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Covariance of the mixmaster chaoticity
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We analyze the dynamics of the mixmaster universe on the basis of a standard Arnowitt-Deser-Misner
Hamiltonian approach showing how its asymptotic evolution to the cosmological singularity is isomorphic to
a billiard ball on the Lobachevsky plane. The key result of our study consists in the temporary gauge invariance
of the billiard ball representation, once provided the use of very general Misner-Gkétreariables.
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[. INTRODUCTION (energylike constant of motion when an Arnowitt-Deser-
Misner (ADM) reduction is performed. By this result the
Since Belinski, Kalatnikov, and LifshitzBKL) derived stochasticity of the Mixmaster can be treated either in terms
the oscillatory regime which characterizes the behavior opf statistical mechanicgby the microcanonical ensemble
the Bianchi type VIII and IX cosmological moddl$,2] (the  either by its characterization as isomorphic to a billiard ball
so-called mixmaster univer$a]) near a physical singularity, ©On two-dimensional Lobachevsky spg@]. _
a widebody of literature faced this subject over the years in The aim of this work is to show how the representation of
order to provide the best possible understanding of the rehe Mixmaster dynamics as a “stochastic scattering” iso-
sulting chaotic dynamic]. morphic to a billiard ball on Lobachevsky space can be con-
The research activity developed overall in two different,Structed independently of the choice of a time variable, sim-
but related, directions: on the one hand the dynamical analyply providing very general Misner-Chitigke coordinates.
sis was devoted to remove the limits of the BKL approachUP to the limit of the adopted approximation in the form of
due to its discrete naturéby analytical treatment§5—10] the potential term, our analysis shows, without any ambigu-
and numerical Simu|ati0r{§_1_14]), on the other hand to get |ty, that the Mixmaster StOChaStiCiw cannot be removed by
a better characterization of the Mixmaster chéespecially ~any redefinition of the time variable.
in view of its properties of covariandd5-18). More precisely in Sec. Il we construct the Hamiltonian
The first line of investigation provided satisfactory repre-formulation of the Mixmaster dynamics, which in Sec. Il
sentations of the Mixmaster dynamics in terms of continuou®y @ standard ADM reduction and the study of the
variables(leading to the construction of an invariant measuredsymptotic form of the potential, allows one to individualize
for the systeni6,8]), as well as detailed numerical descrip- &n appropriate energylike constant of moti@thing more
tions (allowing one to make precise validity tests on the ob-then the ADM kinetic energyin any temporal gauge. In Sec.
tained analytical result§13]. IV the reduced Hamiltonian principle is rewritten in terms of
The efforts to develop a precise characterization of theéd geodesic one on the induced Jacobi metric. Finally in Sec.
chaoticity observed in the Mixmaster dynamics found non-V we derive the statistical implications due to the properties
trivial difficulties due to the impossibility or, in the best Of geodesic flow and provide brief concluding remarks.
cases the ambiguity, to apply the standard chaos indicators to
relativistic systems. In particular, the puzzle consisting of Il. HAMILTONIAN FORMULATION

numerical simulations which were providing zeft6] and The geometrical structure of the Bianchi type VIII and IX

nonzero[17] Lyapunov exponents by using different time spacetimes, i.e., of the so-called Mixmaster universe models
variables has been solved by realizing the noncovariant nar P '

ture of these indicators and their inapplicability to hyperbolicIs summarized by the line elemeyi]
manifolds[19]. The existence of these difficulties prevented, d?=—N(7)2d 7%+ €?*(e?f), o' g} (1)
up to now, one from saying definitive word about the cova- . ’

riance of the Mixmaster chaos, with particular reference tayhereN(7) denotes the lapse functioa! are the dual one-

the possibility of removing the observed chaotic features byorms associated with the anholonomic bdséd Bij is a
a suitable choice of the time variablepart from the indica-

tion provided by{7]).
Indeed a valuable framework of analysis of the Mixmaster

l . .
evolution, able to join together the two considered points of 1€ dual one-forms of the considered models are given by

view, relies on a Hamiltonian treatment of the dynamics in o'=—sinhysinh ¢ dé-+coshy do,
terms of Misner-Chitrdike variables[20]. This formulation (Bianchi type VIII):{ ?=—coshyssinh@ d¢+sinhy do,
allows one to individualize the existence of an asymptotic oP=coshd dé-+dy;
ol=siny sin 6 dp+cosy do,
*Email address: imponente@icra.it (Bianchi type IX):{ ®=—cosysin 6 dp+siny dé,
"Email address: montani@icra.it o°=cos6 dp+d.
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traceless X3 symmetric matrix diag8i1,822,833); @, N,
Bij are functions ofy only. Parametrizing the matrig;; by
the usual Misner variablds$]

Bu=B++38_,
:322:B+_ \/§,B— ,

Baz=—2B+, 2

the dynamics of the Mixmaster model is described by a ca-

nonical variational principle
5|=5J Ldy=0, )
with LagrangianL:

L_@ _ 72+ 12+ 12 _EV 4
- N [ a ﬁ+ ﬁ* ] D (a1B+7Bf)' ()

Here () =d/d»n, D=dete**#i=e3* and the potential
V(a,B; ,B_) reads
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In terms off(7), &, and § we have

D =exp|—3&ef(M}, 9)
and sinceD — 0 toward the singularity, independently of its
particular form, in this limitf must approach infinity. The
Lagrangian(4) leads to the conjugate momenta

L 12D df\?

Pr=" " N \%dr T

_dL 12D €& g

o TN e

oL 1D, L 10
p"_ﬁ__N e“(&-1)0’, (10

which by a Legendre transformation make the variational
principle (3) assume the Hamiltonian form

- 2f
V:;(D4H1+D4H2+D4H3)_D2H1+2H2iD2H2+2H3 5f (p§§’+p90’+p77’—ﬁ7{ dnp=0, (11
+D2Mat2Hy (5  being
where (+) and (—) refer, respectively, to Bianchi type VIII 5 5
and IX, and the anisotropy parametétgi=1,2,3) denote H=— Pr +pY-1)+ Po +2ave?’. (12
the functiong8] (dfldn2 "¢ £2-1
1 Bi+\3B-
Hi= 3 + T 34 Ill. REDUCED VARIATIONAL PRINCIPLE
By variating Eq.(11) with respect toN we get the con-
1 Bi—3B- straint{=0, which solved provides
Hy=c+—F7F—,
3 3a
df f —
1 28, ] —P.= g Haom=g Ve +24V e, (13)
3= § 3a ( )
. where
In the limit D—0 the second three terms of the above po-
tential turn out to be negligible with respect to the first one. 9
Let us introduce the neviMisner-Chitrelike) variables 822(52—1)p§+ Py (14)

a=—elg,
B.=e'M&2—1 coss,
B_=e'D£—1 sing, 7)

with f denoting a generic functional form ef 1<¢<w, and
0<0<2. Then the Lagrangiat¥) reads

6D (efgr)Z , ,
LN 7 +(e'0)2(£=1)—(e)'?

N
—p V((7).£,0). 8

£-1
in terms of which the variational principlel1) reduces to

5J (pe€’ +pgt' — " Hapw)d7=0. (15

Since the equation for the temporal gauge actually reads

12D e2f ﬂ T

dr (16

N =
() Haom

our analysis remains fully independent of the choice of the
time variable until the form of and 7’ is not fixed.
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The variational principle(15) provides the Hamiltonian

equations forg” and 6’ :2

!

f
¢'=—(&-1p;,

Hapm
f' Po
0'= . 1
Hapwm (£2-1) 17

Furthermore, the important relation

d(H ppmf’) _ I(H ppmf") _\d(HADMfI) _ I(H apmf’)

==

dn an df of '
(18)
can be straightforwardly derived, i.e., explicitly,
&HADM er AYA
of —ZHADMZ 2V+ ik (19

In this reduced Hamiltonian formulation, the functioriély)

plays simply the role of a parametric function of time and

actually the anisotropy parametek(i=1,2,3) are func-
tions of the variableg, 6 only:

1 &1

Hi=3~—3; (cosf+ 3 sing),

1 V&1
szg—i—g(cose—\/gsinﬁ).

1 _VE-1
Hy=3+2 3 cosé. (20

Finally, toward the singularity@—0 i.e.,f—o) by the
expressions5), (9), (20), we see that

N
—r=O(e'V). (22)

Since in the domaith'y, , where all theH; are simultaneously
greater than 0, the potential tero=e?'V can be modeled
by the potential walls

Uoo:®OC(H1(§10))+®OC(H2(€10))+®00(H3(§1 0))1
(22)
+o if x<O0,

0-0=19 i x>0.

Therefore inl'y the ADM Hamiltonian become&@symptoti-
cally) an integral of motion

2In this study the corresponding equations (Qrand p, are not
relevant.

3By O() we mean terms of the same order as the enclosed ones.
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Hapm=Ve’+24U=¢=E=const,
aHADM _ JE _
of  of

V{g, G}EFH

(23

The key point for the use of the Misner-Chiike vari-
ables relies on the independence of the time variable for the
anisotropy parametets; .

IV. JACOBI METRIC AND THE BILLIARD BALL
REPRESENTATION

Since above we have shown that asymptotically to the
singularity (f—«, ie., a——») dHpapu/df=0, ie,
Hapm=€=E=const, the variational principl€l5) reduces
to

5f (pdé+p,do—Edf)= 5f (pdé+p,do)=0,
(24)

where we dropped the third term on the left hand side since
it behaves as an exact differential.

By following the standard Jacobi proced(igd] to reduce
our variational principle to a geodesic one, we sét
=g%°p,, and by the Hamiltonian equatiofi7) we obtain
the metric

!’

g¥= E(fz_l),
fro1
g(w:E §2—1' (25

By these and by the fundamental constraint relation

Po
2—1)ps+ =E?, 26
(E-Dpdt 5 (26)
we get
)= L (g2 1)p 2y P’ | ¢ 27
gab E pg 52_1 .
By the definition
., dx*ds ds
X T dsdy Ydp
Eq. (27) is rewriten
ds\?
apUi®u® iy ~E (28)
which leads to the key relation
uduP
dzy= ga:/E ds. (29)
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Indeed the expressiof29) together withp.£' +p,60' =Ef’ where byl"}, we denoted the Christoffel symbols constructed
allows us to put the variational princip{@4) in the geodesic by the metric(32). Projecting the geodesic deviation equa-
form tion along the vectow' (its component along the geodesic

field v’ does not provide any physical information about the

5J' f'Edy= 5j st: 5J \/mﬁds=0 system instability, the corresponding connecting vectust-
é é ' radio componentZ satisfies the following equivalent equa-

B0 tion:
where the metrioGab—f Eg,, satisfies the normalization 2
condition G,pu?uP=1 and therefore 4’z _ E (36)
ds? E?
ds i ds
dn_Ef E_E' (3D) This expression, as a projection on the tetradic basis, is a

scalar one and therefore completely independent of the
Summarizing, in the regiod’y the considered dynamical choice of the variables. Its general solution reads
problem reduces to a geodesic flow on a two-dimensional

Riemannian manifold described by the line element Z(s)=c,e%F+ce ¥E, ¢y ,=const, (37)
dé? and the invariant Lyapunov exponent defined 23
ds’=E?| —— +(§2 1)de?|. (32)
I _ In[Z2+(dZ/ds)?]
A, =sup lim , (38

Now it is easy to check that the above metric has negative s 2s
curvature, since the associated curvature scalar rBads
— 2/E?; therefore the point universe moves over a negativelyn terms of the form37) takes the value
curved bidimensional space on which the potential walll
cuts the regiol’y . By a way complgtely independent of _the A, :£>0_ (39)
temporal gauge we provided a satisfactory representation of E
the system as isomorphic to a billiard ball on a LobachevstN ) _ _ ]
plane[21]. hen the point universe bounces against the potential walls,

it is reflected from a geodesic to another one, thus making
each of them unstable. Though up to the limit of our poten-
tial wall approximation, this result shows without any ambi-
In order to characterize the dynamical instability of theguity that, independently of the choice of the temporal
billiard ball in terms of an invariant treatmefwith respect gauge, the Mixmaster dynamics is isomorphic to a well-
to the choice of the coordinat€s 6), let us introduce the described chaotic system. Equivalently, in terms of the BKL

V. INVARIANT LYAPUNOV EXPONENT

following (orthonormal tetradic basis: representation, the free geodesic motion corresponds to the
evolution during a Kasner epoch and the bounces against the
i_ VE-1 potential walls to the transition between two of them. By
v E 0], itself, the positive Lyapunov numbgB9) is not enough to

ensure system chaoticity, since its derivation remains valid
for any Bianchi type model; the crucial point is that for the
( —) (33 Mixmaster model(types VIII and IX) the potential walls
EVE-1 reduce the configuration space to a compact regiog) (
ensuring that the positivity ok, implies a real chaotic be-
" havior (i.e., the geodesic motion fills the entire configuration

w'=

Indeed the vectop' is nothing else than the geodesic field
ie.,

space.
Dvi  dol Summarizing, our analysis shows that for any choice of
g5 ds +Twk'=0, (34) the time variable, we are able to give the above stochastic

representation of the Mixmaster model, provided the factor-

while the vectom' is parallely transported along the geode- ized coordinate transformation in configuration space,

sic, according to the equation a=—eMa(0,¢),

Dw' dw

= 4Tl ok = =efp, (6,8,
g5 = gs Tlav'w'=0, (35) B+ +(60,8)
B-=e'b_(6,¢), (40)
“We take the positive root since we require that the curvilineawhere f,a,b.. denote generic functional forms of the vari-
coordinates increases monotonically with increasing valud,afe., ablesrt,6,¢.
approaching the initial cosmological singularity. It is worth noting that the success of our analysis, in
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showing the time gauge independence of the Mixmastesists effectively in these features, though in those works even
chaos, relies on the use of a standard ADM reduction of théhe problem of the Mixmaster chaos covariance is faced with
variational principle(which reduces the system by one de-respect to the choice of generic configuration variables.
gree of freedom and overall because, adopting Misner-
Chitre-like variables, the asymptotic potential walls are fixed ACKNOWLEDGMENTS

in time. The difference between our approach and the one We are very grateful to Remo Ruffini for his valuable
presented if23] (see also for a critical analysj24]) con- comments on this subject.
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