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Cosmological evolution of a brane universe in a type 0 string background
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We study the cosmological evolution of a D3-brane universe in a type 0 string background. We follow the
brane universe along the radial coordinate of the background and we calculate the energy density which is
induced on the brane because of its motion in the bulk. We find that, for some typical values of the parameters
and for a particular range of values of the scale factor of the brane universe, the effective energy density is
dominated by a term proportional to 1/(la}f indicating a slowly varying inflationary phase. For larger values
of the scale factor the effective energy density takes a constant value and the brane universe enters its usual
inflationary period.
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I. INTRODUCTION (brang metric, and some interesting cosmological solutions
were found. In Ref[10] a universe three-brane is considered
There has been much recent interest in the idea that oun motion in ten-dimensional space in the presence of a
Universe may be a brane embedded in some highemravitational field of other branes. It was shown that this
dimensional spacgl]. It has been shown that the hierarchy motion in ambient space induces cosmological expangbon
problem can be solved if the higher-dimensional Planckcontraction on our universe, simulating various kinds of
scale is low and the extra dimensions lafgé Randall and matter.
Sundrum[3] proposed a solution of the hierarchy problem In this direction we have studiedl1] the motion of a
without the need for large extra dimensions but insteadhree-brane in the background of type 0 string theory. It was
through curved five-dimensional spacetime Ad%at gener- shown that the motion of the brane on this specific back-
ates an exponential suppression of scales. ground, with constant values of dilaton and tachyon fields,
This idea of a brane universe can naturally be applied tdinduces a cosmological evolution which for some range of
string theory. In this context, the standard model gaugéhe parameters has an inflationary phase. In Ref|, using
bosons as well as charged matter arise as fluctuations of tlsmilar technics the cosmological evolution of the three-
D-branes. The universe is living on a collection of coincidentbrane in the background of type IIB string theory was con-
branes, while gravity and other universal interactions are livsidered.
ing in the bulk spac¢4]. For example, the strongly coupled  Type 0 string theoriegl4] are interesting because of their
EgX Eg heterotic string theory is believed to be an eleven-connection[16] to four-dimensional SU{) gauge theory.
dimensional theory, the field theory limit of which was de- The type O string does not have spacetime supersymmetry
scribed by Horava and Witte5]. The spacetime manifold and because of that contains in its spectrum a nonvanishing
includes a compact dimension with an orbifold structure.tachyon field. In Ref[14] it was argued that one could con-
Matter is confined on the two ten-dimensional hypersurfacestruct the dual of an SU) gauge theory with six real ad-
(nine-braneswhich can be seen as forming the boundariegoint scalars by stackindy electric three-dimensional branes
of this spacetime. of the type 0 model on top of each other. The tachyon field
This new concept of a brane universe naturally leads to @ouples to the five form field strength, which drives the
new approach to cosmology. Any cosmological evolutiontachyon to a nonzero expectation value.
such as inflation has to take place on the brane while gravity Asymptotic solutions of the dual gravity background were
acts globally on the whole space. In the literature there are eonstructed in Refd.14,22. At large radial coordinates the
lot of cosmological models which study the cosmologicaltachyon is constant and one finds a metric of the form
evolution of our Universe. In most of these models theAdS;xS° with vanishing coupling which was interpreted as
spacetime is five dimensional, where the fifth dimension isa UV fixed point. The solution exhibits a logarithmic running
the radial dimension of an AdSspace. The effective Ein- in qualitative agreement with the asymptotic freedom prop-
stein equations on the brane are then solved taking underty of the field theory. At small radial coordinates the
consideration the matter on the brdite-10). tachyon vanishes and one finds again a solution of the form
Another approach to cosmological evolution of our brane-AdS;x S with infinite coupling, which was interpreted as a
universe is to consider the motion of the brane in higherstrong coupling IR fixed point. A gravity solution which de-
dimensional spacetimes. In R¢8] the motion of a domain scribes the flow from the UV fixed point to the IR fixed point
wall (brang in such a space was studied. The Israel matchings given in Ref[13].
conditions were used to relate the bulk to the domain wall We calculate the effective energy density which is in-
duced on the brane because of its motion in the particular
background of a type 0 string. Using the approximate solu-
*Email address: Ipapa@central.ntua.gr tions of Refs[14,22,13, we find that for large values of the
TEmail address: gpappa@central.ntua.gr radial coordinater, in the UV region, the effective energy
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density takes a constant value, which means that the universe . IXM XY

has an inflationary period. For smaller values pbr of the Gup=GL, I gEP (2.3
scale factora, the energy density is dominated by a term

proportional to 1/(log)* wherea is the scale factor of the with similar expressions foF ,; and B,;. In the static
brane universe. This value of the energy density indicate@augeyxazga, @=0,1,2,3 using Eq(2.3 we can calculate

that the universe is in a slow inflationary phase, in a “loga-the hosonic part of the brane Lagrangian which reads
rithmic inflationary” phase as we can call it, in contrast to

“constant inflationary” phase which characterizes the usual L=JA(r)—B(Nf2—D(r)h; &'& —C(r), 2.4
exponential behavior. For even smaller values othe ap- !

proximation breaks down and we cannot trust the SO|Uti0n§vherehijd¢id<pi is the line element of the unit five-sphere
anymore. If we go to the IR region the energy density isgng

dominated by the term & and again we find the “logarith-

mic inflation” for larger values ofr. The approximation AN =g%)|ger)|e ?®, B(r)=g3r)g,(r)e 2®,
breaks down again for some larger valuesroft is well

known that it is very difficult to connect the IR to the UV D(r)=g3(r)gg(r)e ??, (2.5
solutions. Therefore our failure to present a full cosmological

evolution, relies exactly on this fag15]. andC(r) is the RR background. Demanding conservation of

We note here that what we find is somewhat peculiar, irenergyE and of total angular momentuhi on the brane, we
the sense that one does not expect the effective energy defind
sity to be dominated, for a range of values of the scale factor,
by terms proportional to 1/(lo@)*. We understand this be- A A  D+I? A?|2
havior, as due entirely to mirage matter which is induced on ' B 1 D

rely to “cre? D |0 MEETDICr e
the brane, from this particular background. (2.6)
Our work is organized as follows. In Sec. Il, we develop

the formalism for a brane moving in a string backgroundwe can see that the above relation gives the following con-

with a dilaton and a Ramond-Ramo(fR) field. In Sec. lll,  straint:

we discuss type 0 string and except the exact solution in an

AdS;x S background we discuss the asymptotic UV and IR A D+I?

solutions of type O strings. In Sec. IV, we discuss the cos- (1_ (C+E)? D =0. 2.7

mological evolution of a brane in the background of type O
string. Finally in the last section we discuss our results.  The induced four-dimensional metric on the brane is

Il. BRANE MOVING IN TEN-DIMENSIONAL d%*=(goot+ grrt?+0sh;; ¢'¢)dt?+g(d0)% (2.9
BACKGROUND -
In the above relation we substituité and hij¢'¢’ from Eq.
We will consider a probe brane moving in a generic static,(2.6), and we get

spherically symmetric backgroum0]. The brane will move
in a geodesic. We assume the brane to be light compared to d¥=—dz?+g[r(n)](d%)? (2.9
the background so that we will neglect the back reaction. As
the brane moves the induced world-volume metric becomewith 7 the cosmic time which is defined by
a function of time, so there is a cosmological evolution from

the brane point of view. The metric of a D3-brane is param- lgod g% ®
etrized as dnp=—~———dt. (2.10
|C+E]|
dsto=goo(r)dt?+g(r)(d%)?+g, (r)dr2+gg(r)dQ2 The induced metri€2.9) on the brane is the standard form of

(2.7 a flat expanding universe. For this metric we can write the
effective Einstein equations on the brane
and there is also a dilation field as well as a RR back-
groundC(r)=C,...3(r) with a self-dual field strength. The
dynamics on the brane will be governed by the Dirac-Born-
Infeld action given by

R R=87G(T,,)efr (2.11)

uv Eg,uv

where (T,,)er is the effective energy momentum tensor
which is induced on the brane. We have assumed that our
brane is light and there is no back-reaction with the bulk. We
expect T ,,)er to be a function of the quantities of the bulk.

2.2 Before we proceed, it is interesting to discuss the general
case where there is matter on the brane with an energy mo-
mentum tensor,, and a cosmological constaat The Ein-

The induced metric on the brane is stein equations on the brane 4i&,1§

S=T3f d4ge*¢\/—de(éaﬁ+(2m')Faﬁ— B.g)

+ Tgf d*£C,+anomaly terms.
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E

nv Euv
(2.12

whereq,,, is the induced metric on the brane,,, is a func-
tion of the matter content of the brane, having the form

1
Ry~ ngR= —Aq,,+8nG7,,+ K*ar

1 1 1

_ a a 2
=" ZT#VTV+ 1_27'7;w+ gq‘u,,TaBT B— zq’u,ﬂ' ,
(2.13
andE,, is given by
E o= CfpoNan’aldy (2.14

whereCg,, is the Weyl tensof17]. As we can see from the
above relation the terrk,, is a geometrical object depend-

ing on the bulk geometry. If we now compare EQ.11)

with Eq. (2.12), we can see that because in our case we do
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four-dimensional cosmological constant appears. To make
our approach clear, we will discuss their physical meaning in
our scheme.

We have assumed that in our brane universe there is no

gravity by itself; therefore Newton’s law is defined on the
whole 10-dimensional space. As the brane moves, we can
write on the brane the effective Einstein equatidsll).
The Newton’s constant which appears in this equation has
the meaning of an effective parameter determined by the
background. To see its value let us go to a particular back-
ground. Let us consider the near-horizon geometry of a mac-
roscopic D3-brane which is Ad& S°, with metric[10,9],

-l ol

+L2d02,

L2 dr?

(2.19

dt2+(d>?)2}+

not have matter on the brane, consistency requires that

(T.w)er Of Eg. (2.11 should be proportional t&,, of Eq.

(2.12. One can check that using relati¢h.14) one can get
similar results as ours, an approach which is followed in Ref(2_1& the effective energy density on the brane in this back-

[9].

If we now assume the usual form of a perfect fluid for the

effective energy momentum tensor, we get from 411

3 .
8wGp+A= Zg—ZgZ. (2.15
We can now define ap.; from the relation
87Gp+A=87Gnpes- (2.16
Using Eq.(2.10 we get
- ,[|900| Jho (9P 2P+12\ "% |C+E|
9 O OsOrr (C+ E)2 |g00|g3’2e"b’
(2.17

where a prime denotes differentiation with respect.tdo

where L*=47gNea’'? with g the string coupling in 10 di-
mensions andN the number of D3-branes. By using Eq.

ground is

8 1

3 GNpeﬁ:F

1+E2 1 o) 1
P L) a*

12 1
(2.20

As we can see, the only scale which enters in this relation is
a'. Then as it is obvious from the above relation, we can on
purely dimensional grounds writeGy=L? or Gy
=2ymgNa’. We can express th&, in terms of the
5-dimensional Newton’s constant using the relatidg
=3/47wGL [9]

4
GN=?7TGT3(2\/Trg Na')%2, 2.2

derive an analogue of the four-dimensional Friedman eq“av'vhereT3 is the brane tension

tions for the expanding four-dimensional universe on the
probe D3-brane, we define the scale factogasa? and then

Eq. (2.16 with the use of Eqs(2.15 and(2.17) becomes
8 2
?GNpeﬁ:

o

2]

_(C+E)?gse®® —|god(gsg®+1%€*?) (g_')2
419009 9s0° g/

(2.18

The induced cosmological constant on the brAnzan be
expressed in terms of the background fields using the equa-
tion

. . 3.
—g7%9° 0 19+ ;v9 %P - yA=0. (222

In deriving the above equation we have used the conserva-

tion of energy momentum tensofr [, )¢ and an equation of

state in the fornp=(y—1)p. Nevertheless we believe that

Therefore the motion of a D3-brane on a general spheriin this approach we cannot really distinguish betwpeand
cally symmetric background had induced on the brane a matA and a definition of the forni2.16) is more meaningful. As
ter density. As it is obvious from the above relation, theit is discussed in Ref[17] in the case where we cannot
specific form of the background will determine the cosmo-distinguish between vacuum energy and matter energy we

logical evolution on the brane.
We had definetho through the relation2.16). In this
relation the four-dimensional Newton’s const&y; and the

cannot truly specifyGy . Then as we discussed abo@ is
determined in a “phenomenological” way depending on the
background.
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Ill. TYPE 0 STRING BACKGROUND ds§0=goo(r)dt2+g(r)(d>?)2+g”(r)dr2+gs(r)d05.

(3.7
Type 0 string theory is interesting because of its connec- _ o ) ) _
tion to gauge theories. This enables us to studyNjauge Techmcally it is easier to solve the above equations if we go
theory by merely gravitational quantities. Another advantagéotﬂfw Vﬁrt'ﬁblfsl' toinne can then introduce the new parameter
of this theory is the presence of a tachyon field. Tachyonicp ough the refatio

fields in ordinary field theory create instabilities. In cosmol- e2%o

ogy on the contrary, the time evolution of a tachyon field P= "4 (3.8

plays an important role. In two dimensions because the

tachyon field is a matter field has important consequences iand the fieldst and » from the relations

cosmology[19], and it can give a solution to the “gracefull (@82

exit” problem [20]. In four dimensions its effect to cosmol- g=e¢ ' (3.9

ogy has been examined by various auth@ds|. (o2 31
As we have shown in Refl11] in type O string the 9s=¢€ ' (3.19

tachyon field can induce inflation on the brane. We had usegthen Eq.(3.7) takes the form

an exact solution of type 0 string with constant tachyon and

dilation fields. If these fields are coordinate dependent then, —ds*= —e(®~92dt?+ (P~ 9/2d g2+ e( P+ /2~ 57d p2

there is not an e>.<act solytlon of t_he .theory,. but there are L@ ng02 (3.1

approximate solutions which we will discuss in the follow- S

ing. The action of the type O string is given py/4] With this form of the metric the actiofB.1) can be de-
scribed by the following Toda-like mechanical systéam

1 . .
510=f A2/~ gl e 2% R+ 4(9,0)2— Z(‘?MT)Z overdot denotep derivative
1., 1., T2
1 1 1 T2 S=f dp| 5 @7+ 5 &7+ =57 = V(P,ET,7)
- ZmZTZ— THuweH"? | = 2| 14T+ = |Fs|?|.
(3.12
(3.1)  with the potentiaM(®,&,T, ) given by

The equations of motion which result from this action, V(®,&T,7)=g(T)eA®+ 12574 20047

with the antisymmetric field put to zero, are — Q% Y(T)e 2%, (3.13

If the tachyon field takes its vacuum value and the dilation
field a constant valu&=®, one can find the electrically
charged three-brane

1
2V2<I>—4(Vn<b)2—zm2T2=0, (3.2

1 12 12 _ 122
Rt 2V V@ = 2 Vi TV T— oo @6(T) Joo=—H ™% 9a(r) ¢H . gs(r)=H"77,
e’oQ
1 gr(N=HY H=1+——F (3.14
i ka'Panklpq_ R)Gmn':sklquSkIpq =0, 3.3 2r
if the following ansatz for the RR field:
' Co12=A(r), Fopa=A’ 3.1
(—V2+2V”(I>Vn+m2)T+2X5!e2q’f (T)F gapgF sK1P9=0, 0125~ A(r),  Forg=A'(r) (3.19
(3.4) is used.
If Tand® are functions of the coordinatethen approxi-
Vv, [f(T)FMkPa =0 (3.5) mate solutions exisf14,22. These solutions are valid for
m . .

large (UV) and small(IR) values of the radial coordinate.
. , . The approximations of Ref§14,22 agree in the UV region
The tachyon is coupled to the RR field through the functlonbut in the IR the approximation of Refi14] leads to an IR

1 fixed point, while the approximation of Ref22] to a con-
f(T)=1+T+ - T2. (3.6  fining point. _ _
2 From the action(3.12 we can derive the following equa-

tions of motion[22]:
In the background where the tachyon field acquires vacuum

expectation valuf,,=To= —1, the tachyon functioi(3.6)
takes the valué(T,) =3 which guarantee the stability of the
theory[14].

Equations(3.2—(3.5 can be solved using the following
ansatz for the metric:

2

L1
§+Eg(T)e(l’z)‘D*(l’z)f‘S’“rZf(—T)e‘25=O, (3.16

;]+%g(-l—)e(l/z)qw(l/z)g—sn_,_8e—4n:0' (3.17
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('I')+%g(T)e(1/2)<I>+(l/2)§—577:0' (318)

. Q*'(T)
' (12D +(1/2é-57 —2¢_
T+29'(T)e +2 2T e 0,
(3.19
whereg(T) is the bare tachyon potential
1

g(M= ETZ—)\T“ (3.20

and\ is a parameter. Defining a new variapleu™ 4, in the

UV for u—o, or p—0, we can solve the equations of mo-
tion (3.16—(3.19 to the next to leading order and find
(22,14

9'(To) 1 (Iog(—logp))
T=To— o) , 3.2
o 7 g(To) logp log” p (3.2
@J’(To))2 (Iog(—logp)
d=-2log(Cylo —|7+8
ACologe) 9(To) logp
B log?(—logp)
Tlogp O( log®p /) (322
1 log(—logp)
— -1 _
¢=log 2T~ 1(To)Qp] Ing+0( o
(3.23
1 1 log(—logp)
n—zmman—bgp+0< o) (3.24)
whereC,=—4C3/g(T,)/C; and
C Q [, 1 C,=2[ 1+
1= T u |l 2=
21(To) 4 log— 4 log—
Uo )
(3.25

PH®ICAL REVIEW D 63 103506

16 8 9 loa| 340 log? log p
= “logp log?p 91091090~ 3) log®p |’
(3.27
b= 1| 2Q%)+2log| 9logl
=73 09g(2Q“)+2 log ng_@ oglogp
loglogp
—1|22+|+9+9 9logl 20)
§=5l0g(2Q%) +logp fogp " Zlogp | 2 l09109r 5
log? log p
gy |’ (3.29
=log 2 1| —l —l 9logl 2
7=10g2+ 510gp+ {7+ 5100 (9loglogp—2)
log? log p
O(W (3.30
While for the second solutiof22,13 we have
D=Dgtp— —— P2 (530 (33))
© 7 16\5+3)?
n= ip_ Ee*(%"g)p (3.32
V5 2 ’
1
E=p— 5672", (3.33
1
T=- 5672‘0. (334)

In both approximations the tachyon field in the IR point
goes to zero while the effective coupling gets infinite. It is
important to observe that the approximate solutions in the
UV (3.2)—(3.24 and in the IR(3.28—(3.30 of Ref.[14]
are related by — —vy, suggesting that they can be smoothly

The above solutions show that at the UV point, theconnected into a full interpolating solution. An attempt to

tachyon takes a constant value and if we calculate the next
leading order effective coupling(??,

1
’ 2

g'(To)
9(To)?

o120 _

(3.2

logu— §+ )Iog logu
we see that goes to zero for large

For u—0 or for largep there are two approximate solu-
tions in the literature, leading to infrared fixed pojid#] or
to a confining fixed poinf22,13. For the first approximation
we have

toonnect these solutions was presented in RES]. As we
mention above, the tachyon field startsTat —1 atp=0 in
the UV, and grows according to E¢3.21), then enters an
oscillating regime and finally relaxes to zero according to
Eq. (3.27, whenp= in IR. This guarantees thate(>®
becomes small which leads the metric in the A&S® form.
There is a question if we can trust the asymptotic solu-
tions in the infrared. The problem is that when the coupling
becomes strong, string corrections become important. The
situation is different in the UV where we can trust our solu-
tions because the coupling is small. The role of tecor-
rections in the IR has been discussed in Reg#g,13. It was
claimed that thex' corrections are small.
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IV. COSMOLOGICAL EVOLUTION

Teff

OF THE BRANE-UNIVERSE 4
We consider a D3-brane moving along a geodesic in the 3
background of a type 0 string. Having all the solutions in the
ultraviolet and the infrared, we can follow the cosmological 2
evolution of our universe as it moves along the radial coor-
dinater. In the presence of a nontrivial tachyon field the 1
couplinge™® which appears in the Dirac-Born-Infeld action __—— | r’_
in Eq. (2.2, is modified by a tachyonic functior(T)=1 ; : : : : . — a
. ; . 1.6 1.8 2.2 2.4 2|le 2.8 3
+1T+0O(T?). Then we can define an effective coupling (
[16] -1
e =x(Te ®. (4.2) -2

The bulk fields are also coordinate dependent and the in- FIG. 1. The induced energy density on the brane as a function of
duced metric on the brane will depend on a nontrivial way orthe brane scale factor.
the dilaton field. Therefore the metric in the string frame will
be connected to the metric in the Einstein frame through Then, we can calculate the effective energy density from
Osi=ex%ge . All the quantities used so far were defined in Eq. (4.2) settingl?>=0 and we get
the string frame. We will follow our cosmological evolution

in the Einstein frame. Then the relatio®.18 becomes 8w 1 E \2
?peﬁZ 1—FE|[I092Q+4Ioga]+F
8 _(d)z_(C+E)ng—Igool(gsg?’ﬂz) g’)2 “ “
3 P la 4190d 91 9s9° g/ I 1 ‘
(4.2 4 2(log 2Q+4 log )
Having the approximate solution in the UV given by Egs. 1 —4
(3.21)—(3.29 we can calculate the metric components of the x| 1= 2(loa20+4 1
metric (3.7) and find (log 2Q+4 loga)
9 -1
X1 1—
gyyzlie\@(l_zi)' 4.3 2(log 2Q+4loga))
’ 1+ !
1 /2< 1 ) x (log 2Q+4 loga)?
=—e"1- —|, 4.4
1 2
Q 1 X (4.10
gsz\/;(l—z—). (4.5) 1- 1
y 2(log2Q+4loga)
The variabley is defined by .
For some typical value of the parametéps=1 and E
p=eV. (4.6) =1, and for large values of, it is obvious thatp.4 has a

Then we can identifyg of Eq. (4.4) with the scale factor
«? and solve fory. We get two solutions

1
Y17 Floga+log2Q’ 4.0
y,=log2Q+4 loga+ (4.8

log2Q+4loga’

From the solution4.8) which has the right behavior for
large a, we keep the logQ+4 log« term. Then the RR field
C becomes

e 2
C==—zElyl

0 0 4.9

constant value. Therefore an observer on the brane will see
an expanding inflating universe. It is interesting to see what
happens for small values af. As « gets smaller, a term
proportional to 1/(logy)* starts to contribute tp.s. There-

fore the universe for small values of scale factor has a slow
expanding inflationary phase which we call the “logarithmic
inflationary” phase. For smaller values afwe cannot trust

the solution which is reflected in the fact thay gets infi-

nite. The behavior of the effective energy density as a func-
tion of the scale factor is shown in Fig. 1.

To have an idea how the slow inflationary phase proceeds,
we can assume for the moment that the effective energy den-
sity scales as

8w (a) 2 1
3 P %) " (loga)®

(4.11

a
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The solution of the above equation is where nowy is defined by

{[2/p+2]
a=e

(4.12 p=¢. (4.16

Therefore we remain in an exponentially growing uni-  Then the identificatioy = o using Eq.(4.14) gives again
verse, but various values pfhave the effect of making the two solutions
universe to slow down its expansion. We note here that in
order to estimate the behavior and the duration of this “loga- B 9
rithmic i.nflatior.lary” phase, we have to resolve the problem iz~ 4 Ioga+|og\/2Q' (4.17)
of the singularity.

Going now to IR using Eq93.27)—(3.30 we get for the

metric components =—logv2Q—4loga+ ————. (4.1
y2 9v2Q g logv2Q+4 loga 8
_\/6 —3/4 1
yy_1_62 1- Z ' (4.13 For smalla we keep from the solutiop, of Eq. (4.18 the
term —logv2Q—4loga. Using this solution we can calcu-
2—1/4 9 late the RR field
g=—ey’2<1——), (4.14
Jo 2y ey 2
C=—6—65i[—)’]- (4.19
7
_~-3/4 o
9s=2 Q|1+ 2y/’ (4.19 Thenpg becomes
8m 1-2— 1 Eflogvi0+4loga]+ 2 1+ S ‘
—peii=|| —1—-2——E|[lo oga - =
3 Pef V204t 8 99 et T 217 2logvaq+ 4 loga)
( 9 -4 1 1
x| 1+ 1+
2(logv2Q+4 loga) 2(logv2Q+4 loga)
X[ 1 S ! i 4.2
2(4 loga+logv2Q)? 9 ' (4.20
1_
2(logv2Q+4log«a)
|
As we can see, the above relation is the same as the en- p=—4loga—logQ (4.24)
ergy density in the U\[relation(4.10] up to some numeri-
cal factors, as expected. The difference is, that now it is valignd the RR field becomes
for small a. For small« first the term 14® dominates and .
4 ; 4
then the term X*. As « increases the term 1/(lag” takes C=(—2e %—e )~ (4.25

over and drives the universe to a slow inflationary expansion.

We will also discuss the cosmological behavior of the IR
solutions of Refs[22] and[13]. Using Eqs(3.3)—(3.39 we  Finally ps becomes
have for the metric elements

Q

8w =
_peﬁz(Qa4)*V5+l/2[(_2Qa,4_Q3a12+ Ea*4)2

gpp:e(l/z— \%)pe—(1/4)e‘2p+<25’2>e‘4P’\’5\/6' (4.21) 3
2.8 1 2.8 25 44/6_1
g:efp/ze(lm)efzﬂi, (4.22 —(1+Q%a”)] 1_ZQ a +E(Q01 )
VQ X (1+Q%a?®). (4.26
gs=el?" 1""g)"e’(1’4)9_2“(5’2)‘9_4”/\%\/6. The above calculated effective energy density, in spite of

(4.23 its different form, has a similar behavior as £4.20. As «
increases, various negative powersaofake over until the
Then the equatiog= a? gives singularity is reached where positive powersaoflominate.
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V. DISCUSSION inflationary phase, in which the energy density is propor-
o tional to an inverse power of the logarithm of the scale fac-
We had followed a prpbe brane "?"0”9 a geode§|c N th?or. As the scale factor grows the induced energy density
background of type 0 'strlng..Assumlng that the universe | kes a constant value and the universe enters a normal ex-
des_crlbed by a thre_e:-dlm_e:ns!onal brane, we calculate the eéa'onential expansion. For small values of the scale factor the
fectn{e energy density Wh'Ch.'S lnduced on the brane becau fduced energy density scales as the inverse powers of the
Sl;wigg?screnﬁ:lc?:ésvgfor?tutdhyetrha:Zi;TIcr:Ecl)%? dm::éer as the brane'scale factor and then the logarithmic terms take over and the
In our previous wo?l{ll] we found that thé motion of the universe enters a slow exponential expansion.
brane—uniF\)/erse in this particular background induces an in- The energy densities we calculated break down for some
flationary phase on thepbrane We meglde the analvsis in the ecific values of the scale factor. This is a reflection of the
limited c{;se where the dilaton. and tachyon fields \)//vere con:. ct that the approximate solutions in the IR cannot be con-
. ) S y . tinued to the UV. To answer the question if there is a true
stants_. This assumptlc_)n simplified thg calculathn becausShase of “logarithmic inflation” in which the universe in-
thelrne tL}siSangﬁ(a\(/:\ltesgi(ligﬁlg g]:;h:tuedquz;uznt?acc’:fl(mrgﬂzg. Whereflates but with a slow rate, we must resolve the problem of
. ) y ! “g singularities, where our theory breaks down. We are study-
all the fields are functions of the radial coordinate. Then theing the problem numerically trying to solve the equations of
o e soton e tcaions o oo Nevepalotion numercaly{13] and see f w can smalh ou te
. qu ' singularities. Then we can apply our technics for calculating
less there are approximate solutions for large values of th e effective enerqv densit
radial coordinate, in the UV region and solutions for small Note addedwr?ilye this V\)//EJrk was written up to its final
values of the radial coordinate in the IR. In the UV the COU-t . Ref.[23] appeared where a similar prob?em was stud-
pling of the theory is small, so we can trust the approxmateled :and i.t was found that the tachyonic background is less
solutions. In the IR, the coupling becomes strong but it was;. :
shown in the literatur¢22,13 that all string corrections are divergent than the one without a tachyon.
small. . y ACKNOWLEDGMENTS
Using these solutions, we calculate the energy densities
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