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Equilibrium and nonequilibrium properties associated with the chiral phase transition
at finite density in the Gross-Neveu model
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We study the dynamics of the chiral phase transition at finite density in the Gross-Neveu~GN! model in the
leading order in the large-N approximation. The phase structure of the GN model in this approximation has the
property that there is a tricritical point at a fixed temperature and chemical potential separating regions where
the chiral transition is first order from that where it is second order. We consider evolutions starting in local
thermal and chemical equilibrium in the massless unbroken phase for conditions pertaining to traversing a first
or second order phase transition. We assume boost invariant kinematics and determine the evolution of the
order parameters, the energy density and pressure as well as the effective temperature, chemical potential and
interpolating number densities as a function of the proper timet. We find that before the phase transition, the
system behaves as if it were an ideal fluid in local thermal equilibrium with equation of statep5e. After the
phase transition, the system quickly reaches its true broken symmetry vacuum value for the fermion mass and
for the energy density. The single particle distribution functions for fermions and antifermions go far out of
equilibrium as soon as the plasma traverses the chiral phase transition. We have also determined the spatial

dependence of the ‘‘pion’’ Green’s function̂c̄(x)g5c(x)c̄(0)g5c(0)& as a function of the proper time.
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I. INTRODUCTION

The phase structure of QCD at nonzero temperature
baryon density is important for the physics of neutron st
and heavy ion collisions. The approximate phase struc
for QCD with different numbers of quark flavors has be
mapped out in various mean field and perturbative appr
mations @1,2,3,4#. The phase structure for two massle
quark flavors~up and down! already reveals a rich structure
In addition to the well known chiral symmetry broken an
restored phases, recent investigations have revealed the
sibility of a color superconducting phase at low temperatu
and relatively high densities. The transition to the superc
ducting phase as we increasem at zero temperature is firs
order. On the other hand, in the chiral condensation reg
at zero chemical potential, the phase transition as we incr
the temperature to the unbroken mode is second order.
suggests that there is a regime at intermediate chemica
tentials where the chiral phase transition is first order. Alo
the line separating the broken and unbroken chiral pha
there is a tricritical point.
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One of the most pressing experimental questions is
what extent experiments at the BNL Relativistic Heavy I
Collider ~RHIC! can explore this rich phase structure a
what would be the experimental consequences of havin
quark-gluon plasma rather than a hadronic plasma follow
a collision of heavy ions. Since the production and evolut
of the quark-gluon plasma in a heavy ion collision might
a nonequilibrium process, one needs to understand the
lution of an expanding, possibly out of equilibrium, plasm
We have considered a toy model, which has several pro
ties in common with two flavor massless QCD to explo
these nonequilibrium evolutions. The model we have fou
@5# is a (111)-dimensional model of self-interacting ferm
ons, that has, in the leading order in large-N ~LOLN! ap-
proximation a phase diagram with properties similar to t
of massless two flavor QCD such as a tricritical point as w
as a superconducting phase transition as one increasesm at
low temperature. Since an ultrarelativistic collision leads
an essentially one dimensional expansion at early times,
hoped that the rate of expansion in our toy model will
similar to that found in QCD so that the rate the syste
undergoes the phase transition will be similar to what wo
be found in a more realistic (311)-dimensional expansion
Since this model has asymptotic freedom, the coupling c
stants run logarithmically in LOLN which is a feature shar
with QCD. In this paper we will confine ourselves to stud
ing the dynamics near the tricritical point in our toy mod
©2001 The American Physical Society10-1
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which for that case reduces to the Gross-Neveu model.
One of the questions important for RHIC is whether the

are unambiguous experimental signatures resulting from
change in the nature of the phase transition as a functio
the chemical potential~baryon density!. In our toy model, the
change is the difference from a first order to second or
transition. In actuality this change might be the change fr
a first order transition to a crossover phenomena. Our
proach is to directly determine the time evolution of t
plasma starting from an initial point on the phase diagr
above the chiral phase transition and watch the evolu
through the phase transition. From the time evolving ferm
mode functions one can calculate many physical quant
such as the current current correlation function which de
mines the dilepton rate as well as various particle correla
functions such as that for the pion. In this paper we de
mine single particle distributions functions as well as t
composite particle pion correlation function to try to find t
difference in experimentally measurable quantities whe
plasma evolves traversing say a first rather than a sec
order phase transition. For the purpose of studying the ch
phase transition, we can restrict ourselves to just a secto
our toy model in which it reduces to the well known Gros
Neveu ~GN! model @6#. This simpler model allows us to
study evolutions on both sides of a tricritical point. The ex
phase structure of the Gross-Neveu model in dimensiond
.2<4 at finite temperature and chemical potential has b
the subject of several recent investigations@7#. Using both
renormalization group methods, dimensional reduction me
ods as well as strong coupling expansions, it is thought
the line of chiral phase transitions in all these dimension
either second order or weakly first order, which is the sa
situation as pertains in the leading order in large-N calcula-
tion. Thus ford.2<4 the leading order in large-N calcula-
tion is expected to be a reasonable first approximation.
preciselyd52 theexactphase structure at finite temperatu
does not exhibit a phase transition, so that the phase stru
found at large-N is an artifact of the approximation. Howeve
the simulations in 311 dimension in the largeN approxima-
tion in the boost invariant approximation are expected to
very similar to those found here since the expansion
mostly one dimensional. Thus the calculations presen
here should be understood in that light@that they are a (1
11)-dimensional approximation to the dynamics of the
11)-dimensional problem in the leading order in largeN
approximation#. What is missing in the leading order i
large-N is real scatterings that could lead to rethermalizati
Therefore, the findings of our simulations that the distrib
tions of fermions and antifermions goes far out of equil
rium following the transition, might easily be modified by
more realistic simulation. The calculations presented h
must be thought of as presenting the first field theory sim
lations at finite chemical potential of an evolution through
chiral phase transition with a realistic expansion rate for
plasma appropriate to a heavy ion collision. Future stud
will remedy some of the shortcomings of this toy model,
that inhomogeneous plasmas will be studied as well asN
resummation methods will be used in future simulatio
which will still be based, however, on Gross-Neveu li
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models, albeit in 311 dimensions as well as in 111 dimen-
sions. The approach we take here is to directly solve
evolution equations of a quantum plasma in leading orde
large-N. A complementary approach is to study critical slow
ing near the critical point using ideas from universality a
dynamical critical phenomena@8#. Our interest is more in
having a complete space time picture of an evolving qu
plasma and our hope is that once we resum the LOLN
proximation using Dyson equations and consider the
11)-dimensional version of this model that we will be ab
to address issues of critical slowing down. The calculatio
presented here in the toy model already exhibit the effect
how having small rather than zero quark masses at high t
peratures change the time period of the transition. They a
demonstrate how one can calculate all spatial correla
functions as well as the time evolution of the temperat
and chemical potential, and how a hydrodynamic appro
can be quite accurate before the phase transition.

Following a relativistic heavy ion collision, the ensuin
plasma expands and cools traversing the chiral phase tra
tion. In hydrodynamic simulations of these collisions@9–12#,
as well as in parton cascade models and other event gen
tor approaches@13–18#, one finds that it is a reasonable a
proximation to treat the initial phase of the expansion a
(111)-dimensional boost invariant expansion along t
beam~z! axis. In this approximation, the fluid velocity scale
as z/t. In terms of the variables fluid rapidityh5 1

2 ln@(t
2z)/(t1z)# and fluid proper timet5(t22z2)1/2, physical
quantities such ass, e become independent ofh, as dis-
cussed in Refs.@10–12#. Such an approach was used in o
field theory calculations of the production and evolution
disoriented chiral condensates in theO(4) s model in Ref.
@19#. This approximation is valid for particles produced
the central rapidity region. To study more peripheral co
sions a full inhomogeneous calculation must be perform
This latter study has just started and will be the subject o
future paper.

These kinematical considerations translate into the exp
sion being homogeneous in the fluid rapidityh, which allows
us to convert what would be a set of partial differential equ
tions for the mode functions to a much simpler set of or
nary differential equations in the parametert. The LOLN
approximation we will use in obtaining the field equatio
has been been discussed earlier by ourselves and othe
@12,20–26# and applied to the problem of disoriented chir
condensates in@19,27#. Extending the boost invariant simu
lation to 311 dimensions so that transverse distributions c
be studied is relatively simple.

In solving the time evolution equations for the quantu
fields, the initial conditions for the fields are specified att
5t0 , that is, on a hyperbola of constant proper time. Tht
evolving energy density and pressure are obtained from
expectation value of the energy momentum tensor. To
cuss the production of particles we introduce the concep
an adiabatic number operator which is an adiabatic invar
of the LOLN Hamiltonian. Although our equations will b
valid for arbitrary initial conditions, to study the regim
around the tricritical point we will assume that at some init
proper time the system can be described by a Fermi-D
0-2
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EQUILIBRIUM AND NONEQUILIBRIUM PROPERTIES . . . PHYSICAL REVIEW D 63 096010
distribution with givenm0 andT0 in the comoving frame. In
our simulations we will also choose the initial conditions
our mode functions to agree with the lowest order WK
approximation result. By choosing this initial condition o
the mode functions, the adiabatic number operator then g
a smooth interpolation between the initial Fermi-Dirac d
tributions described bym0 ,T0 and the final outstate numbe
operators. The rest of the paper is organized as follows
Sec. II we review the equilibrium properties of the G
model at finitem andT in the LOLN approximation. Particu
lar attention is paid to the phase diagram. In Sec. III
derive the action in curved coordinates in order to discuss
evolution in terms of the parameterst andh. Section IV is
concerned with renormalization and obtaining explicitly
nite evolution equations. In Sec. V we discuss our choice
initial conditions. In Sec. VI we derive an expression for t
expectation value of the energy momentum tensor and ob
expressions for the renormalized energy density and pres
in terms of the mode functions of the fermion field. In Se
VII we introduce the adiabatic number operator and obt
simple expressions for both the fermion and antifermion
terpolating number operators in terms of the modes. In S
VIII we discuss our numerical results for the proper tim
evolution of the effective fermion mass,m, T as well as the
interpolating number densities. In Sec. IX we determine
time evolution of the pion correlation function. Some of t
results we obtain in this article were summarized and p
sented at a Riken workshop@28#.

II. EFFECTIVE POTENTIAL AND PHASE STRUCTURE

The Lagrangian for the Gross-Neveu model@6# is

L52 i C̄ ig
m]mC i2

1

2
g2~C̄ iC

i !2, ~2.1!

which is invariant under the discrete chiral group:C i
→g5C i . In leading order in largeN the effective action is

Seff5E d2xF2 i C̄ i~]”1s!C i2
s2

2g2G1tr ln S21@s#, ~2.2!

whereS21(x,y)@s#5(gm]m1s)d(x2y).
The phase structure of the GN model at finite tempera

and chemical potential in this approximation has been kno
for a long time@5,29# and is displayed in Fig. 1.

This figure summarizes several facts. In the GN mo
there is spontaneous symmetry breaking of the discrete c
symmetry at zero chemical potential and temperature.
value of the vacuum expectation value ofs at the minimum
of the effective potential determines and is equal to the m
of the fermionmf in this approximation. At zero tempera
ture, the symmetry is restored at a critical value of the che
cal potentialmc5mf /&. This phase transition is first orde
At zero chemical potential the system undergoes a sec
order phase transition to the unbroken symmetry phase a
temperature is increased. As a result of these two facts
some point in the phase diagram there is a tricritical po
which can be determined numerically to be atmc /mf
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50.608, Tc /mf50.318. These facts can be ascertained
studying the effective potential in LONL which is given b

Veff~s2,T,m!5
s2

4p F ln
s2

mf
221G2

2

b

3E
0

` dk

2p
@ ln~11e2b~E2m!!

1 ln~11e2b~E1m!!#. ~2.3!

The integrals can be evaluated in the high temperature~and
small m/T! regime. Keeping the leading terms in the expa
sion one obtains

Veff~s2,T,m!5
s2

4p
Xln T2

Tc
2 1

7

2

z~3!

p2T2 S m21
s2

4 D C, ~2.4!

which leads to the relationship

Tc5
mf

p
expFg2

7m2z~3!

4p2Tc
2 G ~2.5!

for the phase transition temperature in the regime where
transition is second order andm/T!1. At smallm2 one has
approximately

Tc5
mf

p
egF12

7m2z~3!

4gmf
2eg G . ~2.6!

In the low temperature regime for the cases<m we can
make an approximation to the Fermi-Dirac distribution fun
tion that again allows us to perform all the integrations a
lytically and determine an approximate analytic form for t
effective potential. We write the derivative of the potential
the form

FIG. 1. Phase structure at finite temperature and chemical
tential m. Dotted lines correspond to approximate analytic resu
described in the text.
0-3
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FIG. 2. Evolution ofVe f f as a function ofT. This is for a first order transition.
]V s s2 s ` dk E1m E2m
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e
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e

]s
5

2p
ln

mf
2 1

p E
0 E F22tanh

2T
2tanh

2T G ,
~2.7!

whereE5Ak21s2, and then replace the function tanh„(E
2m)/T… with the straight line interpolation

tanh~x!→$1 if x.2;21 if x,2 and x if uxu<2%.
~2.8!

Using this approximation the integrals can be performed
V determined. The results are shown as the dotted curv
Fig. 1. The analytic expression is given in@5#.

When T50, the effect of the chemical potential is th
most dramatic. In that limit tanh(x)5e(x), and we obtain the
exact result

]V

]s
5

s

2p
ln

s2

mf
2 1

s

p E
0

Am22s2 dk

E
Q~m2s!

5
s

2p
ln

s2

mf
2 1

s

p
Q~m2s!

3H ln~11A12s2/m2!2
1

2
ln

s2

m2J . ~2.9!

This can be integrated to give the result that fors<m the
effective potential is given by

Veff5
1

4p
H s2S 2 lnFm1Am22s2

mf
G21D

22mAm22s21C~m!J , ~2.10!

whereas, fors.m the effective potential is equal to itsm
50 value; namely,
09601
d
in

Veff54p F ln
mf

221G1C~m!. ~2.11!

The integration constant can be fixed by choosingVe f f(s
50)50, which yields

C~m!5
m2

2p
. ~2.12!

At T50 in the broken symmetry phase the effective mas
independent ofm and is given bymf , its value whenm
50, T50. Whenm2.mf

2/2 then the true minimum is ats
50. The transition atm25mf

2/2 is a first order transition as
can be determined by Eq.~2.9! and Eq.~2.10!. In the toy
model @5# with two coupling constants, which also has
superconducting phase, the first order transition takes p
at the point

m25
mf

2

2
~12e24pd!, ~2.13!

whered is the difference of the inverse of the two couplin
constants of the model@5#, namelyd51/k21/2l. When the
second coupling constantk→01, the toy model reduces to
the GN model.

In our straight line interpolation of the tanh function w
obtain for the tricritical point which seperates the regim
between the first and second order phase transitions:mc /mf
50.661,Tc /mf50.31 as opposed to the exact result

mc

mf
50.608,

Tc

mf
50.318. ~2.14!
0-4
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FIG. 3. Evolution ofVe f f as a function ofT. This is for a second order transition.
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In Fig. 1 we plot the exact numerical result for the pha
diagram along with these two approximate results. In Fig
and 3 we show the evolution of the effective potentials
the first order and second order phase transitions when
keepm fixed on two sides of the critical value and we d
crease the temperature.

III. GROSS-NEVEU MODEL IN CURVILINEAR
COORDINATES

In order to make best use of the kinematic constraint t
we are in a scaling regime where the fluid velocity isv
5z/t, we make a coordinate transformation to the light-co
variablest andh, which are the fluid proper time and rapid
ity respectively. These coordinates are defined in terms
the ordinary lab-frame Minkowski timet and coordinate
along the beam directionz by

z5t sinhh, t5t coshh. ~3.1!

We shall use the metric convention~21! which is com-
monly used in the curved-space literature. In what follow
we use Greek indices for the curvilinear coordinatest andh,
and Latin indices for the Minkowski coordinatesz and t. To
obtain the fermion evolution equations in the new coordin
system it is simplest to use a coordinate covariant ac
such as that used in field theory in curved spaces, e
though here the curvature is zero.

The Minkowski line element in these coordinates has
form

ds252dt21t2dh2. ~3.2!

Hence the metric tensor is given by

gmn5diag~21,t2! ~3.3!
09601
e
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with its inverse determined fromgmngnr5dr
m . This metric is

a special case of the Kasner metric@30#.
The vierbeinVm

a transforms the curvilinear coordinates
Minkowski coordinates,

gmn5Vm
a Vn

bhab , ~3.4!

wherehab5diag$21,1% is the flat Minkowski metric. A con-
venient choice of the vierbein for the metric~3.3! for our
problem is

Vm
a 5diag$1,t%, ~3.5!

so that

Va
m5diagH 1,

1

t J . ~3.6!

The determinant of the metric tensor is given by

detV5A2g5t. ~3.7!

The action for the Gross-Neveu model in general cur
linear coordinates~see@30#! with metric gmn is

S5E d2x~detV!F2 i

2
C̄ i g̃

m¹mC i

1
i

2
~¹m

† C̄ i !g̃
mC i2 isC̄ iC

i2
s2

2g2G . ~3.8!

The covariant derivative is~see@31#!

¹mC i[~]m1Gm!C i , ~3.9!

where the spin connectionGm is given by
0-5
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Gm5
1

2
SabVan~]mVb

n1Gml
n Vb

l!, Sab5
1

4
@ga,gb#, ~3.10!

with Gml
n the usual Christoffel symbol. The labeli 51...N

corresponds to theSU(N) symmetry. For the metric Eq
~3.3! ~see@32#! one finds

Gt5Gx5Gy50,

Gh52
1

2
g0g3. ~3.11!

The coordinate dependent gamma matricesg̃m are obtained
from the usual Dirac gamma matricesga via

g̃m5gaVa
m~x!. ~3.12!

The coordinate independent Dirac matricesga satisfy the
usual gamma matrix algebra:

$ga,gb%52hab. ~3.13!

From the action Eq.~3.8! we obtain the Heisenberg fiel
equation for the fermions,

~ g̃m¹m1s!C i50, ~3.14!

which takes the form

Fg0S ]t1
1

2t D1
g3

t
]h1sGC i50. ~3.15!

Variation of S with respect tos yields the constraint equa
tion:

s52 ig2C̄ iC
i52 i

l

N
C̄ iC

i , ~3.16!

which defines the rescaled coupling constantl. Since we
will be interested in havingN copies of the fermion quantum
field, the rescaled coupling constant is the relevant one
discussing the large-N limit. The lowest order in a large
N ~LOLN! approximation is obtained by integrating ov
the Fermi degrees of freedom in the generating functional
the Green’s function and keeping the saddle point contri
tion in the integral over the constraint fields. One obtains
that the gap equation in leading order is

s52 i
l

2N
^@C i

† ,g̃0C i #&[2 i
l

2
^@c†,g̃0c#& ~3.17!

where we have assumed there areN identicalC i5c. In the
scaling regimev5z/t, the order parameter, which is the e
fective fermion mass, is independent ofh and is a function
of t only.

For the heavy ion collision problem, we want to sol
these equations subject to initial conditions specified on
hyperboloidt5t0 . In LOLN, specifying the initial value of
the density matrix is equivalent to specifying the initi
particle-number density and anti-particle number den
with respect to an adiabatic vacuum state~see below!. To
09601
or
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complete the specification of the initial state, the mode fu
tions for the Fermi field also need to be specified att5t0 .

The Dirac equation reduces to its Minkowski form if w
do a rescaling

c~x!5
1

At
F~x!, ~3.18!

and introduce the conformal timeu via

mt5eu.

One then obtains

@g0]m1g3]h1s̃~u!#F~x!50, ~3.19!

where

s̃~u!5st5
s

m
em.

Our assumption that the evolution is homogeneous in
rapidity variableh allows us to expand the fermion fieldF in
terms of Fourier modes in the momentumkh conjugate toh
at fixed conformal timeu,

F~x!5E dkh

2p
@b~k!fk

1~u!eikhh1d†~2k!f2k
2 ~u!e2 ikhh#.

~3.20!

The fk
6 then obey

Fg0
d

du
1 ig3kh1s̃~u!Gfk

6~u!50. ~3.21!

The superscript6 refers to positive- or negative-energy s
lutions with respect to the adiabatic vacuum att5t0 as we
shall show. It is convenient to square the Dirac equation
letting

fk
6~u!5F2g0

d

du
2 ig3kh1s̃~u!G f k

6~t!x6, ~3.22!

where the momentum independent spinorsx6 are chosen to
be the eigenstates ofig0

ig0x656x6, ~3.23!

and obey the normalization condition

x r
†xs5d rs , ~3.24!

with r, s56. An explicit representation for these spinors
found in the Appendix. The quantitiesf k

1(t)x1 and
f k

2(t)x2 are the two linearly independent solutions corr
sponding to the positive and negative energy solutio
Whenkh50 we have that~in what follows theh in kh when
kh is a subscript is suppressed for notational simplicity!

F7 i
d

du
1s̃ G f k50

6 50,
0-6
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so that

f k50
6 }e7 i *s̃du. ~3.25!

The mode functionsf 6 obey the second order differentia
equation:

S 2
d2

du22ṽk
26 i

ds̃

duD f k
6~u!50, ~3.26!

where now

ṽk
25kh

21s̃2~u!. ~3.27!

If we impose the canonical anticommutation relations on
fields

$fa~u,h!,fb
†~u,h8!%5dabd~h2h8!,

and assume the usual canonical anticommutation relation
the Fock space mode operators,

$bk ,bq
†%5$dk ,dq

†%52pd~k2q!, ~3.28!

then we obtain the condition

fka
1†fkb

1 5fka
2†fkb

2 5
1

2
dab . ~3.29!

Taking the trace yields the normalization condition

fk
1†fk

15fk
2†fk

251. ~3.30!

Using Eq.~3.21! one obtains

d

du
@fk

†afk
b#50, ~3.31!

wherea, b51,2, for everya, b. Reexpressing this in term
of the f a we have for each Fourier mode at allu

fk
6†fk

65 ḟ k*
6 ḟ k

61ṽk
2f k*

6 f k
66 i s̃~ ḟ k

6 f k*
62 ḟ k*

6 f k
6!51.

~3.32!

We also have that

fk
†1fk

25kh~ f k*
1 ḟ k

22 ḟ k*
1 f k

2!. ~3.33!

Since the right-hand side of Eq.~3.33! is proportional to the
Wronskian and is thus independent of the conformal time
we initially choose

05 f k*
1 ḟ k

22 ḟ k*
1 f k

2 , ~3.34!

then the two solutionsf1,f2 remain orthogonal at al
times. This relation as well as Eq.~3.26! can be satisfied by
having

f k*
15 f k

2 .

These results can be summarized by

fk
†afk

b5dab, ~3.35!
09601
e
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with a, b taking on either1 or 2. For both renormalization
purposes as well as to introduce the concept of adiab
number operators, it is useful to also have a WKB-like p
rametrization of the positive-energy solutionsf k

1 as dis-
cussed in Ref.@12#:

f k
1~u!5Nk

1

A2Ṽk

expH E
0

uS 2 i Ṽk~u8!2
s8 ~u8!

2Ṽk~u8!
D du8J .

~3.36!

The u derivative is given by

ḟ k
1~u!5~2 i Ṽk2Dk! f k

1~u!, ~3.37!

where

Dk5
V8 k1s8

2Ṽk

. ~3.38!

The Ṽk obey the real equation

V̈̃k1 s̈̃k

2Ṽk

2
~s8 1V8 k!~s8 13V8 k!

4Ṽk
2

5ṽk
2~u!2Ṽk

2, ~3.39!

which is the starting point for a WKB expansion of the mo
functions. Ṽk and V8 k can be determined from the mod
functions as follows:

Ṽk52Im
ḟ k

1

f k
1

; 22 Re
ḟ k

1

f k
1

5
s8 1V8 k

2Ṽk

. ~3.40!

Using the normalization condition Eq.~3.32! we can show
that

Zk~u![u f k
6u25S Ṽk

21ṽk
212Ṽks̃1S s8 1V8 k

2Ṽk

D 2D 21

.

~3.41!

The normalization of the wave function,Nk is time indepen-
dent and can be evaluated atu50. Using Eq.~3.41! and Eq.
~3.36! we obtain

Nk
252Ṽk~u50!Zk~u50!. ~3.42!

We can now obtain an expression for the the gap equatio
terms of the mode functions. Using the mode decomposi
and the definitions

^b†~k!b~q!&52pd~k2q!N1~q!,

^d†~k!d~q!&52pd~k2q!N2~q!, ~3.43!

we obtain
0-7
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s52 i
l

2
^@c†,g̃0c#&

5
l

2t E dkh

2p
@„122N1~k!…fk

1†ig0fk
1

1„2N2~k!21…fk
2†ig0fk

2#. ~3.44!

Later we will choose the initial state number densitiesN6(k)
to be Fermi-Dirac distributions at a givenm and T. We re-
mark here that thek in N6(k) refers tokh canonically con-
jugate toh. When we calculate the expectation value of t
energy momentum tensor to identify the energy and pres
in a comoving system we will find that theN6(kh) corre-
sponds to the comoving number densities pertinent to r
tivistic hydrodynamics. After some algebra we find

Rk~u!5fk
1†ig0fk

152fk
2†ig0fk

2

5u ḟ k
1u21~ s̃22kh

2 !u f k
1u21 i s̃~ ḟ k

1 f k
1* 2 ḟ k*

1 f k
1!

5u f ku2F Ṽk
22ṽk

212s̃~ s̃1Ṽk!1S s8 1V8 k

2Ṽk
D 2G .

~3.45!

Equation~3.44! reduces to the vacuum expression for t
gap when everything becomes time independent so that

Ṽk→ṽk ,

Zk~u![u f k
6u2→@~2ṽk!~ṽk1s̃ !#21,

~3.46!

F Ṽk
22ṽk

212s̃~ s̃1Ṽk!1S s8 1V8 k

2Ṽk

D 2G→2s̃~ s̃1ṽk!,

which leads to the vacuum gap equation:

s05lE dkh

2p

s0

ṽk
5lE dk

2p

s0

vk
. ~3.47!

In the time evolving case we obtain instead

s5
l

t E dkh

2p
„12N1~k!2N2~k!…Rk~u!, ~3.48!

which in dimensionless form can be written as

s̃5lE dkh

2p
„12N1~k!2N2~k!…Rk~u!. ~3.49!

We can simplify Eq.~3.45! for R(u) by using Eq.~3.32! to
obtain

Rk~u!5122kh
2 u f k

1~u!u2. ~3.50!
09601
re
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IV. RENORMALIZATION

In this section we will show that the renormalization
the chargel in the vacuum sector is sufficient to render t
equation fors finite. First let us remind ourselves that th
effective potential for the Gross-Neveu model can be writ
as

Ṽ5
V

N
5

s2

2l
2

i

2
Tr ln~g•]2s!, ~4.1!

where here the trace is only over the Dirac spinor indic
The renormalized coupling constant defined at arbitrarys is
given by

d2Ṽ

dsds
5

1

lR~s!
5

1

l
2E dp

2p

1

Ap21s2
1

1

p
. ~4.2!

It is useful to define the logarithmically divergent integral

S~M2!5E
2L

L dp

2p

1

Ap21M2
. ~4.3!

In particular if we choose the renormalization point to be
the minimum of the potential, which also defines the fermi
mass in this approximation, one has

dV

dsU
s5mf

50→ 1

l
5E

2L

L dp

2p

1

Ap21mf
2

5S~mf
2!5

1

2p
lnS L2

mf
2D . ~4.4!

From the above equations, one deduces that

lR~mf !5p, ~4.5!

and also that

1

lR~s!
2

1

lR~mf !
5S~mf

2!2S~s2!5
1

2p
lnS s2

mf
2D .

~4.6!

As derived earlier, for the evolution problems̃ is given
by

s̃5lE dkh

2p
„12N1~k!2N2~k!…Rk~u! . ~4.7!

The apparent logarithmically divergent part of the m
mentum integral which we callsdiv comes from the term

s̃div5lE dkh

2p
@122ṽk

2Zk~u!#. ~4.8!

The logarithmic divergence can be isolated by doing
adiabatic expansion of the integrand in the expression
s̃div. The first order adiabatic expansion of the equation
the generalized mode functionsṼk is obtained from the ex-
0-8
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pression forṼk
2 in Eq. ~3.39! by replacingṼk , V8 k by ṽk ,

v8 k in the left-hand side of that expression. We further u
the expression forṽk in terms ofs̃ expressed in Eq.~3.27! to
get

v8 k5
s̃

ṽk
s8 ; v̈̃k5 s̈̃

s̃

ṽk
1

s8 2

ṽk
F12S s̃

ṽk
D 2G . ~4.9!

At large momentum, we therefore obtain the expansion

Ṽk
2

ṽk
2 512

1

2ṽk
3 F s̈̃S 11

s̃

ṽk
D1

s8 2

ṽk
X12S s̃

w̃k
D 2CG

1
s8 2

2ṽk
4 S 11

s̃

ṽk
D S 11

3s̃

ṽk
D¯ . ~4.10!

It therefore follows that

s̃div5lE dkh

2p F s̃

ṽk
G . ~4.11!

We can renormalize the equation fors̃ by appropriately
subtracting this quantity when we renormalize the coupl
constant, or we can recognize that this divergence is o
apparent once we utilize the gap equation for the vacu
sector:

l215E dkh

2p

1

Akh
21m̃f

2
5E dk

2p

1

Ak21mf
2

. ~4.12!

That is we just use the mode sum version of Eq.~4.12! in
place ofl in Eq. ~4.7! and keep enough modes in the n
merator and denominator until the answer is independen
the number of modes. This approach has the advantage t
also allows one to verify that the coupling constant is flo
ing according to the continuum renormalization group flo
as we increase the cutoff.

To explicitly renormalize the gap equation, we consid
the quantity

s̃F 1

lR~s!
2

1

lR~mf !
G

5
1

2p
s̃~u!lnS s̃2

m̃f
2D

5E dkh

2p
@Rf k~u!2„N1~k!1N2~k!…Rk~u!#, ~4.13!

whereRf k(u) is given by

Rf k~u![Rk~u!2
s̃

ṽk
. ~4.14!

From the above discussion of the divergence structure,
equation is manifestly finite.
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V. INITIAL CONDITIONS

To solve for the proper time evolution of this system o
has to solve Eq.~3.26!,

S 2
d2

du22ṽk
26 i

ds̃

duD f k
6~u!50,

as well as Eq.~4.13! for the order parameter

1

2p
s̃~u!lnS s̃2

m̃f
2D 5E dkh

2p
@Rf k~u!2„N1~k!

1N2~k!…Rk~u!#.

To solve Eq.~4.13! requires knowledge of the initial dis
tribution of fermions and antifermionsN1(k) andN2(k). In
general the only conditions needed on the distributio
N1(k) and N2(k) are that they lead to finite number an
energy densities. The condition on the mode functions
the energy density to remain finite at all times is that the h
frequency modes must converge to their free field vacu
values. Since the low frequency modes do not effect
renormalization they can be chosen arbitrarily. Here we w
choose the initial modes to match up with those found in
WKB approximation initially. This will allow us to introduce
an adiabatic number operator which has the added fea
that it will interpolate from the initial distribution ofN6(k)
to the final outstate distribution functions. Other choices
perfectly acceptable but would lead to a jump in the num
of particles from their initial values right after the initia
time. Since we are interested in exploring the phase diag
on both sides of the tricritical regime, we will choose o
initial state to be described by a value ofN6(k) consistent
with local thermal and chemical equilibrium described by t
parametersT and m ~here the plus sign corresponds to t
fermion distribution function and the minus sign to the an
fermion distribution!

N6~k!5
1

e~vk7m!/T11
, ~5.1!

where

vk5E5Ak21s2~u50!5
1

t0
Akh

21s̃2~u50!.

In LOLN approximation, the initial value problem is totall
specified onceN6 and f k and ḟ k are given. The dynamics o
the evolution is such that the gap equation is obeyed a
times. If we start in the regime where symmetry is broke
then the initial value of the fermion mass obeys the equa

s~u50!5
s̃~u50!

t0
,

where s̃ satisfies the gap equation~4.13! with u50. If we
start our simulation in the unbroken mode then we have
stead

s̃~u50!50.
0-9
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We notice that in LOLN whens̃[0 the fermions evolve as
if they are free and massless. In the full theory, one obta
nontrivial dynamics for the unbroken phase through fluct
tions that are ignored in the LOLN approximation. Thus
LOLN we need to think of thes50 case as a limit of taking
initial conditions with small but finite initial mass in order t
have nontrivial dynamics. As we will see below, finding t
limit of zero mass is numerically well defined once initi
masses are<1026 mf . For our simulations an initial value
of s(0)51027mf is used.

It is convenient to choose the initialt051/mf and mea-
sure the proper time in these units. The adiabatic initial c
ditions on the mode functionsf which we will discuss in
more detail later correspond to

Ṽk~0!5ṽk~0!; V8 k~0!5v8 k~0!5
s̃

ṽk
s8 , ~5.2!

so that using Eq.~3.37! we have

f k~0!5
Nk

A2ṽk

,

ḟ k
1~0!5S 2 i ṽk2

v8 1s8

2ṽk
D f k

1~0!,

Nk
25

2ṽk~0!

F2ṽk
2~0!12ṽk~0!s̃~0!1S s8 ~0!1v8 k~0!

2ṽk~0! D 2G .

~5.3!

We now show thats8 (u50)50 is required if we choose
adiabatic initial data for the mode functions. For adiaba
initial conditions

s8 ~0!5lE dkh

2p
Nk

2
kh

2

ṽk~0! Fs8 1v8 k~0!

ṽk
G„12N1~k!2N2~k!….

~5.4!

Equation~4.13! and Eq.~5.4! are two equations for the initia
conditionss̃ ands8 in terms ofm andT. However we realize
that the integral fors8 (0) is proportional tos8 (0) times the
bare couplingl times a finite function ofs̃(0),s8 (0),m,T.
Since the bare coupling goes to zero with the cutoff, the o
value ofs8 (0) consistent with the adiabatic initial condition
is

s8 ~0!50. ~5.5!

It then follows that

Rk~u50!5
s̃~0!

ṽk~0!
, ~5.6!

so that the equation fors̃(0) simplifies to

1

2p
s̃~0!lnS m̃f

2

s̃2~0!
D 5E dkh

2p
„N1~k!1N2~k!…Rk~0!.

~5.7!
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This is equivalent to the gap equation arising from the eff
tive potential at finite chemical potential and temperature

ln
mf

2

s2 5E
2`

` dk

vk
F22tanh

vk1m

2T
2tanh

vk2m

2T G ~5.8!

if we chooseN6(k) to be equilibrium Fermi-Dirac distribu-
tions.

Summarizing, for our choice of adiabatic initial cond
tions our mode functions initially are

f k~0!5
Nk

A2ṽk

; Nk
25@ṽk~0!1s̃~0!#21,

ḟ k
1~0!52 i ṽkf k

1~0!. ~5.9!

We are interested in studying evolutions with and witho
phase transitions, as well as comparing the effects of trav
ing first vs second order phase transitions, including the s
cial case of traversing the tricritical point. We have th
chosen four separate illustrative starting points on the ph
diagram of Fig. 1 for our numerical simulations, all assumi
initial local thermal and chemical equilibrium. For the ca
of no phase transition, case~1!, we have chosen the startin
point ~m050.2; T050.3!. For typical initial conditions for
which the second order phase transition is traversed@case
~2!#, we choosem050.5; T050.5. For the initial conditions
m050.6; T050.32 @case~3!# the system traverses the tric
ritical point. Finally, for a typical case where the syste
undergoes a first order phase transition, case~4!, we choose
~m050.8; T050.3!.

We will find that before the phase transition, the syste
can be described in terms of a number distribution with
proper time evolving temperature and chemical potent
However, after undergoing a phase transition, the adiab
single particle distribution functions for fermions and an
fermions~defined below! are far from equilibrium and can
not be described by a chemical potential and tempera
which are independent of the momentum.

In performing our numerical simulations, we place t
system in a box of dimensionless lengthL̃5mfL, and
choose antiperiodic boundary conditions for the fermio
That is we let

kh→k@h#5
2p~n21/2!

L̃
, ~5.10!

with n52N,...,N. In our simulations, for the system to b
in a regime where the coupling constant flows according
the renormalization group, one needsN55000. The number
of modes increases if we want to study the really long ti
behavior of this system. However, at these long times
expect hard processes which allow rethermalization,
which are neglected in this mean field study to become v
important.
0-10
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VI. ENERGY-MOMENTUM TENSOR

To understand the hydrodynamical properties of the e
lution of the plasma, we need to evaluate the expecta
value of the energy momentum tensor in the initial dens
matrix. Becausê Tmn& is diagonal in theh, t coordinate
system, we can read off the comoving pressure and en
density from its diagonal entries. The energy-moment
tensor is defined via

Tmn52
2

A2g

dS

dgmn . ~6.1!

Scaling out the factor ofN, and using the equation of motio
we have

Tmn

N
5

i

2
C̄g̃~m¹n)C2

i

2
¹~mC̄g̃n)C2gmn

s2

2l
. ~6.2!

Here the parenthesis means keeping both terms in the s
metrization inmn. If we rescale the fieldsf5Atc and use
the Fourier decomposition for the rescaled fields we find
the expectation value of the unrenormalizedTtt

t2^Ttt&
N

5
s̃2

2l
2

i

4 E2L̃

L̃ dkh

2p
@„2N1~k!21…

3~fk
1†]ufk

12]ufk
1†fk

1!

1„122N2~k!…~fk
2†]ufk

22]ufk
2†fk

2!#. ~6.3!

Expanding in terms of the mode functionsf k
6 we obtain

e~t!t2[
t2^Ttt&

N

5
s̃2

2l
2E

0

L̃ dkh

2p
„12N1~k!2N2~k!…

3@2s̃14Ṽk~ṽk
22s̃2!u f k

1u2#, ~6.4!

where

Ṽku f k
1u2[

i

2
~ f k

1]uf k
1* 2 f k

1* ]uf k
1!.

The energy density contains an infinite~quadratically diver-
gent! cosmological term:

g00K52E
0

L dk

p
k,

that needs to be subtracted by hand. The remaining loga
mic divergence is eliminated by coupling constant renorm
ization. The divergence structure can be analyzed using
adiabatic expansion ofṼk in terms ofṽk and recognizing the
high momentum behavior ofṼk is given by

Ṽk5ṽkF110S 1

ṽk
D 3G ~6.5!
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so that

u f k
1u25

1

2ṽk~ṽk1s̃ ! F110S 1

ṽk
D 4G . ~6.6!

Thus the divergent terms in̂Ttt& are exactly the terms
that appear in the effective potential. Namely

t2^Ttt
div&

N
5

s̃2

2l
22E

0

L̃ dkh

2p
Akh

21s̃2. ~6.7!

Making the rescalings

s̃5st; L̃5Lt; kh5kt,

one recovers the unrenormalized effective potential for
Gross-Neveu model@see Eq.~2.21! of @5##

V5
s2

2l
22E

0

L dk

2p
@Ak21s22k#, ~6.8!

where here we have subtracted the~infinite! s independent
cosmological constant term. Next using the fact that the b
coupling and the cutoff and the physical fermion mass of
vacuum theory are related by the gap equation

1

2l
5E

0

L dk

2p

1

Ak21mf
2

, ~6.9!

we obtain after subtracting the cosmological constant ter

^Tsub tt
div &
N

5V5E
0

L dk

2p F s2

Ak21mf
2
22Ak21s212kG

5
s2

4p F ln
s2

mf
221G1OS 1

L2D . ~6.10!

Here we have chosen the zeropoint of the effective poten
to be zero at themaximums50. Thus in the true broken
symmetry vacuums50, we have

V@s5mf #52
mf

2

4p
. ~6.11!

Thus we expect~and will find! that when the system goe
through the phase transition into the broken symmetry ph
that the energy density will approach thisnegative true
vacuum value.

The manifestly finite expression fore(t)t2 is
0-11
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e~t!t25E
0

L̃ dkh

2p F s̃2

Akh
21m̃f

2
12~kh2s̃ !

14Ṽk~ s̃22ṽk
2!u f ku2G

1E
0

L̃ dkh

2p
„N1~k!1N2~k!…

3@2s̃14Ṽk~ṽk
22s̃2!u f ku2#. ~6.12!

We have for the expectation value of the unrenormaliz
Thh

^Thh&
N

52
s̃2

2l
1

i

2 E2L̃

L̃ dkh

2p
~ ikh!@~2N1~k!21!

3fk
1†g0g3fk

11„122N2~k!…fk
2†g0g3fk

2#.

~6.13!

Expanding in terms of the mode functionsf 6 we obtain

Thh

N
52

s̃2

2l
1E

0

L̃ dkh

2p
„12N1~k!2N2~k!…

34~ s̃1Ṽk!~ s̃22ṽk
2!u f k

1u2]. ~6.14!

Multiplying by t2 and keeping the lowest order in the adi
batic expansion as before we obtain that the divergent pa
the pressure is given by

p052E
0

L dk

2p

2k2

Ak21s2
52

L2

2p
2

s2

4p S ln
s2

4L2 11D . ~6.15!

This is to be compared with divergent part of the ene
density given by

e0522E
0

L dk

2p
Ak21s252

L2

2p
1

s2

4p S ln
s2

4L221D . ~6.16!

As we discussed in@23#, the momentum cutoffL acts as
a noncovariant point splitting regulator, giving terms in t
regulated^Tmn& proportional todm

i dn
j in which the spatial

directionsi , j 51, 2, 3 are distinguished. Since these terms
not appear in them5n50 time component, the energy de
sity has the correctL dependence and requires no correct
to make it agree with covariance. However, because cov
ance requires that the cosmological term is proportion
gmn , the correct regulated pressure must satisfy

p08[2e0 . ~6.17!

We need to enforce this conditionby handby adding the
difference

p082p052e02p0

to p0 which corrects for the noncovariant term induced
our momentum cutoff. We then need to subtract off the c
09601
d

of

y

o

ri-
o

r-

rect cosmological term to eliminate the quadratic divergen
As in the case of the energy density, the apparent logarith
divergence gets cancelled by coupling constant renorma
tion. We then find

p082
s2

2l
52

s2

4p F ln
s2

mf
221G1

L2

2p
. ~6.18!

Thus the renormalized and ‘‘covariantized’’ expression
the pressure is

p8t25E
0

L̃ dkh

2p F „12N1~k!2N2~k!…4~ s̃1Ṽk!

3~ s̃22ṽk
2!u f ku212

kh
2

Akh
21s̃2

12Akh
21s̃222kh2

s̃2

Akh
21m̃f

2G . ~6.19!

A. Local equilibrium hydrodynamical picture

In this subsection we will develop a simple local equili
rium hydrodynamical model with an ultrarelativistic equ
tion of state which we can compare with our field theo
simulation. This type of model was first put forth by Landa
@9#. In the hydrodynamical model, Landau assumed that
flow of energy and momentum following an ultrarelativist
high energy collision of protons or heavy ions behaved as
ideal fluid flow into the vacuum with initial conditions con
nected to a highly Lorentz contracted disc of matter. A
lated idea due to Bjorken@11# was to assume that because
the flatness of rapidity distributions in heavy-ion collision
the hydrodynamic flow should possess invariance un
boosts. In either case one has approximately that the fl
velocity vz5z/t and all variables only depend on the flu
proper timet and are independent of the fluid rapidityh. In
this hydrodynamic approach the dynamics are incorpora
into the local equilibrium equation of statep5p(e). For a
one-dimensional relativistic hydrodynamic flow the ener
momentum tensor is assumed to be that of an ideal fluid

Tab5pgab1~e1p!uaub. ~6.20!

Herea, b correspond to Minkowski coordinates and

ua5
va

A12v2
.

The covariant conservation law of energy and momentum

T;b
ab50. ~6.21!

Introducing the thermodynamic relations

e1p5Ts, de5Tds,

and assuming the scaling law
0-12
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FIG. 4. From left to right:t invariant thermal distributionN1 vs kh for initial conditions pertaining to traversing the tricritical point;t
invariant thermal distributionN2 for the same initial conditions.
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v5z/t,

one finds@10# for an equation of state of the formp5c0
2e

that energy momentum conservation leads to the two eq
tions

]h ln T50,

]u ln T1c0
250. ~6.22!

Thus for an ideal one-dimension fluid in the scaling regi
one obtains

T

T0
5S t0

t D c0
2

,

e

e0
5S t0

t D 11c0
2

. ~6.23!

The ultrarelativistic limit hasc0
251 ~the speed of light in our

units wherec51! for a one-dimensional fluid. For that cas

e

e0
5S t0

t D 2

,
T

T0
5S t0

t D . ~6.24!

We will find from our numerical simulations, that if we sta
in the massless~unbroken symmetry! regime then indeedp
5e and this falloff pertains until one goes through the pha
transition, after which the system is no longer in local eq
librium.

When there is also chemical equilibrium, it can be sho
@33# that for a relativistic fluid

dT

T
5

dm

m
, ~6.25!

so when that occurs we also have

m

m0
5S t0

t D . ~6.26!

B. Local equilibrium equation of state and single particle
distribution functions

We can use the equations for the renormalized ene
density Eq.~6.12! and pressure Eq.~6.19! to determine the
09601
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equilibrium equations forp(m,T) ande(m,T), and thus the
equation of statep5p(e) when one is in chemical and the
mal equilibrium. In equilibrium,s(m,T) is zero if we are
above the phase transition in the unbroken symmetry ph
If we are in the broken phase, it is instead given by t
solution of the renormalized gap equation~5.8!. The mode
functions are given by

u f ku2t25
1

2vk~vk1s!
. ~6.27!

In the unbroken symmetry regime, wheres50, this simpli-
fies to

u f ku2t25
1

2k3 .

For the unbroken symmetry case, the equations forp and e
become the same (p5e) and are given by

p5e5E dk

2p
2k@N1~k,m,T!1N2~k,m,T!#, ~6.28!

whereN1 and N2 are given by Eq.~5.1! and we have se
s50. In order to get a quantitative estimate of what w
happen in our numerical simulations, we will assume that
system stays in local equilibrium as it evolves withT evolv-
ing as predicted by the hydrodynamical model so thatT/T0
5t0 /t. We also find from our numerical simulations th
when the initial chemical potential is below the tricritic
value the chemical potential falls similar to the case
chemical equilibrium: i.e.,m/m05t0 /t. Let us now show
that when we are in local chemical and thermal equilibriu
N6(kh ,t) becomes independent oft. Becausem andT scale
as 1/t, andk5kh /t, we find that the distributions forN6 is

N6~kh!5
1

11expS kh7m0

T0
D , ~6.29!

so if we plot these distributions againstkh they are indepen-
dent oft and just depend on the initial valuesm0 andT0 . A
plot of N6 vs kh for the initial conditions of case~3!, m0
50.6 andT050.33, the initial conditions for passing throug
the tricritical point is shown in Fig. 4.
0-13
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FIG. 5. From left to right: evolution of the energy density as a function ofu in the massless phase; same evolution for the log of
energy density as a function ofu.
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From this discussion, we see that a deviation from
local equilibrium hypothesis will show up as a change in
adiabatic distribution functions forN6(kh ,t) from its initial
value as the system evolves inu5 logt. This deviation from
will be greatest when the trajectory undergoes a first or
phase transition. The behavior of the plasmabeforethe phase
transition is very well described by hydrodynamics w
equation of statep5e, since it is basically the evolution of
noninteracting relativistic gas initially assumed in equili
rium and described by

p5e5
1

t2 E dkh

2p
2kh@N1~kh!1N2~kh!#. ~6.30!

This evolution in the massless phase is shown in Fig
which displays the expected 1/t2 falloff.

VII. ADIABATIC NUMBER OPERATOR

One important question for RHIC physics is how t
quark and antiquark distribution functions change in tim
since these time evolving distribution functions enter in
calculations of the particle production rates for both pio
and dileptons. Of especial interest is how these distributi
for fermions and antifermions gets modified as the plas
traverses the chiral phase transition. Since particle numb
not conserved during the evolution of this system, one lo
for a quantity that interpolates from the initially given distr
bution to that which obtains once interactions have cea
For this problem because of the expansion into vacuum,
teractions are automatically diluted at late times and
eventually reaches the broken symmetry vacuum st
LOLN is a mean field theory, which is related to a fie
theory for a fermion with a proper time varying mass whi
at late times reduces to a free field theory. For this reaso
is possible to introduce various time dependent number
erators which at late times reduce to the exact out state n
ber operator. The approach which we follow here, namely
define adiabatic number operators, is essentially the sam
that used when one has the problem of quantum field
time evolving curved background spaces~see for example
Ref. @30#!. The basic idea is to use the WKB approximati
to define a class of adiabatic vacuums upon which to de
time evolving number operators. In the curved space pr
lem, the curvature automatically introduces a time evolv
mass term for the quantum fields. In our problem the ti
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evolving mass term must be self-consistently determined
Within the WKB approach, there are several versions

the interpolating number operator which differ by high
terms in the WKB expansion of the equation for the gen
alized frequenciesṼ which enter in a WKB parametrization
for the exact mode functionf k

6 . We will describe the zeroth
and first order number operators below. Once we determ
the time evolving interpolating number operators, we
them at eachu to a Fermi-Dirac distribution. We will find
that before the phase transition it is possible to define a t
perature and a chemical potential which are relatively in
pendent of momentum. However, once the phase transitio
traversed, the interpolating number operator does not a
resemble an equilibrium distribution function. To define t
interpolating number operator we use a complete set of w
functionsyk

6(u) which are related to the solution of the exa
mode function equation at some order in the WKB expa
sion. The WKB expansion is determined from the seco
order differential equation@Eq. ~3.39!# for the generalized
frequenciesṼk .

In general, if we introduce a new basisyk
6(u) which are

complete and orthonormal, but which do not satisfy t
Dirac equation, then the number operators themselves
come time dependent and the expansion of the quantum
becomes

F~x!5E dkh

2p
@a~k,u!yk

1~u!1c†~k,u!yk
2~u!#eikhh.

~7.1!

This expansion is an alternative to the expansion in term
the initial time creation and annihilation operators

F~x!5E dkh

2p
@b~k!fk

1~u!1d†~k!fk
2~u!#eikhh.

For this new expansion as well as the new creation and
nihilation operators to obey the canonical anticommutat
relations, the mode functions must satisfy the orthonorma
conditions:

yk
a†~u!yk

b~u!5dab, ~7.2!

for a,b56. The two sets of creation and annihilation oper
tors are related by a transformation which preserves the
nonical structure, namely the Bogoliubov transformations
0-14
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a~k,u!5ak~u!b~k!1bk* d†~k!,

c†~k,u!52bk~u!b~k!1ak* d†~k!, ~7.3!

with the condition

uaku21ubku251. ~7.4!

Inserting the Bogoliubov transformation into Eq.~7.1! and
identifying terms we obtain

fk
1~u!5ak~u!yk

12bk~u!yk
2 ,

fk
2~u!5bk* ~u!yk

11ak* ~u!yk
2 . ~7.5!

We can project out the Bogoliubov coefficients using t
orthogonality of they or thef, namely

ak5yk
1†fk

1 , bk* 5yk
1†fk

2 . ~7.6!

If we choose our initial conditions so thaty5f, then ini-
tially

ak51, bk50. ~7.7!

For that choice, the adiabatic particle number density w
agree initially with the initial time number density. The in
terpolating number operators for the fermions and antifer
ons are defined by

N1~k,u!5^a†~k,u!a~k,u!&,

N2~k,u!5^c†~k,u!c~k,u!&, ~7.8!

where the expectation value is taken in the initial dens
matrix parametrized byN1 andN2 defined earlier. In terms
of b we find that

N6~k,u!5N6~k!1@12N1~k!2N2~k!#ubk~u!u2,
~7.9!

so that the total number of particles minus antiparticles
conserved. Sinceb(u50)50 for adiabatic initial data, and
at late times we expects to be independent ofu so that
N(k,u) becomes the out number operator at lateu, the
N(k,u) interpolate between the initial and final values of t
average phase space number density of particles.

We also see that if there are no particles present initia
thenub(k,u)u2 gives the particle spectrum, and its derivati
is related to the rate of pair production. When particles
present then the presence of these particle inhibits fur
production because of Pauli blocking.

A. Zeroth order adiabatic number operator

The zeroth order in WKB wave functions are obtain
from Eq.~3.36! by ignoring all derivatives in Eq.~3.39!. This
yields
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gk
6~u!5

1

A2ṽk

expH 7E
0

u

i v̄k~u8!du8J . ~7.10!

One easily verifies that introducing the basis functions,

yk
15uke

2 i *ṽkdu; yk
25vke

i *ṽkdu, ~7.11!

uk5
2 igmkm1s̄

A2ṽk~ṽk1s̃ !
x1,

v2k5
igmkm1s̃

A2ṽk~ṽk1s̃ !
x2, ~7.12!

that the spinors are orthonormal,

uk
†vk50, uk

†uk5vk
†vk51,

which guarantees that the orthonormality condition Eq.~7.2!
is satisfied. Using the relationship

b* 5yk
1†fk

2 ,

one finds that

ubku25kh
2

~Ṽk2ṽk!
21Dk

2

2ṽk~ṽk1s̃ !@Ṽk
21ṽk

212Ṽks̃1Dk
2#

,

~7.13!

with

uaku2512ubku2,

andDk given by Eq.~3.38!.

B. First order WKB interpolating number operator

If we keep terms up to and including all first derivative
in Eqs. ~3.36! and ~3.39!, we obtain the first order WKB
wave functionsgk

6 given by

gk
6~u!5

1

A2ṽk

expH E
0

uS 7 i ṽk~u8!2
s8 ~u8!

2ṽk~u8! Ddu8J .

~7.14!

The gk obeys the first order differential equation

ġk
6~u!57 i @ṽk7 iD0#gk

6~u!, ~7.15!

whereD0 is

Dk05
s8 1v8 k

2ṽk
. ~7.16!

We decomposeF as follows:

F~x!5E dkh

2p
@a~k,u!yk

1~u!1c†~k,u!yk
2~u!#eikhh,

where now theyk
6 are given by
0-15
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yk
6~u!5Ak~u!F2g0

d

du
2 ig3kh1s̃~u!Ggk

6~u!x6.

~7.17!

One can then verify that theyk
6(u) are orthonormal provid-

ing we choose

Ak
2~u!5

2ṽk

2ṽk~ṽk1s̃ !1D0k
2 ~u!

expF E
0

u

du
s8

ṽk
G .

~7.18!

At time u50 we haveD50 and

Ak
2~u50!5

2ṽk

2ṽk~ṽk1s̃ !
5Nk

2, ~7.19!

so that the exact and adiabatic wave functions match
Again using the relationship

b* 5yk
1†fk

2 ,

one finds that

ubku25kh
2 ~Ṽk2ṽk!

21~Dk2Dk0!2

@2ṽk~ṽk1s̃ !1D0k
2 #@Ṽk

21ṽk
212Ṽks̃1Dk

2#
,

~7.20!

with

uaku2512ubku2

andDk given by Eq.~3.38! andD0k given by Eq.~7.16!, so
that

Dk2Dk05
V8

2Ṽ
2

v8

2ṽ
.

VIII. RESULTS OF NUMERICAL SIMULATIONS

We have solved the simultaneous equations~3.26! and
~3.49! numerically by discretizing the Fourier modes in
box of dimensionless lengthL̃ using antiperiodic boundary
conditions for the fermion modes. Our initial conditions we
described earlier and are based on adiabatic initial condit
and an equilibrium value forN6 . We have varied the time
step, length of the box, as well as the number of modes u
the answer was insensitive to our choices. The sensitivit
some of these parameters will be displayed below. Since
phase transition occurs nearu52 or t57.4, we typically
continue our calculation untilu54 or t554. In that regime
of u, it was sufficient to chooseL̃5500 and keep 5000
modes. The time step needed for these values wasdu
50.00004. We use a fixed grid in the dimensionless mom
tum kh5kt of 5000 points. This was sufficient to insure th
the range of integration in the calculation ofs included
physical momentumk at least of the order 10mf . Because of
our fixed grid inkh5kt, we had to increase the number
09601
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modes we include in our evaluation ofs as the proper time
increases.

In what follows we discuss some of the finite size effe
of our grids. Because of the exponential dependence oft on
u the number of modes needed for an accurate answer a
times grows rapidly. We can see the dependence of our
swers at late proper times on the parametersL̃, the number
of modesN as well as the time stepDu in the figures below.
If we keep the number of modes fixed at 5000, and decre
L̃ then we increase the momentum range in our integrals
improve the result fors at late times. This is seen in Fig. 6

In Fig. 7 we show how the evolution ofs depends on the
time stepdu. We see that once we have a time stepdu
50.00004 then our results are insensitive to any further
duction in the time step.

In Fig. 8 we see how the approach to the continuum va
of s/mf51 depends on the number of Fourier modes. W

FIG. 6. Evolution ofs as a function ofu for two different values
of the dimensionless box length.

FIG. 7. Evolution ofs as a function ofu for different values
of du.
0-16
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see that at late times there is still some dependence o
asymptotic value on the number of modes.

Another issue we would like to address here is the dep
dence of the evolution on the initial conditions chosen. W
have seen that in LOLN, if we start with the fermion ma
exactlyzero, then the theory is noninteracting. Thus we m
consider the massless theory as the limit of the mas
theory, with the understanding that in higher order the fl
tuations ignored in LOLN will make the equation for th
fermion modes nontrivial even in the unbroken symme
phase. To see that the theory actually approaches a lim
behavior, we considered initial condition where either t
mass is small and not zero or the time derivative of the m

FIG. 8. Evolution ofs as a function ofu for increasing number
of Fourier modes.
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is nonzero. The limiting theory is seen to be more read
accessed by choosingṡ50 and gradually lettings→0. For
s0 /mf<1027 the transition point changes little. We illus
trate this graphically below. Figure 9 displays the time ev
lution for different initial values ofṡ. Figure 10 displays the
time evolution for different initial values ofs. As we go to
bigger initial values ofs or ṡ the transition is more a gradua
crossover rather than a sharp transition.

Based on this discussion, in the simulations presented
low, we will canonically use the valuesdu50.00004,
L̃5500,N55000, ands051027mf .

A. Proper time evolution of s, NÁ , T and m

We have determineds̃(u) in terms of the mode functions
using two different methods: the explicitly renormalize
equation~4.13! and the combined set of Eq.~4.7! and Eq.
~4.12!. The latter set of equations also allows one to che
whether one has included enough mode functions for
coupling constant to flow logarithmically as in the co
tinuum limit. In the previous section we have discussed h
these numerical results depended on various discretiza
parameters as well as the small initial value of the expl
symmetry breaking. From the mode functions, using E
~7.6!, one determines the Bogoliubov coefficients and th
determinesN6(k,u) from Eq. ~7.9!. By comparing Eq.~7.9!
with an equilibrium parametrization

N6~k,u![S 11expFvk~u!7m~k,u!

T~k,u! G D 21

, ~8.1!

wherevk5Akh
2/t21s2 we then obtain two equations for th

two parametersT(k,u) and m(k,u) as a function ofkh .
When these quantities are independent ofkh this defines the
FIG. 9. Evolutions as a function ofu for 3 different values ofṡ. First figure is forṡ51021, second figure is forṡ51024, and third
figure is for ṡ51025.
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FIG. 10. Evolutions as a function ofu for 3 different values ofs. First figure is fors51022, second figure is fors51023, and third
figure is fors51027.
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proper time evolving temperature and chemical potent
Some indication that an equilibrium parametrization is p
sible in a (111)-dimensional field theory evolution in th
LOLN approximation was already shown in the work
Aarts et al. @34#. In our simulation we find thatT andm are
independent ofkh ~except at high momentum! until the sys-
tem undergoes the chiral phase transition. A typical exam
of the dependence ofT andm on kh is shown in Fig. 11. For
these initial conditions the phase transition occurs neau
52. The connection betweenkh and j of the plot is given in
Eq. ~5.10!, namely:k@ j #52p( j 21/2)/L.

FIG. 11. Effective temperature and chemical potential as a fu
tion of kh for u51.0 andu52.5.
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Because the system goes out of equilibrium after
phase transition, determiningT andm in that regime is some-
what arbitrary and we use a value averaged overkh . As we
have shown earlier, if the system evolves in local therm
equilibrium in a massless phase, thenT falls as 1/t. If there is
also chemical equilibrium thenm falls identically toT. We
will find this is precisely true before the phase transiti
when there is a second order phase transition. For the
order transitionm appears to fall faster thanT. We also
showed that if local chemical and thermal equilibrium a
maintained, then the spectrum of particles and antipartic
when plotted against the dimensionless momentumkh5kt
should be independent oft. Thus any change in this spectr
is an indication of the system going out of equilibrium. W
expect because of the latent heat released during a first o
transition that the distortion of the spectra would be grea
in that case which is what we will find below. For the tim
evolution of the single particle distribution, we pick two tim
u51.5 andu52.5 which are before and after the phase tra
sition.

Let us now focus on the four initial conditions describ
earlier and look simultaneously at the time evolution of t
order parameters, T andm as a function ofu5 ln mft. We
separately plot the evolution ofN6(kh ,u). In all these plots
all dimensionful parameters are scaled by the mass of
fermion mf in the broken symmetry vacuum state.

Case (1)m0Ä0.2; T0Ä0.3—no phase transition

Here we start below the phase transition so that the
mions initially have nonzero mass. The results for the or
parameters as well as forT andm are displayed in Fig. 12
We see here that although the chemical potential goes to
as the plasma expands, afteru51.5, all the parameters be

c-
0-18
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come relatively independent ofu and are defined by an equ
librium freezeout temperature of approximately 0.2mf .

For the broken symmetry case, the plasma essent
stays in equilibrium throughout the evolution in that t
proper time evolvingN6 is relatively independent oft and
maintains its Fermi-Dirac shape. This is seen in Fig. 13.

Case (2)m0Ä0.5; T0Ä0.5—second order phase transition

The results for starting in the ‘‘unbroken’’ mode and tr
versing a second order phase transition are shown in Fig

We notice thats~t! shows a sharp transition during ev
lution from the unbroken mode (s50) to the broken sym-
metry mode. Before the phase transition the temperature
consistent with the equation of statep5e. The chemical
potential follows the temperature in that regime which me
the system is also in chemical equilibrium. After the pha

FIG. 12. Typical evolution ofs/m, m andT as a function ofu
for initial conditions below the phase transition temperature.

FIG. 13. Evolution ofN6 as a function ofu when there is no
phase transition. The momentum displayed iskh5kt.
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transition, the chemical potential goes to zero whereas
temperature freezes out at aT'0.35mf . After the phase
transition, there is now a mass scalemf which leads to os-
cillations of s around the final vacuum value. As discuss
earlier, to obtain non-trivial dynamics we chose a small e
plicit symmetry breaking parameters0/mf51027.

Going through a second order phase transitiondoespro-
duce a noticeable effect in distorting the Fermi-Dirac dis
bution as shown in Fig. 15

Case (3)m0Ä0.6; T0Ä0.32—traversing the tricritical point

The results for this numerical simulation are shown
Fig. 16.

We notice thats~t! again shows a sharp transition durin
evolution from the unbroken mode (s50) to the broken

FIG. 14. Evolution ofT, m ands as a function ofu for second-
order phase transition.

FIG. 15. Evolution ofN6 as a function ofu when there is a
second order phase transition. The momentum displayed iskh

5kt.
0-19
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symmetry mode, and again the temperature falls consis
with the equation of state which wasp5e before the transi-
tion and freezes out again withT'0.35mf . However the
chemical potential in this case falls faster than the temp
ture. When one traverse the tricritical point the distortion
the Fermi-Dirac distribution is greater than for the seco
order phase transition case as shown in Fig. 17.

Case (4)m0Ä0.8; T0Ä0.3—first order phase transition

Finally we present results when we start in the unbrok
mode and go through a first order phase transition. First
display thes, m, T in Fig. 18. The results for these variable
are qualitatively the same as for going through the tricriti
point, however the chemical potential falls even faster in t
case. By comparing the three different cases where there

FIG. 16. Evolution ofT, m and s as a function ofu passing
throught the tricritical point.

FIG. 17. Evolution ofN6 as a function ofu when one traverses
the tricritical point. The momentum displayed iskh5kt.
09601
nt

a-
f
-

n
e

l
s
s a

phase transition, we find among the parametersT, m ands,
only the behavior of the chemical potentialm is effected by
the order of the phase transition. The chemical potential f
as 1/t for the second order phase transition and faster for
first order transition suggesting a deviation from local chem
cal equilibrium.

The greatest change in the Fermi-Dirac distribution a
occurs for the first order transition. This is a result of co
verting ~the small amount of! latent heat into pair production
and is seen in Fig. 19.

As we recall from our study of the effective potential, fo
the GN model the first order phase transition is not ve
strong. The difference in energy density between the fa
and true vacuum~measured in units ofmf

22! is 1/4p,
whereas the height of the barrier at phase coexistence~seen

FIG. 18. Evolution ofT, m and s as a function ofu passing
through first order phase transition.

FIG. 19. Evolution ofN6 as a function ofu when there is a first
order phase transition.
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from Fig. 2! is less than 10% of this difference.

B. Numerical results for the energy density and pressure

In local equilibrium in the massless phase, we have sho
that the equation of state would bee5p and these quantitie
would fall as 1/t2 as shown in Fig. 5. In our field theor
simulations, we will find that this behavior is followed unt
the phase transition occurs. After that the energy density
pressure diverge from each other and oscillate. These o
lations would be damped if we were to go beyond mean fi
theory and include hard scatterings between the fermio
After the phase transition we find that the energy den
oscillates around the true broken symmetry values discu
earlier, namely

e052
1

4p
.

For these simulations we assume the initial conditions
scribed earlier and plot the renormalized energy density
pressure described by Eq.~6.12! and Eq.~6.19!. Starting in
the massless~unbroken symmetry! regime we findp5e and
this falloff pertains until one goes through the phase tran
tion, after which the system is no longer in local equilibriu

FIG. 20. Evolution ofp ande as a function ofu for three initial
conditions.
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In Fig. 20 we show the result of plotting the energy dens
e(u) and pressurep for three initial conditions.

In Fig. 21 we plot the pressure and energy density for
three initial data@cases~2!, ~3!, ~4!# for which there is a
phase transition. We see that before the phase transitiop
trackse. After the transition, the system goes out of equili
rium and then oscillates about its vacuum value beca
there are no damping mechanisms.

IX. ‘‘PION’’ CORRELATION FUNCTION

One interesting question we can ask is how correlat
lengths change as we go through the phase transition. In
toy model there is no physical pion bound state in our
proximation, but we still can define an effective field for th
pion and study the spatial dependence of the pion gre
function. Other correlation functions one can study in a sim
lar fashion are the density fluctuations as well as the cond
sate fluctuations.

We can define an effective~neutral! pion field via

p~x![cc̄ i~x!ig5c i~x!, ~9.1!

wherec is a constant. Using our mode expansion we find t

^:c̃ ig5c:&5
2

t2 ^@f i~x!†,g3f i~x!#&

5E dkhkh@22N1~k!2N2~k!#
d

du
u f ku2. ~9.2!

Because the integrand in Eq.~9.2! is odd, the expectation
value is zero~otherwise there would be spontaneous bre
down of parity!.

For the equal time correlation function in LOLN, we ob
tain the usual fermion self-energy loop. This depends on
time evolving distribution of fermions and antifermion
Apart from an overall constant one can write the connec
correlation function in the form

D~h2h8;t![^p~h,t!p~h8,t!&c

5
1

t4 Tr@g3S~h2h8;t!g3S~h82h;t!#,

~9.3!

where at equal times, the propagator is just
on;
sure
FIG. 21. From left to right: evolution of the pressure and energy density as a function ofu when there is a second order phase transiti
evolution of the pressure and energy density as a function ofu when the trajectory passes through a tricritical point; evolution of the pres
and energy density as a function ofu when there is a first order phase transition.
0-21
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FIG. 22. Evolution of the correlation function as a function of time. This is for a first order transition.
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S~h,h8;t!ab5^@fa~h,t!,fb
†~h8,t!#&. ~9.4!

Herea, b take on the values$1, 2% and are the spinor indices
Using the mode expansion Eq.~3.20! we find that the equa
time propagator can be written as

S~h,h8;t!ab5E dkh

2p
eikh~h2h8!@„122N1~k!…fka

1 ~t!

3fkb
†1~t!1„2N2~k!21…fka

2 ~t!fkb
†2~t!#.

~9.5!

We could also have used the mode expansion in term
adiabatic mode functions, Eq.~7.1!, and obtained an expres
sion for the equal time propagator in terms of the time evo
ing adiabatic number distributions.

Evaluating the trace we obtain

t4D~h2h8;t!5E dk

2p

dq

2p
ei ~k2q!~h2h8!D~k,q;t!, ~9.6!

where

D~k,q!5„@122N1~k!#@122N1~q!#1@122N2~k!#

3@122N2~q!#…F1~k,q!1„@122N1~k!#

3@122N2~q!#1@122N1~q!#

3@122N2~k!#…F2~k,q! ~9.7!

and

F1~k,q;t!5u f ku2u f qu2$~kDq1qDk!
2

1@k~Ṽq1s̃ !2q~Ṽk1s̃ !#2%, ~9.8!

and
09601
of

-

F2~k,q;t!5u f ku2u f qu2
„@kq2DkDq1~Ṽk1s̃ !~Ṽq1s̃ !#2

1@Dk~Ṽq1s̃ !1Dq~Ṽk1s̃ !#2
…. ~9.9!

If we were solving a (311)-dimensional 4-fermion
model with actual pion composite particles we would now
in a position to determine the single particle distributi
function for the pions from the Wigner distribution function
which is just a particular Fourier transform of the Green
function over the relative coordinate.

In Figs. 22 and 23 we plott4D(h,t f) as a function ofh
for cases~2! and~4! for a sequence of times starting near t
onset of the phase transition.

X. CONCLUSIONS

In this paper we have performed simulations in the Gro
Neveu model of an expanding plasma of fermions and a
fermions. We have chosen initial conditions where the d
sity matrix is described by single particle distributio
functions pertinent to a plasma initially in local thermod
namic and chemical equilibrium. The model was treated
the leading order in largeN approximation. In this approxi-
mation the phase diagram at finite chemical potential a
temperature shares features with that of massless 2-fl
QCD. We found that if we start in the unbroken symme
phase, the system remains in equilibrium until the ph
transition and then goes rapidly out of equilibrium as t
phase transition is traversed. The effects of the phase tra
tion are greatest when we traverse a first order phase tra
tion and are most noticeable in the antifermion distributi
function. If these effects survive hard scatterings then t
should have an effect on the distribution of dileptons, just
the overpopulation of soft pions during DCC production e
fected the distribution of dileptons as discussed by us ea
@35#. We also find that before the phase transition, the sys
behaves identically to an ideal fluid in local thermal equili
0-22
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FIG. 23. Evolution of the correlation function as a function of time. This is for a second order transition.
,
u

nc
m

om
r

ch
cle
he
ld
e
r-

/
c
fo
lli
im
le
of
o

io

e
a
n

on
of

ng

n-

he
rium with equation of statep5e. After the phase transition
the system quickly reaches its true broken symmetry vacu
value for the fermion mass and for the energy density. Si
hard scatterings are ignored in this approximation, the co
petition between the expansion of the plasma and the c
peting process for reequilibration could not be studied he
Also by restricting our simulations to inhomogeneities whi
are boost invariant, we were not able to look at bubble nu
ation. In future investigations we will attempt to remedy t
shortcomings just mentioned. We will perform mean fie
simulations for inhomogeneous initial conditions which w
discussed before@36# and which have already been unde
taken in scalar field theory in 111 dimensions@34#. There
are also now two different approaches for going beyond 1N
based on Schwinger Dyson equations which we hope we
implement to study whether rethermalization can occur
the type of expansion expected following a heavy ion co
sion. These approaches are based on different approx
tions for the generating functional for the 2-PI irreducib
graphs@37,38# and should allow us to study the question
rethermalization. We also want to extend our simulation t
more realisticO(4) 4-fermi model in 311 dimensions so
that we can directly study the effect of the phase transit
on pion correlation functions.
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APPENDIX: SPINOR BASES, DIRAC MATRICES

We will choose for convenience the following represe
tation for the matricesg0 andg3:

ig05S 1 0

0 21D ,

g35S 0 1

1 0D . ~A1!

Thus the spinor eigenstates ofig0 are

x15F10G ,
x25F01G .

In terms of this explicit representation we find that t
momentum space wave functions have the form

fk
15@~Ṽk1s̃2 iDk!x

12 ikhx2# f k
1 ,

fk
25@~Ṽk1s̃1 iDk!x

22 ikhx1# f k
2 . ~A2!
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