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CPT anomaly in two-dimensional chiral U(1) gauge theories
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The CPT anomaly, which was first seen in perturbation theory for certain four-dimensional chiral gauge
theories, is also present in the exact result for a class of two-dimensional Ulfitalgauge theories on the
torus. Specifically, the chiral determinant for periodic fermion fields changes sign u@F sansformation
of the background gauge field. There is, in fact, an anomaly of Lorentz invariance, which allows @PThe
theorem to be circumvented.
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I. INTRODUCTION The two-dimensional gauge potential in the trivial topo-
logical sector can be decomposed as follgwk

Recently, aCPT anomaly has been found in certain four-
dimensional chiral gauge theories, with the topology and AL(X)=€,,9"7d,(x)+2mh, [L+3d,x(X), 3
spin structure of the spacetime manifold playing a crucial
role [1]. The well-knownCPT theorem([2] is circumvented — with ¢(x) and x(x) real periodic functions and,, real con-
by the breakdown of Lorentz invariance at the quantum leve$tants(the harmonic pieces of the gauge potentisdere,
[1,3]. The calculation of Ref[1] was done perturbatively x(x) corresponds to the gauge degree of freedom. Further-
and more or less the same type of anomaly was expected toore, the gauge potentidl ,(x) is taken to be smooth, i.e.
occur in appropriate higher- and lower-dimensional chiralwithout delta-function singularities.
gauge theories. Here, we consider the two-dimensional chiral The chiral determinanithe exponential of minus the Eu-
U(1) gauge theory over the torus, for which the chiral de-clidean effective actionis then given by the following func-
terminant is knowrexactly[4—6]. The aim of this paper is to tional integral:
determine whether or not the exact result containsGRE
anomaly and perhaps to learn more about the anomaly itself

[7]. DFTA]=exp(—TPA])= fPPwDEexrx—S[A,Z, ¥),
(4)

T ) i _ . where PP indicates the doubly-periodic boundary condition
We consider in this Brief Report two-dimensional Euclid- 2) on the fermion field. This chiral determinant has been
ean chiralU(1) gauge theory, defined over the tofl& For  ¢5icylated using various regularization methods. See Refs.
simplicity, we take a particular torugnodulus7=i), with  [4_g] and references therein. Referer(@, in particular,
Cartesian coordinates“e[0L], »=1,2, and Euclidean jntroduces a local counterterm to restore translation invari-
metricg,,= é,,. The theory has the fermionic action ance and obtains the following res{:

II. CHIRAL DETERMINANT

L Lo
S[A,(//,zp]z—fo dxlj0 dxZy o (d,+1A )y, (D) DPP[A]:g}

1 1 i
h1+ E,h2+§ ex ?(hl_hz)

with o1=1 ando?=i. The boundary conditions for the real 1(, S
gauge potentiah(x)=A ,(x)dx* and the 1-component Weyl X ex Ef dx(Ppd“dp+idax) |, 6)
field ¥(x) arebothtaken to be periodic:

1 5 10 with, for real variables, andk,, the definition[5,6]
A(X*+mL,x“+nL)=A(x",x9),

1?‘}(kl,k2)5exr[—77(k2)2+i7-rk1k2]15‘(k1+ik2;i)/ 7(i),

YA+ mLx2+nL) = y(x,x?), 2) ®
for arbitrary integersn andn. in terms of the Riemann theta function and Dedekind eta
function
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)

7(7)=exp( i 7/12)4':[l [1—exp2@im7)]. 7)

The result(5) holds for the chiral determinant of a single
positive chirality (right-moving Weyl fermion of unit
charge; cf. Eq.(1). If the charge isggr; instead, then the
variablesh,,, #(x), and x(x) in Eg. (5) each need to be
multiplied by a factorqg;. For a negative chirality(left-
moving Weyl fermion of chargeg, ;, one also has to take
the complex conjugate of the whole expressién For the
345-model(three chiral fermions with charges; =3, qro
=4, andq,3=5), one obtains the following chiral determi-
nant[6]:

D5 Al=DP13AIDPT4A)(DPIBA]*.  (8)

The chiral determinani) of the 345-model is gauge invari-
ant. Indeed, it is straightforward to verify both theinde-
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constant gauge potential, as do the holomorphic and antiho-
lomorphic factors contained inh{+h3). Equation (11)
agrees, of course, with the general re$i)) on CPT viola-

tion. But the real importance of Eqll) is that, for this
special case, therigin of the two-dimensionaCPTanomaly

can be identified explicitly, namely one particular eigenvalue
of the Weyl operator(See[12] for further details.

The chiral determinani6] of the 345-model over the
torus isCPT invariant for the other spin structures AA, PA,
and AP, wherdA)P stands fofanti-)periodic boundary con-
ditions on the fermion field&he three fermion species being
treated equally This appears to be related to the observation
that theCPT anomaly is not expected for the AA spin struc-
ture[1,3] and the fact that the chiral determinahp@$ for the
AA, PA, and AP spin structures transform into each other
under modular transformatioriglobal diffeomorphisms; cf.
Ref.[4]), whereas the chiral determinant of the PP spin struc-
ture is invariant up to a phase. It is important to realize that
this extra requirement of modular invariance for the AA, PA,

pendence and the invariance under large gauge transformgag ap spin structures restricts the type of theories consid-

tions h,—h, +n, for arbitrary integersn, [10]. We will

first focus on this particular chiral model. Other chiral mod-

els will be discussed later.

IIl. CPT NONINVARIANCE

ered and also possible regularization methpgdd. For the
general question of how to sum over the different spin struc-
tures, see, for example, the discussion in REES,16. In

our case, the two-dimensiondPT anomaly would be
present as long as the PP spin structure appears in the sum.

The question, now, is how the gauge-invariant chiral de-

terminant(8) of the 345-model behaves undelC®T trans-
formation of the background gauge field:

©)

Using the elementary properties of the theta funcfibfl],
one finds

A () —=ASPTX)=—A,(—x).

D34 A°PT]=—D3 Al (10
with each of the three chiral fermions contributing a multi-
plicative factor—1 on the right-hand side. Hence, the effec-
tive action of the chiralU(1) gauge theory with PP spin
structure over the torushangeaunder aCPT transformation

IV. LORENTZ NONINVARIANCE

Given thatCPT invariance no longer holds for the 345-
model with doubly-periodic spin structure over the torus,
SO(1,1) Lorentz invariance, or rath&((2) invariance for
the Euclidean theory, is expected to be broken as jeH].
Concretely, this can be tested by comparing (thenslation-
invariany chiral determinant8) for two different, localized
gauge fields which are related by a Lorentz transformation
[17].

Consider, for example, a gauge potenﬁia;j(x) which,
up to periodicity, is allowed to be nonzero only for
|x#—L/2|<I, with a fixed length <L/2, and which has in-

finitesimal, but nonvanishing, harmonic pieceEM

(9) of the background gauge field, provided the total numbe~|E(27T|-)71fd2X~A,L(X)- In other words, the gauge potential

(Ng) of charged chiral fermions of the theory @&ld (e.g.
Ng=3 for the 345-model The result(10) thus provides
conclusive evidence for @°PT anomaly of the chiral model
considered.

The asymmetry(10) implies the vanishing of the chiral
determinant(8) for A,(x)=0. For gauge fieldg3) with
#(X)=x(x)=0 and infinitesimal harmonic piecéds,, one
has, in fact,

D34 h1,hol=c(hy+ih,)(hf+h3)+O(h%), (1D
with a nonvanishing complex constamtThis result follows
from the observation that the analytic functidr(z;i) ap-
pearing in Eq.(5) has a simple zero a=(1+1i)/2. More
directly, the holomorphic factor(; +ih,) in Eq. (11) corre-

A,(x) has local supportset byl) and produces small, but

nonzero, averagel?sﬂ (typically of orderl/L). According to
Eqg. (11), the chiral determinant for this gauge field is then
proportional to iy +ih,)=o*h,. Similarly, the chiral de-
terminant for theSO(2) Lorentz transformed“boosted”)
gauge potential,

e )

(12)
is proportional tOo"“F]’u. But these two particular factors
differ by a phase factor exi(), as can be readily verified.

AL(x)
A(x)

AL (AX)
A5 (AX)

cosa —Sina

sina  COSa

sponds to one of the eigenvalues of the Weyl operatoAll other factors of the two chiral determinants being equal,

a#(d,+iA,) with doubly-periodic boundary condition and

this then implies
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Dgfg[hA’]=eXp(ia)D§f5[A]- (13) the torus,_ we have thus seen that ¢ET noninvariance of
the effective gauge field actidn™ A] is carried by the har-
Note that Eq(13), for a= 1, agrees with the previous result monic piecesh,, of the gauge field#\,(x). Theseh,, are of
(10). Also note that the noninvariance of the factoth,, in the same type as the local Chern-Simons-like terms encoun-
the chiral determinant directly carries over to the theory witht€€d previously in four dimensioiis, 3]. Indeed, the Chern-
Minkowskian metric g,,=diag (+1,~1). In short, the Slmons_ one-for_m f_or an one-dimensional Abelidih(1)
Lorentz invariance of the chiral determinai® for the lo- ~ 9a@uge fielda(x) is given by
calized gauge fieldh ,(x) is broken through itdh, depen-
dence[The termfd?®x$d?¢ from Eq.(5) is, of course, Lor-
entz invariang o _ __One possible two-dimensional Chern-Simons-like term is
As far as t~he gauge potential is concerned, this localizeghap the average over thé coordinate of Zri times the
configurationA ,(x) could also have been embedded in thegenuine Chern-Simons term for thé spaceS', namely
Euclidean plan&?. The Lorentz noninvariance of the effec-
tive gauge field action comes from the chiral fermions V\_/hich - L dx?
are sensitive to the topology of the torﬂu’ﬁ. More physi- FgSX-IHEeYJ[A]EJ T<2Wi f i CS[Al])
cally, the periodic boundary conditiopsedisposehe chiral 0 S
fermions of the 345-model to select speciﬁg-dependent

w cdal=(2m)  ta(x)dx. (15)

L L
terms from the local interaction with the gauge field. These :if dxlf dx?A;(x,x?)/L
special terms in the effective action then make the local dy- 0 0
namics of the(classical gauge fieldﬂ#(x) Lorentz nonin- —2mih (16)
variant. b

whereh; is defined by Eq(3). The other two-dimensional
V. OTHER CHIRAL MODELS Chern-Simons-like term(based on the genuine Chern-
Simons term for the? space equals 2rih,. Hence, Chern-
Simons-like terms play a role for thePT anomaly in both
two and four dimensions. There is, however, a difference, in
that the four-dimensional Chern-Simons-like term immedi-
r:ﬁtely affects the gauge field propagation, with the vacuum
becoming optically activél,18].

In closing, we remark that th€PT noninvariance found
here appears to be not directly related to the purely gravita-
tional anomaly which afflicts Weyl fermions in two dimen-

D5,[hy,ho]=c’(h;+ih,)8(h3+h3)+O(h'?), (14)  sions (4+2 dimensions in genefa[8]. The gravitational

anomaly(breakdown of general coordinate invarianoéthe

which is invariant under theéCPT transformation(9), but  two-dimensional 345-model, say, shows up for deviations
changes under th8Q(2) Lorentz transformatioifl2) by a  from the Euclidean metrig,,=3,,, but in our case the
phase factor expf§a). On the other hand, a chiral model with metric is perfectly Euclidean and, still, the effective gauge
evenNg can also be Lorentz invariant, in the sense discussefleld action '"TA] is CPT noninvariant. Instead of local
above. An example would be the chiral model With=6  spacetime fluctuations, it is the spacetime topol@yyd spin
chiral fermions of charges{ggr}={3,4,13 and {q.} structurg that is relevant to theCPT anomaly. TheCPT
={5,5,13, for which the chiral determinant is’(h{+h3)°®  anomaly resembles in this respect the so-called topological
to lowest order.(Vectorlike models, which haveqg}  Casimir effec19].
={q.}, are always Lorentz invariantClearly, a deeper un-
derstanding of what distinguishes these gauge-invariant chi- ACKNOWLEDGMENTS
ral models remains to be desired.
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