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Covariance of the mixmaster chaoticity

Giovanni Imponente* and Giovanni Montani†

ICRA, International Center for Relativistic Astrophysics, Physics Deptartment, University of Rome ‘‘La Sapienza,’’
piazzale Aldo Moro 5, 00185 Roma, Italy

~Received 18 October 2000; published 30 March 2001!

We analyze the dynamics of the mixmaster universe on the basis of a standard Arnowitt-Deser-Misner
Hamiltonian approach showing how its asymptotic evolution to the cosmological singularity is isomorphic to
a billiard ball on the Lobachevsky plane. The key result of our study consists in the temporary gauge invariance
of the billiard ball representation, once provided the use of very general Misner-Chitre´-like variables.
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I. INTRODUCTION

Since Belinski, Kalatnikov, and Lifshitz~BKL ! derived
the oscillatory regime which characterizes the behavior
the Bianchi type VIII and IX cosmological models@1,2# ~the
so-called mixmaster universe@3#! near a physical singularity
a widebody of literature faced this subject over the years
order to provide the best possible understanding of the
sulting chaotic dynamics@4#.

The research activity developed overall in two differe
but related, directions: on the one hand the dynamical an
sis was devoted to remove the limits of the BKL approa
due to its discrete nature~by analytical treatments@5–10#
and numerical simulations@11–14#!, on the other hand to ge
a better characterization of the Mixmaster chaos~especially
in view of its properties of covariance@15–18#!.

The first line of investigation provided satisfactory repr
sentations of the Mixmaster dynamics in terms of continu
variables~leading to the construction of an invariant measu
for the system@6,8#!, as well as detailed numerical descri
tions ~allowing one to make precise validity tests on the o
tained analytical results! @13#.

The efforts to develop a precise characterization of
chaoticity observed in the Mixmaster dynamics found no
trivial difficulties due to the impossibility or, in the bes
cases the ambiguity, to apply the standard chaos indicato
relativistic systems. In particular, the puzzle consisting
numerical simulations which were providing zero@16# and
nonzero@17# Lyapunov exponents by using different tim
variables has been solved by realizing the noncovariant
ture of these indicators and their inapplicability to hyperbo
manifolds@19#. The existence of these difficulties prevente
up to now, one from saying definitive word about the cov
riance of the Mixmaster chaos, with particular reference
the possibility of removing the observed chaotic features
a suitable choice of the time variable~apart from the indica-
tion provided by@7#!.

Indeed a valuable framework of analysis of the Mixmas
evolution, able to join together the two considered points
view, relies on a Hamiltonian treatment of the dynamics
terms of Misner-Chitre´-like variables@20#. This formulation
allows one to individualize the existence of an asympto
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~energylike! constant of motion when an Arnowitt-Dese
Misner ~ADM ! reduction is performed. By this result th
stochasticity of the Mixmaster can be treated either in ter
of statistical mechanics~by the microcanonical ensemble!,
either by its characterization as isomorphic to a billiard b
on two-dimensional Lobachevsky space@21#.

The aim of this work is to show how the representation
the Mixmaster dynamics as a ‘‘stochastic scattering’’ is
morphic to a billiard ball on Lobachevsky space can be c
structed independently of the choice of a time variable, s
ply providing very general Misner-Chitre´-like coordinates.
Up to the limit of the adopted approximation in the form
the potential term, our analysis shows, without any ambi
ity, that the Mixmaster stochasticity cannot be removed
any redefinition of the time variable.

More precisely in Sec. II we construct the Hamiltonia
formulation of the Mixmaster dynamics, which in Sec. II
by a standard ADM reduction and the study of t
asymptotic form of the potential, allows one to individualiz
an appropriate energylike constant of motion~nothing more
then the ADM kinetic energy! in any temporal gauge. In Sec
IV the reduced Hamiltonian principle is rewritten in terms
a geodesic one on the induced Jacobi metric. Finally in S
V we derive the statistical implications due to the propert
of geodesic flow and provide brief concluding remarks.

II. HAMILTONIAN FORMULATION

The geometrical structure of the Bianchi type VIII and I
spacetimes, i.e., of the so-called Mixmaster universe mod
is summarized by the line element@1#

ds252N~h!2dh21e2a~e2b! i j s
is j , ~1!

whereN(h) denotes the lapse function,s i are the dual one-
forms associated with the anholonomic basis,1 and b i j is a

1The dual one-forms of the considered models are given by

~Bianchi type VIII!:H s152sinhc sinhu df1coshc du,

s252coshc sinhu df1sinhc du,

s35coshu df1dc,

~Bianchi type IX!:H s15sinc sinu df1cosc du,

s252cosc sinu df1sinc du,

s35cosu df1dc.
©2001 The American Physical Society01-1
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traceless 333 symmetric matrix diag(b11,b22,b33); a, N,
b i j are functions ofh only. Parametrizing the matrixb i j by
the usual Misner variables@3#

b115b11A3b2 ,

b225b12A3b2 ,

b33522b1 , ~2!

the dynamics of the Mixmaster model is described by a
nonical variational principle

dI 5dE Ldh50, ~3!

with LagrangianL:

L5
6D

N
@2a821b1821b282#2

N

D
V~a,b1 ,b2!. ~4!

Here ()85d/dh, D[detea1b i j 5e3a, and the potential
V(a,b1 ,b2) reads

V5
1

2
~D4H11D4H21D4H3!2D2H112H26D2H212H3

6D2H312H1, ~5!

where (1) and (2) refer, respectively, to Bianchi type VII
and IX, and the anisotropy parametersHi( i 51,2,3) denote
the functions@8#

H15
1

3
1

b11A3b2

3a
,

H25
1

3
1

b12A3b2

3a
,

H35
1

3
2

2b1

3a
. ~6!

In the limit D→0 the second three terms of the above p
tential turn out to be negligible with respect to the first on
Let us introduce the new~Misner-Chitré-like! variables

a52ef (t)j,

b15ef (t)Aj221 cosu,

b25ef (t)Aj221 sinu, ~7!

with f denoting a generic functional form oft, 1<j,`, and
0<u,2p. Then the Lagrangian~4! reads

L5
6D

N F ~efj8!2

j221
1~efu8!2~j221!2~ef !82G

2
N

D
V~ f ~t!,j,u!. ~8!
10350
-

-
.

In terms of f (t), j, andu we have

D5exp$23jef (t)%, ~9!

and sinceD→0 toward the singularity, independently of it
particular form, in this limitf must approach infinity. The
Lagrangian~4! leads to the conjugate momenta

pt5
]L

]t8
52

12D

N S ef
d f

dt D 2

t8,

pj5
]L

]j8
5

12D

N

e2 f

j221
j8,

pu5
]L

]u8
5

12D

N
e2 f~j221!u8, ~10!

which by a Legendre transformation make the variatio
principle ~3! assume the Hamiltonian form

dE S pjj81puu81ptt82
Ne22 f

24D
HDdh50, ~11!

being

H52
pt

2

~d f /dt!2
1pj

2~j221!1
pu

2

j221
124Ve2 f . ~12!

III. REDUCED VARIATIONAL PRINCIPLE

By variating Eq.~11! with respect toN we get the con-
straintH50, which solved provides

2pt[
d f

dt
HADM5

d f

dt
A«2124Ve2 f , ~13!

where

«25~j221!pj
21

pu
2

j221
, ~14!

in terms of which the variational principle~11! reduces to

dE ~pjj81puu82 f 8HADM!dh50. ~15!

Since the equation for the temporal gauge actually reads

N~h!5
12D

H ADM
e2 f

d f

dt
t8, ~16!

our analysis remains fully independent of the choice of
time variable until the form off andt8 is not fixed.
1-2
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The variational principle~15! provides the Hamiltonian
equations forj8 andu8:2

j85
f 8

HADM
~j221!pj ,

u85
f 8

HADM

pu

~j221!
. ~17!

Furthermore, the important relation

d~H ADMf 8!

dh
5

]~H ADMf 8!

]h
⇒d~H ADMf 8!

d f
5

]~H ADMf 8!

] f
,

~18!

can be straightforwardly derived, i.e., explicitly,

]HADM

] f
5

e2 f

2HADM
24S 2V1

]V

] f D . ~19!

In this reduced Hamiltonian formulation, the functionalf (h)
plays simply the role of a parametric function of time a
actually the anisotropy parametersHi( i 51,2,3) are func-
tions of the variablesj,u only:

H15
1

3
2

Aj221

3j
~cosu1A3 sinu!,

H25
1

3
2

Aj221

3j
~cosu2A3 sinu!,

H35
1

3
12

Aj221

3j
cosu. ~20!

Finally, toward the singularity (D→0 i.e., f→`) by the
expressions~5!, ~9!, ~20!, we see that3

]V

] f
5O~efV!. ~21!

Since in the domainGH , where all theHi are simultaneously
greater than 0, the potential termU[e2 fV can be modeled
by the potential walls

U`5Q`„H1~j,u!…1Q`„H2~j,u!…1Q`„H3~j,u!…,
~22!

Q`~x!5H 1` if x,0,

0 if x.0.

Therefore inGH the ADM Hamiltonian becomes~asymptoti-
cally! an integral of motion

2In this study the corresponding equations forpj8 and pu8 are not
relevant.

3By O() we mean terms of the same order as the enclosed o
10350
;$j,u%PGH H HADM5A«2124U>«5E5const,

]HADM

] f
5

]E

] f
50.

~23!

The key point for the use of the Misner-Chitre´-like vari-
ables relies on the independence of the time variable for
anisotropy parametersHi .

IV. JACOBI METRIC AND THE BILLIARD BALL
REPRESENTATION

Since above we have shown that asymptotically to
singularity (f→`, i.e., a→2`! dHADM /d f50, i.e.,
HADM5«5E5const, the variational principle~15! reduces
to

dE ~pjdj1pudu2Ed f!5dE ~pjdj1pudu!50,

~24!

where we dropped the third term on the left hand side si
it behaves as an exact differential.

By following the standard Jacobi procedure@21# to reduce
our variational principle to a geodesic one, we setxa8
[gabpb , and by the Hamiltonian equation~17! we obtain
the metric

gjj5
f 8

E
~j221!,

guu5
f 8

E

1

j221
. ~25!

By these and by the fundamental constraint relation

~j221!pj
21

pu
2

j221
5E2, ~26!

we get

gabx
a8xb85

f 8

E H ~j221!pj
21

pu
2

j221
J 5 f 8E. ~27!

By the definition

xa85
dxa

ds

ds

dh
[ua

ds

dh
,

Eq. ~27! is rewriten

gabu
aubS ds

dh D 2

5 f 8E, ~28!

which leads to the key relation

dh5Agabu
aub

f 8E
ds. ~29!

s.
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Indeed the expression~29! together withpjj81puu85E f8
allows us to put the variational principle~24! in the geodesic
form

dE f 8Edh5dE Agabu
aubf 8Eds5dE AGabu

aubds50,

~30!

where the metricGab[ f 8Egab satisfies the normalization
conditionGabu

aub51 and therefore4

ds

dh
5E f8⇒ ds

d f
5E. ~31!

Summarizing, in the regionGH the considered dynamica
problem reduces to a geodesic flow on a two-dimensio
Riemannian manifold described by the line element

ds25E2F dj2

j221
1~j221!du2G . ~32!

Now it is easy to check that the above metric has nega
curvature, since the associated curvature scalar readsR5
22/E2; therefore the point universe moves over a negativ
curved bidimensional space on which the potential wall~5!
cuts the regionGH . By a way completely independent of th
temporal gauge we provided a satisfactory representatio
the system as isomorphic to a billiard ball on a Lobachev
plane@21#.

V. INVARIANT LYAPUNOV EXPONENT

In order to characterize the dynamical instability of t
billiard ball in terms of an invariant treatment~with respect
to the choice of the coordinatesj, u), let us introduce the
following ~orthonormal! tetradic basis:

v i5SAj221

E
,0D ,

wi5S 0,
1

EAj221
D . ~33!

Indeed the vectorv i is nothing else than the geodesic fiel
i.e.,

Dv i

ds
5

dv i

ds
1Gkl

i vkv l50, ~34!

while the vectorwi is parallely transported along the geod
sic, according to the equation

Dwi

ds
5

dwi

ds
1Gkl

i vkwl50, ~35!

4We take the positive root since we require that the curvilin
coordinates increases monotonically with increasing value off, i.e.,
approaching the initial cosmological singularity.
10350
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where byGkl
i we denoted the Christoffel symbols construct

by the metric~32!. Projecting the geodesic deviation equ
tion along the vectorwi ~its component along the geodes
field v i does not provide any physical information about t
system instability!, the corresponding connecting vector~tet-
radic! componentZ satisfies the following equivalent equa
tion:

d2Z

ds2
5

Z

E2
. ~36!

This expression, as a projection on the tetradic basis,
scalar one and therefore completely independent of
choice of the variables. Its general solution reads

Z~s!5c1es/E1c2e2s/E, c1,25const, ~37!

and the invariant Lyapunov exponent defined as@22#

lv5sup lim
s→`

ln@Z21~dZ/ds!2#

2s
, ~38!

in terms of the form~37! takes the value

lv5
1

E
.0. ~39!

When the point universe bounces against the potential w
it is reflected from a geodesic to another one, thus mak
each of them unstable. Though up to the limit of our pote
tial wall approximation, this result shows without any amb
guity that, independently of the choice of the tempo
gauge, the Mixmaster dynamics is isomorphic to a we
described chaotic system. Equivalently, in terms of the B
representation, the free geodesic motion corresponds to
evolution during a Kasner epoch and the bounces agains
potential walls to the transition between two of them. B
itself, the positive Lyapunov number~39! is not enough to
ensure system chaoticity, since its derivation remains v
for any Bianchi type model; the crucial point is that for th
Mixmaster model~types VIII and IX! the potential walls
reduce the configuration space to a compact region (GH),
ensuring that the positivity oflv implies a real chaotic be
havior ~i.e., the geodesic motion fills the entire configurati
space!.

Summarizing, our analysis shows that for any choice
the time variable, we are able to give the above stocha
representation of the Mixmaster model, provided the fact
ized coordinate transformation in configuration space,

a52ef (t)a~u,j!,

b15ef (t)b1~u,j!,

b25ef (t)b2~u,j!, ~40!

where f ,a,b6 denote generic functional forms of the var
ablest,u,j.

It is worth noting that the success of our analysis,

r

1-4



ste
th
e-
r-

ed
on

ven
ith

le

COVARIANCE OF THE MIXMASTER CHAOTICITY PHYSICAL REVIEW D63 103501
showing the time gauge independence of the Mixma
chaos, relies on the use of a standard ADM reduction of
variational principle~which reduces the system by one d
gree of freedom! and overall because, adopting Misne
Chitré-like variables, the asymptotic potential walls are fix
in time. The difference between our approach and the
presented in@23# ~see also for a critical analysis@24#! con-
v

tum

10350
r
e

e

sists effectively in these features, though in those works e
the problem of the Mixmaster chaos covariance is faced w
respect to the choice of generic configuration variables.
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