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CPT anomaly in two-dimensional chiral U„1… gauge theories

F. R. Klinkhamer*
Institut für Theoretische Physik, Universita¨t Karlsruhe, D-76128 Karlsruhe, Germany

J. Nishimura†

The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark
~Received 12 June 2000; published 3 April 2001!

The CPT anomaly, which was first seen in perturbation theory for certain four-dimensional chiral gauge
theories, is also present in the exact result for a class of two-dimensional chiralU(1) gauge theories on the
torus. Specifically, the chiral determinant for periodic fermion fields changes sign under aCPT transformation
of the background gauge field. There is, in fact, an anomaly of Lorentz invariance, which allows for theCPT
theorem to be circumvented.
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I. INTRODUCTION

Recently, aCPT anomaly has been found in certain fou
dimensional chiral gauge theories, with the topology a
spin structure of the spacetime manifold playing a cruc
role @1#. The well-knownCPT theorem@2# is circumvented
by the breakdown of Lorentz invariance at the quantum le
@1,3#. The calculation of Ref.@1# was done perturbatively
and more or less the same type of anomaly was expecte
occur in appropriate higher- and lower-dimensional ch
gauge theories. Here, we consider the two-dimensional ch
U(1) gauge theory over the torus, for which the chiral d
terminant is knownexactly@4–6#. The aim of this paper is to
determine whether or not the exact result contains theCPT
anomaly and perhaps to learn more about the anomaly i
@7#.

II. CHIRAL DETERMINANT

We consider in this Brief Report two-dimensional Eucli
ean chiralU(1) gauge theory, defined over the torusT2. For
simplicity, we take a particular torus~modulust5 i ), with
Cartesian coordinatesxmP@0,L#, m51,2, and Euclidean
metric gmn5dmn . The theory has the fermionic action

S@A,c̄,c#52E
0

L

dx1E
0

L

dx2c̄ sm~]m1 iAm!c, ~1!

with s151 ands25 i . The boundary conditions for the rea
gauge potentialA(x)[Am(x)dxm and the 1-component Wey
field c(x) areboth taken to be periodic:

A~x11mL,x21nL!5A~x1,x2!,

c~x11mL,x21nL!5c~x1,x2!, ~2!

for arbitrary integersm andn.
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The two-dimensional gauge potential in the trivial top
logical sector can be decomposed as follows@4#:

Am~x!5emngnr]rf~x!12phm /L1]mx~x!, ~3!

with f(x) andx(x) real periodic functions andhm real con-
stants~the harmonic pieces of the gauge potential!. Here,
x(x) corresponds to the gauge degree of freedom. Furt
more, the gauge potentialAm(x) is taken to be smooth, i.e
without delta-function singularities.

The chiral determinant~the exponential of minus the Eu
clidean effective action! is then given by the following func-
tional integral:

DPP@A#[exp~2GPP@A# !5E
PP

DcDc̄ exp~2S@A,c̄,c#!,

~4!

where PP indicates the doubly-periodic boundary condit
~2! on the fermion field. This chiral determinant has be
calculated using various regularization methods. See R
@4–6# and references therein. Reference@6#, in particular,
introduces a local counterterm to restore translation inv
ance and obtains the following result@9#:

DPP@A#5q̂S h11
1

2
,h21

1

2DexpS ip

2
~h12h2! D

3expS 1

4pE d2x~f]2f1 if]2x! D , ~5!

with, for real variablesk1 andk2, the definition@5,6#

q̂~k1 ,k2![exp@2p~k2!21 ipk1k2#q~k11 ik2 ; i !/h~ i !,
~6!

in terms of the Riemann theta function and Dedekind
function

q~z;t![ (
n52`

`

exp~p in2t12p inz!,ty,
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h~t![exp~p i t/12! )
m51

`

@12exp~2p imt!#. ~7!

The result~5! holds for the chiral determinant of a sing
positive chirality ~right-moving! Weyl fermion of unit
charge; cf. Eq.~1!. If the charge isqR1 instead, then the
variableshm , f(x), and x(x) in Eq. ~5! each need to be
multiplied by a factorqR1. For a negative chirality~left-
moving! Weyl fermion of chargeqL1, one also has to take
the complex conjugate of the whole expression~5!. For the
345-model~three chiral fermions with chargesqR153, qR2
54, andqL355), one obtains the following chiral determ
nant @6#:

D345
PP @A#5DPP@3A#DPP@4A#~DPP@5A# !* . ~8!

The chiral determinant~8! of the 345-model is gauge invar
ant. Indeed, it is straightforward to verify both thex inde-
pendence and the invariance under large gauge transfo
tions hm→hm1nm for arbitrary integersnm @10#. We will
first focus on this particular chiral model. Other chiral mo
els will be discussed later.

III. CPT NONINVARIANCE

The question, now, is how the gauge-invariant chiral
terminant~8! of the 345-model behaves under aCPT trans-
formation of the background gauge field:

Am~x!→Am
CPT~x![2Am~2x!. ~9!

Using the elementary properties of the theta function@11#,
one finds

D345
PP @ACPT#52D345

PP @A#, ~10!

with each of the three chiral fermions contributing a mu
plicative factor21 on the right-hand side. Hence, the effe
tive action of the chiralU(1) gauge theory with PP spi
structure over the toruschangesunder aCPT transformation
~9! of the background gauge field, provided the total num
(NF) of charged chiral fermions of the theory isodd ~e.g.
NF53 for the 345-model!. The result~10! thus provides
conclusive evidence for aCPT anomaly of the chiral mode
considered.

The asymmetry~10! implies the vanishing of the chira
determinant~8! for Am(x)50. For gauge fields~3! with
f(x)5x(x)50 and infinitesimal harmonic pieceshm , one
has, in fact,

D345
PP @h1 ,h2#5c~h11 ih2!~h1

21h2
2!1O~h5!, ~11!

with a nonvanishing complex constantc. This result follows
from the observation that the analytic functionq(z; i ) ap-
pearing in Eq.~5! has a simple zero atz5(11 i )/2. More
directly, the holomorphic factor (h11 ih2) in Eq. ~11! corre-
sponds to one of the eigenvalues of the Weyl opera
sm(]m1 iAm) with doubly-periodic boundary condition an
09770
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constant gauge potential, as do the holomorphic and ant
lomorphic factors contained in (h1

21h2
2). Equation ~11!

agrees, of course, with the general result~10! on CPT viola-
tion. But the real importance of Eq.~11! is that, for this
special case, theorigin of the two-dimensionalCPTanomaly
can be identified explicitly, namely one particular eigenva
of the Weyl operator.~See@12# for further details.!

The chiral determinant@6# of the 345-model over the
torus isCPT invariant for the other spin structures AA, PA
and AP, where~A!P stands for~anti-!periodic boundary con-
ditions on the fermion fields~the three fermion species bein
treated equally!. This appears to be related to the observat
that theCPTanomaly is not expected for the AA spin stru
ture @1,3# and the fact that the chiral determinants@6# for the
AA, PA, and AP spin structures transform into each oth
under modular transformations~global diffeomorphisms; cf.
Ref. @4#!, whereas the chiral determinant of the PP spin str
ture is invariant up to a phase. It is important to realize t
this extra requirement of modular invariance for the AA, P
and AP spin structures restricts the type of theories con
ered and also possible regularization methods@13#. For the
general question of how to sum over the different spin str
tures, see, for example, the discussion in Refs.@15,16#. In
our case, the two-dimensionalCPT anomaly would be
present as long as the PP spin structure appears in the

IV. LORENTZ NONINVARIANCE

Given thatCPT invariance no longer holds for the 345
model with doubly-periodic spin structure over the toru
SO(1,1) Lorentz invariance, or ratherSO(2) invariance for
the Euclidean theory, is expected to be broken as well@1,3#.
Concretely, this can be tested by comparing the~translation-
invariant! chiral determinant~8! for two different, localized
gauge fields which are related by a Lorentz transformat
@17#.

Consider, for example, a gauge potentialÃm(x) which,
up to periodicity, is allowed to be nonzero only fo
uxm2L/2u, l , with a fixed lengthl !L/2, and which has in-
finitesimal, but nonvanishing, harmonic piecesh̃m

[(2pL)21*d2xÃm(x). In other words, the gauge potenti
Ãm(x) has local support~set by l ) and produces small, bu
nonzero, averagesh̃m ~typically of orderl /L). According to
Eq. ~11!, the chiral determinant for this gauge field is the
proportional to (h̃11 i h̃2)5smh̃m . Similarly, the chiral de-
terminant for theSO(2) Lorentz transformed~‘‘boosted’’!
gauge potential,

S Ã18~x!

Ã28~x!
D 5LS Ã1~Lx!

Ã2~Lx!
D , L[S cosa 2sina

sina cosa D ,

~12!

is proportional tosmh̃m8 . But these two particular factor
differ by a phase factor exp(ia), as can be readily verified
All other factors of the two chiral determinants being equ
this then implies
1-2
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D345
PP @Ã8#5exp~ ia!D345

PP @Ã#. ~13!

Note that Eq.~13!, for a5p, agrees with the previous resu
~10!. Also note that the noninvariance of the factorsmh̃m in
the chiral determinant directly carries over to the theory w
Minkowskian metric gmn5diag (11,21). In short, the
Lorentz invariance of the chiral determinant~8! for the lo-
calized gauge fieldÃm(x) is broken through itsh̃m depen-
dence.@The term*d2xf̃]2f̃ from Eq. ~5! is, of course, Lor-
entz invariant.#

As far as the gauge potential is concerned, this locali
configurationÃm(x) could also have been embedded in t
Euclidean planeR2. The Lorentz noninvariance of the effec
tive gauge field action comes from the chiral fermions wh
are sensitive to the topology of the torusT2. More physi-
cally, the periodic boundary conditionspredisposethe chiral
fermions of the 345-model to select specifich̃m-dependent
terms from the local interaction with the gauge field. The
special terms in the effective action then make the local
namics of the~classical! gauge fieldÃm(x) Lorentz nonin-
variant.

V. OTHER CHIRAL MODELS

Up until now, we have focused on the 345-model, wh
has an odd number of charged chiral fermions (NF53). A
chiral model with evenNF does not have theCPT anomaly
discussed above, but can still be Lorentz noninvariant.
example forNF510 would be the 193-model, which has ten
chiral fermions with chargesqRi51, for i 51, . . . ,9, and
qL1053. For this model, the chiral determinant~11! becomes

D193
PP

@h1 ,h2#5c8~h11 ih2!8~h1
21h2

2!1O~h12!, ~14!

which is invariant under theCPT transformation~9!, but
changes under theSO(2) Lorentz transformation~12! by a
phase factor exp(i8a). On the other hand, a chiral model wit
evenNF can also be Lorentz invariant, in the sense discus
above. An example would be the chiral model withNF56
chiral fermions of charges$qR%5$3,4,13% and $qL%
5$5,5,12%, for which the chiral determinant isc9(h1

21h2
2)3

to lowest order. ~Vectorlike models, which have$qR%
5$qL%, are always Lorentz invariant.! Clearly, a deeper un
derstanding of what distinguishes these gauge-invariant
ral models remains to be desired.

VI. DISCUSSION

For the two-dimensional chiralU(1) gauge theory with
an odd numberNF of charged chiral fermions defined ove
of
er
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the torus, we have thus seen that theCPT noninvariance of
the effective gauge field actionGPP@A# is carried by the har-
monic pieceshm of the gauge fieldsAm(x). Thesehm are of
the same type as the local Chern-Simons-like terms enco
tered previously in four dimensions@1,3#. Indeed, the Chern-
Simons one-form for an one-dimensional AbelianU(1)
gauge fielda(x) is given by

v CS@a#[~2p!21a~x!dx. ~15!

One possible two-dimensional Chern-Simons-like term
then the average over thex2 coordinate of 2p i times the
genuine Chern-Simons term for thex1 spaceS1, namely

GCS-like,1
S13S1

@A#[E
0

L dx2

L S 2p i E
S1

v CS@A1# D
5 i E

0

L

dx1E
0

L

dx2A1~x1,x2!/L

52p ih1 , ~16!

whereh1 is defined by Eq.~3!. The other two-dimensiona
Chern-Simons-like term~based on the genuine Chern
Simons term for thex2 space! equals 2p ih2. Hence, Chern-
Simons-like terms play a role for theCPT anomaly in both
two and four dimensions. There is, however, a difference
that the four-dimensional Chern-Simons-like term imme
ately affects the gauge field propagation, with the vacu
becoming optically active@1,18#.

In closing, we remark that theCPT noninvariance found
here appears to be not directly related to the purely grav
tional anomaly which afflicts Weyl fermions in two dimen
sions (4k12 dimensions in general! @8#. The gravitational
anomaly~breakdown of general coordinate invariance! of the
two-dimensional 345-model, say, shows up for deviatio
from the Euclidean metricgmn5dmn , but in our case the
metric is perfectly Euclidean and, still, the effective gau
field action GPP@A# is CPT noninvariant. Instead of loca
spacetime fluctuations, it is the spacetime topology~and spin
structure! that is relevant to theCPT anomaly. TheCPT
anomaly resembles in this respect the so-called topolog
Casimir effect@19#.
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