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Aperture synthesis for gravitational-wave data analysis: Deterministic sources

Lee Samuel Finh
Center for Gravitational Physics and Astronomy, The Pennsylvania State University, University Park, Pennsylvania 16802
(Received 10 October 2000; published 16 April 2001

Gravitational-wave detectors now under construction are sensitive to the phase of the incident gravitational
waves. Correspondingly, the signals from the different detectors can be combined, in the analysis, to simulate
a single detector of greater amplitude and directional sensitivity: in short, aperture synthesis. Here we consider
the problem of aperture synthesis in the special case of a search for a source whose wave form is known in
detail: e.g., a compact binary inspiral. We derive the likelihood function for the joint output of several detectors
as a function of the parameters that describe the signal and find the optimal matched filter for the detection of
the known signal. Our results allow for the presence of noise that is correlated between the several detectors.
While their derivation is specialized to the case of Gaussian noise we show that the results obtained are, in fact,
appropriate in a well-defined, information-theoretic sense even when the noise is non-Gaussian in character.
The analysis described here stands in distinction to “coincidence analyses,” wherein the data from each of
several detectors are studied in isolation to produce a list of candidate events, which are then compared to
search for coincidences that might indicate common origin in a gravitational-wave signal. We compare these
two analyses—optimal filtering and coincidence—in a series of numerical examples, showing that the optimal
filtering analysis always yields a greater detection efficiency for a given false alarm rate, even when the
detector noise is strongly non-Gaussian.
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[. INTRODUCTION later brought together and compared for coincidences and a
Several large interferometric gravitational-wave detectorsingle estimate of the parameters characterizing any single
[1-3] will soon be operating, perhaps to be joined by severakvent determined. The key difference is that, in “coinci-
as, or more, sensitive acoustic resonant detefter6] in the  dence,” some signal parameters are determined separately at
years to come. There are several reasons for wanting to coreach detector in the network, without regard to the other
bine in some way the data from these detectors in order tdetectors, which are later combined to form a single estimate
draw inferences about the presence of a signal or the pararof the signal characteristics. For example, the events may be
eters that characterize it: for example, observations of a sigeharacterized in each separate detector via likelihood tech-
nal with several detectors increase the degree of confidenggques and the “coincidence” determined through the com-
in the detection and characterization of a signal, and the usgination of the individually determined signal-to-noise esti-
of several geographically separated detectors can allow oneates, as in10,11].
to disentangle source paramet@g., sky position, polariza- An analysis based on the network likelihood, described
tion) that are degenerate when observed in a single detectdtere, differs from a coincidence analysis owing to the sensi-
The signal response of both interferometric and acoustitivity of the network likelihood to interdetector correlations.
detectors is sensitive to the phase of the incident gravitaThe response of a network of gravitational-wave detectors to
tional waves; consequently, we have the opportunity to coman incident plane wave is phase coherent. This phase coher-
bine or interfere the response of several detectors, synthesiegnce is captured in the likelihood function describing the
ing a single, effectively larger and more directionally output of a network of detectors; however, it is absent in a
sensitive detector: in short, aperture synthesis. Here we deoincidence analysis. This leads the network-likelihood
scribe a likelihood-based analysis for the detection of a siganalysis to have an increased detection efficiency for a given
nal of known, parametrized form in the joint output of a false alarm rate when compared to a coincidence analysis
network of detectors. Such an analysis makes the most effesearching for the same signals and based on the same detec-
tive use of the information available from each detector intor output.
exactly the same sense that the optimal filter described in We demonstrate this directly in a set of three numerical
[7-9] is best suited for detecting or characterizing radiationexamples, based on a network consisting of two separated
incident on a single detector. detectors. In each example we search for a signal of known
The analysis described here stands in contrast to whatwave form arriving at an arbitrary time and from an arbitrary
will characterize as a ‘“coincidence” analysis, whereby direction. Two different search algorithms are investigated.
“events” are identified and/or characterized independentlyThe first is based on the maximum of the likelihood of the
in separate detectors and these independent lists of events §omt detector output; the second is based on the analysis of
coincidences between the optimally filtered output of each
detector, considered separately. The three examples differ in
*Also at the Department of Physics and the Department of Asthe character of the simulated noise: in the examples the
tronomy and Astrophysics, The Pennsylvania State University, Uninoise is either normal, strongly leptokurtic, or strongly
versity Park, Pennsylvania 16802. Email address: Isfs@psu.edu platykurtic. In all cases the likelihood analysis described here
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gives a substantially larger detection efficiency for a fixed TABLE I. Nomenclature.
false alarm rate.

Most previous work on multidetector gravitational-wave Functions Sequences
data analysis has focused on first estimating signal character- Time Frequency Time Frequency
istics separately in the individual detectors and then bringing domain domain domain domain
those separate estimates together to form a single, improveéjcalar a(t) - a[k] -
estimate of the signal character. Of these, the most complete f(f) f‘[k]
and detailed study is given if10,11. Here we consider a Yector a(t) a(f) a[k] a[k]
strictly coherent treatment of a set of detectors by formingMatrix A(t) A(f) ALK] Alk]

their joint likelihood and making detection and parameter

inference decisions based solely on this joint likelihood. The

work described here parallels recent, independent work by In this paper we will have occasion to refer to scalar-,

Bose and collaboratofd 2,13. It goes beyond that work by vector-, and matrix-valued time series. To distinguish be-

allowing from the beginning detectors that are not coincidentween these different cases, we use a lowercase italiqéace

and that the noise between pairs of detectors may be corré a) to denote scalars or scalar-valued sequences, a lower-

lated. case boldface italidas ina) to denote vectors or vector
Section Il introduces terminology and nomenclature usedgequences, and an uppercase boldface itaidnA) to de-

throughout this work. In Sec. llI the likelihood function for note matrices or matrix-valued sequencésctions (see

the joint output of a set of gravitational-wave detectors isTable ).

derived. The form derived here is exact when the detector

noise is normal; however, we show that it is also the best C. Discrete Fourier transform

choice(in the sense of making the fewest additional assump-

tions about the noise statistjowhen only the detector cross . .

and autocorrelations are known. In Sec. IV we describe an&orm (DFT) can bg found in the Il'gerature. We adopt the

present the results of several numerical examples, meant Foonventlons described in this section. If you compare the

compare likelihood- and coincidence-based approaches fiotation used here with other conventions found in the lit-
erature, it will be to your advantage to pay careful attention

data analysis. Finally, in Sec. V we summarize our conclu- o . .
sions y y to the normalization, index range of the input and output
' sequences, and sign convention of the transform kernel.

Il. NOMENCLATURE Suppose thax[k] is a sequence of coefficients of length
N, with initial indexky. The DFTX[k] of the sequencg[ k]

is the periodic sequence given by

While gravitational-wave detectors are analog devices,

Many different conventions for the discrete Fourier trans-

A. Continuous and discrete time signals

the detector output, including diagnostic channels containing ~ o ik

physical and environmental monitors, will be quantized in x[il= k:ZK X[kl , (213
magnitude and sampled discretely in time. Data analysis will °

operate exclusively with this discrete time series. Properl here

handled, quantization of the continuous amplitude contrib-

utes a small, white, additive component to the detector noise oy=exp — 2mi/N) .10

[14] [Chap. 3.7.3 which we will not discuss further here.
When certain other conditions hold, the continuous in, . . .

time and discretely sampled time series are equivalent and the NFh root of unity. (Note our use of the engineering

fully interchangeable. In this paper we have occasion to refefonvention for the transformatl_gn kernel. _

to both discrete and continuous time representations of the 1he kernel of the transformy’ satisfies an orthogonality

same underlying process. To distinguish between these twigationship,

representations, we refer to the continuous time representa- No1

tion of the procesx by x(t), wheret denotes continuous 1 kn. —nl

time, and the discrete time representation of the same process 5kl:ﬁ nzo WN O 22

by x[ k], where the integek denotes the sample number.

) . ask and| run from 0 toN—1; consequently, the DFT is

B. Scalar-, vector-, and matrix-valued functions and sequences i vertible. The inverse DFTIDFT) is given by

For our purposes, the output of a single gravitational-
wave detector is a real, scalar-valued time series. An impor- . _
tant purpose of this paper is to discuss data analysis for a x[n]=g > X[klog"™. (2.3
gravitational-waveeceiver by which we mean a logical col- k=0
lection of detectors. The output of a receiver is a vector- ) o )
valued time series. The elements of the vector at any giveflote that the IDFT is also a periodic sequence. In particular,
sample are the detector outputs at the corresponding momeifitx[k] is the DFT of a sequenck[j], thenx[k] is the
of time. periodic extension ok[j].

N—-1
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A wealth of useful results and insights into the DFT/IDFT  The output of detectow is the scalar-valued time series
pair are found i 15]; additionally,[14] discusses the use of g,. The outpug of a receiver composed of several detectors
the DFT/IDFT pair in digital signal processing. a, ...,w is the direct sum of the output of the individual

detectors:

D. Terminology

0=9,D---Dg,- (24)

A receiveris a collection of one or more individual ) . o
gravitational-wavedetectorswhose output is analyzed col- ~ 1h€ receiver response to an incident gravitational wave
lectively to draw a single set of inferences regarding the? depends on parametess that reflect both the intrinsic
presence and properties of radiation sources. The eIementsﬁj"t‘e)pert'es of the source and the relationship of the source to

the receiver are the detectors, which need not be colocate receiver(i.e., distance and orientatiprFor example, if
e source is a stochastic gravitational-wave signal, then

co-oriented, or of |_dent|cal d?s'gn* sensitivity, or bandw'dth'describes the signal spectrum and anisotropy; alternatively, if
For example, a single receiver might consist of the thret?he source is an inspiraling compact binary system, ten

Lagaé .Interfferometrlc gLawtandonaé quve fObservat.orydescribes the binary’s component masses, spins, and orbital
( ) interferometersa 4 km and a 2 km interferometer in characteristics. In this paper | discuss analysis for determin-

Washington State, @ha 4 kminterferometer in Louisiana igtic signals: i.e., signals like those that arise from binary
[2], the viRGO interferometer(located in Pisa, Italy3]), the  jngpiral or rapidly rotating nonaxisymmetric neutron stars,
GEO-600 interferometellocated in Hannover, Germany whose wave forms can be accurately described in terms of a

[1]), the TAMA-300 interferometeflocated in Tokyo, Japan small number of parameters that characterize the source and
[16]), the ALLEGRO detectofa resonant mass detector 10- jts grientation with respect to the detector.

cated in Louisiand17]), the AURIGA detector(a resonant

mass detector located in Padua]), the EXPLORER detec- Ill. THE LIKELIHOOD FUNCTION
tor (a resonant mass detector located in Gern&®z20Q), and
the NAUTILUS detectofa resonant mass detector located in
Frascati[20,21)). A gravitational-wave receiver is thus a  Let Hy, andH, denote alternative, exclusive hypotheses

A. Introduction

logical grouping of gravitational-wave detectors. regarding the presence or absence of a signal:
|
H = proposition that the receiver output consists only of noise, (3.13
H 4= proposition that the receiver output consists of sigealsuperposed with receiver noise, (3.1b

where @ represents a set of parameters that differentiate sigundamental noise sources in gravitational-wave detectors
nals in the detector: for example, if the signal is from anare all characterized by Gaussian stationary statistics, the re-
inspiraling binary neutron star or black hole system, the paalities of an actual implementation—e.g., detector imperfec-

rameters include the component masses and the source digsns and environmental couplings—guarantee that the actual

tance from and orientation with respect to the receiver. Ifygise character will be neither Gaussian nor stationary. Char-
this section we derive the likelihood functioh(g|d) de-  ,cerizing the detector, which includes identifying instru-

scribing the probability thag is observed under the hypoth- \,oial and environmental artifacts in the “gravity-wave

esisH,. b ; : ;
. . . . channel” and regressing or removing these artifacts to the
? . X o
Why the likelihood function? Recall that the likelihood is greatest possible extent, is a necessary prerequisite to the
any function that, viewed as a function 6 is proportional analysis of the data for gravitational waves. We assume here
to P(g/H,), the probability of observing given the fixed that these artifacts have already been dealt with as best pos-

hypothesisH,. In a B [ lysis, th li - . o . .
m%ggtofilﬁ; rﬂa ct2 rii@ (aHyjsgl)anthaengr%St;Zb}Iitf/ g? ?h elsh;opgteht_er sible, so thag contains no identifiable instrumental artifacts,

esis given the observation. Through the Bayes theorem, thitansient or otherwise, and that the_noise is s_tationary on time

quantity is directly related to the likelihood. In frequentist Scales long compared to the duration of a s@nal.

statistical analysis the goal is to determine the improbability, EVen o, the noise will remain non-Gaussian and nonsta-

of observingg under the alternative hypotheses that the sigfionary. As long as the evolution of the noise character is

nal is absent or that it is present, or to establish confidenc@diabatic—i.e., it varies only on time scales long compared

intervals—a range of hypotheses, for which the observa- to the signal duratllon a_nd .the.tlme required to estimate the

tion has, in a certain sense, high probabilig2]. In either moments of the noise distribution—we can treat the noise as

case the likelihood plays a central role and no other function

of the observation and hypotheses offers the prospect of

stronger statements. ICreighton[23] considers the opposite case, where the detector
In our derivation of the likelihood we assume that thenoise is strongly contaminated by strong, Poisson-distributed noise

noise in each detector is Gaussian and stationary. While theursts.
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stationary on any important subinterval. It is also an excelthan we actually know and, consequently, would lead us to
lent approximation to treat the noise as Gaussian. To seeverstatethe accuracy of any conclusions we reach.

why, focus on a stationary noise process but without any We choose a particular normalization of the likelihood
assumption on its distributiof’(x). Suppose, by observa- function as the ratio oP(g| 6) to the probability thag arises
tions on the noise, we estimate its mgan(x) and variance from detector noise alone. The signal is assumed to be a
o2 [(x— )2]. What probability distribution makes the few- plane gravitational wave incident on the detector array, so
est assumptions about the process while remaining consistefiat the detectors respond to the signal coherently. If the
with this information? This information-theoretic question NyPothesized signal is characterized by paramete(s.g.,
has a definite answer: it is the probability distributi(x|1) ~ Pinary system chirp mass, orientation, distance) éften we
with maximum entropy, subject to the constraints on itsdenote the likelihood function (g|6) and regard it, for fixed
mean and variance: i.e., the distributiB(x|«, o) that maxi- I‘0€C€IV€I‘ outpug, as a function of the signal parametrization

mizes the functional

The derivation ofA(g|#) for a deterministic signal in a
% multidetector receiver parallels closely the derivation of
I(P):=— f_xdx P(X|u,0)InP(X|u,0) A(g|6) given in([7], Sec. 1) for a single-detector receiver;
however, in the generalization several new elements arise
o o and are discussed here for the first time.
—)\oﬁwdx P(X|M-0)—>\1ledxxp(x|ﬂv(7) In Sec. IIB we walk through the construction of
P(g|Hy,Z), the probability of observing in the absence of
o ) any signal. Evaluation oP(g|H ,Z) (the probability of ob-
_)\Zﬁmdx(x_ﬂ) P(x|u,0), (32 servingg when the signal characterized iyis presentand
the likelihood function itself proceed much more quickly in
Where )\0, )\17 and )\2 are the Lagrange mu|tip|iers corre- Sec. IlIC. In Sec. Il D we describe a deteCtion test based

sponding to the constraints on the overall normalization ofolely on the maximum of the likelihood and identify the

the probability, the mean, and the variance. The solution t&ignal-to-noise ratio with the maximum of kover 6. In
this variational prob|em(when X is assumed to be un- Sec. Il E we discuss how the likelihood function can be

boundedl is evaluated quickly and efficiently, which is critical to its use
in real data analysis.
exd (x— u)?/20?]
2 1

P(x|1)= (3.3

200 B. Probability that g is receiver noise

: T . . Central to the evaluation ok (g|6) is the evaluation of
i.e., the normal distribution. Similarly, if we have a corre- ) (g16)

X (g|Hq,Z), the probability that the receiver outpgtis an
grerilstri%%ess known to us only through its mean and autoéxample of receiver noise. (HereZ denotes other, unenu-

merated conditionsThe formulation of this probability den-

e T — sity for a single detectofscalar-valued time serieg) was
Clk=1T=0dj 1= w (XTI =), (3.4 discussed if7]; in this section we review that discussion,

the distribution that makes the fewest assumptions about trEtting the stage for our treatment of the more general prob-

process beyond these is the multivariate normal distributiodeM of a multichannel receivevector-valued).

P{X[j 1} x,C) 1. Single-channel time series
Np—1 Focus attention first on the single-channel output of a
ex;{ _Z E (XK= m)||C Y| (X[1]1— ) single detector. When the detector noise is Gaussian and sta-
2 k=0 tionary, any single samplg| j ] of detector noise is normally
- (2T def|C]] » (39 (istributed with a mean and variance independent of when

the sample was taken. Without loss of generality we can

where{x[k]} is a set ofN; samples indexed by the sample assume that the ensemble meavanishes, in which case the
times and the matrixC has components probability that a samplg[j] of detector output is a sample
of detector noise is

||Cl|jk:=Clk—j]. (3.9
Thus, modeling(correlated noise as arising from émuilti- P(ali1IHo.T)— exyl —g[j1?/207] (374
variatg normal distribution is simultaneously the best and gLiIFo. 2 mo ' '

most conservative assumption that one can make when all
one knows is the noise mean atmb)variance.

Put another way, if our only knowledge of the noise char-
acter is its first and second momerii®., the mean and
correlation function or power spectrynthen treating the .
noise as anything but normally distributed is to assunoee o?=n? (3.7b

The varianceo? of the distribution is the ensemble average
of the square of the detector noise:
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Equation(3.7a@ holds true for each samplg{j]; conse- where the matrixC[0] is the ensemble average of the outer
quently, the joint probability that the lenglti; sequencgis  product of a sample of receiver noise with itself:
a sample of detector noise is given by the multivariate

Gaussian distribution ClO]=n[j]®n[j]. (3.12h
q N1 As suggested by the selection indp®], C[O] is one
ex;{ 3 E g[j]‘ c! J-kg[k]} element of a sequence of correlation matrices. Each element
P(g|Ho,Z)= 1k=0 _ of this sequence arises from the ensemble average of the
’ J(2m)NTdet|C]] outer product of receiver noise with itself at a different time.

(3.8)  Since the receiver noise is stationary, the ensemble average
depends only on the time difference; consequently,
In place of the variance that appears in the exponent of
Eq.(3.79 is the matrixC™ 1. As P(g|H,Z) is a probability Clj—k]=n[jl®n[k]. (3.13
soC™ ! is positive definite and invertible. The matiGgives i _
the covariance of the noise process: it is equal to the enlust as the DFT of the autocorrelation sequence for a single

semble average of the product of the detector noise at diffe/detector is related to its noise power spectral density, so the
ent samples: DFT of C[K] is related to its noise power spectral density. In

this case, the power spectral density is a matrix-valued func-
n[jIn[k]=||C| ik - (3.9  fion of frequency, with the diagonal components equal to the
power spectral density of the noise in a particular detector
Since the detector noise is also assumed to be stationargnd the off-diagonal components related to the cross-spectral
||Cl|jx can depend only on the differenge k; correspond- ~density of the noise in two different detectors.
ingly, C is constant on its diagonals: i.e., it is Teoeplitz Equations(3.12 hold true for each individual sample of
matrix. SinceC is Toeplitz it is characterized completely by receiver outpugyj]; consequently, the joint probability that
the scalar sequenagk] of length 2N;—1 whose elements the lengthN; sequence is a sample of receiver noise is also

are the first row and column d: a multivariate Gaussian:
Nt—1
cli—kl:=|/Cl[jk- (3.10 1S B
. ext =5 2Ll (©) Y[ dlk]
This sequence is the noise autocorrelation. The DFG[ ki P(gHo,Z)= I ,
is related to the noise power spectral density. \/(ZW)NTNDDNT(C)

(3.143
2. Multichannel time series

. . - whereTy_(C) is ablock Toeplitz matrixi.e., a matrix whose
Now consider a receiver consisting Mf, component de- NT( ) P :

tectors, where the receiver output isp-dimensional time ~ e'ements| Ty (C)[; are themselves Toeplitz matrices:
series. Without loss of generality assume that, while the dif-
ferent detectors that comprise the receiver may be sampled at
different rates, all the detector outputs have been resample . . . :
so that the interval between san’?ples in all detector dF;t_ ach “element” of Ty, (C) 'S. thus. anN,?XND matrix. The
streams isAt. The receiver outpug is a multichannel time  inverseTy (C)~* of Ty (C) is defined in the usual way:
series: a vector-valued sequence consisting of the direct sum
of the outputg, of the individual detectors. Similarly, the 4
receiver noisen is the direct sum of the noise contributions Ojiclng = 20 1T (O] [T (Ol (3.149
n, to the output of theNy detectors:

T (O |je=Clj =K. (3.14b

Np-1

Np—1

olk]=gi[K]&® - - - @ gn [KI, (3.113 = > C[j— 11 ITn(C) Yl
(= T

n{k]=ny[k]&®- - - @ny [K]. (3.140

(.11  where - indicates the usual matrix product betwebl

) ) _ X Np matrices andy_ is theNp X Np unity matrix.
Focus attention on a single sample of the receiver output: Finally P

i.e., the vectog[j]. Since the receiver noise is Gaussian and
statpnary, .the propablllty that sampgﬁ!] is a sample of Dy.(C)=detTy.(C); (3.146
receiver noise is given by the multivariate Gaussian T T

ie., DNT(C) is the determinant OTNT(C), regarded as an

1
exp{— Eg[j]C[O]‘l-g[j] NtNp X NtNp matrix.
P(g[j1|Ho,T)= The argument of the exponential in E§.149 takes the
' J2m)Nodef[C[O]]] general form of a symmetric inner product of two vector-

valued sequences with respect"ﬂt@T(C)*l. Terms like this
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occur frequently enough that it is convenient to introduce aad hocassumptions are required to make the procedure defi-

special notation for them: in particular, we define #an-  nite [22,24—26. When our goal is simply to decide whether

metricinner product a signal is present a common candidate procedure, recom-
mended by both analysi®7] and intuitive appeal, is the

Nt maximum likelihood test. Let

(ab)c=g X [alj]-||Tn (O)lj-bik]
J.k=0 ©®=domain of physically permissible, (3.199

+0[j1-[| Ty, (C) ™[~ al k1] (3.19
Ama(@)=maxA(g|6), (3.190
so that )
_ e —(99dl 6(g) =parameter® for which A(g|6)=A a(9),
P(gl07)= 2o, (O (3.1 3100

and choose a threshold,. Given an observatiog, evaluate
Amad0). If A eXceedsA, then conclude that the signal

Consider the case of @eterministic Signalj.e., a Signal Corresponding tcAﬂ(g) has been observed.
whose time series is known up to paramet@ré\n example If ®is not on the boundary @, then the maximum value

is the gravitational-wave sigr_1a| from a Coalescmg bin_a_ry SYSaf the likelihood function is also an extremum &fg| 6) and
tem, where the parameters include the binary’s position an8

orientation on the sky, component masses and spins, and -
distance. In A(g|6)=(mj,mg). (3.20
Distinguish between the signal itself, which we denote
h(6), and the receiver response to the signal, which we de-
notem(d). Assume that the receiver response is linear in the _ _ T o
applied signal; consequently, the probability of observing _ A haive evaluation of(a,b)c following its definition in
when the signah(8) is present on the receiver is the same asEd- (319 has a high computational cosfl) Sglvmg the
the probability of observing—m(#6) as a sample of receiver linéar systemTy, (C)-x=b requires O[(NtNp)*] opera-

C. The likelihood function for a deterministic signal

E. Evaluation of {(a,b)¢

noise: tions; (2) evaluating the inner producta-x requires
O(N1Np) operations. The operation count for this evalua-
P(glHg.Z)=P(g—m(6)|Ho.7) (3178 tion of (a,b)c is dominated by the solution of the linear
system in the first step and would appear to be prohibitive,
exd —{(g—m(6),g—m(6))c] even if could be done accurately, for all but the shortest time
\/(ZW)NDNTDNT(C) : series.

(3.17H In fact (a,b)c can be evaluated in at moS(N3N+) op-

' erations. To do so requires only that we preprocess the input
The likelihood function is thus data through a chain of between one and three linear filters.
In this section we describe these filters and the inner product

A(gl0)=exd 2(g,m(0))c—(m(8),m(0))c], (3.19  of the filtered time series.

where we have exploited the symmetry of the inner product 1. The linear filter

() [cf. Eq. (3,'15)]' . o , . The desired preprocessing is conveniently described as a
The sole influence of the signal on the likelihood is owing sequence of three linear filters. The first filter simply whitens
to the first term in the argument of the exponential in EQ.geparately the output of each detector in the receiver. The
(3.18, (g,m(6))c- This term is a linear filter applied to the gecond forms linear combinations of the whitened detector
observationg. That linear filter is the Wiener optimal filter outputs to form a basis of “pseudodetectors” whose cross

for a gravitational-wave receiver. correlations vanish, while the third whitens the pseudodetec-
tor output. Thus, the first filter can be formed and applied
D. The maximum likelihood test without reference to the other detectors, while the second and

Othird filters are the identity if the cross correlation between
distinct detectors vanishes.
(a) First filter: Whiten detector noiseUsing any conve-

In a Bayesian analysis, the product of the likelihood an
thea priori probability densityP(|Z) is proportional to the

a posteriori probability P(8|g). From this probability den- . : ;
sity one can decide with what confidence one believes that gient technlque_EZB] whiten _the output of each detector. De-_
fote with a prime the whitened detector outputs and their

signal has been observed or construct Bayesian credib lat h ded ¢ : .
sets—regions of parameter space encompassing a given frd©SS correlation when regarded as part of a receivernie.,

tion of the total probability tha takes on a given value. 'S the whitened noise from detectorand
In a frequentist analysis confidence intervals and upper
limits are constructed from the likelihood, although certain C'[j=k]=n'[j]®n'[K]. (3.2)
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Write the cross-spectral-density Toeplitz mati@X in XNp Hermitian matrix. Consider the sequence of unitary

block form as transformationdJ[ k] such that
Chi Cp ... Gy Urk1t-C'1k]- Ok] (3.26
Cél Céz - CéND . . . .
C' = ,  (3.223  are each diagonal. This sequence exists as long as the noise

is not fully correlated in any pair of detectors, at any fre-
quency. Additionally, the symmetries & guarantee that
Urk] equalsU'[—k]. Consequently, the inverse discrete
where Fourier transform of the sequenEQk] yields a real linear
filter U[k] that, when applied to the vector-valued receiver
C/[1—m]=n/[1In{[m]. (3.22n  noisen’, yields an outpun” whose cross correlation is di-
agonal: i.e.,

C C C\
Npl “Np2 -+  “NpNp

Focus on the diagonal blocks,, which are the Toeplitz o
matrices corresponding to the autocorrelation of the output nitinm]=0 if j#k (3273
of detectork. These blocks are constant multiples of the
unity matrix, the constant being simply the mean-squaréVhere
noise amplitude in detectds; oZ. Absorb this constant into N
the whitening filter for each d_etector so that the wh|tened n”[k]='z ULjl-n'[k—j]. (3.27h
output has mean-square amplitude unity andGfeare just =N
the unity matrix.

Focus attention now on cross correlations, which are rep- (c) Third filter: Final whitening Following the formation
resented by the off-diagonal Toeplitz matrices in E3223. of a pseudodetector basis thnér( will not necessarily be
If the cross correlation between the detector outputs is conyhite. The final step of preprocessing is to whiten separately
sistent with zero then we are done with the preprocessing. lthe output sequence corresponding to each pseudodetector,
on the other handC’[j —k] is nonzero forj#k, then we apsorbing the overall normalizatiar{” into the filter so that
have two additional preprocessing steps, which we describgye rms output of each pseudodetector is unity. This final
below. step, since it does not involve combining the output of the

(b) Second filter: DiagonalizatianThe vectorg’ corre-  different pseudodetectors, does not change the vanishing
sponds to the direct sum of the output of the several detectoggoss correlation of the output of different pseudodetectors.
that form the netWOfk, after their OUtpUt has been Separately Fo||owing this final preprocessing we are left with the
whitened. In this Step we form a new “basis” of detectors receiver Outpug’” whose noise Component has the desired
whose noise is uncorrelated: i.e., we find the linear filterproperty
described by the coefficient§ k] anda] k] such thamn”,

Np Na nf”[']@)nﬁ/[m]: SikOim » (3.29

: [k]::jgo blj]-n ““”‘;1 aj]-nk=l, i.e., the noise in each pseudodetector is white, and the noise
(3.23  in different pseudodetectors is uncorrelated.
Since all of the operations involved in this preprocessing

has the property are linear filter operations the computational cost of process-
ing a lengthN; sequence of network outpgtto g” is strictly
nj’[l]@n{é[m]=C]’[l —m] 8. (3.29 proportional toN;. The order of the filters involved iside-
pendentof Nt. The determination of the filters themselves
This transformation, applied tg', yieldsg". may be a somewhat time-consuming operation; however,

Standard system identification techniqug8] can be since the receiver noise is stationary on time scales long
used to find the appropriate transformation. For purposes gfompared to the signal duration these filters need to be found
illustration only we describe one way to find such a transfor-or modified very infrequently.The first andif needed third
mation, involving just the sequente Focus on the discrete linear filter operations are done separately for each detector

Fourier transform of2'[k], or pseudodetector; correspondingly, they involve a factor of
Np . Finally, the second transformation, whici needed
— N ‘ forms the basis of independent detectors, is reéJ[)NzD)

C’[k]=n2N C'[jlwhy 1, (3.25 linear filters. Hence, evaluation of the linear filter on a se-

where we have choseN large enough tha€’[ k] vanishes
—; 2Were this not true then we would fail also to satisfy the basic

for k>N. The quantityC' is the tWO—SId%dlscrete Cross- assumptions that allow us to construct the optimal filter for a single
spectral density oih’. Each componenC’[k] is an Np detector.
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quence of lengtiN; requireg@(N%NT) operations generally, constraint, consideNp detectors making an observation for

falling to O(NpNy) if there is no cross-correlated noise be- 2 signals(t|6). Assume for simplicity that everything about
tween the detectors. the signal(including its wave form and start timés known

except for its amplitud®, so that
2. Reformulating the inner product S(t]6) = 6s(t). (3.32

We presume that we have preprocessed the receiver out- o .
put as described in Sec. Ill E 1. Following this preprocessingSuppose also that the noise in each detector is uncorrelated

the inner product can be rewritten as with the noise in any other detector. Since the detectors are
independent in this way we can write the receiver likelihood
Np—1 A(gl6) as a product of the separate detector likelihoods
a,b)ci= 11| Th.(©) Y- bk Aj(9j16).
(@bl 4 j,kz'o [alil-l NT( ) ”Jk Lk] Now consider detectgracting independently of the rest.
. _ For this detector,
+b[j1-[[Tn(C) |- al K]] (3.29
|nAj(gj|0):20<gjaSj)Cj_92<sj Sj)c,,  (3.33
Ny—1
:1 > a'[j]-pjl, (3.30  Where the subscripf indicates the relevant quantity with
2 k=0 respect to detectgr The maximum likelihood point estimate

of ¢ based on the observati@j in detector] is
which has an operation count @#(NpNy). Including the

preprocessing, the operation count scales linearly With _<gi ’Si>Cj 33
and either linearly or, at most, quadratically with the number i (sj:Sj)c. (3:39
of detectors in the receiveNp . :

Most of the work involved in calculating the inner prod- and the corresponding signal-to-noi&N) ratio is
uct is in dealing with the correlations: both autocorrelations
of the individual detector outputs and cross correlations of p]-2=20]-2<8j ,sJ-)cj (3.359
the different detectors in the receiver, i.e., in “inverting”
TNT(C). Owing to the special structure (’ﬂ\,T(C) the effect (9; ,sj)é
of its inverse in the inner product can be expressed by ap- =2—1 (3.35h
plying a sequence of linear filters, each of order independent (s 'SJ>CJ'

of Ny, to the inputs(i.e., the linear transformations de- , i
scribed in Sec. IIEL These transformations are deter- N generalg; will not be equal tof, andp; will not be equal
mined entirely by the statistical character of the noise in thd® P«- If gj is (Gaussian stationaryeceiver noise, than the
receiver, which changes only on time scales long comparegnsemble average of eapfis equal to unity. The maximum
to the signal duration; consequently, the asymptotic operaOf the logarithm of the product of the likelihoods for the

tion count for the inner product is at maS(N;N2) and not ~ Separate detectors is then half the sum ovepgheor Np/2.
O[(N7Np)?] as a naive estimate might suggest. On the other hand, if we consider all the detectors to be

part of a network, then

F. Signal-to-noise ratio InA(gl8)=26(g,s)c— 6%(s,S)c. (3.36

Following the identification of pseudodetectors Whose_l_h . likelihood point estimate @ based th
noise is white and uncorrelated the inner prodimap,mp), € maximum fikelinood point estimate ased on the

which is the maximum of the log-likelihood, is recognized asobservatlorg IS
half the sum, over the pseudodetectors, of the ratio of two

guantities: the mean-square response of the receiver to the (9,9¢
signal and the mean-square pseudodetector noise. Corre- = (s,9)c (337
spondingly, we identify
5 o and the corresponding S/N ratio is
p=i=(Mp,mMp) (3.3)
p?=26%s,5)c (3.383
as the(power or amplitude-squarggignal-to-noise ratio.
When the detector noise is uncorrelated the signal-to- (g,s}é
noise ratio of the network is clearly related to the sum of the - 2<S,S>c (3.38D
signal-to-noise ratios of the component detectors: related—
not equal—because in the analysis of several detectors as a
single receiver we have imposed the important constraint 2 (g,— ,Sj)(z;j
that the signal parameters appearing in the separate signal- :2'—_ (3.380
to-noise ratios are identical. To see the importance of this (s9c
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TABLE Il. Parameters describing the toy receiver and signal
duration used for examples in this paper. All parameters are given
in units of fy, the reciprocal signal duration. PSD stands for power
spectral density.

Detector separation () 25/
Sampling frequency %
Detector noise PSDY.) 1/f,
Observation durationT(y) 100/,

The S/N ratiop? for the network is not equal to the S/N ratio
|n2 any component detector, nor IS it qual o the sum _Of the FIG. 1. To illustrate the effectiveness of a correlation analysis
Pj tr.ea'Fe.d as lndependerlt quantltle§. With the constraint thE%rompared to a coincidence analysis we apply both to a model prob-
the individual detectors in the receiver must respond cohefizm involving two identical detectors of isotropic response. The
ently to any signal, the ensemble averagepdfis equal to  detectors are denoted and —. Their relative separation and the
unity, notNp . The constraint that each detector in the re-parameters describing the direction of an incident plane wave signal
ceiver responds coherently to the incident signal reduces thge shown in this figure.

variance inp? below what one would expect from a simple

sum of the individuap? .

two detectors, and has two-sided power spectral density am-
IV. EXAMPLE APPLICATIONS plitudesS, andS_ in the + and — detectors, respectively
A. Introduction (see Table . Assume also that these detectors have no ori-

. . . _ entation: they respond identically to radiation incident from
In this section we apply the formalism developed in theany direction

previous two sectians In several numerical examples, which In addition to parameters that describe the internal state of

are based on a model source detected by a model receiver. _ .. . : . ) .
o . S a radiation source and its orientation relative to the detector

Our aim is to illustrate one way that likelihood-based detec-. . . T o
line of sight, every signal incident on the receiver is charac-

tion might be used in a network analysis to show that it gives[ . . o . S
: - . erized by a “signal start time,” describing when the initial
a greater detection efficiency for a given false alarm rate than

S . wave front reaches the receiver. It is convenient to measure
a coincidence analysis, and to explore the performance of t

héleme at the midpoint between the two detectors in our re-
likelihood and coincidence tests when the detector noise is . point . . -

. Ceiver, so that the signal start time is defined to be the mo-
strongly non-Gaussian.

The model source and detectors are described in Sement that the initial wave front reaches the midpoint between

fhe two detectors
IV B. For simplicity we focus on testing the null hypothesis : : . s o
H, (., “the signal is absent! In Sec. IV D we describe Signals are also characterized by their incident direction

) . i o relative to the receiver. Since the two detectors have an iso-
two different ways of testing this hypothesis: via a threshold, ~ . : P
. I . tropic antenna pattern, the receiver response to radiation in-
placed on the maximum of the likelihood function for the

g . . ... cident from different directions depends only on the angle
joint output of all the detecto_rs ano.l via an analys_ls of “co- between the axis defined by the two detectors and the radia-
incidences” between events identified separately in each d%i'on’s propagation direction. Figure 1 shows the geometry

tector. Monte Carlo simulations are used to evaluate the de- - ; . ; )
) .. X . Wwe use to describe the interaction of the model receiver with
tection efficiency as a function of the false alarm fraction for

each test in two different circumstances: Gaussian detecto(a}n incident gravitational wave, with the cosine of this angle
enoted byX,.

noise and a mixture Gaussian model of non-Gaussian detec- . . . .
| Again for the purpose of illustration, consider a model
tor noise. . .
astrophysical burst source population whose members have a
well-determined wave form of finite duration. Assume the
sources are standard candles and radiate isotropically, with
Consider two detectors, denoted-” and “ —,” sepa- radiation wave form two cycles of a sine wave of known
rated by a distanceRR For the purpose of illustration, as- frequencyf,. Denoting the signal arrival time at the mid-
sume that the noise in each detector is wiite., uncorre- point between the detectors Ay and the signal amplitude
lated up to the Nyquist frequency, uncorrelated between thesA,, the response of the two detectors to the signal is

B. Model receiver and model source

S,:i=

= |0 otherwise, .
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where we have dropped the distinction between the signakst based on correlation, as embodied in the receiver likeli-
and the receiver response to the signal and assumed that theod function, has a greater detection efficiency than the
detector bandwidth is much greater than the signal band:zoincidence test for any choice of false alarm fraction.
width.

Since f, is known, the receiver response to a signal is 1. Maximum likelihood inference
fully characterized byAg, To, andX,. Acting alone, the+ The likelihood functionA (g| @) is the dimensionless ratio
detector can measure oy, andT.., where of two probabilities: the probability of making the observa-
T =To* RXo. 4.2 tion g if the signal@is present and the probability of making
S ' the observatiomy if no signal is present. It is not a probability
itself, nor by itself does it relate directly to a probability on
C. Likelihood function 0.
Reca” that the receiver’s CO”‘e'ation Sequence is Even though we cannot regard the I|kel|h00d as a measure
of the probability that a signal characterized #ys present,
Clj—k]=n[j]®n[K], (4.3 we can regard it as a measure of tplausibility of that

conclusion: when\ (g| ) is greater than unity it signals that
where, for our two-detector receiver, eaChk] is a 2<2  the particular observatiog is more likely when the signal
matrix. We have assumed that the noise in deteetors  characterized by is present than when no signal is present.
uncorrelated with that in detector; consequently, each Similarly, if we assume that a signal is present, then the
Clk] is diagonal and the matriXy_(C) is conveniently re-  parameterd that maximizes the likelihood function is the
organized into a X2 block diagonal matrix: most plausible description of the signal.

Together, these observations motivate a test based on the

likelihood function: when the likelihood function maximum

A(9|6) exceeds a threshold,, then we conclude that a

) ) ) signal is present and tak@ to be the maximum likelihood
whereC.. is the correlation matrix for the- detector, estimator, or MLE, of the detected signal.

To be precise, consider an observatign whose N
samplesg[ k] are taken at time,. Denote bys(#)[j] the
sampled receiver response to a signal characterized. by
Assume that the observation duration is much longer than the
longest signal respongeo that we need not consider signals

A(QA X, To)=A(g.|A T )A(g_|A,T_), (453 thatbegin before or end after the observation peribenote
by 6, the parameter space of signals whose leading wave
where front is incident on the receiver at tinig: in our example,
these are jusA and X. Finally, fix a thresholqog. The fol-
INA(9-|ATL)=2(g- ,M(A,T.))c, lowing procedure produces a list of detected signals and
point estimates of the parameters describing each.
—(MAT. MATL))c.. (4.5 (1) Evaluate the log-likelihood function Ih(g|é) for
signals incident on the receiver at the sample tites

) C., O
'ﬂ“NT<c>||=duag<c+,C)=(0 C), (4.43

ICllj=n=[iIn-[kI. (4.4b

Expressed in this way, it is apparent that the likelihood
function is separable:

TheA(g-|A,T.) are exactly the likelihood functions for the (2) At each sample timé,, find the signal characteriza-
+ detectors regarded as single, isolated receivers. This sepa-

ration is always possible when the noise in the detectors ion 0k that maximizes Im\(g|6). Associate with eacht
uncorrelated. When the noise in the detectors is correlated@nd 8 @ S/Npy, given by

the likelihood is still separable once the pseudodetectors are ~ R

defined as described in Sec. Il E 1. pk=InA(g|6). (4.6)

(3) Order the tripletg py, 6 .t} with respect td,. Select

_ _ ) ] the subset of triplets wheke) py is greater than the threshold
In this section we consider, in the context of our model , and (i) there is a local maximum: i.e., find tI{ék, ,bk,}

receiver, two different ways one might use a pair of detector

or which
to detect a signal and infer its parameters. One procedure
exploits the notion of coincidence: if the two detectors sepa-

D. Signal detection

rately identify a signal with sufficiently similar parameters PSPk (.79
then the receiver is said to have detected a signal. The other _- 47H
procedure exploits the notion of correlation as developed in P=k=1=P=k» (4.7
Sec. llII: if the response of an array of detectors is consistent - -

with an incident plane wave, then the receiver is said to have Pk +1SPx K - (4.79

detected a signal. For each of these two tests we determine o ) . ]
the detection efficiency as a function of the false alarm error (4) Beginning with the largesp, in this subset find all
fraction when the detector noise is Gaussian. We find that thether triplets{p: , 6 ,t} for which|t,—t,| is less than the
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Signal duration. Piscard these triplets. Repeat with the next Fina”y, we Just|fy the use Ob as the point estimate of the
largest remaining, until the list is exhausted. What remains signal parameters characterizing the detected signal. Suppose

is the list ofdetected signajswith S/N p,, signal start time that a signal characterized by fixel is incident on an en-
t,, and characterized bithe point estimate), . semble of identical receivers. The corresponding ensemble

Three steps in the maximum likelihood test procedure deef 0 has as its modé, ; consequently, a natural estimator for

serve additional discussion: the focus only on bursts starting is the § arising from a particular observation. In the maxi-
at the discrete sample times (step 2, the formation of the  ym |ikelihood rule, when we conclude that a signal is

intermediate list consisting of local maxima of the maximum resent we takd as our point estimate of the sianal param-
of the likelihood function(step 3, and the pruning of this list 2ters P gnai p

to form the final list of detected signalstep 4.
Step 2 focuses attention on signals arriving at discrete
sample times. Real signals, however, are not so constrained. 2. Coincidence inference
Nevertheless, if the observation is properly samplieel, Much discussed in the context of gravitational-wave data
sampled without aliasing then all of the power in the re-  anajysis is an apparently simpler analysis, referred to gener-
ceiver response is at frequencies much less than the Nyquigfy as “coincidence.” This test has received its most precise
frequencyfy, which is half the sample rate. In that case gefinition in[10,11] for the particular case of binary inspiral
(m(0,tp),m(6,to+ 7))c, wherem(@,t) denotes the receiver gpservations.
response to a signal whose initial wave front arrives at the | general, coincidence tests involve a complete analysis
network at timet, cannot vary significantly fof7| less than 4t each individual detector, considered in isolation from all
several times Tf; correspondingly, the likelihood will re-  gther detectors in the receiver. The result of these individual
main peaked about thig nearest to the actual signal arrival gnalyses is a set of “candidate-event lists,” one for each
time and the corresponding signal to noise ratio will differ getector, which consist of “detections” at each detector to-
only slightly from its maximum valué. gether with estimators for the signal start time and other
In step 3, we select only the local maxima of the likeli- signal parameters that can be determined from observations
hood function as candidate Signal events. This reflects thﬁl a Sing|e detector. Real gravitationa|_wave events should
observation that, in the absence of noise, the likelihood funcexcite the several different detectors in a self-consistent man-
tion is maximized wher@ is equal to the true signal charac- ner: in particular, the signal start times should be consistent
terization 6 . with the light travel time between the detectors and other
Even in the absence of noise, however, not all locakjgnal parameters should be consistent with a unique source.
maxima can be identified as distinct signals. While the like- The Consistency requirement is difficult to p|n down. For
lihood function is maximized whe is equal to the true example, in the case of our own model detector and source,
signal characterizatiofk, as@ differs from 6, the likelihood  consistency would appear to require that the signal arrival
decreases, but not necessarily monotonically. Even for ouimes are consistent with the signal propagation time be-
simple signal model there are three local maxima associategheen the detectors and that the measured signal amplitudes
with the likelihood function. The situation is further compli- pe equal. Owing to detector noise, however, the estimated
cated when, as is the actual case, receiver noise distorts tegynal amplitudes will only approximate the actual ampli-
“noise-free” likelihood, randomly increasing it for som#%  tudes, and similarly for the signal start times and other pa-
and decreasing it for others. rameters. For signal amplitudes, then, a window of some
To help distinguish between the global maximum of thepreadth must be defined and signal candidates whose ampli-
likelihood function and its side lobes, we make use of ourtydes fall within the window are assumed to arise from a real
implicit assumption that real signals are sufficiently rare thaisignal. The choice of window, its implementation, and the
the receiver response to one real signal does not have a sigrocedure for combining separate estimates of common pa-
nificant probability of overlapping with its response to a sec-rameters all affect the false alarm and false dismissal frac-
ond real signal. Any two local maxima separated in time bytions that characterize the test.
less than the signal duration are then associated with a single The problem is more complicated in the case of an esti-
source. In step 4 we prune the list of candidate sigfiads ~ mated source location. Consider a real signal, incident on the
the local maxima identified in step 8y identifying clusters  detectors from a direction nearly perpendicular to the axis
of local maxima and replacing each with its single, strongespetween them. Let the measured start tifne on the =
member* The result is a list of events, all above threshold, indetector be -
which no two events can have resulted from the same

gravitational-wave signal. T.=To.+e, 4.8

S, , dh be reduced still further b whereTg .. is the actual moment when the signal is incident
The errors incurred here can be reduced still further by approprig,, he +" detector anck.. is the error in the estimated start

at4e |r_1te_rpo!at|_on. ) : . . _time owing to detector noise. The difference in the measured
This intrinsically nonlinear step introduces into the analysis a_. - .
signal start times is

notion of detector “dead time”: i.e., the analysis is unable to iden-
tify more than a single signal in any given interval of duration less
than the signal duration. T,—T_=To+—To-t+er—€e_=2RX+Ae, (4.9
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where X, is the direction cosine describing the radiation’s  (2) Choose the candidate signal list associated with detec-
propagation direction and e is the difference between the tor +. Beginning with the candidate signal of largest S/N

errors in the measured start times. When a real Signal |§+ K in that list, process that list in order of decreasingk
incident along, or nearly along, the axigXg|=1), then o create a new, coincident detection event list.

small errorg A €| <2R can lead tdXo|>1, which we would (a) Let the current candidate event from the list associated
regard as unphysical and not representative of a real signakith detector+ be numberedk, .

On the other hand, wheX,| is much less than unity, the (b) Identify, from the candidate event list associated with

same errors will leave us wittX,| still much less than unity, detector—, all candidates whose start timgs in detector

in which case we accept the coincidence as representing -a are consistent with the candidate signal arrival ttmlein

real signal. To minimize this false rejection of real signalsgetector+: i.e.,

we can adopt a window broader than the light travel time

between the detectors for comparing signal arrival times [t —ti |<2R. (4.12

(taking the estimated arrival direction to be along the axis if I-

the difference of arrival times would suggéXt greater than _ ) ) )

unity); however, in doing so we also increase the false alarmimpose other consistency requirements, associated with

rate, reducing the discriminating power of the test. 0.« and@_; , as are deemed appropriatén our model
The sign of the error also plays an important role: whenreceiver/source example we do not impose any other consis-

Ae has the same sign a& we are more likely to reject a tency requirements.

real signal than when they have opposite signs. The fraction (c) The result is a list of candidate coincident events in

of signals rejected can thus depend in a complicated way Ofetector— associated with the evekt, in detector+. The

the interaction between the Underlying Signal parameters, thﬁst may contain zero, one or more than one evaat]f it

windows, and the allowable range of the parameters thagontains no events, delete evént from the list of candidate

characterize the signal. o _ events associated with detecter. (i) If it contains exactly
For comparison Wlth the |Ike|l'h00d procedure descrlbedOne event(say, {/3—; , b_j L t_; 1), pair it with the
above we define a coincidence inference procedure for our R N - - = . _
model receiver. event{p, x , 0., tix,} from the list associated with
(1) For each detector considered in isolation, determinaletector+ and add the pair to the coincident detection event
the two sets otandidate signalsissociated with detecter list. Delete all events from the candidate list associated with
and —. detector+ whose arrival times are so close that they would
(a) Evaluate the log-likelihood function If(g- |6 ,) for  overlap with evenk, ; similarly, delete all events from the
signals incident on detectar at the sample times. . candidate list associated with detectorwhose arrival times

(b) At each sample timé.. ., find the signal character- are so close that they would overlap with evgnt Delete

ization @. , that maximizes In\(g.|0. ). Associate with ~eventsk. andj_ from their respective candidate listdi) If
eacht. , and bi,k a S/Nﬁt,kv given by it contains more thanA one event, choose the single gvent
with greatest strengtp_ ;, pair it with eventk, from the
P2 =InA(g.|0. ). (4.10 candidate list associated with detector and add the pair to
- ' the coincident detection event list. Delete all events from the

The result is a set of associated signal-to-noise ratios, parariandidate list associated with detectorwhose arrival times
etrizations, and signal start timéﬁi GOt 2. t, x are so close that they would overlap with evént;

(c) For the list associated with each detector, select thsimilarly, delete all events from the list associated with de-
subsetp D. o t. ) for which ' tector — whose arrival timest_ ; are so close that they
+ ko Ux ko be

would overlap with evenj_ . Delete event&, andj_ from
the lists associated with the respective detectors.

P+ 0Pk (4113 The result of applying this procedure to the output of the
R + detectors is a set of paired events, one from each detector.
Pk —1=P= k> (4.11b Each member of the set involves a pair of signal amplitudes
(in this case, equivalent to SyMind the best estimate of the
;)t’k,_'_lgptyk, , (4.119  signal arrival time at each detector. The signal arrival times

are, by construction, consistent with the incidence of a plane

wherep. o is the signal detection threshold in detector ~ Wave on the detector pair. o _
’ It remains to combine the signal arrival times and ampli-

(d_) Beglnnlr?g W'th_the Iargespijk in the I'StA of local tudes in each pair to determine a single estimate of the signal
maxima associated with detectar, find all otherp.. \» for  amplitude, the signal arrival time at the midpoint between
which|t,—ty| is less than the signal duration. Discard thesethe detector, and the radiation propagation direction. In our
Repeat with the next largest remainipg , until the list is  model problem, the natural estimators for the latter two
exhausted. What remains is the list of candidate signals, witlquantities are
SIN ;&,o, signal start timet. ,, and characterized bfthe

point estimatg 6. . Ty=(ts j+t_ )12, (4.133
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Xi=(t, i—t_ DI2R. (4.139 [10,11].) As discussed above, however, the errors intthe
: S are correlated by the procedure we used to create the coinci-
The geometry of our model problem suggests no particudent detection list: for radiation whose propagation direction
lar procedure for combining the separate signal amp|itudd§ nearly aligned with the axis between the detectors, insist-
estimates into an overall estimate for the network. One proing that|t, ;—t_ ;| be less than R causes us to favor those
cedure that has been recommend&@,11 is to form the signals for which the errors ib, ; andt_; are positively
final estimate as the root mean square of the point estimatesorrelated. The estimatot; in Eq. (4.13b is thus biased to
underestimate the magnitude of the propagation direction co-
sine; additionally, signals whose propagation direction co-
sine is large(i.e., signals propagated along or nearly along
the axig have larger false dismissal fractions than signals
where propagating normal to the axis.
5 (c) Signal strengthin the maximum likelihood test de-
P+ scribed above, signal strength is described by a single quan-
(4.14 tity: the S/N ratio, which is equal to the log maximum like-
lihood. This measure of signal strength has the desired
This prescription will consistently overestimate the ampli-Property that, as the detection threshold is increased, weaker
tude of the signal. For any given observation of a signal withSignals are no longer considered to be detected before stron-
amplitudeA,, the estimate in the detectar is equal toA,  9er signals. In the coincidence test, there are two different

IR .
Asz(Ai’ijAz,'j), (4.143

A+ = .
a <St !St>Ci

plus a random variable: signal-to-noise ratios—one for each detector—and neither,
by itself, is sufficient to determine that a signal is present. It
A.=Ay+n. . (4.15  hasbeen suggestgtd,11] that the “natural” signal strength

for coincidence tests is the sum of the amplitude-squared S/N
If the detector noise is Gaussian then is Gaussian. The ratio for the different detectors: in this case
mean square of the point estimates is thus

;312:;31,1"';)2—,]- (4.18

1
A2_ p2 T2 2
AT=ApFAg(n.+ n,)+2(n++ n-). (4.16 This definition has the undesirable property that “stronger”

R R signals(i.e., those with largep) are not necessarily more
The mean ofA?, or of A, will thus be greater thak,. A likely to be detected than weaker ones. In particular, as the
similar problem will plague any attempt to form network detection thresholds are raised at the two detectors, signals
estimates of parameters from parameters that are overdetalisappear from the coincident detection ligten the weakest

mined by the networkfor example, network-wide estimates member of the pai{[u ,;,7} falls below the threshold in the

of T or X from three or more detectars + detector which is not whenp? falls below threshold. If
An unbiased estimate fok, is the straightforward aver- e want signal strength to have the property that, as the
age of the parameter values, which we adopt here: detection threshold is increased, weaker signals disappear
1 from the detection list before stronger ones then the appro-
AJ. ::E(A” +A7’j), (4.173 E)riate measure of signal strength is tim@imum off)+ and
p_:°
where . ~ A
p=min(p, ,p_). (4.19
R (9+,5+5. ) _ o o
Al = ’ . (4.17H The detection rule described in this section is not the only
<Si,bi'kasi,b:k> such rule in the spirit of coincidence that can be defined.

_ . ~Many variations are possible, corresponding to the neuahy
Several aspects of this procedure for detecting a signatoc decisions that must be made, especially in identifying
coincident in two detectors and estimating the parametersandidate events lists for the separate detectors and identify-
characteristic of the source deserve special attention. ing “consistent” coincidences. The choices made here are
(a) Candidate signalstach event in a pair identified as a among the simplest that lead to a well-defined procedure for
coincident detection stands on its own as a detection in itgjentifying coincident events.
detector at the given threshold. The “coincidence” inference procedure described here

(b) Estimator biasWhen the noise distribution is Gauss- was inspired by that ifil0,11); however, it differs from the
ian, the error in the estimator of the signal arrival time at a

particular detector is also Gaussian. Consequently it might be———

thought that the errors in the estimatdfsandX; are also  syypen the several detectors in the network are not identical, or do
normal, since they arise from the combination of normal er{,o4 haye coincident or isotropic antenna patterns, then the criterion

rors in two deteE:tors whose noise is normal, and that they,; \weaker signals are always less likely to be detected than stron-
estimatorsT; andX; are unbiasedThis is the claim made in  ger ones becomes more difficult to determine.
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procedure described there in several key respects. In particu- TABLE Ill. Parameters describing the signal used in the ex-
lar, in [11] detection thresholds are not set separately on themple calculation of the detection efficiency for the Gaussian,
signal-to-noise ratio in the detector, but on their quadraturélatykurtic, and leptokurtic noise examples.

sum[cf. Eq. (4.18]. Additionally, the procedure described
here involves several “consistency” checkeg., is the ar- Gaussian Leptokurtic Platykurtic
rival time at each detector consistent with their separatjon? Ao 25 35 3.0
which[10,11] are able to avoid, without loss of discriminat- X 00 0.0 0.0

. . . 0 . . .

ing power, through a more clever choice of variables.

3. Gaussian noise o . . L
distribution in space and the other parameters is a distribu-

_ To assess the relative performance of the maximum likegion for A. Requiring thatx not exceed a certain value sets a
lihood and coincidence inference rules we use Monte CarlgnresholdA,, regardless of this distribution. The false dis-
simulations to calculate the false alarm and false dismissgissa) frequency3, on the other hand, depends on this dis-
fractionsa and g as well as the distributions of the estima- ipution in a straightforward way.
tors Ty, X, andA, for a typical signal. Figure 2 shows % 8 as a function ofx for the maximum

An inference rule’s false alarm frequendy, is the lim-  likelihood and coincidence detection procedures when used
iting frequency of “signal detection” when, in fact, no sig- to detect signals of Fhis character in our model rece_ive(. In
nal is actually present. To determifg, as a function of the these Monte Carlo simulations we count as a false dismissal

thresholdp? we use a statistical model of the receiver noise?!l Signal identifications(whether by the coincidence or
to generate many pseudorandom instanceg mpresenta- maximum likelihood tegtwhere the identified start tim&
tive of receiver noise alone. The false alarm frequency igliffers from the actual start time by more than the signal
then the average number of “detections” per unit time. A duration, or where the identified sky positiehdiffers from
convenient, dimensionless representation of the false alartme actual sky position by more than the signal duration di-
frequency is the average number of false signals detected peided by the detector separation. This condition is necessary
sampleg[K]: if “correct detections” by either rule are to include only
those candidate events with nonzero signal power. Faz,all
a=N,/fq, (4.20  the maximum likelihood test has a substantially higher de-
tection efficiency -8 than the coincidence test; conse-
wheref is the sample rate. We refer toas the false alarm
fraction; by our procedure is strictly less than or equal to ]
unity and can be regarded as the probability of a false detec
tion on a per sample basis.
The false dismissal frequengyof an inference rule is the
limiting frequency with which the rule reports that no signal

0.95

0.9f

is present when, in fact, a signal is present; th@sis a iy
function of the signal(or the signal population Another §085
way to think aboutB is as the detection efficiency:-18 is f:»_’ ’
the fraction of actual signals that the detection procedure will®
identify. To find B8 we generate many pseudorandom in- § 08
stances of receiver noise and add to them a specific signa§

The result is many instances gfcorresponding to observa-  %7°[

tions of that source. The inference rule will conclude that
signal is present in some fraction of these synthetic observa %7
tions: that fraction is the false dismissal fraction. : : o
In the case of the maximum likelihood test,and 8 are 0.85 = e R 2 S

L o 10 10 10 10
controlled by adjusting the threshoig: asp, is increased, False alarm fraction o
« is decreased. In the case of the coincidence test described
in Sec. IV D 2,a and B are controlled by adjusting the two

FIG. 2. The false alarm frequeney vs the detection efficiency

thresholds Since, in our example, the two detectors are(1—3) for the maximum likelihood and coincidence tests in the
*0 ’ ! presence of Gaussian noise. The parameters describing the signal,

|d_entlcal, we set these equal to th_e S_‘W‘? The fz_ilse d|_s- to which the detection efficiency refers, are given in the first column
m'ssal frequency deper)ds on the distribution of S|gnaI§ In th%f Table Ill. Note that the performance of the maximum likelihood
signal population; for simplicity, we assume that all signalSeg; js everywhere superior to the performance of the coincidence
in the population have the same unknown amplitAdeand (et The degree of superiority will vary with signal strength; how-
sky locationXy, which are given in the first column of Table eyer, the relative performance of the two tests will not. The superior
HI. performance of the likelihood-based test is attributable to the way in

(More realistically the amplitudé& depends inversely on which the maximum likelihood test internalizes the detector-
the distance to the source, its orientation with respect to theetector correlations that are present when a real signal interacts
detector, and other parameters. Corresponding to the sourasth the receiver. For more details see Sec. IV D 3.
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quently, its performance is substantially better than that ofelative value of these parametensne of which sample the
the coincidence test. correlated response of the several detectors in the receiver
The better performance of the maximum likelihood test
holds independent of the actual signal parameters, though it
is more significant for weak signals than for strong ones. It i ] o .

is, however, these weak signals—those just above The example just given is in the context of noise uncor-
threshold—that determine the overall efficiency of the detecfelated between the two detectors. How do the coincidence
tor. For astrophysical burst sources, which are most likely2d correlation tests fare when the noise in the several re-

distributed cosmologically and hence isotropically, the /N Ceiver detectors is correlated? _

is inversely proportional to the source distance; conse- N the context of the coincidence test, correlated noise
quently, the number of sources “brighter” than the threshold!€ads to an increase in the overall false alarm frequency as
po is proportional t0p53. Of these, a fractior are “dim-  Noise events Ieadlng to a candldatg event in one deteqtor are
mer” than p, , where correlated with noise events Iegd_mg to a candidate in the
other detector. No means of distinguishing between these

new false alarms, which arise from the noise cross correla-

3 s tion, and correlations arising from signals is possible in a

pPe=pol(1—€)~" (42D coincidence test; consequently, the only way that the corre-
lated noise can be accommodated is by an increase in the

. thresholds applied to the output of each detector. This in-
Ealf OfS?IH evte_ntls Wh?ﬁ’e e>1<pect$g S/ Nfr?r;['o flslgregl_ter _ﬂtﬁnl creases the false dismissal fraction, leading to an overall
ave ratio less than 1.2 Thus, if the false dismissa worsening of the test’s performance.

fraction is large when measured for events at threshold, it "1 . jikelihood function, on the other hand, directly ac-

W'"Nb? Iarlge yvh;n rgetas?iﬁd ?%er ‘3'.' e\{entsl.f tion for th commodates correlated noise in a precise manner. In the con-
Ot€ aiso In =1g. atthe faise dismissal fraction 101 th€qy ¢ the maximum likelinood test, noise correlated be-

coincidence test asymptotes to a nonzero value as the fal?\?/een the detectors means that tBEK] are no longer
alarm frequency increasésorresponding to a lower thresh- diagonal; however, as we have sdeh Sec. Il B this poses

_?_lr? Po): l.e.,te}[/endat zerdo threstr;old 'Fher? ?re fal;’.ehd'fhm'sfs?l%o analysis problems in either principle or practice. By con-
€ asymplote depends on the signal for whic € TaISQtruction, then, the maximum likelihood test distinguishes

dismissal frequency is computed: it is lower for stronger S'3interdetector correlations whose spectrum is characteristic of

nals a_nd .hlgher for wefalfer ones. The nonzero asymptote f%[ real signal from interdetector correlations that are charac-
the coincidence test originates in the process that selects Cafliistic of correlated detector noise Consequently, when
didate events in each detector. In the coincidence test, a fal$@ i is correlated between the recéiver’s detectors, we ex-

alarm event that occurs clo_se_ In time to a real 5|gna_l ever}sect the maximum likelihood test to perform still better than
can mask that real event if it has a higher S/N rdtt the coincidence test

coincidence test step(d)]. The false alarm may be suffi-

ciently different from the signal event it masked that, when

an attempt is made to pair it with a candidate event in the E. Non-Gaussian noise

other detectorgcf. coincidence test step)2the test con- . . o .

cludes that no signal is present at all; alternatively, the test Eguation (3.18 describes the likelihood function only
may identify a signal at a point in the sky or with a start time WNen the receiver noise is Gaussian. The noise in a real
so different from the actual location or start time that thedetector will be, at some level, non-Gaussian and nonstation-

identification must be regarded as a false alarm and not &Y: Some fundamental contributions to the noise may be
signal detection. intrinsically non-Gaussian, some contributions may be intrin-

The same mechanism also operates in the maximum likezic@lly Gaussian but appear non-Gaussian in the output ow-
lihood test(cf. maximum likelihood test step)#however, Ng to nonlinearities in the receiver's response, and some
that test is much less sensitive to this effect. In particular‘?ont”b“t'or_‘ssW'” reflect the environment that the detector
noise events that would cause a masking false alarm in thinds itself in> We have already shown that, lacking detailed
coincidence test do not lead to a large S/N ratio in the maxiknowledge of the higher order moments of the detector noise

mum likelihood test since there the S/N ratio is suppressedistribution, a normal distribution is the best approximation
when the detector-detectoross correlatioris not consistent 0 @ noise distribution whose mean and variance are known

with a real signal. (cf. Sec. IlIA). We refer to this as the Gaussian-

The difference in the relative performance of the maxi-&PProximation likelihood function. .
mum likelihood and coincidence tests is directly traceable to W& expect that the maximum likelihood test will still out-
the different ways in which each test requires consistency if?€form the coincidence test, since it is still the case that the
the response of the different detectors: in the maximum likeSOrrelation analysis described in Sec. IVD 1 is sensitive to
lihood test theelativeresponse of the assembled detectors is
required to be consistent with the incidence of a single wave
front on the receiver, while in the coincidence test the indi- Swe distinguish between noise transients, which are generally
vidual response of each detector is represented in just a feglatively short bursts, and nonstationarity, which we use to mean
parameters and ad hocconsistency is imposed only on the adiabatic changes in the statistical character.

4., Correlated noise
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TABLE IV. Parameters describing the two mixture Gaussian N exr[(x—,u-)2/20-2]
models used to explore the maximum likelihood and coincidencep(XHpi isoi=1, ,N})zz p; ! =
tests’ performance for non-Gaussian noise in Sec. IV E. Also shown i=1 \/ﬂai
are the mean and standard deviation of the distributions. The cor- (4.223

responding PDFs are shown graphically in Fig. 3.

Leptokurtic Platykurtic N
P (12,1/4,1/4)  (61/192,131/384,131/384) Z:l pi=1, (4.22b
P (0,2,-2) (0,2-2)
o (1,2,2) (1,1,1)
Mean 0 0 p;>0. (4.220
Std. Dev. 2.1213 1.9311

By appropriate choice of the constants, w;, and o; a

the coherent response of a receiver's component detectors fX{Ure Gaussian can approximate any uncorrelated noise

a real signal in ways that the coincidence analysis describeqliStribution throggh_its first B moments.
in Sec. IV D 2 is not. Coincidence tests misidentify as sig- The two distributions we model here are drawn from the

nals coincident non-Gaussian noise events as readily as th xture Ga_usgan d'St.”.bUt'c.mS. degcnbed In Table IV. The
do coincident Gaussian noise events, while a Gaussian- rrespondmg probab|l|ty distribution fung:uons are shown

L - . ' . raphically in Fig. 3. Note that each is strongly non-
approximation likelihood test rejects non-Gaussian event

that X istent with cident bl itational aussian, though in different ways.
at aré inconsistent with an inciaent plane gravitationa Figures 4 and 5 show the detection efficiency as a func-

wave as easily as it does inconsistent Gaussian events. Thys ., ¢ the false alarm frequency for the coincidence and
we expect in general that the detection efficiency for fixedgayssian-approximation maximum likelihood tests for the
false alarm fraction will be greater for a test based on th@eptokurtic and platykurtic distributions, respectively. The
Gaussian-approximation likelihood test statistic than for agetection efficiency and false alarm fractions were deter-
coincidence test based on the individual detector responsegained by Monte Carlo simulations. The signal parameters
To demonstrate this point, we simulate non-Gaussiamised in the detection efficiency simulations are given in the
noise according to two models—one strongly leptokurtic andsecond and third columns of Table Ill. The conclusion
one strongly platykurtic—and apply the coincidence andreached earlier—that the maximum likelihood test has a bet-
Gaussian-approximation maximum likelihood tests describedter efficiency for a give false alarm rate than the coincidence
in Secs. IVD 1 and IV D 2 to calculate the relationship be-test—isnot sensitiveo the approximation of Gaussian noise.
tween detection efficiency and false alarm fraction for a fixedThere is no qualitative difference between Figs. 4, 5, and 2,
signal. A convenient model for a stationary non-Gaussiarwhich summarize the relative characteristics of these two
noise process is thmixture GaussianA mixture Gaussian tests when the noise is strongly non-Gaussian or Gaussian. In

distribution has the form all cases the detection efficiency of théGaussian-
0.35 T T T T T T T T
= = Platykurtic
03f .
0.25}- R ”‘-\ 4
’ ‘\_
’ X S .
£ . ‘ \ FIG. 3. The probability distribution functions
= gan ~ o T . . .
g 1 1 for the leptokurtic and platykurtic non-Gaussian
% :I ‘—‘ noise models used to test the relative perfor-
5015k ST T TTRTTN i mance of the coincidence and Gaussian-
o P 7 ) L approximation likelihood tests. For more details,
)/ / Y \ see Table IV and Sec. IVE.
01 " ‘,‘ ‘\’ \‘ i
; v . N
’ 7’ N, \
’ R4 Se
0.05 v 7 ~, N -
‘.ﬂ N,z
’\—,‘ \~,
", . SS,
-, X
- ~
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) ) o FIG. 5. The false alarm fractior vs the detection efficiency
FIG. 4. The false alarm fraction vs the detection efficiency (1 gy for the Gaussian-approximation likelihood and coincidence
(1—p) for the Gaussian-approximation likelihood and coincidenceiests in the presence of strongly platykurtic non-Gaussian noise.
tests in the presence of strongly leptokurtic non-Gaussian noiserhe noise is described by the mixture Gaussian model whose pa-

The noise is described by the mixture Gaussian model whose pgameters are given in Table IV and whose PDF is shown graphi-
rameters are given in the first column of Table IV and the signalcqly in Fig. 3. For more discussion see Sec. IV E.

used for calculating the detection efficiency is described in Table
Ill. Figure 3 shows the noise probability distribution functid*DF)
graphically. Note that, even when noise is substantially NoN-oincidences, which may be taken to be evidence for gravi-
Gaussian, the Gaussian-approximation likelihood test has Signiﬁfational waves.

cantly better performance than the coincidence test. The superiority
is attributable to the fact that real signals are correlated between tkﬁa‘]
detectors, and the Gaussian-approximation likelihood test, eve
when the noise is not Gaussian, is still sensitive to those correla]-i
tions. For more discussion see Sec. IV E.

The critical difference between these two analyses is that

e likelihood is sensitive to the coherent response of the
etector network to the incident signal. This leads the
kelihood-based analysis to have greater discriminating
power than a coincidence analysis, as shown by a greater
detection efficiency to false alarm frequency ratio.

The importance of interdetector correlations is clearly im-
portant when looking for a signal; however, it is also impor-
" . . . fant when the noise in two or more detectors is correlated.
pr|nC|paI. reason for this superior performance is the SaM&ch correlations are naturally accommodated in the optimal
here as in the case of Gaussian noise: the response of two ffer developed here; however, they cannot be naturally ac-

more detectors to incident radiation is correlated, and the . J4ated in a coincidence analysis which, by its very
Gaussian-approximation maximum likelihood test is sensi- ’

; . X >'nature, ignores interdetector correlations.
tive to the expected interdetector cross correlations, reducin

he S/N wh h lati ) h 9 The likelihood function derived here begins with an as-
the S/N when the correlations are not consistent with Waves, . niion that the detector noise is Gaussian stationary; how-
from the same source.

ever, the results obtained are much more general. We show
that treating non-Gaussian noise as if it were Gaussian is, in
V. CONCLUSIONS a very ngl-defined sense, the most appro_pria’_[e choice if _the
only available characterization of the noise is through its

The output of several gravitational-wave detectors can benean and correlation function. We show in a series of nu-
combined, in a form of aperture synthesis, to form a singlenerical simulations that, even when the noise is strongly
more sensitive gravitational-wave detector. Here we describeon-Gaussian, the likelihood test, treating the noise as if it
such an analysis, based on the likelihood function appropriwere Gaussian, outperforms the coincidence test as measured
ate to the detection of a burst gravitational-wave source oby the ratio of detection efficiency to false alarm fraction.
known wave form in a network of gravitational-wave detec- A naive estimate of the computational cost of computing
tors. This likelihood analysis of the joint output of several the matched filter for a network of detectors might suggest
detectors leads to the optimal matched filter for the output ofhat the cost is proportional to the cube of the length of the
the multidetector network. time series and the number of detectors. If the calculation is

The analysis presented here stands in contrast to “coinciproperly organized, however, the cost is seen to be strictly
dence” analyses, where the output of each detector is studigaroportional to the duration of the signal being sought and no
separately to arrive at a list of events which are then commore than the square of the number of detectors in the net-
pared between the detectors to determine if there are anyork.

approximation maximum likelihood test is greater than that
of the coincidence test at the same false alarm fraction. Th
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