••• . The scalar partd[aDid i5(aD)2r/r

corresponds to the usual gauge-invariant density perturba
scalar«m @58,59#, which encodes the total scalar contributio
to density inhomogeneities. Also the comoving expans
gradient, the normalized pressure gradient, and normal
entropy gradient are defined by@57,60#

u i5aDiu, pi5
aDi p

r
, ei5

anTDis

r
, ~34!

n being the particle number density,T the temperature, ands
the specific entropy per particle. The evolution equation
scalar density perturbations reads@60#

d̈1H~826g13cs
2!ḋ2

3

2
H2$115~g21!226cs

2

1@123~g21!212cs
2#k%d2cs

2D2d

5S@e#1S@p#1S@q#1S@s#, ~35!

where

cs
25S ]p

]r D
s

, r 5
1

nTS ]p

]sD
r

~36!
10350
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r

are, respectively, the adiabatic speed of sound and a
baryotropic index. The sources on the right-hand side of
~35! arising, respectively, from entropy perturbations, bu
viscous stress, energy flux, and shear viscous stress are
in @60#. Since in our case there are no shear viscous st
(s i j 50) andS@q# vanishes by choosing the energy fram
(qi50), we reproduce here only the expressions forS@e#
andS@p#:

S@e#5r ~3kH21D2!e, ~37!

S@p#52~3kH21D2!B, ~38!

where the scalar entropy perturbation

e5aDiei5
a2nT

r
D2s ~39!

and the dimensionless perturbation scalar

B5
a2D2p

r
, ~40!

related to the inhomogeneous part of the bulk viscous str
were defined.

Also, the entropy perturbation equation in the ener
frame is

ė13H~cs
22g111r !e523HB. ~41!

The coupled system that governs scalar dissipative pe
bations in the general case is given by the density pertu
tion equation~35!, the entropy perturbation equation~41!,
the equation for the scalar bulk viscosity~1!, and the equa-
tion for temperature perturbations.

When only bulk viscous stress dissipation is present,
coupled system can be reduced to a pair of coupled equa
in d ~third order in time! ande ~second order in time!. For a
flat background, the equations are@60#
t d̂1@113~22g1cs
2!tH#d̈1H$826g13cs

213t~cs
2!•2 1

2 @214175g248g21~21g230!cs
2#tH%ḋ

2 3
2 H2$6210g15g226cs

224t~cs
2!•22@26118g215g215g31~6228g110g2!cs

2#tH%d

5
a2z

rg
D2~D2ḋ !1

3a2~g21!H

rg
D2~D2d!1tcs

2D2ḋ1trD2ė1F ~123gtH !cs
21t~cs

2!•13S ]z

]r D
s
GD2d

1F ~123gtH !r 1t ṙ 13S ]z

]sD
r
GD2e, ~42!

and
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të1@12 3
2 ~2213g22cs

222r !tH#ė23HFg212cs
22r 13g~g2cs

2!tH1t~cs
21r !•2

r

g S ]z

]sD
r
Ge

52
z

g
ḋ1

3H

g F ~g21!z1rS ]z

]r D
s
Gd. ~43!
n
th

the
ba-

the
ant

n-

he

g
ing
by

n

We shall consider here the evolution of the density a
entropy perturbations in the superattractor stage with
conditionsr 50 and]n/]s50. Together with Eq.~14! they
imply

S ]z

]sD
r

50, ~44!

S ]z

]r D
s

5S ]z

]rm
D

s

5
k11k2 /n

6VmH
. ~45!

In this case, Eq.~42! decouples to give

d̂1
c1

t
d̈1

c2

t2
ḋ1

c3

t3
d5c4t2aD4ḋ1c5t2aD4d1cs

2D2ḋ

1S c6

t
1c7DD2d, ~46!

and Eq.~43! becomes

ë1
c8

t
ė1

c9

t2
e5

c10

t2
ḋ1

c11

t2
d, ~47!

where the constant coefficientsc1•••c11 depend upon the
parameters of the model:n, k1 , k2 , Vm ,a, g, cs

2 , and the
present value of the scale factora0. For our purposes, only
the explicit expression forc1 , c8, andc9 are relevant, being

c15an13a~22g2cs
2!,

c85aFn2
3

2
~3g2222cs

2!G ,
c9523a2@n~g212cs

2!13g~g2cs
2!#. ~48!

We deal with the system~46!,~47! by performing separation
of variables in the formd5dxd t ande5exet , wheredx and
ex depend upon the spatial variables whiled t and et are
functions of the coordinate timet. Then, Eq.~46! can be
recasted as

d̂ t

d t
1

c1

t

d̈ t

d t
1

c2

t2

ḋ t

d t
1

c3

t3

5t2aS c4

ḋ t

d t
1c5D D4dx

dx
1S cs

2 ḋ t

d t
1

c6

t
1c7D D2dx

dx
,

~49!
10350
d
e
which can only hold if

~D22m!dx50, ~50!

m being an arbitrary constant. Also, Eq.~47! leads to

t2~ ët /et!1c8t~ ėt /et!1c9

c10~ ḋ t /et!1c11~d t /et!
5

dx

ex
, ~51!

which requiresex5Adx , with A an arbitrary constant which
can be absorbed into the temporal functions, resulting in
same spatial distribution of the entropy and density pertur
tions. Under the condition~50! the evolution equation ford t
becomes

d̂ t1
c1

t
d̈ t1S c2

t2
2m2t2ac42mcs

2D ḋ t

1Fc3

t3
2m2t2ac52mS c6

t
1c7D Gd t50. ~52!

As we are interested in the asymptotic behavior for
superattractor regime, it suffices to consider the domin
terms in Eq.~52!, a being a positive number, we have

d̂ t1
c1

t
d̈ t2m2t2ac4ḋ t2m2t2ac5d t>0. ~53!

Equations~50! and ~53! give the form of the asymptotic
density perturbations in the model. The parameterm appear-
ing in Eq. ~50! depends, in principle, on the boundary co
ditions of the problem being the quantitym21/2, a character-
istic coordinate length related to the range of t
exponentially decaying modes of the spatial partdx . In the
special casem50, Eq.~50! has the Laplace form, describin
long-range density perturbation modes. Here, we are go
to study the asymptotic evolution of the long-range modes
performing a series expansion ofd t in powers ofm2. Up to
first order we haved t>d t

(0)1m2d t
(1) ; then, replacing this

expression in Eq.~53! and retaining terms up to first order i
m2 we obtain

F d̂ t
(1)1

c1

t
d̈ t

(1)2t2ac4ḋ t
(0)2t2ac5d t

(0)Gm21 d̂ t
(0)1

c1

t
d̈ t

(0)50.

~54!

The zeroth-order solution gives

d t
(0)~ t !5

A1

~12c1!~22c1!
t22c11A2t1A3 , ~55!
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for c1¹$1,2% and Ai , i 51,2,3 integration constants. The
d t

(1) satisfies the inhomogeneous equation

d̂ t
(1)1

c1

t
d̈ t

(1)2t2ac4ḋ t
(0)2t2ac5d t

(0)50, ~56!

whose general solution has the form

d t
(1)5

B1

~12c1!~22c1!
t22c11B2t1B31a1t2a142c1

1a2t2a131a3t2a152c11a4t2a14, ~57!

where the coefficientsBi , i 51,2,3 are integration constan
depending upon the initial conditions, andai , i 51, . . . ,4,
depend ona, c1, and theBi . Then, the asymptotic evolutio
of the long-range modes up to first order inm2 results in a
combination of powers of time. Whenc1,2 all the expo-
nents are positive, while forc1.2 there exists a decayin
mode. With the parameters of the model, because of Eq.~48!
this last situation is equivalent tocs

2,n/310.999 which is
always satisfied because of the lower boundn.1.2 ~in our
units cs

2,1). As a consequence, a decaying mode exist
this model and the dominant exponent is 2a14. Hence the
density power spectrum redshifts asP(k,z)}(1
1z)2(418/a).

On the other hand, Eq.~43! becomes, in the leading re
gime,

ët1
c8

t
ėt1

c9

t2
et5c12t

2a11F11
3

n S g211
1

2Vma
D t G ,

~58!

whose solution is

et~ t !5B4tl11B5tl21c13t
2a13F11

3

n S g211
1

2Vma
D t G ,

~59!

wherel1,2 are the roots of the equationl21(c821)l1c9
50, B4 ,B5 are arbitrary integration constants, andc12,c13
are functions of the parameters and the previously defi
integration constants. In this way the entropy perturbati
may yield additional information about the parametersn, cs

2 ,
andVma .

V. DISCUSSION

We have shown that within the class of accelera
coincidence-solving attractor solutions of QDDM models
distinguished attractor solution exists with constant quint
sence baryotropic index. This superattractor cosmology
quite attractive because of its simplicity: the scale factor
pansion follows a power-law, and all its parameters can
evaluated in a model independent way. Notwithstanding
simplicity, its fit to SNeIa observations is as good as
10350
in

d
s

d

-
is
-
e

ts
e

LCDM model, and it does not suffer from any age confl
either.

Our results are quite valuable to give general stateme
about a large class of QDDM models that are driven towa
this superattractor but they are limited to the late-time
gime. Undoubtedly a large variety of models arise both fro
different quintessence potentials as well as from differ
dissipative processes in dark matter. The only requiremen
that the potential has the exponential tail~19! or, equiva-
lently, that the viscosity coefficient has the asymptotic b
havior ~14!. This diversity of possibilities makes the trans
tion period of the universe from its nearly thermodynamic
equilibrium early stage towards the superattractor reg
model dependent and requires more detailed investigation
particular it would be of importance to evaluate the effects
dissipative processes on the CMB angular power spectru

Standard CDM models have been quite successful in
scribing the evolution of cosmic structure. Hence a su
ciently long matter-dominated era must have taken pl
during which the observed structure grew from the dens
fluctuations measured by CMB anisotropy experiments. A
consequence the transition to the currently observed acc
ated regime should have been quite recent in the evolutio
the universe. For QDDM models this seems to imply th
dissipative effects in dark matter were small until dens
inhomogeneities became large. If so, it is suggestive to th
that the size of dissipative processes, as measured by
ratio p/rm , grows with dark matter density and becam
large precisely because of the development of inhomoge
ities. The observed smoothness of halo structure and the
relation between high energy cosmic ray production and d
matter clustering might provide support for this relationsh

Even though the supernovae search is extended toz.1,
this does not enable a precise determination of the t
variation in the quintessence baryotropic indexgf and the
ratio p/rm because the luminosity distance depends on th
magnitudes through a multiple-integral relation that sme
out detailed information about their variability. Besides th
independent variation cannot be disentangled from the de
mination of a single function. Hence further independe
cosmological probes are required to investigate this issue
a first step in this direction we have calculated the domin
large-time long-wavelength behavior of density and entro
fluctuations in the superattractor regime.

The combined distribution of dark mass and dark ene
can be investigated via its gravitational effects inducing c
related shear in the images of distant galaxies. This w
lensing effect could, in principle, be used to probe the lar
scale structure and thereby yield additional informati
about the thermodynamical and cosmological parameters
constrained by the luminosity-redshift relationship.
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