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Development of equilibrium after preheating
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We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the
exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields
and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy
concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar
fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules
that govern the thermalization process in all of these models. Notably, we see that once one of the fields is
amplified through parametric resonance or other mechanisms, it rapidly excites other coupled fields to expo-
nentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which
gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group
into subsets with almost identical characteristics~e.g. group effective temperature!. The way fields form into
these groups and the properties of the groups depend on the couplings between them. We also studied the onset
of chaos after preheating by calculating the Lyapunov exponent of the scalar fields.
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I. INTRODUCTION

The theory of inflation has been highly successful in e
plaining many of the initial conditions for the hot big ban
model as well as providing a mechanism by which the se
of large scale structure were formed. Typical models of
flation are based on the slow-roll evolution of the homog
neous inflaton scalar field~s! f. Inflation ends when the
slow-roll regime is dynamically terminated and the field~s!
begins to oscillate around the minimum of its effective p
tential V(f) as in chaotic inflation@1# or ‘‘waterfalls’’ to-
wards the minimum ofV as in hybrid inflation@2#. After
inflation the homogeneous inflaton field~s! decays due to its
interactions with other fields or its self-interaction. If th
inflaton decay into other fields were slow as in perturbat
theory, the created particles would settle into thermal eq
librium as the inflaton decayed. However, the decay of
inflaton typically occurs via rapid, non-perturbative mech
nisms collectively known as preheating@3#. The character of
preheating may vary from model to model, e.g. parame
excitation in chaotic inflation@4# and another, specific typ
of preheating in hybrid inflation@5#, but its distinct feature
remains the same: rapid amplification of one or more boso
fields to exponentially large occupation numbers. This a
plification is eventually shut down by back reaction of t
produced fluctuations. The end result of the process is a
bulent medium of coupled, inhomogeneous, classical wa
far from equilibrium@6#.

Despite the development of our understanding of preh
ing after inflation, the transition from this stage to a h
Friedmann universe in thermal equilibrium has remain
relatively poorly understood. A theory of the thermalizati
of the fields generated from preheating is necessary to br
the gap between inflation and the hot big bang. The detail
0556-2821/2001/63~10!/103503~14!/$20.00 63 1035
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this thermalization stage depend on the constituents of
fundamental LagrangianL(f i ,x i ,c i ,Am ,hmn , . . . ) and
their couplings, so at first glance it would seem that a
scription of this process would have to be strongly mo
dependent. We have found, however, that many feature
this stage seem to hold generically across a wide spectru
models. This fact is understandable because the condition
the end of preheating are generally not qualitatively sensi
to the details of inflation. Indeed, at the end of preheat
and beginning of the turbulent stage~denoted byt* ), the
fields are out of equilibrium. We have examined many mo
els and found that att* there is not much trace of the linea
stage of preheating and conditions att* are not qualitatively
sensitive to the details of inflation. We therefore expect t
this second, highly nonlinear, turbulent stage of prehea
may exhibit some universal, model-independent features

Although a realistic model would include one or mo
Higgs-Yang-Mills sectors, we treat the simpler case of int
acting scalars. Within this context, however, we conside
number of different models including several chaotic a
hybrid inflation scenarios with a variety of couplings b
tween the inflaton and other matter fields.

There are many questions about the thermalization p
cess that we set out to answer in our work. Could the tur
lent waves that arise after preheating be described by
theory of ~transient! Kolmogorov turbulence or would they
directly approach thermal equilibrium? Could the relaxati
time towards equilibrium be described by the naive estim
t;(ns int)

21, wheren is a density of scalar particles an
s int is a cross section of their interaction? If the inflatonf
were decaying into a fieldx, what effect would the presenc
of a decay channels for the x field have on the thermaliza
tion process? For that matter, would the presence ofs sig-
nificantly alter the preheating ofx itself or even destroy it as
©2001 The American Physical Society03-1



o-
ro
t i
y-

ne
ar
h

o
s-
s i
s
s

lin
n

em
te
i

e

nt
te
r
u
h
ea
he
el
a
ti
n
to
is
s
e

em
e

n
ic
c
ry

h

be
to
ot
o
pa
he
n

m

ese
ust
be
ium

eld
n-
he
les
g

tate

ive

n

des
t
ac-

he

ing

b-
nt
ave
ld,
ke

the
tree

ap-

rs
n be

ld
ing

.

GARY FELDER AND LEV KOFMAN PHYSICAL REVIEW D 63 103503
suggested in@7#? How strongly model dependent is the pr
cess of thermalization; are there any universal features ac
different models? Finally there is the question of chaos. I
known that Higgs-Yang-Mills systems display chaotic d
namics during thermalization@8#. The possibility of chaos in
the case of a single, self-interacting inflaton was mentio
in passing in@6#, but when we began our work it was uncle
at what stage of preheating chaos might appear, and in w
way.

Because the systems we are studying involve strong, n
linear interactions far from thermal equilibrium, it is not po
sible to solve the equations of motion using linear analysi
Fourier space. Instead we solve the scalar field equation
motion directly in position space using lattice simulation
These simulations automatically take into account all non
ear effects of scattering and back reaction. Using these
merical results we have been able to formulate a set of
pirical rules that seem to govern thermalization af
inflation. These rules qualitatively describe thermalization
a wide variety of models. The features of this process ar
some cases very different from our initial expectations.

Section II gives a brief review of preheating in differe
inflationary models. This review should serve to motiva
our study and place it in the broader context of inflationa
cosmology. Sections III and IV describe the results of o
numerical calculations. Section III describes one simple c
otic inflation model that we chose to focus on as a cl
illustration of our results, while Sec. IV discusses how t
thermalization process occurs in a variety of other mod
Section V describes the onset of chaos during preheating
includes a discussion of the measurement and interpreta
of the Lyapunov exponent in this context. Section VI co
tains a list of empirical rules that we have formulated
describe thermalization after preheating. Section VII d
cusses these results and other aspects of non-equilibrium
lar field dynamics. Finally, there is an appendix that d
scribes our lattice simulations.

II. INFLATION AND PREHEATING

In this section we outline the context where the probl
of thermalization after inflation arises. In the inflationary sc
nario, the very early universe expands~quasi!exponentially
due to a vacuum-like equation of state. Such an equatio
state can arise in a number of different ways, most of wh
are based on a homogeneous condensate of one or more
sical scalar fields. We will consider two types of inflationa
models. The first is chaotic inflation@1# with the single scalar
field potentialV(f). The second is hybrid inflation, whic
involves several scalar fields@2#. The properties of these
models are widely discussed in the literature. We will
dealing only with the decay of the homogeneous infla
condensate into inhomogeneous modes of the same or
scalars and the subsequent interactions of these inhom
neous modes as they approach thermal equilibrium. Any
ticles present before or during inflation are diluted by t
exponential expansion. Thus by the end of inflation all e
ergy is contained in the potentialV(f, . . . ) of one ormore
classical, slowly moving, homogeneous inflaton fields. I
10350
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mediately after inflation the background field~s! is moving
fast and produces particles of the fields coupled to it. Th
created particles are mutually interacting and ultimately m
end up in thermal equilibrium. However, particles may
created so fast that they spend some time in non-equilibr
states with very large occupation numbers.

Consider chaotic inflation with the potential

V~f!5
m2

2
f21

l

4
f4. ~1!

Soon after the end of inflation the homogeneous inflaton fi
f(t) coherently oscillates around the minimum of its pote
tial with an amplitude on the order of a Planck mass. T
inflaton oscillations decay due to the creation of partic
interacting withf. Let x be another scalar field couplin
with the inflaton field as12 g2f2x2. Particles of thex field are
produced from the interaction of the quantum vacuum s
of x with the coherently oscillating classical fieldf. The
dominant channel for this production is the non-perturbat
mechanism of parametric excitation. Thexk mode functions
exponentially increase with time asxk.emkt, where the
characteristic exponentmk is a model-dependent functio
@4,9#. The copious production ofx particles constitutes the
first stage of preheating after inflation@3#. This state can be
studied with analytical methods developed in@4,9,10#. How-
ever, very soon the amplitudes of the inhomogeneous mo
~i.e., the occupation numbernk) of x become so large tha
the back reaction of created particles must be taken into
count. The most important back-reaction effect will be t
rescattering of particlesxf→xf @6#, which is difficult to
describe analytically@4#. Thus, to follow the evolution of the
interacting scalar fields after the first stage of preheat
~dominated by parametric resonance!, one must investigate
the full non-linear dynamics of the interacting scalars.

The Hartree approximation, which is often used for pro
lems of nonequilibrium quantum field theory, is insufficie
here for several reasons. It fails when field fluctuations h
amplitudes comparable with that of the background fie
which occurs exponentially fast in our case. It does not ta
into account the rescattering of particles. Moreover, in
context of preheating there are diagrams beyond the Har
approximation that survive in theN→` limit and give com-
parable contributions to those included in the Hartree
proximation@4,9#.

Fortunately, scalar fields with high occupation numbe
can be interpreted as classical waves, and the problem ca
treated with lattice simulations@11#. Such simulations pro-
vide approximate solutions to nonequilibrium quantum fie
theory problems, and we believe they include the lead
physical effects.

Hybrid inflation models involve multiple scalar fields
The simplest potential for two-field hybrid inflation is

V~f,s!5
l

4
~s22v2!21

g2

2
f2s2. ~2!

Inflation in this model occurs while the homogeneousf field
slow rolls from largef towards the bifurcation point atf
3-2
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DEVELOPMENT OF EQUILIBRIUM AFTER PREHEATING PHYSICAL REVIEW D63 103503
5(Al/g)v ~due to the slight lift of the potential inf direc-
tion!. Oncef(t) crosses the bifurcation point, the curvatu
of the s field, ms

2[]2V/]s2, becomes negative. This neg
tive curvature results in exponential growth ofs fluctuations.
Inflation then ends abruptly in a ‘‘waterfall’’ manner. It wa
recently found@5# that there is strong preheating in hybr
inflation, but its character is quite different from preheati
based on parametric resonance.

One reason to be interested in hybrid inflation is tha
can be easily implemented in supersymmetric theories
particular, for illustration we will use supersymmetricF-term
inflation as an example of a hybrid model.

III. CALCULATIONS IN CHAOTIC INFLATION

In this section we present the results of our numeri
lattice simulations of the dynamics of interacting scalars
ter inflation. We discuss in detail one simple model that
have chosen to illustrate the general properties of therm
zation after preheating. The next section will discuss th
malization in the context of other models.

A. Model

The example we have chosen to focus on is chaotic in
tion with a quartic inflaton potential. The inflatonf has a
four-leg coupling to another scalar fieldx, which in turn can
couple to one or more other scalarss i . The potential for this
model is

V5
1

4
lf41

1

2
g2f2x21

1

2
hi

2x2s i
2 . ~3!

The equations of motion for the model~3! are given by

f̈13
ȧ

a
ḟ2

1

a2¹2f1~lf21g2x2!f50 ~4!

ẍ13
ȧ

a
ẋ2

1

a2¹2x1~g2f21hi
2s i

2!x50 ~5!

s ï13
ȧ

a
s i̇2

1

a2 ¹2s i1~hi
2x2!s i50. ~6!

We also included self-consistently the evolution of the sc
factor a(t). The model described by these equations i
conformal theory, meaning that the expansion of the unive
can be~almost! eliminated from the equations of motion b
an appropriate choice of variables@9#. See the Appendix for
more information on the lattice simulations we used to so
these equations, including information on the initial con
tions and the rescaled units we used in the calculations an
the plots we show here.

Preheating in this theory in the absence of thes i fields
was described in@9#. For g2*l the fieldx will experience
parametric amplification, rapidly rising to exponential
large occupation numbers. In the absence of thex field ~or
for sufficiently small g) f will be resonantly amplified
through its own self-interaction, but this self-amplification
10350
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much less efficient than the two-field interaction. The resu
shown here are forl59310214 @for Cosmic Background
Explorer ~COBE! normalization# and g25200l. When we
add a third field we useh1

25100g2 and when we add a fourth
field we useh2

25200g2.

B. Output variables

There are a number of ways to illustrate the behavior
scalar fields, and different ones are useful for exploring d
ferent phenomena. The raw data are the value of the fi
f (t,xW ) or, equivalently, its Fourier transformf k(t). One of
the simplest quantities one can extract from these value
the variance

^@ f ~ t !2 f̄ ~ t !#2&5
1

~2p!3E d3ku f k~ t !u2, ~7!

where the integral does not include the contribution o
possible delta function atkW50, representing the mean valu
f̄ .

One of the most interesting variables to calculate is
~comoving! number density of particles of thef field,

nf~ t ![
1

~2p!3E d3knk~ t !, ~8!

wherenk is the ~comoving! occupation number of particles

nk~ t ![
1

2vk
u ḟ ku21

vk

2
u f ku2 ~9!

vk[Ak21me f f
2 ~10!

me f f
2 [

]2V

] f 2 . ~11!

For the model~3! this effective mass is given by

me f f
2 5H 3l^f2&1g2^x2&

g2^f2&1hi
2^s i

2&

hi
2^x2&

~12!

for f, x, ands i , respectively. For the classical waves of
that we are dealing with,nk corresponds to an adiabatic in
variant of the waves. Formula~9! can be interpreted as
particle occupation number in the limit of large amplitude
the f field. As we will see below this occupation numb
spectrum contains important information about thermali
tion. Notice that the effective mass of the particles depe
on the variances of the fields and may be significant and t
dependent. The momenta of the particles do not necess
always exceed their masses, meaning the interacting sc
waves are not necessarily always in the kinetic regime
particular this means that in general we cannot calculate
energies of the fields simply as*d3kvknk because interac
tion terms between fields can be significant.
3-3
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GARY FELDER AND LEV KOFMAN PHYSICAL REVIEW D 63 103503
From here on we will usen without a subscript to denot
the total number density for a field, and will use the subsc
only to specify a particular field, e.g.nf . We usentot to
mean the sum of the total number density for all fields co
bined. The occupation number will always be writtennk and
it should be clear from context which field is being referr
to.

In practice it is not very important whether you consid
the spectrumf k and the variance off or the spectrumnk and
the number density. Both sets of quantities qualitativ
show the same behavior in the systems we are conside
The variance and number density grow exponentially dur
preheating and evolve much more slowly during the sub
quent stage of turbulence. Most of our results are show
terms of number densitynf and occupation numbernk be-
cause these quantities have obvious physical interpretat
at least in certain limiting cases. We shall occasionally sh
plots of variance for comparison purposes.

We will follow the evolution ofn(t) andnk(t). The evo-
lution of the total number densityntot is an indication of the
physical processes taking place. In the weak interaction l
the scattering of classical waves via the interaction te
1
2 g2f2x2 can be treated using a perturbation expansion w
respect tog2. The leading four-leg diagrams for this intera
tion corresponds to a two-particle collision (fx→fx),
which conservesntot . The regime where such interaction
dominate corresponds to ‘‘weak turbulence’’ in the termin
ogy of the theory of wave turbulence@12#. If we seentot
conserved, it will be an indication that these two-partic
collisions constitute the dominant interaction. Converse
violation of ntot(t)5const will indicate the presence o
strong turbulence, i.e., the importance of many-particle c
lisions. Such higher order interactions may be significant
spite the smallness of the coupling parameterg2 ~and others!
because of the large occupation numbersnk . Later, when
these occupation numbers are reduced by rescattering
two-particle collision should become dominant andntot
should be conserved.

For a bosonic field in thermal equilibrium with a temper
tureT and a chemical potentialm the spectrum of occupatio
numbers is given by

nk5
1

e(vk2m)/T21
. ~13!

~We use units in which\51.! Preheating generates larg
occupation numbers for which Eq.~13! reduces to its classi
cal limit

nk'
T

vk2m
, ~14!

which in turn reduces tonk}1/k for k@m,m andnk'const
for k!m,m. We will compare the spectrumnk to this form
to judge how the fields are thermalizing. Here we consi
the chemical potential of an interacting scalar fields as a
parameter.

Unless otherwise indicated all of our results are shown
comoving coordinates that, in the absence of interactio
10350
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would remain constant as the universe expanded. Note
that for most of our discussion we consider field spectra o
as a function ofuk uW , defined by averaging over spheric
shells ink space. For a Gaussian field these spectra con
all the information about the field, and even for a no
Gaussian field most useful information is in these averag
This issue is discussed in more detail in Sec. V.

C. Results

The key results for this model are shown in Figs. 1–
which show the evolution ofn(t) with time for each field
and the spectrumnk for each field at a time long after the en
of preheating. These results are shown for runs with one fi
(f only!, two fields (f andx), and three and four fields~one
and twos i fields respectively!. We will begin by discussing
some general features common to all of these runs and
comment on the runs individually.

All of the plots ofn(t) show an exponential increase du
ing preheating, followed by a gradual decrease that asy
totically slows down. See for example Fig. 9. This expone
tial increase is a consequence of explosive part
production due to parametric resonance. This regime is fa
well understood@9#. After preheating the fields enter a tu
bulent regime, during whichn(t) decreases. This initial, fas
decrease can be interpreted as a consequence of the m
particle interactions discussed above; asnk shifts from low to
high momenta the overall number decreases. Realistic
however, the onset of weak turbulence should be accom
nied by the development of a compensating flow towa
infrared modes, which we would be unable to see becaus
our finite box size. Thus the continued, slow decrease inn(t)
well into the weak turbulent regime is presumably a con
quence of the lack of very long wavelength modes in o
lattice simulations.

To see why this shift is occurring look at the spectrank
~Figs. 5–8; see also@7,13#!. Even long after preheating th
infrared portions of some of these spectra are tilted m
sharply than would be expected for a thermal distribut
~14!. Even more importantly, many of them show a cutoff
some momentumk, above which the occupation number fal
off exponentially. Both of these features, the infrared tilt a
the ultraviolet cutoff, indicate an excess of occupation nu
ber at lowk relative to a thermal distribution. This exces
occurs because parametric resonance is typically most
cient at exciting low momentum modes, and becomes co
pletely inefficient above a certain cutoffk* . A clear picture
of how the flow to higher momenta reduces these featu
can be seen in Fig. 10, which shows the evolution of
spectrumnk for x in the two field model.

Figure 10 illustrates the initial excitation of modes in pa
ticular resonance bands, followed by a rapid smoothing
of the spectrum. The ultraviolet cutoff is initially at the mo
mentum k* where parametric resonance shuts down,
over time the cutoff moves to higherk as more modes are
brought into the quasi-equilibrium of the infrared part of t
spectrum. Meanwhile the infrared section is gradually fl
tening as it approaches a true thermal distribution. Dur
preheating the excitation of the infrared modes drives t
3-4
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FIG. 1. V51/4lf4. ~Note that the vertical scale is larger tha
for the subsequent plots.!

FIG. 2. V51/4lf411/2g2f2x2, g2/l5200. The upper curve
representsnx .
10350
FIG. 3. V51/4lf411/2g2f2x211/2h2x2s2, g2/l5200, h2

5100g2. The highest curve isnf . The number density ofx dimin-
ishes whenns grows.

FIG. 4. V51/4lf411/2g2f2x211/2hi
2x2s i

2 , g2/l5200, h1
2

5200g2, h2
25100g2. The pattern is similar to the three-field cas

until the growth ofs2.
NUMBER DENSITY VS TIME
OCCUPATION NUMBER VS MOMENTUM
FIG. 5. V51/4lf4.
FIG. 6. V51/4lf411/2g2f2x2, g2/l5200. The spectra off

andx are nearly identical.
3-5
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GARY FELDER AND LEV KOFMAN PHYSICAL REVIEW D 63 103503
slope to large, negative values. From then on it gradu
approaches thermal equilibrium~i.e., a slope of21 to 0
depending on the chemical potential and the mass!. The re-
laxation time for the equilibrium is significantly shorter tha
that given by formula 1/ns int . This estimate is valid for
dilute gases of particles, but in our case the large occupa
numbers amplify the scattering amplitudes@4#.

Figure 11 shows the evolution of the variances^( f

2 f̄)2& for the two field model. As indicated above it show
all the same qualitative features as the evolution ofn for that
model.

We can now go on to point out some differences betw
the models, i.e., between runs with different numbers
fields. The one field model~purelf4) shows the basic fea
tures discussed above, but the tilt in the spectrum is still v
large at the end of the simulation andnf is decreasing very
slowly compared to the spectral tilt and change inn we see
in the two field case. This difference occurs because the
teractions betweenf andx greatly speed up the thermaliza
tion of both fields. In the one field casef can only thermal-
ize via its relatively weak self-interaction.

The spectra in the two field run also show a novel featu
namely that the spectra forf andx are essentially identical
which means, among other things,

FIG. 7. V51/4lf411/2g2f2x211/2h2x2s2, g2/l5200, h2

5100g2. Thex ands spectra are similar, buts rises in the infra-
red. The spectrum off is markedly different from the others.

FIG. 9. Number densityn for V5
1
4 lf41

1
2 g2f2x2. The plots

are, from bottom to top at the right of the figure,nf , nx , andntot .
The dashed horizontal line is simply for comparison. The end
exponential growth and the beginning of turbulence~i.e., the mo-
ment t* ) occurs around the time whenntot reaches its maximum.
10350
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nf'nx . ~15!

This matching of the two spectra occurs shortly after p
heating and from then on the two fields evolve identica
~except for the remaining homogeneous component off). A
posteriori this result can be understood as follows. Looki
at the potentiallf41g2f2x2, the second term dominate
because of the hierarchy of coupling strengthsg25200l. So
the potentialV'g2f2x2 is symmetric with respect to the
two fields, and therefore they act as a single effective fie

Figures 3 and 7 show the effects of adding an additio
decay channel forx. The interaction ofx and s does not
affect the preheating ofx, but does drags exponentially
quickly into an excited state. The fields is exponentially
amplified not by parametric resonance, but by its stimula
interactions with the amplifiedx field. Unlike amplification
by preheating, this direct decay nearly conserves part
number, with the result thatnx decreases ass grows, and the
spectra off andx are no longer identical. Insteadx ands
develop nearly identical spectra,

nx'ns,nf , ~16!

FIG. 8. V51/4lf411/2g2f2x211/2hi
2x2s i

2 , g2/l5200, h1
2

5200g2, h2
25100g2. All fields other than the inflaton have nearl

identical spectra.

f

FIG. 10. Evolution of the spectrum ofx in the model V
5

1
4 lf41

1
2 g2f2x2. Red plots correspond to earlier times and bl

plots to later ones. For black and white viewing: The sparse, lo
plots all show early times. In the thick bundle of plots higher up t
spectrum is rising on the right and falling on the left as tim
progresses.
3-6
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DEVELOPMENT OF EQUILIBRIUM AFTER PREHEATING PHYSICAL REVIEW D63 103503
and they both thermalize~together! much more rapidly than
x did in the absence ofs. There is a looser relationshipnf
'ns1nx , whose accuracy depends on the couplings. T
inflaton, meanwhile, thermalizes much more slowly; note
low k of the cutoff in thef spectrum in Fig. 7. By contrast
there is no visible cutoff in the spectra ofx ands and the tilt
is relatively mild. The most striking property of this chain
interaction is the grouping of fields;x ands behave identi-
cally to each other and differently fromf. This again can be
understood by the hierarchy of coupling constants,h2

5100g2520 000l. The termh2x2s2 is dominant and putsx
ands on an equal footing.

Varying the couplingh did not change the overall behav
ior of the system, but it changed the time at whichs grew. In
the limiting caseh@g, s grew withx during preheating and
remained indistinguishable from it right from the start.~We
found this, for example, forh2510 000g2.!

When we added a seconds field we found that thes field
most strongly coupled tox would grow very rapidly and the
more weakly coupled one would then grow relatively slow
Note for example thatns2 in Fig. 8 grows more slowly than
ns in Fig. 7 despite the fact that they have the same coup
to x. In the four field casenx is reduced when the mor
strongly coupleds field grows and this slows the growth o
the more weakly coupled one. Nonetheless, the addition

FIG. 11. Variances forV5
1
4 lf41

1
2 g2f2x2. The upper plot

shows^(f2f̄)2& and the lower plot showŝ(x2x̄)2&.

FIG. 12. Effective masses forV5
1
4 lf41

1
2 g2f2x2 as a func-

tion of time in units of comoving momentum. The lower plot ismf

and the upper one ismx .
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anothers field once again sped up the thermalization ofx
and thes fields. The three fieldsx, s1, ands2 once again
have identical spectra

nx'ns1'ns2,nf , ~17!

but in the four field case by the end of the run they lo
indistinguishable from thermal spectra. If there is an ult
violet cutoff for these spectra, it is at momenta higher th
can be seen on the lattice we were using. Again, we notic
loose relationshipnf'nx1ns11ns2. in this case.

We close this section with a few words about the effect
masses of the fields, Eq.~11!. All the masses are scaled i
the comoving frame; i.e., we considera2me f f

2 , andm is mea-
sured in units of momentum~see the Appendix!. Figure 12
shows the evolution of the effective masses in the two fi
model. Note that the vertical axis of these plots is in the sa
comoving units as the horizontal~k! axes of the spectra plots
Since the momentum cutoff was of orderk;5 – 10~see Fig.
10! the mass off was consistently smaller than the typic
momenta of the field. By contrastmx started out much large
and only gradually decreased. The fluctuations ofx remained
massive through preheating~although with a physical mas
;1/a) and for quite a while afterwards the typical mome
tum of these fluctuations wask;m.

Figure 13 shows the evolution of the effective masses
the three field model. Once againmf remains small. Al-
thoughms grows large briefly it quickly subsides. Howeve
mx , with contributions froms and f, remains relatively
large. Note, however, that the spectrum ofx has no clear
cutoff afters has grown, so it is difficult to say whether th
mass exceeds a ‘‘typical’’ momentum scale or not.

IV. OTHER MODELS OF INFLATION
AND INTERACTIONS

The model~3! was chosen to illustrate our basic resu
becauself4 inflation and preheating is relatively simple an
well studied. Our main interest, however, is in universal fe
tures of thermalization. In this section we therefore mo
briefly discuss our results for a variety of other models. F

FIG. 13. Time evolution of the effective masses for the mo
V5

1
4 lf41

1
2 g2f2x21

1
2 h2x2s2. From bottom to top on the righ

hand side the plots showmf , ms , andmx .
3-7
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we continue withlf4 inflation by discussing variants on th
interaction potential described above. Next we discuss t
malization inm2f2 models of chaotic inflation. Finally we
discuss hybrid inflation.

A. Variations of chaotic inflation with a quartic potential

We looked at several simple variants of the potential~3!.
We considered a model with a further decay channel fors so
that the total potential was

V5
1

4
lf41

1

2
g2f2x21

1

2
h1

2x2s21
1

2
h2

2s2g2. ~18!

Settingh15h2 we found that for this four field model th
evolution of the field fluctuations, spectra, and number d
sity were qualitatively similar to those in the four field mod
~3!. We found that at late times

nx'ns'ng,nf . ~19!

The fieldsx, s, andg formed a group with nearly identica
spectra and evolution and rapid thermalization, whilef re-
mained distinct and thermalized more slowly. Compare th
results to the four field model results in Figs. 4 and 8.

We also considered parallel decay channels forf:

V5
1

4
lf41

1

2
g1

2f2x21
1

2
g2

2f2g21
1

2
h2x2s2. ~20!

Settingg15g2 andh25100g1
2 we found that, at late times

nf'ng.nx'ns . ~21!

In other words the four fields formed into two groups of tw
with each group having a characteristic number density e
lution.

Finally we looked at adding a self-interaction term forx,

V5
1

4
lff41

1

2
g2f2x21

1

4
lxx4 ~22!

with lx5g2, and found that the results were essentially u
changed from those of the two field runs with nox4 term.
Thex self-coupling caused the spectra off andx to deviate
slightly from each other, but their overall evolution pr
ceeded very similarly to the case with nox self-interaction
term.

B. Chaotic inflation with a quadratic potential

We also considered chaotic inflation models with
m2f2 inflaton potential. Figures 14–17 show results for t
model

V5
1

2
m2f21

1

2
g2f2x21

1

2
h2x2s2, ~23!

with m51026M p'1.2231013 GeV ~for COBE!, g252.5
3105m2/M p

2 , andh25100g2. ~See the Appendix for more
details.! We considered separately the case of two fieldsf
and x and three fieldsf, x, and s. This model exhibits
10350
r-

-

e

,
o-

-

parametric resonance similar to the resonance in quartic
flation @4#, which results in the rapid growth ofn seen in
these figures. The spectra produced in this way are o
again tilted towards the infrared. In the two field case,f and
x do not have identical spectra as they did for quartic infl
tion. This is because the coupling term 1/2g2f2x2 redshifts
more rapidly than the mass term 1/2m2f2, so the latter re-
mains dominant in the potential, which is therefore not sy
metric betweenf andx. In the three field case we again se
similar spectra forx ands, although they are not as indis
tinguishable as they were inlf4 theory. The basic feature
of rapid growth ofn, high occupation of infrared modes, an
then a flux of number density towards ultraviolet modes a
a slow decrease inntot are all present as they were forlf4

theory. The shape of thef spectrum does not appear the
mal, but it is unclear if this spectrum is compatible wi
Kolmogorov turbulence.

C. Hybrid inflation

Preheating has been studied in many different version
hybrid inflation, mostly only at the early stages when t
equations for the fluctuations can be linearized. It had b
thought until recently that preheating was not a univer
process in hybrid inflation. In our recent study@5#, however,
we found that there is generally a very strong preheating
hybrid models, but its character is quite different from pr
heating based on parametric resonance. We discuss in d
in a separate publication@5# our recent analytical and nu
merical studies of preheating in hybrid inflation models,
cluding a simple two-field model~2! as well as more com-
plex supersymmetric~SUSY! F-term andD-term models. As
with parametric resonance, the result of the instability is
exponential growth of long-wavelength modes of the field

In this paper we are mostly interested in preheating in
non-inflaton sector and the nonlinear stage after prehea
In @5# we studied the instability in the inflaton sector of th
hybrid model, i.e., the decay of the homogeneous fields
excitations of their fluctuations. Here we take a complem
tary approach and consider the dynamics of the model w
an additional scalar fieldx coupled to the fields of the hybrid
inflation model. The potential is

V5
l

4
u4S̄S2v2u214luFu2~ uSu21uS̄u2!1h2x2uSu2,

~24!

wherel52.531025 andh252l. HereF, S andS̄ are the
complex scalar fields of the inflaton sector andx is an addi-
tional matter field. Inflation occurs along of theF direction

for ^F&@v, when S5S̄50. When the magnitude of the
slow-rolling fieldF reaches the valuêuFcu&5v/2 spontane-
ous symmetry breaking occurs and theS fields become ex-
cited. It can be shown that at the end of inflation and the s
of symmetry breaking the complicated potential~24! can be
effectively reduced to the simple two field potential~2!

~wheref and s are combinations ofF and S, S̄ and g2

5 1
2 l) plus the coupling term withh2x2uSu2.
3-8
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FIG. 14. V51/2m2f211/2g2f2x2, g2M p
2/m252.53105. The

upper curve representsnx .
10350
FIG. 15. V51/2m2f211/2g2f2x211/2h2x2s2, g2M p
2/m2

52.53105, h25100g2. The highest curve isnx . The field that
grows the latest iss.
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Figure 18 shows the evolution of the six degrees of fre
dom of the inflaton sector as well as the fieldx. We see that
all of the inflaton fields except Im(F) are excited very
quickly. Later the fieldsx and Im(F) are dragged into ex-
cited states as well. This dragging corresponds to prehea
in the non-inflaton sector. The fieldsx and Im(F) are ex-
cited by their stimulated interactions with the rest of th
fields. The result of this amplification is a turbulent state th
evolves towards equilibrium very similarly to the chaoti
models. Although the details of inflation and preheating a
very different in hybrid and chaotic models, we found tha
once a matter field has been amplified, the thermalizati
process proceeds in the same way.

V. ONSET OF CHAOS, LYAPUNOV EXPONENTS
AND STATISTICS

Interacting waves of scalar fields constitute a dynamic
system, meaning there is no dissipation and the system
be described by a Hamiltonian. Dynamical chaos is one

FIG. 16. V51/2m2f211/2g2f2x2, g2M p
2/m252.53105. The

upper curve represents the spectrum ofx.
e-
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the features of wave turbulence. In this section we addre
the question if, how and when the onset of chaos takes pla
after preheating.

The scalar field fluctuations produced during preheatin
are generated in squeezed states@14,4# that are characterized
by correlations of phases between modeskW and2kW . Because
of their large amplitudes, we can consider these fluctuatio
to be standing classical waves with definite phases. Durin
the linear stage of preheating, before interactions betwe
modes become significant, the evolution of these waves m
be or may not show chaotic sensitivity to initial conditions
Indeed, for wide ranges of coupling parameters paramet
resonance has stochastic features@4,9#, and the issue of the
numerical stability of parametric resonance has not been
vestigated. When interaction~rescattering! between waves
becomes important, the waves become decoherent. At t
stage the waves have well-defined occupation numbers b
not well-defined phases, and the random phase approxim
tion can be used to describe the system. This transition s

FIG. 17. V51/2m2f211/2g2f2x211/2h2x2s2, g2M p
2/m2

52.53105, h25100g2. Thex ands spectra are similar, while the
spectrum off rises much higher in the infrared.
3-9
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GARY FELDER AND LEV KOFMAN PHYSICAL REVIEW D 63 103503
nals the onset of turbulence, following which the system w
gradually evolve towards thermal equilibrium.

To investigate the onset of chaos in this system we h
to follow the time evolution of two initially nearby points in
the phase space; see e.g.@8#. Consider two configurations o
a scalar fieldf and f 8 that are identical except for a sma
difference of the fields at a set of pointsxA . We use
f (t,xWA), ḟ (t,xWA) to indicate the unperturbed field amplitud
and field velocity at the pointxWA and f 8(t,xWA), ḟ 8(t,xWA) to
indicate slightly perturbed values at this point. In oth
words, the field configurations withf (t,xWA), ḟ (t,xWA) and
f 8(t,xWA), ḟ 8(t,xWA) are initially close points in the field phas
space. We then independently evolve these two syst
~phase space points! and observe how the perturbed fie
values diverge from the unperturbed ones. Chaos can be
fined as the tendency of such nearby configurations in ph
space to diverge exponentially over time. This divergenc
parametrized by the Lyapunov exponent for the system,
fined as

l[
1

t
log

D~ t !

D0
~25!

whereD is a distance between two configurations andD0 is
the initial distance at time 0. Here we define the distan
D(t) simply as

FIG. 18. Evolution of variances of fields in the model~24!. The
two fields that grow at late times, in order of their growth, arex and
Im(F).

FIG. 19. The Lyapunov exponentl for the fields f ~lower
curve! andx ~upper curve!. The vertical axis islt.
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D~ t !2[(
A

~ u f A82 f Au!21~ u ḟ A82 ḟ Au!2, ~26!

where we definef A[ f (t,xWA) and the summation is take
over all the points where the configurations initially differe

For illustration we present the calculations for the mod
V5 1

4 lf41 1
2 g2f2x2. We did two lattice simulations of this

model with initial conditions that were identical except th
in one of them we multiplied the amplitude ofx by 1
11026 at 8 evenly spaced points on the lattice. Figure
shows the Lyapunov exponent for both fieldsf andx. Note
that the vertical axis islt rather than justl. During the
turbulent stage the parameterD(t) is artificially saturated to
a constant because of the limited phase space volume o
system. Fortunately, the most interesting moment aroundt* ,
where the chaotic motion begins, is covered by this sim
approach. Certainly, the field dynamics continue to be c
otic in subsequent stages of the turbulence, and one can
more sophisticated methods to calculate the Lyapunov ex
nent during these stages@15,8#. However, this issue is les
relevant for our study.

Both fields show roughly the same rate of growth ofl,
but lx grows much earlier thanlf and therefore reaches
higher level. The reason for this is simple. The amplitude
x is initially very small and grows exponentially, so even
the absence of chaos we would expect that during prehea
the differencex8(t,xWA)2x(t,xWA) must grow exponentially,
proportionally tox; exp@*dtm(t)# itself. So this exponentia
growth is not a true indicator of chaos.

To get around this problem and define the onset of ch
in the context of preheating more meaningfully we introdu
a normalized distance function

D~ t ![(
A

S f A82 f A

f A81 f A
D 2

1S ḟ A82 ḟ A

ḟ A81 ḟ A
D 2

, ~27!

which is well regularized even while the fieldx is being
amplified exponentially. Figure 20 shows the Lyapunov e
ponent

FIG. 20. The Lyapunov exponentl8 for the fieldsf and x
using the normalized distance functionD.
3-10
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l8[
1

t
log

D~ t !

D~ t0!

for x. In this case we see the onset of chaos only at the
of preheating. The plot for thef field is nearly identical. The
Lyapunov exponents for the fields werelf8 'lx8'0.2 ~in the
units of time adopted in the simulation!. This corresponds to
a very fast onset of chaos.

Thus we see that chaotic turbulence starts abruptly at
end of preheating. Initially wave turbulence is strong a
rescattering does not conserve the total number of parti
ntot . The fastest variation inntot occurs at the same time a
the onset of chaos,t* ;100–200. We conjecture that th
entropy of the system of interacting waves is genera
around the momentt* . As the particle occupation numbe
drops, the turbulence will become weak andntot will be
conserved. Figure 9 clearly shows this evolution of the to
number of particlesntot in the model.

We also considered the statistical properties of the in
acting classical waves in the problem. The initial conditio
of our lattice simulations correspond to random Gauss
noise. In thermal equilibrium, the field velocityḟ has Gauss-
ian statistics, while the fieldf itself departs from that unless
has high occupation numbers. Figure 21 shows the proba

FIG. 21. The probability distribution function for the fieldx
after preheating. Dots show a histogram of the field and the s
curve shows a best-fit Gaussian.

FIG. 22. Deviations from Gaussianity for the fieldf as a func-
tion of time. The solid line shows 3^df2&2/^df4& and the dashed

line shows 3̂dḟ2&2/^dḟ4&.
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ity distribution of the fieldx during the weak turbulence
stage after preheating, and indeed the distribution is ne
exactly Gaussian. Thus, at this stage we can treat the su
position of classical scalar waves with large occupation nu
bers and random phases as random Gaussian fields.

During preheating, however, this Gaussian distribution
altered. A simple measure of the Gaussianity of a field com
from examining its moments. For a Gaussian field there
fixed relationship between the two lowest nonvanishing m
ments, namely

3^df2&25^df4&, ~28!

wheredf[f2^f& and angular brackets denote ensem
averages or, equivalently, large spatial averages. We m
sured the ratio of the left and right hand sides of this eq
tion for f and x and their time derivatives using spati
averages over the lattice. The results are shown in Figs
and 23. As expected, the fields are initially Gaussian, dev
from it during preheating, and rapidly return to it afterward
The plots for the moments of the field velocities are simil
although the field velocities remain closer to Gaussianity

It is quite important to notice that Gaussianity is brok
around the end of preheating and the beginning of the str
turbulence. In particular, it makes invalid the use of the H
tree approximation beyond this point.

VI. RULES OF THERMALIZATION

This paper is primarily an empirical one. We have n
merically investigated the processes of preheating and t
malization in a variety of models and determined a set
rules that seem to hold generically. These rules can be
mulated as follows:

(1) In many, if not all viable models of inflation ther
exists a mechanism for exponentially amplifying fluctuatio
of at least one fieldx. These mechanisms tend to excite lon
wavelength excitations, giving rise to a highly infrared spe
trum.

The mechanism of parametric resonance in single-fi
models of inflation has been studied for a number of yea

id

FIG. 23. Deviations from Gaussianity for the fieldx as a func-
tion of time. The solid line shows 3^dx2&2/^dx4& and the dashed

line shows 3̂dẋ2&2/^dẋ4&.
3-11
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Contrary to the claims of some authors, this effect is qu
robust. Adding additional fields~e.g. ours fields! or self-
couplings ~e.g. x4) has little or no effect on the resona
period. Moreover, in many hybrid models a similar effe
occurs due to other instabilities. The qualitative features
the fields arising from these processes seem to be lar
independent of the details of inflation or the mechanis
used to produce the fields.

(2) Exciting one fieldx is sufficient to rapidly drag all
other light fields with whichx interacts into a similarly ex-
cited state.

We have seen this effect when multiple fields are coup
directly tox and when chains of fields are coupled indirec
to x. All it takes is one field being excited to rapidly amplif
an entire sector of interacting fields. These second genera
amplified fields will inherit the basic features of thex field;
i.e., they will have spectra with more energy in the infrar
than would be expected for a thermal distribution.

(3) The excited fields will be grouped into subsets w
identical characteristics (spectra, occupation numbers, eff
tive temperatures) depending on the coupling strengths.

We have seen this effect in a variety of models. For
ample in the models~3! and ~18! the x ands fields formed
such a group. In general, fields that are interacting in a gr
such as this will thermalize much more quickly than oth
fields, presumably because they have more potential to in
act and scatter particles into high momentum states.

(4) Once the fields are amplified, they will approach the
mal equilibrium by scattering energy into higher moment
modes.

This process of thermalization involves a slow redistrib
tion of the particle occupation number as low moment
particles are scattered and combined into higher momen
modes. The result of this scattering is to decrease the ti
the infrared portion of the spectrum and increase the ul
violet cutoff of the spectrum. Within each field group th
evolution proceeds identically for all fields, but differe
groups can thermalize at very different rates.

VII. DISCUSSION

We investigated the dynamics of interacting scalar fie
during post-inflationary preheating and the developmen
equilibrium immediately after preheating. We used three
mensional lattice simulations to solve the non-linear eq
tions of motion of the classical fields.

There are a number of problems both from the point
view of realistic models of early universe preheating a
from the point of view of non-equilibrium quantum fiel
theory that we have not so far addressed. In this section
shall discuss some of them.

Although we considered a series of models of inflati
and interactions, we mostly restricted ourselves to four-
interactions.~The sole exception was the hybrid inflatio
model, which develops a three-leg interaction after symm
try breaking.! This meant that we still had a residual hom
geneous or inhomogeneous inflaton field. In realistic mod
of inflation and preheating we expect the complete deca
the inflaton field.~There are radical suggestions to use
10350
e

t
f
ly
s

d

on

h
-

-

p
r
r-

-

-

m
of
-

s
f

i-
-

f
d

e

g

-

ls
of
e

residuals of the inflaton oscillations as dark matter or qu
tessence, but these require a great deal of fine tuning.! The
problem of residual inflaton oscillations can be easily cu
by three-leg interactions. In the scalar sector three-leg in
actions of the typeg2vfx2 may result in stronger prehea
ing. Yukawa couplingshc̄fc will lead to parametric exci-
tations of fermions@16#.

There are subtle theoretical issues related to the deve
ment of precise thermal equilibrium in quantum and class
field theory due to the large number of degrees of freedo
see, e.g.,@17#. In our simulations we see the flattening of th
particle spectrank and we describe this as an approach
thermal equilibrium, but in light of these subtleties w
should clarify that we meanapproximatethermal equilib-
rium.

Often classical scalar fields in the kinetic regime disp
transient Kolmogorov turbulence, with a cascade towa
both infrared and ultraviolet modes@12,18#. In our systems it
appears that the flux towards ultraviolet modes is occurr
in such a way as to bring the fields closer to thermal eq
librium ~14!. Indeed, the slope of the spectrank at the end of
our simulations is close to21. However, given the size o
the box in these simulations we can little say about the ph
space flux in the direction of infrared modes. This quest
could be addressed, for example, with the complemen
method of chains of interacting oscillators; see@18#. This is
an interesting problem because an out-of-equilibrium B
system of interacting scalars with a conserved number
particles can, in principle, develop a Bose condensate
would be interesting to see how the formation of this co
densate would or would not take place in the context
preheating in an expanding universe. One highly specula
possibility is that a cosmological Bose condensate could p
the role of a late-time cosmological constant.

The highlights of our study for early universe phenom
enology are the following. The mechanism of preheating
ter inflation is rather robust and works for many differe
systems of interacting scalars. There is a stage of turbu
classical waves where the initial conditions for preheat
are erased. Initially, before all the fields have settled i
equilibrium with a uniform temperature, the reheating te
perature may be different in different subgroups of field
The nature of these groupings is determined by the coup
strengths.
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APPENDIX: THE LATTICE CALCULATIONS

All of the numerical calculations reported here were p
duced with the programLATTICEEASY, developed by Gary
3-12
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Felder and Igor Tkachev.1 In this appendix we merely sum
marize the basics of the calculation; more details can
found on the website. All quantities are measured in Pla
units (M p'1.2231019 GeV) and we usef to denote a ge-
neric scalar field.

The equations of motion for the fields and the scale fac
a are solved on a three-dimensional lattice using finite d
ferencing for spatial derivatives and a second-order s
gered leapfrog algorithm for time evolution. The evolutio
equation for a scalar field in an expanding universe is

f̈ 13
ȧ

a
ḟ 2

1

a2 ¹2f 1
]V

] f
50 ~A1!

while the evolution of the scale factor is given by the Frie
mann equations

S ȧ

a
D 2

5
8p

3
r ~A2!

ä52
4p

3
~r13p!a ~A3!

where the energy density and pressure of a scalar field
given by

r5
1

2
ḟ 21

1

2
u¹ f u21V ~A4!

p5
1

2
ḟ 22

1

6
u¹ f u22V. ~A5!

In a leapfrog scheme the field values and derivatives
known at different times, so it is convenient to combine E
~A2! and ~A3! to eliminate the field derivatives, giving

ä522
ȧ2

a
1

8p

3 S 1

3
u¹ f u22a2VD , ~A6!

where the gradient is summed over all fields.
The initial conditions were set in momentum space a

then Fourier transformed to give the initial field values
the grid. Starting at the end of inflation we gave each mod
random phase and a Gaussian distributed amplitude with
value

^u f ku2&5
1

A2vk

~A7!

where

1The program and documentation are available on the we
http://physics.stanford.edu/gfelder/latticeeasy/ The site also
cludes all the files needed to implement the particular models
cussed in this paper so anyone can easily reproduce our resul
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e
k

r
-
g-

-

re

re
.

d

a
s

vk
25k21m25k21

]2V

] f 2 . ~A8!

In simulations it is useful to use energy conservation a
check of accuracy. Energy conservation in an expanding
verse is described by the equation

ṙ13
ȧ

a
~r1p!50. ~A9!

In principle one could verify that this equation was bei
satisfied during the run, but in practiceṙ is more difficult to
evaluate thanr. Fortunately there is another way to accom
plish the same thing. Equation~A9! can be derived from the
two Friedmann equations~A2! and ~A3!, so checking that
those two equations are being simultaneously satisfied
equivalent to checking Eq.~A9!. Since the actual equatio
for the evolution of the scale factor is a combination of the
two Friedmann equations, we were able to check energy c
servation by calculating the ratio ofȧ/a to (8p/3)r as the
program progressed.@We verified that checking Eq.~A3!
gave the same results.# For thelf4 runs the theory is nearly
conformal, so almost the same behavior is obtained with
without the expansion of the universe~if one uses conforma
variables!. So we duplicated a number of our runs witho
expansion and directly checked energy conservation. In
cases the results of these two methods of checking our a
racy were nearly identical. In every run we did, includin
cases where we did the run with and without expansi
energy was conserved to within half a percent over the en
run.

We also did a number of trials to ensure that our resu
were not sensitive to our time step, box size, or number
gridpoints.

The field equations were simplified by variable redefi
tions. The redefinitions used and the resulting field equati
for the chaotic inflation models described in the paper
given below.~Details on the hybrid inflation model can b
found in @5#.! The units for the fields, times, and momenta
all the plots in the paper are measured in Planck units
caled as indicated below. Before these rescalings, time
in physical units and distances in comoving coordinates. T
momentak are also measured in comoving coordinates a
they are changed by the rescalings below as 1/xW .

Equations for lf4

For the model~3! we redefined the field and spacetim
variables as

f pr5
a

f0
f , xW pr5Alf0xW , dtpr5Alf0

dt

a
~A10!

wheref050.342M p is the value of the inflaton at the end o
inflation ~i.e., at the start of our simulations!. This value was
determined from linear numerical calculations as the poin
which ]fpr /]tpr50. Forl59310214 one unit of program
~conformal! time isa(Alf0)21tPlanck;a10236 sec and one
unit of program momentum is a21Alf0EPlanck

at
n-
s-
.
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;a211012 GeV, wherea is the scale factor. In these var
ables the evolution equations became

fpr9 2¹pr
2 fpr1S fpr

2 1
g2

l
x i ,pr

2 2
a9

a Dfpr50 ~A11!

xpr9 2¹pr
2 xpr1S g2

l
fpr

2 1
hi

2

l
s i ,pr

2 2
a9

a Dxpr50

~A12!

s i ,pr9 2¹pr
2 s i ,pr1S hi

2

l
xpr

2 2
a9

a Ds i ,pr50

~A13!

a952
a82

a
1

8pf0
2

a K 1

3 (
f ields

(u¹pr f pru2)1
1

4
fpr

4

1
1

2

g2

l
fpr

2 xpr
2 1

1

2

hi
2

l
xpr

2 s i ,pr
2 L ~A14!

where primes denote differentiation with respect totpr and
angular brackets denote spatial averages over the grid.

Equations for m2f2

For the model~23! we used the following redefinitions:

f pr5
a3/2

f0
f , xW pr5mxW , dtpr5mdt ~A15!

where in this casef050.193M p . For m51026M p a unit of
y

e

ys

10350
program time corresponded tom21TPlanck;10230 sec and
a unit of program momentum corresponded
a21mEPlanck;a211013 GeV. The evolution equations be
came

fpr9 2a22¹pr
2 fpr2

3

4S a8

a D 2

fpr2
3

2

a9

a
fpr1fpr

1
g2

m2 f0
2a23xpr

2 fpr50 ~A16!

xpr9 2a22¹pr
2 xpr2

3

4S a8

a D 2

xpr2
3

2

a9

a
xpr1f0

2a23

3S g2

m2fpr
2 1

hi
2

m2 s i ,pr
2 Dxpr

50 ~A17!

s i ,pr9 2a22¹pr
2 s i ,pr2

3

4S a8

a D 2

s i ,pr2
3

2

a9

a
s i ,pr

1
g2

m2 f0
2a23xpr

2 s i ,pr50 ~A18!

a9522
a82

a
1

8pf0
2

a4 K 1

3 (
f ields

(u¹pr f pru2)1
1

2
a2fpr

2

1
1

f0
2a21S g2

2 fpr
2 xpr

2 1
hi

2

2 xpr
2 s i ,pr

2 D L . ~A19!
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