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Aperture synthesis for gravitational-wave data analysis: Deterministic sources

Lee Samuel Finn*
Center for Gravitational Physics and Astronomy, The Pennsylvania State University, University Park, Pennsylvania 16802

~Received 10 October 2000; published 16 April 2001!

Gravitational-wave detectors now under construction are sensitive to the phase of the incident gravitational
waves. Correspondingly, the signals from the different detectors can be combined, in the analysis, to simulate
a single detector of greater amplitude and directional sensitivity: in short, aperture synthesis. Here we consider
the problem of aperture synthesis in the special case of a search for a source whose wave form is known in
detail: e.g., a compact binary inspiral. We derive the likelihood function for the joint output of several detectors
as a function of the parameters that describe the signal and find the optimal matched filter for the detection of
the known signal. Our results allow for the presence of noise that is correlated between the several detectors.
While their derivation is specialized to the case of Gaussian noise we show that the results obtained are, in fact,
appropriate in a well-defined, information-theoretic sense even when the noise is non-Gaussian in character.
The analysis described here stands in distinction to ‘‘coincidence analyses,’’ wherein the data from each of
several detectors are studied in isolation to produce a list of candidate events, which are then compared to
search for coincidences that might indicate common origin in a gravitational-wave signal. We compare these
two analyses—optimal filtering and coincidence—in a series of numerical examples, showing that the optimal
filtering analysis always yields a greater detection efficiency for a given false alarm rate, even when the
detector noise is strongly non-Gaussian.

DOI: 10.1103/PhysRevD.63.102001 PACS number~s!: 04.80.Nn, 07.05.Kf, 95.55.Ym
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I. INTRODUCTION

Several large interferometric gravitational-wave detect
@1–3# will soon be operating, perhaps to be joined by seve
as, or more, sensitive acoustic resonant detectors@4–6# in the
years to come. There are several reasons for wanting to c
bine in some way the data from these detectors in orde
draw inferences about the presence of a signal or the pa
eters that characterize it: for example, observations of a
nal with several detectors increase the degree of confide
in the detection and characterization of a signal, and the
of several geographically separated detectors can allow
to disentangle source parameters~e.g., sky position, polariza
tion! that are degenerate when observed in a single dete

The signal response of both interferometric and acou
detectors is sensitive to the phase of the incident grav
tional waves; consequently, we have the opportunity to co
bine or interfere the response of several detectors, synth
ing a single, effectively larger and more directiona
sensitive detector: in short, aperture synthesis. Here we
scribe a likelihood-based analysis for the detection of a
nal of known, parametrized form in the joint output of
network of detectors. Such an analysis makes the most e
tive use of the information available from each detector
exactly the same sense that the optimal filter describe
@7–9# is best suited for detecting or characterizing radiat
incident on a single detector.

The analysis described here stands in contrast to wh
will characterize as a ‘‘coincidence’’ analysis, where
‘‘events’’ are identified and/or characterized independen
in separate detectors and these independent lists of even

*Also at the Department of Physics and the Department of
tronomy and Astrophysics, The Pennsylvania State University, U
versity Park, Pennsylvania 16802. Email address: lsf5@psu.ed
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later brought together and compared for coincidences an
single estimate of the parameters characterizing any si
event determined. The key difference is that, in ‘‘coinc
dence,’’ some signal parameters are determined separate
each detector in the network, without regard to the ot
detectors, which are later combined to form a single estim
of the signal characteristics. For example, the events ma
characterized in each separate detector via likelihood te
niques and the ‘‘coincidence’’ determined through the co
bination of the individually determined signal-to-noise es
mates, as in@10,11#.

An analysis based on the network likelihood, describ
here, differs from a coincidence analysis owing to the sen
tivity of the network likelihood to interdetector correlation
The response of a network of gravitational-wave detector
an incident plane wave is phase coherent. This phase co
ence is captured in the likelihood function describing t
output of a network of detectors; however, it is absent in
coincidence analysis. This leads the network-likeliho
analysis to have an increased detection efficiency for a gi
false alarm rate when compared to a coincidence anal
searching for the same signals and based on the same d
tor output.

We demonstrate this directly in a set of three numeri
examples, based on a network consisting of two separ
detectors. In each example we search for a signal of kno
wave form arriving at an arbitrary time and from an arbitra
direction. Two different search algorithms are investigat
The first is based on the maximum of the likelihood of t
joint detector output; the second is based on the analysi
coincidences between the optimally filtered output of ea
detector, considered separately. The three examples diffe
the character of the simulated noise: in the examples
noise is either normal, strongly leptokurtic, or strong
platykurtic. In all cases the likelihood analysis described h

-
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LEE SAMUEL FINN PHYSICAL REVIEW D 63 102001
gives a substantially larger detection efficiency for a fix
false alarm rate.

Most previous work on multidetector gravitational-wa
data analysis has focused on first estimating signal chara
istics separately in the individual detectors and then bring
those separate estimates together to form a single, impro
estimate of the signal character. Of these, the most comp
and detailed study is given in@10,11#. Here we consider a
strictly coherent treatment of a set of detectors by form
their joint likelihood and making detection and parame
inference decisions based solely on this joint likelihood. T
work described here parallels recent, independent work
Bose and collaborators@12,13#. It goes beyond that work by
allowing from the beginning detectors that are not coincid
and that the noise between pairs of detectors may be co
lated.

Section II introduces terminology and nomenclature u
throughout this work. In Sec. III the likelihood function fo
the joint output of a set of gravitational-wave detectors
derived. The form derived here is exact when the dete
noise is normal; however, we show that it is also the b
choice~in the sense of making the fewest additional assum
tions about the noise statistics! when only the detector cros
and autocorrelations are known. In Sec. IV we describe
present the results of several numerical examples, mea
compare likelihood- and coincidence-based approache
data analysis. Finally, in Sec. V we summarize our conc
sions.

II. NOMENCLATURE

A. Continuous and discrete time signals

While gravitational-wave detectors are analog devic
the detector output, including diagnostic channels contain
physical and environmental monitors, will be quantized
magnitude and sampled discretely in time. Data analysis
operate exclusively with this discrete time series. Prope
handled, quantization of the continuous amplitude cont
utes a small, white, additive component to the detector n
@14# @Chap. 3.7.3#, which we will not discuss further here.

When certain other conditions hold, the continuous
time and discretely sampled time series are equivalent
fully interchangeable. In this paper we have occasion to re
to both discrete and continuous time representations of
same underlying process. To distinguish between these
representations, we refer to the continuous time represe
tion of the processx by x(t), where t denotes continuous
time, and the discrete time representation of the same pro
by x@k#, where the integerk denotes the sample number.

B. Scalar-, vector-, and matrix-valued functions and sequences

For our purposes, the output of a single gravitation
wave detector is a real, scalar-valued time series. An imp
tant purpose of this paper is to discuss data analysis f
gravitational-wavereceiver, by which we mean a logical col
lection of detectors. The output of a receiver is a vect
valued time series. The elements of the vector at any gi
sample are the detector outputs at the corresponding mo
of time.
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In this paper we will have occasion to refer to scala
vector-, and matrix-valued time series. To distinguish b
tween these different cases, we use a lowercase italic fac~as
in a) to denote scalars or scalar-valued sequences, a lo
case boldface italic~as in a) to denote vectors or vecto
sequences, and an uppercase boldface italic~as inA) to de-
note matrices or matrix-valued sequences~functions! ~see
Table I!.

C. Discrete Fourier transform

Many different conventions for the discrete Fourier tran
form ~DFT! can be found in the literature. We adopt th
conventions described in this section. If you compare
notation used here with other conventions found in the
erature, it will be to your advantage to pay careful attent
to the normalization, index range of the input and outp
sequences, and sign convention of the transform kernel.

Suppose thatx@k# is a sequence of coefficients of leng
N, with initial index k0. The DFTx̃@k# of the sequencex@k#
is the periodic sequence given by

x̃@ j #5 (
k5k0

k01N21

x@k#vN
jk , ~2.1a!

where

vN[exp~22p i /N! ~2.1b!

is the Nth root of unity. ~Note our use of the engineerin
convention for the transformation kernel.!

The kernel of the transformvN
jk satisfies an orthogonality

relationship,

dkl5
1

N (
n50

N21

vN
knvN

2nl ~2.2!

as k and l run from 0 to N21; consequently, the DFT is
invertible. The inverse DFT~IDFT! is given by

x̌@n#5
1

N (
k50

N21

x̃@k#vN
2nk . ~2.3!

Note that the IDFT is also a periodic sequence. In particu
if x̃@k# is the DFT of a sequencex@ j #, then x̌@k# is the
periodic extension ofx@ j #.

TABLE I. Nomenclature.

Functions Sequences
Time

domain
Frequency

domain
Time

domain
Frequency

domain

Scalar a(t) ã( f ) a@k# ã@k#

Vector a(t) ã( f ) a@k# ã@k#

Matrix A(t) Ã( f ) A@k# Ã@k#
1-2
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A wealth of useful results and insights into the DFT/IDF
pair are found in@15#; additionally,@14# discusses the use o
the DFT/IDFT pair in digital signal processing.

D. Terminology

A receiver is a collection of one or more individua
gravitational-wavedetectorswhose output is analyzed co
lectively to draw a single set of inferences regarding
presence and properties of radiation sources. The elemen
the receiver are the detectors, which need not be coloca
co-oriented, or of identical design, sensitivity, or bandwid
For example, a single receiver might consist of the th
Laser Interferometric Gravitational Wave Observato
~LIGO! interferometers~a 4 km and a 2 km interferometer i
Washington State, and a 4 kminterferometer in Louisiana!
@2#, the VIRGO interferometer~located in Pisa, Italy@3#!, the
GEO-600 interferometer~located in Hannover, German
@1#!, the TAMA-300 interferometer~located in Tokyo, Japan
@16#!, the ALLEGRO detector~a resonant mass detector l
cated in Louisiana@17#!, the AURIGA detector~a resonant
mass detector located in Padua@18#!, the EXPLORER detec-
tor ~a resonant mass detector located in Geneva@19,20#!, and
the NAUTILUS detector~a resonant mass detector located
Frascati @20,21#!. A gravitational-wave receiver is thus
logical grouping of gravitational-wave detectors.
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The output of detectora is the scalar-valued time serie
ga . The outputg of a receiver composed of several detecto
a, . . . ,v is the direct sum of the output of the individua
detectors:

g5ga % •••% gv . ~2.4!

The receiver responsem to an incident gravitational wave
h depends on parametersu that reflect both the intrinsic
properties of the source and the relationship of the sourc
the receiver~i.e., distance and orientation!. For example, if
the source is a stochastic gravitational-wave signal, theu
describes the signal spectrum and anisotropy; alternativel
the source is an inspiraling compact binary system, theu
describes the binary’s component masses, spins, and or
characteristics. In this paper I discuss analysis for determ
istic signals: i.e., signals like those that arise from bina
inspiral or rapidly rotating nonaxisymmetric neutron sta
whose wave forms can be accurately described in terms
small number of parameters that characterize the source
its orientation with respect to the detector.

III. THE LIKELIHOOD FUNCTION

A. Introduction

Let H0 and Hu denote alternative, exclusive hypothes
regarding the presence or absence of a signal:
H05proposition that the receiver output consists only of noise, ~3.1a!

Hu5proposition that the receiver output consists of signalsu superposed with receiver noise, ~3.1b!
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whereu represents a set of parameters that differentiate
nals in the detector: for example, if the signal is from
inspiraling binary neutron star or black hole system, the
rameters include the component masses and the source
tance from and orientation with respect to the receiver.
this section we derive the likelihood functionL(guu) de-
scribing the probability thatg is observed under the hypoth
esisHu .

Why the likelihood function? Recall that the likelihood
any function that, viewed as a function ofu, is proportional
to P(guHu), the probability of observingg given the fixed
hypothesisHu . In a Bayesian analysis, the goal is to det
mine or characterizeP(Huug), the probability of the hypoth-
esis given the observation. Through the Bayes theorem,
quantity is directly related to the likelihood. In frequenti
statistical analysis the goal is to determine the improbab
of observingg under the alternative hypotheses that the s
nal is absent or that it is present, or to establish confide
intervals—a range of hypothesesHu for which the observa-
tion has, in a certain sense, high probability@22#. In either
case the likelihood plays a central role and no other func
of the observation and hypotheses offers the prospec
stronger statements.

In our derivation of the likelihood we assume that t
noise in each detector is Gaussian and stationary. While
g-
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fundamental noise sources in gravitational-wave detec
are all characterized by Gaussian stationary statistics, the
alities of an actual implementation—e.g., detector imperf
tions and environmental couplings—guarantee that the ac
noise character will be neither Gaussian nor stationary. C
acterizing the detector, which includes identifying instr
mental and environmental artifacts in the ‘‘gravity-wav
channel’’ and regressing or removing these artifacts to
greatest possible extent, is a necessary prerequisite to
analysis of the data for gravitational waves. We assume h
that these artifacts have already been dealt with as best
sible, so thatg contains no identifiable instrumental artifact
transient or otherwise, and that the noise is stationary on t
scales long compared to the duration of a signal.1

Even so, the noise will remain non-Gaussian and non
tionary. As long as the evolution of the noise character
adiabatic—i.e., it varies only on time scales long compa
to the signal duration and the time required to estimate
moments of the noise distribution—we can treat the noise

1Creighton@23# considers the opposite case, where the dete
noise is strongly contaminated by strong, Poisson-distributed n
bursts.
1-3
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LEE SAMUEL FINN PHYSICAL REVIEW D 63 102001
stationary on any important subinterval. It is also an exc
lent approximation to treat the noise as Gaussian. To
why, focus on a stationary noise process but without a
assumption on its distributionP(x). Suppose, by observa
tions on the noise, we estimate its meanm ( x̄) and variance
s2 @(x2m)2#. What probability distribution makes the few
est assumptions about the process while remaining consi
with this information? This information-theoretic questio
has a definite answer: it is the probability distributionP(xuI )
with maximum entropy, subject to the constraints on
mean and variance: i.e., the distributionP(xum,s) that maxi-
mizes the functional

I ~P!ª2E
2`

`

dx P~xum,s!ln P~xum,s!

2l0E
2`

`

dx P~xum,s!2l1E
2`

`

dx xP~xum,s!

2l2E
2`

`

dx~x2m!2P~xum,s!, ~3.2!

wherel0 , l1, and l2 are the Lagrange multipliers corre
sponding to the constraints on the overall normalization
the probability, the mean, and the variance. The solution
this variational problem~when x is assumed to be un
bounded! is

P~xuI !5
exp@~x2m!2/2s2#

A2ps2
, ~3.3!

i.e., the normal distribution. Similarly, if we have a corr
lated process known to us only through its mean and a
correlation,

C@k2 j #ª~x@ j #2m!~x@k#2m!, ~3.4!

the distribution that makes the fewest assumptions abou
process beyond these is the multivariate normal distribut

P~$x@ j #%um,C!

5

expF2
1

2 (
j ,k50

NT21

~x@k#2m!uuC21uukl~x@ l #2m!G
A~2p!NT detuuCuu

, ~3.5!

where$x@k#% is a set ofNT samples indexed by the samp
times and the matrixC has components

uuCuu jkªC@k2 j #. ~3.6!

Thus, modeling~correlated! noise as arising from a~multi-
variate! normal distribution is simultaneously the best a
most conservative assumption that one can make when
one knows is the noise mean and~co!variance.

Put another way, if our only knowledge of the noise ch
acter is its first and second moments~i.e., the mean and
correlation function or power spectrum! then treating the
noise as anything but normally distributed is to assumemore
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than we actually know and, consequently, would lead us
overstatethe accuracy of any conclusions we reach.

We choose a particular normalization of the likelihoo
function as the ratio ofP(guu) to the probability thatg arises
from detector noise alone. The signal is assumed to b
plane gravitational wave incident on the detector array,
that the detectors respond to the signal coherently. If
hypothesized signal is characterized by parametersu ~e.g.,
binary system chirp mass, orientation, distance, etc.! then we
denote the likelihood functionL(guu) and regard it, for fixed
receiver outputg, as a function of the signal parametrizatio
u.

The derivation ofL(guu) for a deterministic signal in a
multidetector receiver parallels closely the derivation
L(guu) given in ~@7#, Sec. II! for a single-detector receiver
however, in the generalization several new elements a
and are discussed here for the first time.

In Sec. III B we walk through the construction o
P(guH0 ,I ), the probability of observingg in the absence of
any signal. Evaluation ofP(guHu ,I ) ~the probability of ob-
servingg when the signal characterized byu is present! and
the likelihood function itself proceed much more quickly
Sec. III C. In Sec. III D we describe a detection test bas
solely on the maximum of the likelihood and identify th
signal-to-noise ratio with the maximum of lnL over u. In
Sec. III E we discuss how the likelihood function can
evaluated quickly and efficiently, which is critical to its us
in real data analysis.

B. Probability that g is receiver noise

Central to the evaluation ofL(guu) is the evaluation of
P(guH0 ,I ), the probability that the receiver outputg is an
example of receiver noisen. ~HereI denotes other, unenu
merated conditions.! The formulation of this probability den
sity for a single detector~scalar-valued time seriesg) was
discussed in@7#; in this section we review that discussio
setting the stage for our treatment of the more general p
lem of a multichannel receiver~vector-valuedg).

1. Single-channel time series

Focus attention first on the single-channel output o
single detector. When the detector noise is Gaussian and
tionary, any single samplen@ j # of detector noise is normally
distributed with a mean and variance independent of w
the sample was taken. Without loss of generality we c
assume that the ensemble meann̄ vanishes, in which case th
probability that a sampleg@ j # of detector output is a sampl
of detector noise is

P~g@ j #uH0 ,I !5
exp@2g@ j #2/2s2#

A2ps2
. ~3.7a!

The variances2 of the distribution is the ensemble avera
of the square of the detector noise:

s25n̄2. ~3.7b!
1-4
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Equation~3.7a! holds true for each sampleg@ j #; conse-
quently, the joint probability that the lengthNT sequenceg is
a sample of detector noise is given by the multivari
Gaussian distribution

P~guH0 ,I !5

expF2
1

2 (
j ,k50

NT21

g@ j #UUC21UU jkg@k#G
A~2p!NT detuuCuu

.

~3.8!

In place of the variances2 that appears in the exponent
Eq. ~3.7a! is the matrixC21. As P(guH0 ,I ) is a probability
soC21 is positive definite and invertible. The matrixC gives
the covariance of the noise process: it is equal to the
semble average of the product of the detector noise at di
ent samples:

n@ j #n@k#5uuCuu jk . ~3.9!

Since the detector noise is also assumed to be station
uuCuu jk can depend only on the differencej 2k; correspond-
ingly, C is constant on its diagonals: i.e., it is aToeplitz
matrix. SinceC is Toeplitz it is characterized completely b
the scalar sequencec@k# of length 2NT21 whose elements
are the first row and column ofC:

c@ j 2k#ªuuCuu jk . ~3.10!

This sequence is the noise autocorrelation. The DFT ofc@k#
is related to the noise power spectral density.

2. Multichannel time series

Now consider a receiver consisting ofND component de-
tectors, where the receiver output is anND-dimensional time
series. Without loss of generality assume that, while the
ferent detectors that comprise the receiver may be sample
different rates, all the detector outputs have been resam
so that the interval between samples in all detector d
streams isDt. The receiver outputg is a multichannel time
series: a vector-valued sequence consisting of the direct
of the outputga of the individual detectors. Similarly, th
receiver noisen is the direct sum of the noise contribution
na to the output of theND detectors:

g@k#ªg1@k# % •••% gND
@k#, ~3.11a!

n@k#ªn1@k# % •••% nND
@k#.

~3.11b!

Focus attention on a single sample of the receiver out
i.e., the vectorg@ j #. Since the receiver noise is Gaussian a
stationary, the probability that sampleg@ j # is a sample of
receiver noisen is given by the multivariate Gaussian

P~g@ j #uH0 ,I !5

expF2
1

2
g@ j #•C@0#21

•g@ j #G
A~2p!ND detuuC@0#uu

,

~3.12a!
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where the matrixC@0# is the ensemble average of the out
product of a sample of receiver noise with itself:

C@0#5n@ j # ^ n@ j #. ~3.12b!

As suggested by the selection index@0#, C@0# is one
element of a sequence of correlation matrices. Each elem
of this sequence arises from the ensemble average of
outer product of receiver noise with itself at a different tim
Since the receiver noise is stationary, the ensemble ave
depends only on the time difference; consequently,

C@ j 2k#5n@ j # ^ n@k#. ~3.13!

Just as the DFT of the autocorrelation sequence for a si
detector is related to its noise power spectral density, so
DFT of C@k# is related to its noise power spectral density.
this case, the power spectral density is a matrix-valued fu
tion of frequency, with the diagonal components equal to
power spectral density of the noise in a particular detec
and the off-diagonal components related to the cross-spe
density of the noise in two different detectors.

Equations~3.12! hold true for each individual sample o
receiver outputg@ j #; consequently, the joint probability tha
the lengthNT sequenceg is a sample of receiver noise is als
a multivariate Gaussian:

P~guH0 ,I !5

expF2
1

2 (
j ,k50

NT21

g@ j #•uuTNT
~C!21uu jk•g@k#G

A~2p!NTNDDNT
~C!

,

~3.14a!

whereTNT
(C) is ablock Toeplitz matrix,i.e., a matrix whose

elementsuuTNT
(C)uu jk are themselves Toeplitz matrices:

uuTNT
~C!uu jk5C@ j 2k#. ~3.14b!

Each ‘‘element’’ ofTNT
(C) is thus anND3ND matrix. The

inverseTNT
(C)21 of TNT

(C) is defined in the usual way:

d jkIND
5 (

l 50

NT21

uuTNT
~C!uu j l •uuTNT

~C!21uu lk ~3.14c!

5 (
l 50

NT21

C@ j 2 l #•uuTNT
~C!21uu lk ,

~3.14d!

where • indicates the usual matrix product betweenND
3ND matrices andIND

is theND3ND unity matrix.
Finally,

DNT
~C!5detTNT

~C!; ~3.14e!

i.e., DNT
(C) is the determinant ofTNT

(C), regarded as an

NTND3NTND matrix.
The argument of the exponential in Eq.~3.14a! takes the

general form of a symmetric inner product of two vecto
valued sequences with respect toTNT

(C)21. Terms like this
1-5



e

ys
an
a

te
d
th

a
r

uc

ng
q

e
r

n

at
ib
fr

pe
in

efi-
r
om-

l

a-
r
ve,
me

put
ers.
uct

as a
ns
The
tor
ss

tec-
ied
and
en

-
eir
,

LEE SAMUEL FINN PHYSICAL REVIEW D 63 102001
occur frequently enough that it is convenient to introduc
special notation for them: in particular, we define thesym-
metric inner product

^a,b&Cª
1

4 (
j ,k50

NT21

@a@ j #•uuTNT
~C!21uu jk•b@k#

1b@ j #•uuTNT
~C!21uu jk•a@k## ~3.15!

so that

P~gu0,I !5
exp@2^g,g&C#

A~2p!NTNDDNT
~C!

. ~3.16!

C. The likelihood function for a deterministic signal

Consider the case of adeterministic signal,i.e., a signal
whose time series is known up to parametersu. An example
is the gravitational-wave signal from a coalescing binary s
tem, where the parameters include the binary’s position
orientation on the sky, component masses and spins,
distance.

Distinguish between the signal itself, which we deno
h(u), and the receiver response to the signal, which we
notem(u). Assume that the receiver response is linear in
applied signal; consequently, the probability of observingg
when the signalh(u) is present on the receiver is the same
the probability of observingg2m(u) as a sample of receive
noise:

P~guHu ,I !5P„g2m~u!uH0 ,I … ~3.17a!

5
exp@2^g2m~u!,g2m~u!&C#

A~2p!NDNTDNT
~C!

.

~3.17b!

The likelihood function is thus

L~guu!5exp@2^g,m~u!&C2^m~u!,m~u!&C#, ~3.18!

where we have exploited the symmetry of the inner prod
^ & @cf. Eq. ~3.15!#.

The sole influence of the signal on the likelihood is owi
to the first term in the argument of the exponential in E
~3.18!, ^g,m(u)&C . This term is a linear filter applied to th
observationg. That linear filter is the Wiener optimal filte
for a gravitational-wave receiver.

D. The maximum likelihood test

In a Bayesian analysis, the product of the likelihood a
thea priori probability densityP(uuI ) is proportional to the
a posteriori probability P(uug). From this probability den-
sity one can decide with what confidence one believes th
signal has been observed or construct Bayesian cred
sets—regions of parameter space encompassing a given
tion of the total probability thatu takes on a given value.

In a frequentist analysis confidence intervals and up
limits are constructed from the likelihood, although certa
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ad hocassumptions are required to make the procedure d
nite @22,24–26#. When our goal is simply to decide whethe
a signal is present a common candidate procedure, rec
mended by both analysis@27# and intuitive appeal, is the
maximum likelihood test. Let

Q5domain of physically permissibleu, ~3.19a!

Lmax~g!5max
uPQ

L~guu!, ~3.19b!

û~g!5parameteru for which L~guu!5Lmax~g!,
~3.19c!

and choose a thresholdL0. Given an observationg, evaluate
Lmax(g). If Lmax exceedsL0, then conclude that the signa
corresponding toû(g) has been observed.

If û is not on the boundary ofQ, then the maximum value
of the likelihood function is also an extremum ofL(guu) and

ln L~guû!5^mû ,mû&. ~3.20!

E. Evaluation of Ša,b‹C

A naive evaluation of̂ a,b&C following its definition in
Eq. ~3.15! has a high computational cost:~1! Solving the
linear systemTNT

(C)•x5b requires O@(NTND)3# opera-

tions; ~2! evaluating the inner producta•x requires
O(NTND) operations. The operation count for this evalu
tion of ^a,b&C is dominated by the solution of the linea
system in the first step and would appear to be prohibiti
even if could be done accurately, for all but the shortest ti
series.

In fact ^a,b&C can be evaluated in at mostO(ND
2 NT) op-

erations. To do so requires only that we preprocess the in
data through a chain of between one and three linear filt
In this section we describe these filters and the inner prod
of the filtered time series.

1. The linear filter

The desired preprocessing is conveniently described
sequence of three linear filters. The first filter simply white
separately the output of each detector in the receiver.
second forms linear combinations of the whitened detec
outputs to form a basis of ‘‘pseudodetectors’’ whose cro
correlations vanish, while the third whitens the pseudode
tor output. Thus, the first filter can be formed and appl
without reference to the other detectors, while the second
third filters are the identity if the cross correlation betwe
distinct detectors vanishes.

~a! First filter: Whiten detector noise. Using any conve-
nient technique@28# whiten the output of each detector. De
note with a prime the whitened detector outputs and th
cross correlation when regarded as part of a receiver: i.e.nk8
is the whitened noise from detectork and

C8@ j 2k#5n8@ j # ^ n8@k#. ~3.21!
1-6
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Write the cross-spectral-density Toeplitz matrixC8 in
block form as

C85S C118 C128 . . . C1ND
8

C218 C228 . . . C2ND
8

A A � A

CND18 CND28 . . . CNDND
8

D , ~3.22a!

where

Cjk8 @ l 2m#5nj8@ l #nk8@m#. ~3.22b!

Focus on the diagonal blocksCkk8 , which are the Toeplitz
matrices corresponding to the autocorrelation of the ou
of detectork. These blocks are constant multiples of t
unity matrix, the constant being simply the mean-squ
noise amplitude in detectork, sk

2 . Absorb this constant into
the whitening filter for each detector so that the whiten
output has mean-square amplitude unity and theCkk8 are just
the unity matrix.

Focus attention now on cross correlations, which are r
resented by the off-diagonal Toeplitz matrices in Eq.~3.22a!.
If the cross correlation between the detector outputs is c
sistent with zero then we are done with the preprocessing
on the other hand,C8@ j 2k# is nonzero forj Þk, then we
have two additional preprocessing steps, which we desc
below.

~b! Second filter: Diagonalization. The vectorg8 corre-
sponds to the direct sum of the output of the several detec
that form the network, after their output has been separa
whitened. In this step we form a new ‘‘basis’’ of detecto
whose noise is uncorrelated: i.e., we find the linear fil
described by the coefficientsb@k# anda@k# such thatn9,

n9@k#ª(
j 50

Nb

b@ j #•n8@k2 j #2(
j 51

Na

a@ j #•n9@k2 j #,

~3.23!

has the property

nj9@ l # ^ nk9@m#5Cj9@ l 2m#d jk . ~3.24!

This transformation, applied tog8, yieldsg9.
Standard system identification techniques@28# can be

used to find the appropriate transformation. For purpose
illustration only we describe one way to find such a transf
mation, involving just the sequenceb. Focus on the discrete
Fourier transform ofC8@k#,

C8̃@k#5 (
n52N

N

C8@ j #v2N21
jk , ~3.25!

where we have chosenN large enough thatC8@k# vanishes

for k.N. The quantityC8̃ is the two-sided~discrete! cross-

spectral density ofn8. Each componentC8̃@k# is an ND
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3ND Hermitian matrix. Consider the sequence of unita
transformationsŨ@k# such that

Ũ@k#†
•C8̃@k#•Ũ@k# ~3.26!

are each diagonal. This sequence exists as long as the
is not fully correlated in any pair of detectors, at any fr
quency. Additionally, the symmetries ofC guarantee that
Ũ@k# equals Ũ†@2k#. Consequently, the inverse discre
Fourier transform of the sequenceŨ@k# yields a real linear
filter U@k# that, when applied to the vector-valued receiv
noisen8, yields an outputn9 whose cross correlation is di
agonal: i.e.,

nj9@ l #nk9@m#50 if j Þk ~3.27a!

where

n9@k#5 (
j 52N

N

U@ j #•n8@k2 j #. ~3.27b!

~c! Third filter: Final whitening. Following the formation
of a pseudodetector basis thenj9 will not necessarily be
white. The final step of preprocessing is to whiten separa
the output sequence corresponding to each pseudodete
absorbing the overall normalizations j- into the filter so that
the rms output of each pseudodetector is unity. This fi
step, since it does not involve combining the output of t
different pseudodetectors, does not change the vanis
cross correlation of the output of different pseudodetecto

Following this final preprocessing we are left with th
receiver outputg- whose noise component has the desir
property

nj-@ l # ^ nk-@m#5d jkd lm , ~3.28!

i.e., the noise in each pseudodetector is white, and the n
in different pseudodetectors is uncorrelated.

Since all of the operations involved in this preprocess
are linear filter operations the computational cost of proce
ing a lengthNT sequence of network outputg to g9 is strictly
proportional toNT . The order of the filters involved isinde-
pendentof NT . The determination of the filters themselve
may be a somewhat time-consuming operation; howe
since the receiver noise is stationary on time scales l
compared to the signal duration these filters need to be fo
or modified very infrequently.2 The first and~if needed! third
linear filter operations are done separately for each dete
or pseudodetector; correspondingly, they involve a factor
ND . Finally, the second transformation, which~if needed!
forms the basis of independent detectors, is reallyO(ND

2 )
linear filters. Hence, evaluation of the linear filter on a s

2Were this not true then we would fail also to satisfy the ba
assumptions that allow us to construct the optimal filter for a sin
detector.
1-7
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LEE SAMUEL FINN PHYSICAL REVIEW D 63 102001
quence of lengthNT requiresO(ND
2 NT) operations generally

falling to O(NDNT) if there is no cross-correlated noise b
tween the detectors.

2. Reformulating the inner product

We presume that we have preprocessed the receiver
put as described in Sec. III E 1. Following this preprocess
the inner product can be rewritten as

^a,b&Cª
1

4 (
j ,k50

NT21

@a@ j #•uuTNT
~C!21uu jk•b@k#

1b@ j #•uuTNT
~C!21uu jk•a@k## ~3.29!

5
1

2 (
j ,k50

NT21

a98@ j #•b98@ j #, ~3.30!

which has an operation count ofO(NDNT). Including the
preprocessing, the operation count scales linearly withNT
and either linearly or, at most, quadratically with the numb
of detectors in the receiver,ND .

Most of the work involved in calculating the inner prod
uct is in dealing with the correlations: both autocorrelatio
of the individual detector outputs and cross correlations
the different detectors in the receiver, i.e., in ‘‘inverting
TNT

(C). Owing to the special structure ofTNT
(C) the effect

of its inverse in the inner product can be expressed by
plying a sequence of linear filters, each of order independ
of NT , to the inputs~i.e., the linear transformations de
scribed in Sec. III E 1!. These transformations are dete
mined entirely by the statistical character of the noise in
receiver, which changes only on time scales long compa
to the signal duration; consequently, the asymptotic ope
tion count for the inner product is at mostO(NTND

2 ) and not
O@(NTND)3# as a naive estimate might suggest.

F. Signal-to-noise ratio

Following the identification of pseudodetectors who
noise is white and uncorrelated the inner product^mû ,mû&,
which is the maximum of the log-likelihood, is recognized
half the sum, over the pseudodetectors, of the ratio of
quantities: the mean-square response of the receiver to
signal and the mean-square pseudodetector noise. C
spondingly, we identify

r2
ª^mû ,mû& ~3.31!

as the~power or amplitude-squared! signal-to-noise ratio.
When the detector noise is uncorrelated the signal

noise ratio of the network is clearly related to the sum of
signal-to-noise ratios of the component detectors: relate
not equal—because in the analysis of several detectors
single receiver we have imposed the important constr
that the signal parameters appearing in the separate si
to-noise ratios are identical. To see the importance of
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constraint, considerND detectors making an observation fo
a signals(tuu). Assume for simplicity that everything abou
the signal~including its wave form and start time! is known
except for its amplitudeu, so that

s~ tuu!ªus~ t !. ~3.32!

Suppose also that the noise in each detector is uncorre
with the noise in any other detector. Since the detectors
independent in this way we can write the receiver likeliho
L(guu) as a product of the separate detector likelihoo
L j (gj uu).

Now consider detectorj acting independently of the res
For this detector,

ln L j~gj uu!52u^gj ,sj&Cj
2u2^sj ,sj&Cj

, ~3.33!

where the subscriptj indicates the relevant quantity wit
respect to detectorj. The maximum likelihood point estimat
of u based on the observationgj in detectorj is

u j5
^gj ,sj&Cj

^sj ,sj&Cj

~3.34!

and the corresponding signal-to-noise~S/N! ratio is

r j
252u j

2^sj ,sj&Cj
~3.35a!

52
^gj ,sj&Cj

2

^sj ,sj&Cj

. ~3.35b!

In general,u j will not be equal touk andr j will not be equal
to rk . If gj is ~Gaussian stationary! receiver noise, than the
ensemble average of eachr j

2 is equal to unity. The maximum
of the logarithm of the product of the likelihoods for th
separate detectors is then half the sum over ther j

2 , or ND/2.
On the other hand, if we consider all the detectors to

part of a network, then

ln L~guu!52u^g,s&C2u2^s,s&C . ~3.36!

The maximum likelihood point estimate ofu based on the
observationg is

u5
^g,s&C

^s,s&C
~3.37!

and the corresponding S/N ratio is

r252u2^s,s&C ~3.38a!

52
^g,s&C

2

^s,s&C
~3.38b!

52
(

j
^gj ,sj&Cj

2

^s,s&C
. ~3.38c!
1-8
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The S/N ratior2 for the network is not equal to the S/N rat
in any component detector, nor is it equal to the sum of
r j

2 treated as independent quantities. With the constraint
the individual detectors in the receiver must respond coh
ently to any signal, the ensemble average ofr2 is equal to
unity, not ND . The constraint that each detector in the
ceiver responds coherently to the incident signal reduces
variance inr2 below what one would expect from a simp
sum of the individualr j

2 .

IV. EXAMPLE APPLICATIONS

A. Introduction

In this section we apply the formalism developed in t
previous two sections in several numerical examples, wh
are based on a model source detected by a model rece
Our aim is to illustrate one way that likelihood-based det
tion might be used in a network analysis to show that it giv
a greater detection efficiency for a given false alarm rate t
a coincidence analysis, and to explore the performance o
likelihood and coincidence tests when the detector nois
strongly non-Gaussian.

The model source and detectors are described in
IV B. For simplicity we focus on testing the null hypothes
H0 ~i.e., ‘‘the signal is absent’’!. In Sec. IV D we describe
two different ways of testing this hypothesis: via a thresh
placed on the maximum of the likelihood function for th
joint output of all the detectors and via an analysis of ‘‘c
incidences’’ between events identified separately in each
tector. Monte Carlo simulations are used to evaluate the
tection efficiency as a function of the false alarm fraction
each test in two different circumstances: Gaussian dete
noise and a mixture Gaussian model of non-Gaussian de
tor noise.

B. Model receiver and model source

Consider two detectors, denoted ‘‘1 ’’ and ‘‘ 2, ’’ sepa-
rated by a distance 2R. For the purpose of illustration, as
sume that the noise in each detector is white~i.e., uncorre-
lated! up to the Nyquist frequency, uncorrelated between

TABLE II. Parameters describing the toy receiver and sig
duration used for examples in this paper. All parameters are g
in units of f 0, the reciprocal signal duration. PSD stands for pow
spectral density.

Detector separation (2R) 25/f 0

Sampling frequency 4f 0

Detector noise PSD (S6) 1/f 0

Observation duration (TD) 100/f 0
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two detectors, and has two-sided power spectral density
plitudesS1 andS2 in the 1 and 2 detectors, respectively
~see Table II!. Assume also that these detectors have no
entation: they respond identically to radiation incident fro
any direction.

In addition to parameters that describe the internal stat
a radiation source and its orientation relative to the dete
line of sight, every signal incident on the receiver is char
terized by a ‘‘signal start time,’’ describing when the initia
wave front reaches the receiver. It is convenient to meas
time at the midpoint between the two detectors in our
ceiver, so that the signal start time is defined to be the m
ment that the initial wave front reaches the midpoint betwe
the two detectors.

Signals are also characterized by their incident direct
relative to the receiver. Since the two detectors have an
tropic antenna pattern, the receiver response to radiation
cident from different directions depends only on the an
between the axis defined by the two detectors and the ra
tion’s propagation direction. Figure 1 shows the geome
we use to describe the interaction of the model receiver w
an incident gravitational wave, with the cosine of this ang
denoted byX0.

Again for the purpose of illustration, consider a mod
astrophysical burst source population whose members ha
well-determined wave form of finite duration. Assume t
sources are standard candles and radiate isotropically,
radiation wave form two cycles of a sine wave of know
frequency f 0. Denoting the signal arrival time at the mid
point between the detectors byT0 and the signal amplitude
asA0, the response of the two detectors to the signal is

FIG. 1. To illustrate the effectiveness of a correlation analy
compared to a coincidence analysis we apply both to a model p
lem involving two identical detectors of isotropic response. T
detectors are denoted1 and 2. Their relative separation and th
parameters describing the direction of an incident plane wave si
are shown in this figure.

l
n

r

s6ªH A0 sin 2p f 0@ t2~T06RX0!# if 0 , f 0@ t2~T06RX0!#,2

0 otherwise,
~4.1!
1-9
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LEE SAMUEL FINN PHYSICAL REVIEW D 63 102001
where we have dropped the distinction between the sig
and the receiver response to the signal and assumed tha
detector bandwidth is much greater than the signal ba
width.

Since f 0 is known, the receiver response to a signal
fully characterized byA0 , T0, andX0. Acting alone, the6
detector can measure onlyA0 andT6 , where

T6ªT06RX0 . ~4.2!

C. Likelihood function

Recall that the receiver’s correlation sequence is

C@ j 2k#5n@ j # ^ n@k#, ~4.3!

where, for our two-detector receiver, eachC@k# is a 232
matrix. We have assumed that the noise in detector1 is
uncorrelated with that in detector2; consequently, each
C@k# is diagonal and the matrixTNT

(C) is conveniently re-

organized into a 232 block diagonal matrix:

uuTNT
~C!uu5diag~C1 ,C2!5S C1 0

0 C2
D , ~4.4a!

whereC6 is the correlation matrix for the6 detector,

uuC6uu jk5n6@ j #n6@k#. ~4.4b!

Expressed in this way, it is apparent that the likeliho
function is separable:

L~guA,X,T0!5L~g1uA,T1!L~g2uA,T2!, ~4.5a!

where

ln L~g6uA,T6!52^g6 ,m~A,T6!&C6

2^m~A,T6 ,m~A,T6!&C6
. ~4.5b!

TheL(g6uA,T6) are exactly the likelihood functions for th
6 detectors regarded as single, isolated receivers. This s
ration is always possible when the noise in the detector
uncorrelated. When the noise in the detectors is correla
the likelihood is still separable once the pseudodetectors
defined as described in Sec. III E 1.

D. Signal detection

In this section we consider, in the context of our mod
receiver, two different ways one might use a pair of detect
to detect a signal and infer its parameters. One proced
exploits the notion of coincidence: if the two detectors se
rately identify a signal with sufficiently similar paramete
then the receiver is said to have detected a signal. The o
procedure exploits the notion of correlation as developed
Sec. III: if the response of an array of detectors is consis
with an incident plane wave, then the receiver is said to h
detected a signal. For each of these two tests we determ
the detection efficiency as a function of the false alarm e
fraction when the detector noise is Gaussian. We find that
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test based on correlation, as embodied in the receiver lik
hood function, has a greater detection efficiency than
coincidence test for any choice of false alarm fraction.

1. Maximum likelihood inference

The likelihood functionL(guu) is the dimensionless ratio
of two probabilities: the probability of making the observ
tion g if the signalu is present and the probability of makin
the observationg if no signal is present. It is not a probabilit
itself, nor by itself does it relate directly to a probability o
u.

Even though we cannot regard the likelihood as a meas
of the probability that a signal characterized byu is present,
we can regard it as a measure of theplausibility of that
conclusion: whenL(guu) is greater than unity it signals tha
the particular observationg is more likely when the signa
characterized byu is present than when no signal is prese
Similarly, if we assume that a signal is present, then
parameteru that maximizes the likelihood function is th
most plausible description of the signal.

Together, these observations motivate a test based on
likelihood function: when the likelihood function maximum
L(guû) exceeds a thresholdL0, then we conclude that a
signal is present and takeû to be the maximum likelihood
estimator, or MLE, of the detected signal.

To be precise, consider an observationg, whose N
samplesg@k# are taken at timetk . Denote bys(u)@ j # the
sampled receiver response to a signal characterized bu.
Assume that the observation duration is much longer than
longest signal response~so that we need not consider signa
that begin before or end after the observation period!. Denote
by uk the parameter space of signals whose leading w
front is incident on the receiver at timetk : in our example,
these are justA andX. Finally, fix a thresholdr0

2. The fol-
lowing procedure produces a list of detected signals
point estimates of the parameters describing each.

~1! Evaluate the log-likelihood function lnL(guuk) for
signals incident on the receiver at the sample timestk .

~2! At each sample timetk , find the signal characteriza
tion ûk that maximizes lnL(guuk). Associate with eachtk

and ûk a S/N r̂k , given by

r̂k
25 ln L~guûk!. ~4.6!

~3! Order the triplets$r̂k ,ûk ,tk% with respect totk . Select
the subset of triplets where~i! rk is greater than the threshol
r0 and~ii ! there is a local maximum; i.e., find the$r̂k8 ,ûk8%
for which

r0, r̂6,k8 , ~4.7a!

r̂6,k821<r̂6,k8 , ~4.7b!

r̂6,k811<r̂6,k8 . ~4.7c!

~4! Beginning with the largestr̂k in this subset find all
other triplets$r̂k8 ,ûk8 ,tk8% for which utk2tk8u is less than the
1-10
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signal duration. Discard these triplets. Repeat with the n
largest remainingr̂k until the list is exhausted. What remain
is the list ofdetected signals, with S/N r̂k , signal start time
tk , and characterized by~the point estimate! ûk .

Three steps in the maximum likelihood test procedure
serve additional discussion: the focus only on bursts star
at the discrete sample timestk ~step 2!, the formation of the
intermediate list consisting of local maxima of the maximu
of the likelihood function~step 3!, and the pruning of this list
to form the final list of detected signals~step 4!.

Step 2 focuses attention on signals arriving at discr
sample times. Real signals, however, are not so constra
Nevertheless, if the observation is properly sampled~i.e.,
sampled without aliasing!, then all of the power in the re
ceiver response is at frequencies much less than the Ny
frequency f N , which is half the sample rate. In that ca
^m(u,t0),m(u,t01t)&C , wherem(u,t) denotes the receive
response to a signal whose initial wave front arrives at
network at timet, cannot vary significantly forutu less than
several times 1/f N ; correspondingly, the likelihood will re-
main peaked about thetk nearest to the actual signal arriv
time and the corresponding signal to noise ratio will diff
only slightly from its maximum value.3

In step 3, we select only the local maxima of the like
hood function as candidate signal events. This reflects
observation that, in the absence of noise, the likelihood fu
tion is maximized whenu is equal to the true signal chara
terizationut .

Even in the absence of noise, however, not all lo
maxima can be identified as distinct signals. While the lik
lihood function is maximized whenu is equal to the true
signal characterizationut , asu differs fromut the likelihood
decreases, but not necessarily monotonically. Even for
simple signal model there are three local maxima associ
with the likelihood function. The situation is further compl
cated when, as is the actual case, receiver noise distort
‘‘noise-free’’ likelihood, randomly increasing it for someuk
and decreasing it for others.

To help distinguish between the global maximum of t
likelihood function and its side lobes, we make use of o
implicit assumption that real signals are sufficiently rare t
the receiver response to one real signal does not have a
nificant probability of overlapping with its response to a se
ond real signal. Any two local maxima separated in time
less than the signal duration are then associated with a s
source. In step 4 we prune the list of candidate signals~i.e.,
the local maxima identified in step 3! by identifying clusters
of local maxima and replacing each with its single, strong
member.4 The result is a list of events, all above threshold,
which no two events can have resulted from the sa
gravitational-wave signal.

3The errors incurred here can be reduced still further by appro
ate interpolation.

4This intrinsically nonlinear step introduces into the analysis
notion of detector ‘‘dead time’’: i.e., the analysis is unable to ide
tify more than a single signal in any given interval of duration le
than the signal duration.
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Finally, we justify the use ofû as the point estimate of th
signal parameters characterizing the detected signal. Sup
that a signal characterized by fixedut is incident on an en-
semble of identical receivers. The corresponding ensem
of û has as its modeut ; consequently, a natural estimator fo
ut is theû arising from a particular observation. In the max
mum likelihood rule, when we conclude that a signal
present we takeû as our point estimate of the signal param
eters.

2. Coincidence inference

Much discussed in the context of gravitational-wave d
analysis is an apparently simpler analysis, referred to ge
ally as ‘‘coincidence.’’ This test has received its most prec
definition in @10,11# for the particular case of binary inspira
observations.

In general, coincidence tests involve a complete analy
at each individual detector, considered in isolation from
other detectors in the receiver. The result of these individ
analyses is a set of ‘‘candidate-event lists,’’ one for ea
detector, which consist of ‘‘detections’’ at each detector
gether with estimators for the signal start time and ot
signal parameters that can be determined from observat
in a single detector. Real gravitational-wave events sho
excite the several different detectors in a self-consistent m
ner: in particular, the signal start times should be consis
with the light travel time between the detectors and ot
signal parameters should be consistent with a unique sou

The consistency requirement is difficult to pin down. F
example, in the case of our own model detector and sou
consistency would appear to require that the signal arr
times are consistent with the signal propagation time
tween the detectors and that the measured signal amplit
be equal. Owing to detector noise, however, the estima
signal amplitudes will only approximate the actual amp
tudes, and similarly for the signal start times and other
rameters. For signal amplitudes, then, a window of so
breadth must be defined and signal candidates whose am
tudes fall within the window are assumed to arise from a r
signal. The choice of window, its implementation, and t
procedure for combining separate estimates of common
rameters all affect the false alarm and false dismissal fr
tions that characterize the test.

The problem is more complicated in the case of an e
mated source location. Consider a real signal, incident on
detectors from a direction nearly perpendicular to the a
between them. Let the measured start timeT6 on the 6
detector be

T65T0,61e6 , ~4.8!

whereT0,6 is the actual moment when the signal is incide
on the6 detector ande6 is the error in the estimated sta
time owing to detector noise. The difference in the measu
signal start times is

T12T25T0,12T0,21e12e252RX01De, ~4.9!
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where X0 is the direction cosine describing the radiation
propagation direction andDe is the difference between th
errors in the measured start times. When a real signa
incident along, or nearly along, the axis (uX0u.1), then
small errorsuDeu!2R can lead touX̂0u.1, which we would
regard as unphysical and not representative of a real sig
On the other hand, whenuX0u is much less than unity, the
same errors will leave us withuX̂0u still much less than unity,
in which case we accept the coincidence as representi
real signal. To minimize this false rejection of real signa
we can adopt a window broader than the light travel ti
between the detectors for comparing signal arrival tim
~taking the estimated arrival direction to be along the axi
the difference of arrival times would suggestuXu greater than
unity!; however, in doing so we also increase the false ala
rate, reducing the discriminating power of the test.

The sign of the error also plays an important role: wh
De has the same sign asX0 we are more likely to reject a
real signal than when they have opposite signs. The frac
of signals rejected can thus depend in a complicated way
the interaction between the underlying signal parameters
windows, and the allowable range of the parameters
characterize the signal.

For comparison with the likelihood procedure describ
above we define a coincidence inference procedure for
model receiver.

~1! For each detector considered in isolation, determ
the two sets ofcandidate signalsassociated with detector1
and2.

~a! Evaluate the log-likelihood function lnL(g6uu6,k) for
signals incident on detector6 at the sample timest6,k .

~b! At each sample timet6,k , find the signal character
ization û6,k that maximizes lnL(g6uu6,k). Associate with
eacht6,k and û6,k a S/N r̂6,k , given by

r̂6,k
2 5 ln L~g6uû6,k!. ~4.10!

The result is a set of associated signal-to-noise ratios, pa
etrizations, and signal start times$r̂6,k ,û6,k ,t6,k%.

~c! For the list associated with each detector, select
subset$r̂6,k8 ,û6,k8 ,t6,k8% for which

r̂6,0,r6,k8 , ~4.11a!

r̂6,k821<r6,k8 , ~4.11b!

r̂6,k811<r6,k8 , ~4.11c!

wherer̂6,0 is the signal detection threshold in detector6.
~d! Beginning with the largestr̂6,k in the list of local

maxima associated with detector6, find all otherr̂6,k8 for
which utk2tk8u is less than the signal duration. Discard the
Repeat with the next largest remainingr̂6,k until the list is
exhausted. What remains is the list of candidate signals,
S/N r̂6,0 , signal start timet6,k , and characterized by~the
point estimate! û6,k .
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~2! Choose the candidate signal list associated with de
tor 1. Beginning with the candidate signal of largest S
r̂1,k in that list, process that list in order of decreasingr̂1,k
to create a new, coincident detection event list.

~a! Let the current candidate event from the list associa
with detector1 be numberedk1 .

~b! Identify, from the candidate event list associated w
detector2, all candidates whose start timest j 2

in detector

2 are consistent with the candidate signal arrival timetk1
in

detector1: i.e.,

utk1
2t j 2

u,2R. ~4.12!

Impose other consistency requirements, associated
û1,k1

and û2, j 2
, as are deemed appropriate.~In our model

receiver/source example we do not impose any other con
tency requirements.!

~c! The result is a list of candidate coincident events
detector2 associated with the eventk1 in detector1. The
list may contain zero, one or more than one event.~i! If it
contains no events, delete eventk1 from the list of candidate
events associated with detector1. ~ii ! If it contains exactly
one event~say, $r̂2, j 2

, û2, j 2
, t2, j 2

%), pair it with the

event $r̂1,k1
, û1,k1

, t1,k1
% from the list associated with

detector1 and add the pair to the coincident detection ev
list. Delete all events from the candidate list associated w
detector1 whose arrival times are so close that they wou
overlap with eventk1 ; similarly, delete all events from the
candidate list associated with detector2 whose arrival times
are so close that they would overlap with eventj 2 . Delete
eventsk1 and j 2 from their respective candidate lists.~iii ! If
it contains more than one event, choose the single evenj 2

with greatest strengthr̂2, j , pair it with eventk1 from the
candidate list associated with detector1, and add the pair to
the coincident detection event list. Delete all events from
candidate list associated with detector1 whose arrival times
t1,k are so close that they would overlap with eventk1 ;
similarly, delete all events from the list associated with d
tector 2 whose arrival timest2, j are so close that they
would overlap with eventj 2 . Delete eventsk1 and j 2 from
the lists associated with the respective detectors.

The result of applying this procedure to the output of t
6 detectors is a set of paired events, one from each dete
Each member of the set involves a pair of signal amplitu
~in this case, equivalent to S/N! and the best estimate of th
signal arrival time at each detector. The signal arrival tim
are, by construction, consistent with the incidence of a pl
wave on the detector pair.

It remains to combine the signal arrival times and amp
tudes in each pair to determine a single estimate of the si
amplitude, the signal arrival time at the midpoint betwe
the detector, and the radiation propagation direction. In
model problem, the natural estimators for the latter t
quantities are

T̂j5~ t1, j1t2, j !/2, ~4.13a!
1-12
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X̂j5~ t1, j2t2, j !/2R. ~4.13b!

The geometry of our model problem suggests no part
lar procedure for combining the separate signal amplit
estimates into an overall estimate for the network. One p
cedure that has been recommended@10,11# is to form the
final estimate as the root mean square of the point estima

Âj
25

1

2
~Â1, j

2 1Â2, j
2 !, ~4.14a!

where

Â6ª

r6
2

^s6 ,s6&C6

. ~4.14b!

This prescription will consistently overestimate the amp
tude of the signal. For any given observation of a signal w
amplitudeA0, the estimate in the detector6 is equal toA0
plus a random variable:

Â65A01n6 . ~4.15!

If the detector noise is Gaussian thenn6 is Gaussian. The
mean square of the point estimates is thus

Â25A0
21A0~n11n2!1

1

2
~n1

2 1n2
2 !. ~4.16!

The mean ofÂ2, or of Â, will thus be greater thanA0. A
similar problem will plague any attempt to form netwo
estimates of parameters from parameters that are overd
mined by the network~for example, network-wide estimate
of T or X from three or more detectors!.

An unbiased estimate forA0 is the straightforward aver
age of the parameter values, which we adopt here:

Âjª
1

2
~Â1, j1Â2, j !, ~4.17a!

where

Â6,kª

^g6 ,s6,û6,k
&

A^s6,û6,k
,s6,û6,k

&
. ~4.17b!

Several aspects of this procedure for detecting a sig
coincident in two detectors and estimating the parame
characteristic of the source deserve special attention.

(a) Candidate signals. Each event in a pair identified as
coincident detection stands on its own as a detection in
detector at the given threshold.

(b) Estimator bias. When the noise distribution is Gaus
ian, the error in the estimator of the signal arrival time a
particular detector is also Gaussian. Consequently it migh
thought that the errors in the estimatorsT̂j and X̂j are also
normal, since they arise from the combination of normal
rors in two detectors whose noise is normal, and that
estimatorsT̂j andX̂j are unbiased.~This is the claim made in
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@10,11#.! As discussed above, however, the errors in thet6, j
are correlated by the procedure we used to create the co
dent detection list: for radiation whose propagation direct
is nearly aligned with the axis between the detectors, ins
ing thatut1, j2t2, j u be less than 2R causes us to favor thos
signals for which the errors int1, j and t2, j are positively
correlated. The estimatorXj in Eq. ~4.13b! is thus biased to
underestimate the magnitude of the propagation direction
sine; additionally, signals whose propagation direction
sine is large~i.e., signals propagated along or nearly alo
the axis! have larger false dismissal fractions than sign
propagating normal to the axis.

(c) Signal strength. In the maximum likelihood test de
scribed above, signal strength is described by a single qu
tity: the S/N ratio, which is equal to the log maximum like
lihood. This measure of signal strength has the des
property that, as the detection threshold is increased, we
signals are no longer considered to be detected before s
ger signals. In the coincidence test, there are two differ
signal-to-noise ratios—one for each detector—and neith
by itself, is sufficient to determine that a signal is present
has been suggested@10,11# that the ‘‘natural’’ signal strength
for coincidence tests is the sum of the amplitude-squared
ratio for the different detectors: in this case

r̂ j
25 r̂1, j

2 1 r̂2, j
2 . ~4.18!

This definition has the undesirable property that ‘‘stronge
signals~i.e., those with largerr̂) are not necessarily mor
likely to be detected than weaker ones. In particular, as
detection thresholds are raised at the two detectors, sig
disappear from the coincident detection listwhen the weakes

member of the pair$r̂1 ,r̂2% falls below the threshold in the
6 detector, which is not whenr2 falls below threshold. If
we want signal strength to have the property that, as
detection threshold is increased, weaker signals disap
from the detection list before stronger ones then the app
priate measure of signal strength is theminimum ofr̂1 and

r̂2:5

r̂[min~ r̂1 ,r̂2!. ~4.19!

The detection rule described in this section is not the o
such rule in the spirit of coincidence that can be defin
Many variations are possible, corresponding to the manyad
hoc decisions that must be made, especially in identifyi
candidate events lists for the separate detectors and iden
ing ‘‘consistent’’ coincidences. The choices made here
among the simplest that lead to a well-defined procedure
identifying coincident events.

The ‘‘coincidence’’ inference procedure described he
was inspired by that in@10,11#; however, it differs from the

5When the several detectors in the network are not identical, o
not have coincident or isotropic antenna patterns, then the crite
that weaker signals are always less likely to be detected than s
ger ones becomes more difficult to determine.
1-13
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LEE SAMUEL FINN PHYSICAL REVIEW D 63 102001
procedure described there in several key respects. In par
lar, in @11# detection thresholds are not set separately on
signal-to-noise ratio in the detector, but on their quadrat
sum @cf. Eq. ~4.18!#. Additionally, the procedure describe
here involves several ‘‘consistency’’ checks~e.g., is the ar-
rival time at each detector consistent with their separatio!,
which @10,11# are able to avoid, without loss of discrimina
ing power, through a more clever choice of variables.

3. Gaussian noise

To assess the relative performance of the maximum l
lihood and coincidence inference rules we use Monte C
simulations to calculate the false alarm and false dismi
fractionsa andb as well as the distributions of the estim
tors T̂0 , X̂, andÂ0 for a typical signal.

An inference rule’s false alarm frequencyṄa is the lim-
iting frequency of ‘‘signal detection’’ when, in fact, no sig
nal is actually present. To determineṄa as a function of the
thresholdr0

2 we use a statistical model of the receiver no
to generate many pseudorandom instances ofg representa-
tive of receiver noise alone. The false alarm frequency
then the average number of ‘‘detections’’ per unit time.
convenient, dimensionless representation of the false a
frequency is the average number of false signals detected
sampleg@k#:

a[Ṅa / f s , ~4.20!

wheref s is the sample rate. We refer toa as the false alarm
fraction; by our procedurea is strictly less than or equal to
unity and can be regarded as the probability of a false de
tion on a per sample basis.

The false dismissal frequencyb of an inference rule is the
limiting frequency with which the rule reports that no sign
is present when, in fact, a signal is present; thus,b is a
function of the signal~or the signal population!. Another
way to think aboutb is as the detection efficiency: 12b is
the fraction of actual signals that the detection procedure
identify. To find b we generate many pseudorandom
stances of receiver noise and add to them a specific sig
The result is many instances ofg corresponding to observa
tions of that source. The inference rule will conclude thatno
signal is present in some fraction of these synthetic obse
tions: that fraction is the false dismissal fraction.

In the case of the maximum likelihood test,a andb are
controlled by adjusting the thresholdr0: asr0 is increased,
a is decreased. In the case of the coincidence test desc
in Sec. IV D 2,a andb are controlled by adjusting the tw
thresholdsr6,0 . Since, in our example, the two detectors a
identical, we set these equal to the samer0. The false dis-
missal frequency depends on the distribution of signals in
signal population; for simplicity, we assume that all sign
in the population have the same unknown amplitudeA0 and
sky locationX0, which are given in the first column of Tabl
III.

~More realistically the amplitudeA depends inversely on
the distance to the source, its orientation with respect to
detector, and other parameters. Corresponding to the so
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distribution in space and the other parameters is a distr
tion for A. Requiring thata not exceed a certain value sets
thresholdL0, regardless of this distribution. The false di
missal frequencyb, on the other hand, depends on this d
tribution in a straightforward way.!

Figure 2 shows 12b as a function ofa for the maximum
likelihood and coincidence detection procedures when u
to detect signals of this character in our model receiver.
these Monte Carlo simulations we count as a false dismi
all signal identifications~whether by the coincidence o
maximum likelihood test! where the identified start timeT̂
differs from the actual start time by more than the sign
duration, or where the identified sky positionX̂ differs from
the actual sky position by more than the signal duration
vided by the detector separation. This condition is necess
if ‘‘correct detections’’ by either rule are to include onl
those candidate events with nonzero signal power. For ala,
the maximum likelihood test has a substantially higher
tection efficiency 12b than the coincidence test; cons

TABLE III. Parameters describing the signal used in the e
ample calculation of the detection efficiency for the Gaussi
platykurtic, and leptokurtic noise examples.

Gaussian Leptokurtic Platykurtic

A0 2.5 3.5 3.0
X0 0.0 0.0 0.0

FIG. 2. The false alarm frequencya vs the detection efficiency
(12b) for the maximum likelihood and coincidence tests in t
presence of Gaussian noise. The parameters describing the s
to which the detection efficiency refers, are given in the first colu
of Table III. Note that the performance of the maximum likelihoo
test is everywhere superior to the performance of the coincide
test. The degree of superiority will vary with signal strength; ho
ever, the relative performance of the two tests will not. The supe
performance of the likelihood-based test is attributable to the wa
which the maximum likelihood test internalizes the detect
detector correlations that are present when a real signal inte
with the receiver. For more details see Sec. IV D 3.
1-14
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quently, its performance is substantially better than tha
the coincidence test.

The better performance of the maximum likelihood te
holds independent of the actual signal parameters, thoug
is more significant for weak signals than for strong ones
is, however, these weak signals—those just ab
threshold—that determine the overall efficiency of the det
tor. For astrophysical burst sources, which are most lik
distributed cosmologically and hence isotropically, the S/Nr
is inversely proportional to the source distance; con
quently, the number of sources ‘‘brighter’’ than the thresho
r0 is proportional tor0

23. Of these, a fractione are ‘‘dim-
mer’’ than re , where

re5r0 /~12e!1/3. ~4.21!

Half of all events whose expected S/N ratio is greater thanr0
have S/N ratio less than 1.26r0. Thus, if the false dismissa
fraction is large when measured for events at threshold
will be large when measured over all events.

Note also in Fig. 2 that the false dismissal fraction for t
coincidence test asymptotes to a nonzero value as the
alarm frequency increases~corresponding to a lower thresh
old r0): i.e., even at zero threshold there are false dismiss
The asymptote depends on the signal for which the fa
dismissal frequency is computed: it is lower for stronger s
nals and higher for weaker ones. The nonzero asymptote
the coincidence test originates in the process that selects
didate events in each detector. In the coincidence test, a
alarm event that occurs close in time to a real signal ev
can mask that real event if it has a higher S/N ratio@cf.
coincidence test step 1~d!#. The false alarm may be suffi
ciently different from the signal event it masked that, wh
an attempt is made to pair it with a candidate event in
other detectors~cf. coincidence test step 2!, the test con-
cludes that no signal is present at all; alternatively, the
may identify a signal at a point in the sky or with a start tim
so different from the actual location or start time that t
identification must be regarded as a false alarm and n
signal detection.

The same mechanism also operates in the maximum
lihood test~cf. maximum likelihood test step 4!; however,
that test is much less sensitive to this effect. In particu
noise events that would cause a masking false alarm in
coincidence test do not lead to a large S/N ratio in the ma
mum likelihood test since there the S/N ratio is suppres
when the detector-detectorcross correlationis not consistent
with a real signal.

The difference in the relative performance of the ma
mum likelihood and coincidence tests is directly traceable
the different ways in which each test requires consistenc
the response of the different detectors: in the maximum li
lihood test therelativeresponse of the assembled detector
required to be consistent with the incidence of a single w
front on the receiver, while in the coincidence test the in
vidual response of each detector is represented in just a
parameters and anad hocconsistency is imposed only on th
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relative value of these parameters,none of which sample the
correlated response of the several detectors in the receiv.

4. Correlated noise

The example just given is in the context of noise unc
related between the two detectors. How do the coincide
and correlation tests fare when the noise in the severa
ceiver detectors is correlated?

In the context of the coincidence test, correlated no
leads to an increase in the overall false alarm frequency
noise events leading to a candidate event in one detecto
correlated with noise events leading to a candidate in
other detector. No means of distinguishing between th
new false alarms, which arise from the noise cross corr
tion, and correlations arising from signals is possible in
coincidence test; consequently, the only way that the co
lated noise can be accommodated is by an increase in
thresholds applied to the output of each detector. This
creases the false dismissal fraction, leading to an ove
worsening of the test’s performance.

The likelihood function, on the other hand, directly a
commodates correlated noise in a precise manner. In the
text of the maximum likelihood test, noise correlated b
tween the detectors means that theC@k# are no longer
diagonal; however, as we have seen~cf. Sec. III E! this poses
no analysis problems in either principle or practice. By co
struction, then, the maximum likelihood test distinguish
interdetector correlations whose spectrum is characteristi
a real signal from interdetector correlations that are cha
teristic of correlated detector noise. Consequently, wh
noise is correlated between the receiver’s detectors we
pect the maximum likelihood test to perform still better th
the coincidence test.

E. Non-Gaussian noise

Equation ~3.18! describes the likelihood function onl
when the receiver noise is Gaussian. The noise in a
detector will be, at some level, non-Gaussian and nonstat
ary: some fundamental contributions to the noise may
intrinsically non-Gaussian, some contributions may be intr
sically Gaussian but appear non-Gaussian in the output
ing to nonlinearities in the receiver’s response, and so
contributions will reflect the environment that the detec
finds itself in.6 We have already shown that, lacking detail
knowledge of the higher order moments of the detector no
distribution, a normal distribution is the best approximati
to a noise distribution whose mean and variance are kno
~cf. Sec. III A!. We refer to this as the Gaussian
approximation likelihood function.

We expect that the maximum likelihood test will still ou
perform the coincidence test, since it is still the case that
correlation analysis described in Sec. IV D 1 is sensitive

6We distinguish between noise transients, which are gener
relatively short bursts, and nonstationarity, which we use to m
adiabatic changes in the statistical character.
1-15
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LEE SAMUEL FINN PHYSICAL REVIEW D 63 102001
the coherent response of a receiver’s component detecto
a real signal in ways that the coincidence analysis descr
in Sec. IV D 2 is not. Coincidence tests misidentify as s
nals coincident non-Gaussian noise events as readily as
do coincident Gaussian noise events, while a Gauss
approximation likelihood test rejects non-Gaussian eve
that are inconsistent with an incident plane gravitatio
wave as easily as it does inconsistent Gaussian events. T
we expect in general that the detection efficiency for fix
false alarm fraction will be greater for a test based on
Gaussian-approximation likelihood test statistic than fo
coincidence test based on the individual detector respon

To demonstrate this point, we simulate non-Gauss
noise according to two models—one strongly leptokurtic a
one strongly platykurtic—and apply the coincidence a
Gaussian-approximation maximum likelihood tests descri
in Secs. IV D 1 and IV D 2 to calculate the relationship b
tween detection efficiency and false alarm fraction for a fix
signal. A convenient model for a stationary non-Gauss
noise process is themixture Gaussian. A mixture Gaussian
distribution has the form

TABLE IV. Parameters describing the two mixture Gauss
models used to explore the maximum likelihood and coincide
tests’ performance for non-Gaussian noise in Sec. IV E. Also sh
are the mean and standard deviation of the distributions. The
responding PDFs are shown graphically in Fig. 3.

Leptokurtic Platykurtic

p (1/2,1/4,1/4) (61/192,131/384,131/384)
m (0,2,22) (0,2,22)
s (1,2,2) (1,1,1)
Mean 0 0
Std. Dev. 2.1213 1.9311
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P~xu$pi ,m i ,s i ,i 51, . . . ,N%!5(
i 51

N

pi

exp@~x2m i !
2/2s i

2#

A2ps i

,

~4.22a!

(
i 51

N

pi51, ~4.22b!

pi.0. ~4.22c!

By appropriate choice of the constantspi , m i , and s i a
mixture Gaussian can approximate any uncorrelated n
distribution through its first 2N moments.

The two distributions we model here are drawn from t
mixture Gaussian distributions described in Table IV. T
corresponding probability distribution functions are show
graphically in Fig. 3. Note that each is strongly no
Gaussian, though in different ways.

Figures 4 and 5 show the detection efficiency as a fu
tion of the false alarm frequency for the coincidence a
Gaussian-approximation maximum likelihood tests for t
leptokurtic and platykurtic distributions, respectively. Th
detection efficiency and false alarm fractions were de
mined by Monte Carlo simulations. The signal paramet
used in the detection efficiency simulations are given in
second and third columns of Table III. The conclusi
reached earlier—that the maximum likelihood test has a b
ter efficiency for a give false alarm rate than the coinciden
test—isnot sensitiveto the approximation of Gaussian nois
There is no qualitative difference between Figs. 4, 5, and
which summarize the relative characteristics of these
tests when the noise is strongly non-Gaussian or Gaussia
all cases the detection efficiency of the~Gaussian-

e
n
r-
n
r-
n-
s,
FIG. 3. The probability distribution functions
for the leptokurtic and platykurtic non-Gaussia
noise models used to test the relative perfo
mance of the coincidence and Gaussia
approximation likelihood tests. For more detail
see Table IV and Sec. IV E.
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approximation! maximum likelihood test is greater than th
of the coincidence test at the same false alarm fraction.
principal reason for this superior performance is the sa
here as in the case of Gaussian noise: the response of tw
more detectors to incident radiation is correlated, and
Gaussian-approximation maximum likelihood test is sen
tive to the expected interdetector cross correlations, redu
the S/N when the correlations are not consistent with wa
from the same source.

V. CONCLUSIONS

The output of several gravitational-wave detectors can
combined, in a form of aperture synthesis, to form a sin
more sensitive gravitational-wave detector. Here we desc
such an analysis, based on the likelihood function appro
ate to the detection of a burst gravitational-wave source
known wave form in a network of gravitational-wave dete
tors. This likelihood analysis of the joint output of sever
detectors leads to the optimal matched filter for the outpu
the multidetector network.

The analysis presented here stands in contrast to ‘‘coi
dence’’ analyses, where the output of each detector is stu
separately to arrive at a list of events which are then co
pared between the detectors to determine if there are

FIG. 4. The false alarm fractiona vs the detection efficiency
(12b) for the Gaussian-approximation likelihood and coinciden
tests in the presence of strongly leptokurtic non-Gaussian no
The noise is described by the mixture Gaussian model whose
rameters are given in the first column of Table IV and the sig
used for calculating the detection efficiency is described in Ta
III. Figure 3 shows the noise probability distribution function~PDF!
graphically. Note that, even when noise is substantially n
Gaussian, the Gaussian-approximation likelihood test has sig
cantly better performance than the coincidence test. The superi
is attributable to the fact that real signals are correlated between
detectors, and the Gaussian-approximation likelihood test, e
when the noise is not Gaussian, is still sensitive to those corr
tions. For more discussion see Sec. IV E.
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coincidences, which may be taken to be evidence for gra
tational waves.

The critical difference between these two analyses is
the likelihood is sensitive to the coherent response of
detector network to the incident signal. This leads t
likelihood-based analysis to have greater discriminat
power than a coincidence analysis, as shown by a gre
detection efficiency to false alarm frequency ratio.

The importance of interdetector correlations is clearly i
portant when looking for a signal; however, it is also impo
tant when the noise in two or more detectors is correlat
Such correlations are naturally accommodated in the opti
filter developed here; however, they cannot be naturally
commodated in a coincidence analysis which, by its v
nature, ignores interdetector correlations.

The likelihood function derived here begins with an a
sumption that the detector noise is Gaussian stationary; h
ever, the results obtained are much more general. We s
that treating non-Gaussian noise as if it were Gaussian is
a very well-defined sense, the most appropriate choice if
only available characterization of the noise is through
mean and correlation function. We show in a series of
merical simulations that, even when the noise is stron
non-Gaussian, the likelihood test, treating the noise as
were Gaussian, outperforms the coincidence test as meas
by the ratio of detection efficiency to false alarm fraction

A naive estimate of the computational cost of computi
the matched filter for a network of detectors might sugg
that the cost is proportional to the cube of the length of
time series and the number of detectors. If the calculatio
properly organized, however, the cost is seen to be stri
proportional to the duration of the signal being sought and
more than the square of the number of detectors in the
work.

FIG. 5. The false alarm fractiona vs the detection efficiency
(12b) for the Gaussian-approximation likelihood and coinciden
tests in the presence of strongly platykurtic non-Gaussian no
The noise is described by the mixture Gaussian model whose
rameters are given in Table IV and whose PDF is shown gra
cally in Fig. 3. For more discussion see Sec. IV E.
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The work described here can be considered aperture
thesis specialized to the problem of searching for signal
finite duration whose wave form is known. The problem
searching for stochastic signals remains to be studied. T
aperture synthesis—searching for fringes in the interfe
output of several gravitational-wave detectors—may well
the most sensitive means of searching for the truly unan
pated source and is a particularly promising direction
future research.
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