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We study the dynamics of the chiral phase transition at finite density in the Gross-iMgMgmodel in the
leading order in the largBlapproximation. The phase structure of the GN model in this approximation has the
property that there is a tricritical point at a fixed temperature and chemical potential separating regions where
the chiral transition is first order from that where it is second order. We consider evolutions starting in local
thermal and chemical equilibrium in the massless unbroken phase for conditions pertaining to traversing a first
or second order phase transition. We assume boost invariant kinematics and determine the evolution of the
order parameted, the energy density and pressure as well as the effective temperature, chemical potential and
interpolating number densities as a function of the proper tim&'e find that before the phase transition, the
system behaves as if it were an ideal fluid in local thermal equilibrium with equation ofpsta¢ée After the
phase transition, the system quickly reaches its true broken symmetry vacuum value for the fermion mass and
for the energy density. The single particle distribution functions for fermions and antifermions go far out of
equilibrium as soon as the plasma traverses the chiral phase transition. We have also determined the spatial

dependence of the “pion” Green’s functic(m?(x) ysz/f(x)E(O)ysw(O» as a function of the proper time.
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[. INTRODUCTION One of the most pressing experimental questions is to
what extent experiments at the BNL Relativistic Heavy lon
The phase structure of QCD at nonzero temperature an@ollider (RHIC) can explore this rich phase structure and
baryon density is important for the physics of neutron starsvhat would be the experimental consequences of having a
and heavy ion collisions. The approximate phase structurguark-gluon plasma rather than a hadronic plasma following
for QCD with different numbers of quark flavors has beena collision of heavy ions. Since the production and evolution
mapped out in various mean field and perturbative approxief the quark-gluon plasma in a heavy ion collision might be
mations [1,2,3,4. The phase structure for two masslessa nonequilibrium process, one needs to understand the evo-
quark flavors(up and down already reveals a rich structure. lution of an expanding, possibly out of equilibrium, plasma.
In addition to the well known chiral symmetry broken and We have considered a toy model, which has several proper-
restored phases, recent investigations have revealed the paies in common with two flavor massless QCD to explore
sibility of a color superconducting phase at low temperatureshese nonequilibrium evolutions. The model we have found
and relatively high densities. The transition to the superconf5] is a (1+ 1)-dimensional model of self-interacting fermi-
ducting phase as we increageat zero temperature is first ons, that has, in the leading order in lafgeLOLN) ap-
order. On the other hand, in the chiral condensation regimeroximation a phase diagram with properties similar to that
at zero chemical potential, the phase transition as we increasg massless two flavor QCD such as a tricritical point as well
the temperature to the unbroken mode is second order. This a superconducting phase transition as one increases
suggests that there is a regime at intermediate chemical ptow temperature. Since an ultrarelativistic collision leads to
tentials where the chiral phase transition is first order. Alongan essentially one dimensional expansion at early times, it is
the line separating the broken and unbroken chiral phasdsoped that the rate of expansion in our toy model will be
there is a tricritical point. similar to that found in QCD so that the rate the system
undergoes the phase transition will be similar to what would
be found in a more realistic (81)-dimensional expansion.

*Electronic address: chodos@aps.org Since this model has asymptotic freedom, the coupling con-
TElectronic address: cooper@schwinger.lanl.gov stants run logarithmically in LOLN which is a feature shared
*Electronic address: maow@physics.rutgers.edu with QCD. In this paper we will confine ourselves to study-
SElectronic address: singh@lanl.gov ing the dynamics near the tricritical point in our toy model
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which for that case reduces to the Gross-Neveu model.  models, albeit in 3-1 dimensions as well as inf11 dimen-
One of the questions important for RHIC is whether theresions. The approach we take here is to directly solve the
are unambiguous experimental signatures resulting from avolution equations of a quantum plasma in leading order in
change in the nature of the phase transition as a function dargeN. A complementary approach is to study critical slow-
the chemical potentigbaryon density In our toy model, the ing near the critical point using ideas from universality and
change is the difference from a first order to second ordedynamical critical phenomengB]. Our interest is more in
transition. In actuality this change might be the change fromhaving a complete space time picture of an evolving quark
a first order transition to a crossover phenomena. Our applasma and our hope is that once we resum the LOLN ap-
proach is to directly determine the time evolution of theproximation using Dyson equations and consider the (3
plasma starting from an initial point on the phase diagram+ 1)-dimensional version of this model that we will be able
above the chiral phase transition and watch the evolutiotio address issues of critical slowing down. The calculations
through the phase transition. From the time evolving fermiorpresented here in the toy model already exhibit the effects of
mode functions one can calculate many physical quantitieeow having small rather than zero quark masses at high tem-
such as the current current correlation function which deterperatures change the time period of the transition. They also
mines the dilepton rate as well as various particle correlatiomlemonstrate how one can calculate all spatial correlation
functions such as that for the pion. In this paper we deterfunctions as well as the time evolution of the temperature
mine single particle distributions functions as well as theand chemical potential, and how a hydrodynamic approach
composite particle pion correlation function to try to find the can be quite accurate before the phase transition.
difference in experimentally measurable quantities when a Following a relativistic heavy ion collision, the ensuing
plasma evolves traversing say a first rather than a secormlasma expands and cools traversing the chiral phase transi-
order phase transition. For the purpose of studying the chiraion. In hydrodynamic simulations of these collisid8s-12],
phase transition, we can restrict ourselves to just a sector @fs well as in parton cascade models and other event genera-
our toy model in which it reduces to the well known Gross-tor approachegl3—18, one finds that it is a reasonable ap-
Neveu (GN) model [6]. This simpler model allows us to proximation to treat the initial phase of the expansion as a
study evolutions on both sides of a tricritical point. The exact(1+ 1)-dimensional boost invariant expansion along the
phase structure of the Gross-Neveu model in dimensibns beam(z) axis. In this approximation, the fluid velocity scales
>2<4 at finite temperature and chemical potential has beeas z/t. In terms of the variables fluid rapidityy= 3 In[(t
the subject of several recent investigatigi@s Using both  —2)/(t+2)] and fluid proper timer=(t?—z%)Y2, physical
renormalization group methods, dimensional reduction methguantities such ag, e become independent of, as dis-
ods as well as strong coupling expansions, it is thought thatussed in Refd.10-13. Such an approach was used in our
the line of chiral phase transitions in all these dimensions idield theory calculations of the production and evolution of
either second order or weakly first order, which is the samelisoriented chiral condensates in t©€4) o model in Ref.
situation as pertains in the leading order in laNjealcula-  [19]. This approximation is valid for particles produced in
tion. Thus ford>2=<4 the leading order in largi-calcula-  the central rapidity region. To study more peripheral colli-
tion is expected to be a reasonable first approximation. Asions a full inhomogeneous calculation must be performed.
preciselyd=2 theexactphase structure at finite temperature This latter study has just started and will be the subject of a
does not exhibit a phase transition, so that the phase structufeture paper.
found at largeN is an artifact of the approximation. However  These kinematical considerations translate into the expan-
the simulations in 3-1 dimension in the larghl approxima-  sion being homogeneous in the fluid rapidigywhich allows
tion in the boost invariant approximation are expected to bais to convert what would be a set of partial differential equa-
very similar to those found here since the expansion igions for the mode functions to a much simpler set of ordi-
mostly one dimensional. Thus the calculations presentedary differential equations in the parameterThe LOLN
here should be understood in that lighiat they are a (1 approximation we will use in obtaining the field equations
+1)-dimensional approximation to the dynamics of the (3has been been discussed earlier by ourselves and others in
+1)-dimensional problem in the leading order in lafge- [12,20—26 and applied to the problem of disoriented chiral
approximatiorh. What is missing in the leading order in condensates ifil9,27. Extending the boost invariant simu-
largeN is real scatterings that could lead to rethermalizationlation to 3+ 1 dimensions so that transverse distributions can
Therefore, the findings of our simulations that the distribu-be studied is relatively simple.
tions of fermions and antifermions goes far out of equilib- In solving the time evolution equations for the quantum
rium following the transition, might easily be modified by a fields, the initial conditions for the fields are specifiedrat
more realistic simulation. The calculations presented here= 7y, that is, on a hyperbola of constant proper time. Fhe
must be thought of as presenting the first field theory simuevolving energy density and pressure are obtained from the
lations at finite chemical potential of an evolution through aexpectation value of the energy momentum tensor. To dis-
chiral phase transition with a realistic expansion rate for thecuss the production of particles we introduce the concept of
plasma appropriate to a heavy ion collision. Future studiean adiabatic number operator which is an adiabatic invariant
will remedy some of the shortcomings of this toy model, inof the LOLN Hamiltonian. Although our equations will be
that inhomogeneous plasmas will be studied as well Bis 1/ valid for arbitrary initial conditions, to study the regime
resummation methods will be used in future simulationsaround the tricritical point we will assume that at some initial
which will still be based, however, on Gross-Neveu like proper time the system can be described by a Fermi-Dirac
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distribution with givenuy and T, in the comoving frame. In 0.80 ' - ' ' ' ' ' ' '
our simulations we will also choose the initial conditions on

our mode functions to agree with the lowest order WKB 970
approximation result. By choosing this initial condition on
the mode functions, the adiabatic number operator then give:
a smooth interpolation between the initial Fermi-Dirac dis-
tributions described by.y, T and the final outstate number
operators. The rest of the paper is organized as follows. Irg
Sec. Il we review the equilibrium properties of the GN F
model at finitew andT in the LOLN approximation. Particu- 0.30
lar attention is paid to the phase diagram. In Sec. Il we
derive the action in curved coordinates in order to discuss the o0.20
evolution in terms of the parametersand 7. Section IV is
concerned with renormalization and obtaining explicitly fi- 0.10
nite evolution equations. In Sec. V we discuss our choice of ,
initial conditions. In Sec. VI we derive an expression for the 000, = 005 06 07 08 09 1.0
expectation value of the energy momentum tensor and obtail wm,

expressions for the renormalized energy density and pressure

in terms of the mode functions of the fermion field. In Sec. FIG. 1. Phase structure at finite temperature and chemical po-
VIl we introduce the adiabatic number operator and obtairfential u.. Dotted lines correspond to approximate analytic results
simple expressions for both the fermion and antifermion in-described in the text.

terpolating number operators in terms of the modes. In Sec.

VIIl we discuss our numerical results for the proper time =0.608, T./m;=0.318. These facts can be ascertained by
evolution of the effective fermion masg, T as well as the studying the effective potential in LONL which is given by
interpolating number densities. In Sec. IX we determine the

time evolution of the pion correlation function. Some of the Ina—z—l 2
results we obtain in this article were summarized and pre- m? B
sented at a Riken workshdg8].
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Il. EFFECTIVE POTENTIAL AND PHASE STRUCTURE 02w

The Lagrangian for the Gross-Neveu mof#] is +In(1+e AETHY], (2.3
L= 1, - . The integrals can be evaluated in the high temperdgamed
— . N2 Appiy2
L=—1Wiy"d, ¥ 2 g (¥, 2D small u/T) regime. Keeping the leading terms in the expan-

sion one obtains
which is invariant under the discrete chiral groug;

—vsW;. In leading order in largé\ the effective action is 5 ot TP T3, o
5 Veﬂ(o' IT!M)_47T InT§+ 2 772T2 M + 4 ' (24)
— . g
S =fd2x —iVi(d+ o)V — = |+trinS o], (2.2
o {4+ o) 2g° Lo] @2 which leads to the relationship
whereS™Y(x,y)[o]= (", + o) 8(x—Y). my 7u?((3)
The phase structure of the GN model at finite temperature Tc:?ex YT 272 (2.9
Cc

and chemical potential in this approximation has been known
for a long time[5,29] and is displayed in Fig. 1. . . .
This f?gure Eumr]narizes sevpergl facts ?n the GN modefor the phase transition temperature in the regime where the
. e . < 2
there is spontaneous symmetry breaking of the discrete chinI:lrI":mS't".)n '? Isecond order andT<1. At small u” one has
symmetry at zero chemical potential and temperature. Th8PProximately
value of the vacuum expectation valuewft the minimum

of the effective potential determines and is equal to the mass T :ﬁey _ 7n*{(3) 2.6
of the fermionm; in this approximation. At zero tempera- ¢ 4ymfe7 ' '
ture, the symmetry is restored at a critical value of the chemi-

cal potentialu.=m; /v2. This phase transition is first order. In the low temperature regime for the cases u we can

At zero chemical potential the system undergoes a secongiake an approximation to the Fermi-Dirac distribution func-
order phase transition to the unbroken symmetry phase as thien that again allows us to perform all the integrations ana-
temperature is increased. As a result of these two facts, #tically and determine an approximate analytic form for the
some point in the phase diagram there is a tricritical poinkeffective potential. We write the derivative of the potential in
which can be determined numerically to be at/m; the form
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FIG. 2. Evolution ofVs as a function ofT. This is for a first order transition.

&V_ O'I o? a’f“dl(2 r\E"’/.L PE_M o2 2
9o 2m nm_$+; 0 E tanh o7 tanh 5T | Veﬁ=E lnﬁf_l +C(u). (2.11
2.7
whereE= \k?+ o2, and then replace the function taffE =~ The integration constant can be fixed by choosing(o
— 1)/ T) with the straight line interpolation =0)=0, which yields
tanh(x)—{1 if x>2;-1 if x<2 and x if |x|<2}. )
@8 Clw)=5-. (2.12
2

Using this approximation the integrals can be performed and

V determined. The results are shown as the dotted curve in . . _

Fig. 1. The analytic expression is given [i]. At T=0 in the broken symmetry phase the effective mass is
When T=0, the effect of the chemical potential is the independent ofu aznd IS given bym;, its value whenu

most dramatic. In that limit tank(=€(x), and we obtain the =0, T=0. Whenp“>m¢/2 then the true minimum is at

exact result =0. The transition a>=m?/2 is a first order transition as

) can be determined by E@2.9) and Eq.(2.10. In the toy

ﬂ:iln‘T_Jrgfwz—uzﬂ(@(M_a) model [5] with two coupling constants, which also has a

do 2 mf2 T Jo E superconducting phase, the first order transition takes place
5 at the point

IS+ Z0(u-o)
2 Efz o mfz
pP=—(1-e7*m), (213

2
x[ln(1+\/1—02/,u2)—%ln%}. 2.9

This can be integrated to give the result that o= u the
effective potential is given by

where é is the difference of the inverse of the two coupling
constants of the modgb], namelys=1/k— 1/2\.. When the
second coupling constant— 0", the toy model reduces to
2= o2 the GN model.
ul — 1) In our straight line interpolation of the tanh function we
obtain for the tricritical point which seperates the regime

1
Veff:_[ 0'2( 21In
47T mf

between the first and second order phase transitjippan;

—ZMWJF C(M)] ’ (2.10 =0.661,T./m;=0.31 as opposed to the exact result
whereas, foro>u the effective potential is equal to ijs ﬂzo_e,og’ E=0.318. (2.14
=0 value; namely, mg my
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v for mu=0.1,T=0.8 V for mu=0.1,T=0.55
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0.2 0.4 0 0.8 1 1.2 1.4
-0.328
0.2 0.4 0.6 0.8 1 1.2 1.4
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FIG. 3. Evolution ofV; as a function ofT. This is for a second order transition.

In Fig. 1 we plot the exact numerical result for the phasewith its inverse determined from¥”g,,,= &, . This metric is
diagram along with these two approximate results. In Figs. 21 special case of the Kasner mefig0].

and 3 we show the evolution of the effective potentials for  The vierbeinV? transforms the curvilinear coordinates to

the first order and second order phase transitions when welinkowski coordinates,
keep u fixed on two sides of the critical value and we de-

crease the temperature. ngvagnab, (3.9
IIl. GROSS-NEVEU MODEL IN CURVILINEAR Wherenab=diag[—1,1} is the flat Minkowski metric. A con-
COORDINATES venient choice of the vierbein for the metr{8.3) for our
problem is
In order to make best use of the kinematic constraint that
we are in a scaling regime where the fluid velocityuvis V2=diag{1,r}, (3.5

=2z/t, we make a coordinate transformation to the light-cone
variablesr and », which are the fluid proper time and rapid- so that
ity respectively. These coordinates are defined in terms of

the ordinary lab-frame Minkowski time and coordinate . 1
along the beam directionby Va=diag 1,—. (3.6
z=rsinhy, t=r7coshy. (3.1 The determinant of the metric tensor is given by
We shall use the metric conventida-+) which is com- detV=y—g=r. (3.7
monly used in the curved-space literature. In what follows,
we use Greek indices for the curvilinear coordinatesd », The action for the Gross-Neveu model in general curvi-
and Latin indices for the Minkowski coordinatesandt. To linear coordinategsee[30]) with metric U, IS
obtain the fermion evolution equations in the new coordinate
system it is simplest to use a coordinate covariant action ) —i— _
such as that used in field theory in curved spaces, even SZJ d*x(detV)| - W y*V, v
though here the curvature is zero.
The Minkowski line element in these coordinates has the b= = a?
form +E(VM‘~P|)’)/'U"P —IO"I’i\P —EZ . (38)
ds’=—dr*+72dy’. (32 The covariant derivative itsee[31])
Hence the metric tensor is given by V. ¥i=(,+I,)¥;, (3.9
9,,=diag — 1,7%) (3.9  where the spin connectidn,, is given by
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1 1 complete the specification of the initial state, the mode func-
FﬂzizabVay(%Vﬁ T7\Vh), Eab:z[ya, Y"1, (3.10 tions for the Fermi field also need to be specified-atr,.

The Dirac equation reduces to its Minkowski form if we
with '}, the usual Christoffel symbol. The labek1..N do a rescaling
corresponds to th&U(N) symmetry. For the metric Eq.

(3.3) (see[32]) one finds W(x) = icp(x), (3.18
Ir,=T=ry=0, Vr
. and introduce the conformal timevia
F,IZ—E)/O)/S. (3.11 mr=eY.
The coordinate dependent gamma matrigésare obtained ©One then obtains
from the usual Dirac gamma matrice8 via [7’0‘9u+ y3a,7+?r(u)]d>(x)zo, (3.19
7= 7VAX). (312 here
The coordinate independent Dirac matricg® satisfy the o
usual gamma matrix algebra: o(u)=o7= Ee“.
{7 =27 (3.13

Our assumption that the evolution is homogeneous in the
From the action Eq(3.8) we obtain the Heisenberg field rapidity variablex allows us to expand the fermion fiedelin
equation for the fermions, terms of Fourier modes in the momentumy conjugate toy
at fixed conformal timey,

(Y*V ,+ o) ¥;=0, (3.14
dk . .

which takes the form (I)(x)=f2—7;’[b(k)¢,j(u)e'kn’7+d’f(—k)¢jk(u)e*'kn”],

1) 9° (3.20

[yo 9,4 5=|+—=d,+o|¥;=0. (3.15 .

27) 7T The ¢, then obey
Variation of S with respect too yields the constraint equa- d .
tion: 7°E+i73k,7+5'(u) ¢ (u)=0. (3.21

o= _iQZqui: —j %Ei\pi' (3.16 The superscriptt refers to positive- or negative-energy so-

lutions with respect to the adiabatic vacuumrat 7, as we
shall show. It is convenient to square the Dirac equation by

which defines the rescaled coupling constantSince we letting

will be interested in havinl copies of the fermion quantum
field, the rescaled coupling constant is the relevant one for

discussing the larght limit. The lowest order in a large b (U)=
N (LOLN) approximation is obtained by integrating over

the Fermi degrees of freedom in the generating functional fofyhare the momentum independent spingtsare chosen to
the Green’s function and keeping the saddle point contribupg the eigenstates of°

tion in the integral over the constraint fietd One obtains

that the gap equation in leading order is iOxT=+x", (3.23

0 ¢ iv3k, +a(u) |f(nx™, (3.2
Y gy YKyt fic(nx”, (3.22

and obey the normalization condition

—_ A T ~OZpi\— _; A T =0
o= i (V] FW ) =-io([¢"3%]) (3.17
Xixs= s, (324
where we have assumed there Br&entical ¥;=¢. In the ) o ) ) )
scaling regime = z/t, the order parameter, which is the ef- with r, s= =. An explicit representation for these spinors is
fective fermion mass, is independent pfand is a function found in the Appendix. The quantitie$, (7)x* and
of 7 only. f (7)x~ are the two linearly independent solutions corre-
For the heavy ion collision problem, we want to solve sponding to the positive and negative energy solutions.
these equations subject to initial conditions specified on th&henk, =0 we have thatin what follows thez in k, when
hyperboloidr=74. In LOLN, specifying the initial value of kK, is a subscript is suppressed for notational simpljcity
the density matrix is equivalent to specifying the initial
particle-number density and anti-particle number density
with respect to an adiabatic vacuum stésee below To

Fi—+0

du

fico=0,
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so that with a, b taking on either+ or —. For both renormalization
. o purposes as well as to introduce the concept of adiabatic
fi_gxe™ /o, (3.29  number operators, it is useful to also have a WKB-like pa-
rametrization of the positive-energy solutiofig as dis-

The mode functiond~ obey the second order differential cussed in Ref[12];

equation:
L L fic(u)=0 (326  fi(w=N : p”( 1y(u") - )d ]
— T2 W —— T (U)=0, . k (U) =Ny ~eX — 1 (U")— — ; u ;.
du du V20, 170 20, (u")
where now (3.36
g,ﬁzk%Jr?,Z(u)_ (3.27  Theu derivative is given by
If we impose the canonical anticommutation relations on the i‘;(u)z(—iﬁk—Ak)f;(u), (3.37
fields
where
{balU, ), B, 7" )}=8,p8(n—7'),
and assume the usual canonical anticommutation relations on Qk+ o
A= . (3.38

the Fock space mode operators,

{b,biy={d,di}=2ms(k—-q), (3.29 _
The Q, obey the real equation
then we obtain the condition
O +6, (6+00(6+30))

20, 402

1 5 -
Pa D= Pra Pg=7 Pap- (3.29 =g -0F (339

Taking the trace yields the normalization condition

which is the starting point for a WKB expansion of the mode

b T pi = T =1 (330  functions. Q) and O, can be determined from the mode

functions as follows:
Using EQ.(3.21) one obtains

d_oan ~ fi fi  o+0
ﬁ[qskad’k]:(), (3.31 Qk:_lma' -2 RE‘E= o5 . (3.40
k
Whereaéb: +,—, foreverya, b Reexpressing this in terms gjng the normalization condition E¢3.32 we can show
of the f® we have for each Fourier mode at all that
Tl P PR PR LA P P AR POt & PRTIE
(332 Z(W=fE2=| D2+ @2+ 20,5+ X
We also have that 20, (3.4
AT Qi PR R POL (333

The normalization of the wave functioN, is time indepen-
Since the right-hand side of E(B.33 is proportional to the dent and can be evaluatedwat 0. Using Eq.(3.41) and Eq.
Wronskian and is thus independent of the conformal time, if3.36 we obtain
we initially choose
. N2=20(u=0)Z,(u=0). (3.42

0=f T —FE v, (3.34 “
We can now obtain an expression for the the gap equation in
terms of the mode functions. Using the mode decomposition
and the definitions

then the two solutionsp™,¢~ remain orthogonal at all
times. This relation as well as E(B.26) can be satisfied by

having
For =ty (b'(k)b(q))=2m (k- IN-(q),

These results can be summarized by (dT(k)d(q))=278(k—q)N_(q), (3.43
=0, (3.39  we obtain
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A t ~0 IV. RENORMALIZATION
o=—i= Y ) . _ o

2 Ly In this section we will show that the renormalization of
the charge\ in the vacuum sector is sufficient to render the

A dk, 0.4 equation foro finite. First let us remind ourselves that the
=57 | 2. [(L=2N, (k) ¢y 1y Py effective potential for the Gross-Neveu model can be written
as
N0 =Dy 177, ). (344 Voo
~ g
. _— " V=== _———=Trin(y-d—0), 4.1
Later we will choose the initial state number densitiegk) N 2n 2 (y ) “.D

to be Fermi-Dirac distributions at a givemandT. We re- ) . ] o

energy momentum tensor to identify the energy and pressu@ven by

in a comoving system we will find that thé. (k,) corre-
sponds to the comoving number densities pertinent to rela-

tivistic hydrodynamics. After some algebra we find
Re(w) = 1Y%y = — ¢, 1770y
=[f P+ (@K [PHiT(f i =)

5+0, |7
— 15,02 02— 2+ 25(5+ 00+ | X |,
[fl?| Q= D+ 2G(T+ Q) (29

k

(3.495

Equation(3.44) reduces to the vacuum expression for the
gap when everything becomes time independent so that

ﬁk*)a’)k!

Z(u)=|fi P [(2@) (@ +3)] 7,

(3.4
. A 2
o o o o+ Oy o
Qp—wp+20(a+Qy) + —20(0+ o),
Oy
which leads to the vacuum gap equation:
dk,,7 (0] dk 0o
0'0—)\ ﬁ?b_k_ Ew_k (347)
In the time evolving case we obtain instead
N dk,
o= ;J 5 (1=NL (k)= N_(k)R(u), (349

which in dimensionless form can be written as

dk
z“r:)\f 2—7_:’(1—N+(k)—N,(k))Rk(u). (3.49

We can simplify Eq(3.45 for R(u) by using Eq.(3.32 to
obtain

Ri(u)=1—2K3 |, (u)]2. (3.50

V. 1 1 (dp 1
dodo A(@) N ) 27 JpPro?  m

It is useful to define the logarithmically divergent integral

4.2

E(M2)=fA dp 1 4.3
-A2m \[pZ+M?’ '

In particular if we choose the renormalization point to be at
the minimum of the potential, which also defines the fermion
mass in this approximation, one has

dv 0 1 fA dp 1
— = _)—: —_—
do o=m; A 7A27T \/p2+m?
=3(mf)= ! | A 4.4
_(mf)_ﬁnm_g- (4.9
From the above equations, one deduces that
Ar(Mg) =, (4.9
and also that
1 1 simd—s(o? L o?
(@) Ap(my = (mi) () =5 me)’
(4.6)

As derived earlier, for the evolution probletnis given
by

dk
?r=xf2—;(1—N+<k>—N,<k>>Rk<u). @7

The apparent logarithmically divergent part of the mo-
mentum integral which we catk® comes from the term

~ div dk’l ~2
o=\ E[l—zwkzk(u)]. (4.9

The logarithmic divergence can be isolated by doing an
adiabatic expansion of the integrand in the expression for
V. The first order adiabatic expansion of the equation for
the generalized mode functiofis, is obtained from the ex-
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pression forQ)2 in Eq. (3.39 by replacingQ,, O, by &, V. INITIAL CONDITIONS
@ in the left-hand side of that expression. We further use  1q solve for the proper time evolution of this system one
the expression fai, in terms ofc expressed in Eq3.27 0 pas to solve Eq(3.26),
get
2 _ do| .
v . o i 5| f (u)=0,

d)kz’(;)k (49)

as well as Eq(4.13 for the order parameter
At large momentum, we therefore obtain the expansion

=)l (62) fdk”[R (U= (N4 (k)
—o(Wn| —=|=| =— u)—
O 1l B 1()) 27 "W\ | = ) 2 R (0
—>=1-—=3 + = |t =—\1-| =
o2 208 |7\ T By @y Wy +N_(K)Ry(u)].
o o 3o To solve Eq.(4.13 requires knowledge of the initial dis-
T 2! 1+ e 1+ o (410 ribution of fermions and antifermior, (k) andN (k). In
general the only conditions needed on the distributions
It therefore follows that N, (k) and N___(k) are that thgy lead to finite numbt_ar and
energy densities. The condition on the mode functions for
_ dk. [ & the energy density to remain finite at all times is that the high
’&d"’:)\j —2 . (4.17)  frequency modes must converge to their free field vacuum
27 | wy values. Since the low frequency modes do not effect the

renormalization they can be chosen arbitrarily. Here we will
We can renormalize the equation farby appropriately  choose the initial modes to match up with those found in the
subtracting this quantity when we renormalize the couplingWKB approximation initially. This will allow us to introduce
constant, or we can recognize that this divergence is onlin adiabatic number operator which has the added feature
apparent once we utilize the gap equation for the vacuuntat it will interpolate from the initial distribution o (k)

sector: to the final outstate distribution functions. Other choices are
perfectly acceptable but would lead to a jump in the number
dk 1 dk 1 of particles from their initial values right after the initial
A= J  —= f or T (412 time. Since we are interested in exploring the phase diagram
7 ket

on both sides of the tricritical regime, we will choose our
. . . ) initial state to be described by a value Nf. (k) consistent

That is we just use the mode sum version of E§19 in  yith |ocal thermal and chemical equilibrium described by the
place of\ in Eq. (4.7) and keep enough modes in the nu- narametersT and u (here the plus sign corresponds to the

merator and denominator until the answer is independent Gt mion distribution function and the minus sign to the anti-
the number of modes. This approach has the advantage thatit,mion distribution

also allows one to verify that the coupling constant is flow-

ing according to the continuum renormalization group flow 1
as we increase the cutoff. N+ (K) = Soemrm g (5.)
To explicitly renormalize the gap equation, we consider
the quantity where
gt wszz\/k2+02(u=O)=i\/k2+52(u=0).
Ar(o)  Ng(My) o 7
1_ i In LOLN approximation, the initial value problem is totally
=5 oWin e specified onc& . andf, andf, are given. The dynamics of

dk the evolution is such that the gap equation is obeyed at all
B " B times. If we start in the regime where symmetry is broken,
_f 27 [Re k(W)= (N () +N_(KDR(W)],  (4.13 then the initial value of the fermion mass obeys the equation

whereR;(u) is given by o(u=0)= M
70
Ri(U)=R(u)— ~1 (4.14  Wwhere satisfies the gap equatidd.13 with u=0. If we
Wy start our simulation in the unbroken mode then we have in-
stead
From the above discussion of the divergence structure, this
equation is manifestly finite. o(u=0)=0.
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We notice that in LOLN whef=0 the fermions evolve as This is equivalent to the gap equation arising from the effec-

if they are free and massless. In the full theory, one obtainsive potential at finite chemical potential and temperature

nontrivial dynamics for the unbroken phase through fluctua-

tions that are ignored in the LOLN approximation. Thus in m? © dk o+ 1 o

LOLN we need to think of ther=0 case as a limit of taking In—= f —{Z—Ianh tanh (5.8

. . A . o o Wk 2T 2T

initial conditions with small but finite initial mass in order to

have nontrivial dynamics. As we will see below, finding the

limit of zero mass is numerically well defined once initial if we chooseN_.(k) to be equilibrium Fermi-Dirac distribu-

masses are<10 ®m;. For our simulations an initial value tions.

of o(0)=10""m is used. Summarizing, for our choice of adiabatic initial condi-
It is convenient to choose the initiah,=1/m; and mea- tions our mode functions initially are

sure the proper time in these units. The adiabatic initial con-

ditions on the mode functions which we will discuss in N,

more detail later correspond to f(0)= —; NE=[Z>k(O)+Tr(0)]‘1,

V2%,

0,(0)=34(0); O (0)=6(0)==—5, (5.2

EE

f(0)=—iaf, (0). (5.9
so that using Eq(3.37) we have _ ) ) ) ) )

We are interested in studying evolutions with and without
phase transitions, as well as comparing the effects of travers-
—, ing first vs second order phase transitions, including the spe-
V2@, cial case of traversing the tricritical point. We have thus

.. chosen four separate illustrative starting points on the phase
f+(0)=< CiT— “’t") ££(0) diagram of Fig. 1 for our numerical simulations, all assuming
K Ko 2oy | K initial local thermal and chemical equilibrium. For the case
of no phase transition, casg), we have chosen the starting
2w(0) point (uo=0.2; T;=0.3). For typical initial conditions for
7(0)+ @, (0)\?]" which the second order phase transition is travefsede
W) } (2)], we chooseuy=0.5; T;=0.5. For the initial condition_s
(5.3 uo=0.6; Ty=0.32[case(3)] the system traverses the tric-
ritical point. Finally, for a typical case where the system

We now show that-(u=0)=0 is required if we choose undergoes a first order phase transition, ddgewe choose
adiabatic initial data for the mode functions. For adiabatic(uo=0.8; To=0.3.
initial conditions We will find that before the phase transition, the system
can be described in terms of a number distribution with a

N
fl(0)= —

=

NZ=

2%2(0)+ 2@ (0)T(0) +

. dk, kfy o+ @y (0) proper time evolving temperature and chemical potential.
a(0)=x ZN'%I((O) DK (=N (k)=N-(K).  However, after undergoing a phase transition, the adiabatic

(5.4) single particle distribution functions for fermions and anti-
fermions(defined below are far from equilibrium and can-
Equation(4.13 and Eq.(5.4) are two equations for the initial not be described by a chemical potential and temperature
conditionsg and¢ in terms ofu andT. However we realize  which are independent of the momentum.
that the integral forg-(0) is proportional to5(0) times the In performing our numerical simulations, we place the
bare couplingh times a finite function of5(0),5(0),u,T. system in a box of dimensionless length=mL, and

Since the bare coupling goes to zero with the cutoff, the only:hgose antiperiodic boundary conditions for the fermions.
value of 3(0) consistent with the adiabatic initial conditions That is we let

is
3(0)=0. 5. 2m(n—1/2)
(0) ®9 k=KL 7] = ————, (5.10
It then follows that L
R(u=0)= 2O (5.6 Withn=—N,...N. In our simulations, for the system to be
Ku=0)= @ (0)’ ' in a regime where the coupling constant flows according to

the renormalization group, one nedds-5000. The number
so that the equation f&¥(0) simplifies to of modes increases if we want to study the really long time
behavior of this system. However, at these long times we
expect hard processes which allow rethermalization, and
which are neglected in this mean field study to become very
(5.7 important.

1_ m? dk,
ZO’(O)“’I m ZJZ(N+(k)+N_(k))Rk(O).
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VI. ENERGY-MOMENTUM TENSOR so that

To understand the hydrodynamical properties of the evo-
lution of the plasma, we need to evaluate the expectation 4
value of the energy momentum tensor in the initial density B
matrix. BecausgT,,) is diagonal in they, 7 coordinate
system, we can read off the comoving pressure and energy ) .
density from its diagonal entries. The energy-momentum Thus the divergent terms i(T ) are exactly the terms

Sll [N

Tk l2=

tensor is defined via that appear in the effective potential. Namely
2 6S 2/rdivy,  ~2 -
_ T o dk
Tow="""———0- 6. (o _ AZRy o =3
" J—g 99" N ox 2 . 2 VK, + 07 (6.7)

Scaling out the factor dfl, and using the equation of motion

we have Making the rescalings

T 2

, = i — o ~
WM:E'\I}’Y(MVV)‘I,_EV(M\P’YV)\P_QILVX (62) o=o01, A=AT; k,7=k’7',
Here the parenthesis means keeping both terms in the sy
metrization inuv. If we rescale the fieldgp= /7y and use
the Fourier decomposition for the rescaled fields we find fo
the expectation value of the unrenormalized

MBhe recovers the unrenormalized effective potential for the
rGross—Neveu modékee Eq(2.21) of [5]]

a? Adk
AT,y @ i fg L TORN V= E—ZL S—[VkE+ oK, (6.9
N on 2 ,gﬁ[( +(k—-1)
X (g "dudy —dudy | i) where here we have subtracted {figinite) o independent

P . cosmological constant term. Next using the fact that the bare
HA=2N_(K)) (P dud —dudi )] (6.3 coupling and the cutoff and the physical fermion mass of the

Expanding in terms of the mode functiofis we obtain vacuum theory are related by the gap equation

TZ<TTT> 1 A dk 1
e(n) 7= — —=f ———, (6.9
2N Jo 27 K2+ m:
7% (1dk,
=——f = (1=N.(k)=N_(k)) : . .
2N Jo 2w we obtain after subtracting the cosmological constant term
X[25+40(DF-32)|f 2], (6.4) i
(Tsub ) _ —fAdk . 2 K2+ o2+ 2k
where N V), 2x \/m— o
Dl = 5 (0 i — £ 3,80) il L
- u u . [ — —_— —_—
2 = Inm% 1/+0 A2/ (6.10

The energy density contains an infiniguadratically diver-
genb cosmological term: Here we have chosen the zeropoint of the effective potential
A dk to be zero at thenaximumo=0. Thus in the true broken
JooK=— | —k symmetry vacuuno =0, we have
00 o7

that needs to be subtracted by hand. The remaining logarith-
mic divergence is eliminated by coupling constant renormal-
ization. The divergence structure can be analyzed using an

adiabatic expansion d, in terms ofw, and recognizing the Thus we expectand will find) that when the system goes

high momentum behavior d is given by through the phase transition into the broken symmetry phase,
that the energy density will approach thigegative true
(6.5 ~ vacuum value.
The manifestly finite expression fa(7) 72 is

my
Vio=mi]=- . (6.12)

3

Qk='d)k 1+0

Wk
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5 dk 52 rect cosmological term to eliminate the quadratic divergence.
e(r) = j 2—” = t2(k,—7) As in the case of the energy density, the apparent logarithmic
0 &m | Jki,+m divergence gets cancelled by coupling constant renormaliza-

tion. We then find

O (=2_~2 2
+4Qk(0' wk)|fk| 0_2 0_2

!

Po" 2N = 4n

0_2

In——1
m{

2

A dk,,
+ | = +
fo 2 (N (k) +N-(k)) Thus the renormalized and “covariantized” expression for

the pressure is

X[ 20+ 40, (D2 —F2)|f,/2]. (6.12
A dk ~
We have for the expectation value of the unrenormalized p' 2= JAZ—" (L-N_(k)—N_(k)4(o+Q,)
a
T’Vl 0
(T, T2 i f; dk, ) k2
= oty | 5o (k2N (k) —1) X (@2 =)+ 2 ==
N 2N 2 )} 27 ‘/kn+0'
X b YV + (L= 2N_(K) i YOV i 1. I 52
(613) +2\/kn+0' —Zk”—m . (619)
Expanding in terms of the mode functioh$ we obtain
- 2 A. Local equilibrium hydrodynamical picture
o A
= —+f —2(A—N,(k)—N_(k)) In this subsection we will develop a simple local equilib-
N 2\ 0 2 . . . .
rium hydrodynamical model with an ultrarelativistic equa-
><4(5+§k)(52—5§)|ff|2]- 6.14) tion of state which we can compare with our field theory

simulation. This type of model was first put forth by Landau
Multiplying by 72 and keeping the lowest order in the adia- [9]. In the hydrodynamical model, Landau assumed that the

batic expansion as before we obtain that the divergent part §fow of energy and momentum following an ultrarelativistic
the pressure is given by high energy collision of protons or heavy ions behaved as an

ideal fluid flow into the vacuum with initial conditions con-

Adk  2K2 A2 2 o2 nected to a highly Lorentz contracted disc of matter. A re-
Po=— 2 \/ﬁ i vy ( InW +1]. (6.15 lated idea due to Bjorkejill] was to assume that because of

the flatness of rapidity distributions in heavy-ion collisions,
the hydrodynamic flow should possess invariance under
Yhoosts. In either case one has approximately that the fluid
velocity v,=z/t and all variables only depend on the fluid
A dk A2 o2 2 proper timer and are independent of the fluid rapidity In
€= —Zf 2—\/k2+0' =—s—+—|IN-—%— 1). (6.19 this hydrodynamic approach the dynamics are incorporated
0 2T 27 47 4A . S .
into the local equilibrium equation of stafe=p(e). For a
As we discussed if23], the momentum cutofh acts as one-dimensional re_Iativistic hydrodynamic flow_the energy
a noncovariant point splitting regulator, giving terms in the MoMentum tensor is assumed to be that of an ideal fluid
regulated(T ,,) proportional to &, &, in which the spatial TeB=pg*#+ (e+p)uu¥. (6.20
directionsi,j=1, 2, 3 are distinguished. Since these terms do

not appear in thg.=»=0 time component, the energy den- Here o, B correspond to Minkowski coordinates and
sity has the correch dependence and requires no correction

This is to be compared with divergent part of the energ
density given by

to make it agree with covariance. However, because covari- v
ance requires that the cosmological term is proportion to ue= >+
d.». the correct regulated pressure must satisfy 1-v

PL=— €. (6.17)  The covariant conservation law of energy and momentum is
We need to enforce this conditidsy handby adding the T=0. (6.2
difference

Introducing the thermodynamic relations
Po—Po=—€0—Po
et+p=Ts, de=Tds
to pg which corrects for the noncovariant term induced by
our momentum cutoff. We then need to subtract off the corand assuming the scaling law
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FIG. 4. From left to right:7 invariant thermal distributioMN , vs k,, for initial conditions pertaining to traversing the tricritical point;
invariant thermal distributio™N_ for the same initial conditions.

v=12It, equilibrium equations fop(u,T) ande(u«,T), and thus the
equation of stat@=p(e) when one is in chemical and ther-
one finds[10] for an equation of state of the form=c3e  mal equilibrium. In equilibrium,o(x,T) is zero if we are
that energy momentum conservation leads to the two equabove the phase transition in the unbroken symmetry phase.

tions If we are in the broken phase, it is instead given by the
solution of the renormalized gap equati@®8). The mode
d,INT=0, functions are given by
dyINT+c3=0. (6.22 1
2 = —
|fl%7° oot o) (6.27

Thus for an ideal one-dimension fluid in the scaling regime

one obtains In the unbroken symmetry regime, where=0, this simpli-
T [\CE fies to
=20
T_o_( r) ’ 1
2.2~
) |fk| T 2k3
€ [mp\ 1t
6_0: T (6.23 For the unbroken symmetry case, the equationgpfand e

become the sameE €) and are given by
The ultrarelativistic limit hag2=1 (the speed of light in our

i h =1) f -di ional fluid. For th dk
units wherec=1) for a one-dimensional fluid. For that case pzezfEZk[NJr(k,,u,T)JrN_(k,,u,T)], 6.28
To 2 T _( To
7] To \7)° whereN, andN_ are given by Eq(5.1) and we have set
o ) ) ) . o=0. In order to get a quantitative estimate of what will
We will find from our numerical Slmu|atI0nS, that if we start happen in our numerical Simu'ations’ we will assume that the

in the masslessunbroken symmetiyregime then indee@  system stays in local equilibrium as it evolves witevolv-
=€ a_n.d this falloff pertains until one goes throu_gh the phas_qng as predicted by the hydrodynamical model so fRaf,
transition, after which the system is no longer in local equi-= 7,/ We also find from our numerical simulations that

€

€0

(6.29

librium. _ _ o when the initial chemical potential is below the tricritical
When there is also chemical equilibrium, it can be shownyajue the chemical potential falls similar to the case of
[33] that for a relativistic fluid chemical equilibrium: i.e.u/ o= 7o/ 7. Let us now show

that when we are in local chemical and thermal equilibrium

d_T - d_'“ (6.25 N.(k,,7) becomes independent afBecausgu andT scale
T M as 1f, andk=k, /7, we find that the distributions fdx.. is
so when that occurs we also have
Ne(ky)=—— =~ AT (6.29
ﬁ:(ﬁ ) (6.26) 1+ex;< ”T 0)
Mo T 0

so if we plot these distributions agairisf they are indepen-
dent of 7 and just depend on the initial valugs andTy. A
plot of N.. vs k,, for the initial conditions of cas€3), uo

We can use the equations for the renormalized energy 0.6 andT,=0.33, the initial conditions for passing through
density Eq.(6.12 and pressure Eq6.19 to determine the the tricritical point is shown in Fig. 4.

B. Local equilibrium equation of state and single particle
distribution functions
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FIG. 5. From left to right: evolution of the energy density as a function of the massless phase; same evolution for the log of the
energy density as a function af

From this discussion, we see that a deviation from theevolving mass term must be self-consistently determined.
local equilibrium hypothesis will show up as a change in the Within the WKB approach, there are several versions of
adiabatic distribution functions fd¥..(k,,,7) from its initial ~ the interpolating number operator which differ by higher
value as the system evolvesur-log 7. This deviation from terms in the WKB expansion of the equation for the gener-

will be greatest when the trajectory undergoes a first ordeglized frequencie§l which enter in a WKB parametrization
phase transition. The behavior of the plasmeéorethe phase for the exact mode functiofy . We will describe the zeroth
transition is very well described by hydrodynamics with a4 first order number operators below. Once we determine
equation of stat@= ¢, since itis basically the evolution of a the time evolving interpolating number operators, we fit
noninteracting relativistic gas initially assumed in equilib- them at eachu to a Fermi-Dirac distribution. We will find
rium and described by that before the phase transition it is possible to define a tem-
1 ¢ dk perature and a chemical potential which are relatively_ipde_—
p=e= ?f 2_7.:]2k77[N+(k77) +N_(k,)]. (630 {Jendent of momentum. However, once the phase transition is
raversed, the interpolating number operator does not at all
resemble an equilibrium distribution function. To define the
interpolating number operator we use a complete set of wave
functionsy, (u) which are related to the solution of the exact
mode function equation at some order in the WKB expan-
VII. ADIABATIC NUMBER OPERATOR sion. The WKB expansion is determined from the second
One important question for RHIC physics is how the order differgntial equatiofEq. (3.39] for the generalized
quark and antiquark distribution functions change in timefrequencies),. .
since these time evolving distribution functions enter into In general, if we introduce a new basig (u) which are
calculations of the particle production rates for both pionscomplete and orthonormal, but which do not satisfy the
and dileptons. Of especial interest is how these distribution®irac equation, then the number operators themselves be-
for fermions and antifermions gets modified as the plasm&ome time dependent and the expansion of the quantum field
traverses the chiral phase transition. Since particle number gecomes
not conserved during the evolution of this system, one looks
for a quantity that_ interpol_ates from_the init_ially given distri- d(x)= J %[a(k,u)y;(u)+CT(k,u)yk_(u)]e‘kn’7.
bution to that which obtains once interactions have ceased. 2
For this problem because of the expansion into vacuum, in- (7.9
teractions are automatically diluted at late times and on
eventually reaches the broken symmetry vacuum stat
LOLN is a mean field theory, which is related to a field
theory for a fermion with a proper time varying mass which dk .
at late times reduces to a free field theory. For this reason, it  ®(x)= f 2—”[b(k)¢,ﬁ(u)+d*(k) ¢;(u)]e"‘v’7.
is possible to introduce various time dependent number op- ™

erators which at late times reduce to the exact out state NUNq; this new expansion as well as the new creation and an-
ber operator. The approach which we follow here, namely tqinjjation operators to obey the canonical anticommutation

define adiabatic number operators, is essentially the same #gations, the mode functions must satisfy the orthonormality
that used when one has the problem of quantum fields iRgngitions:

time evolving curved background spacege for example

Ref.[30]). The basic idea is to use the WKB approximation YR (WyR(u)= 6, (7.2

to define a class of adiabatic vacuums upon which to define

time evolving number operators. In the curved space probfor a,b= *+. The two sets of creation and annihilation opera-
lem, the curvature automatically introduces a time evolvingtors are related by a transformation which preserves the ca-
mass term for the quantum fields. In our problem the timenonical structure, namely the Bogoliubov transformations:

This evolution in the massless phase is shown in Fig. 5
which displays the expected-#/falloff.

q’his expansion is an alternative to the expansion in terms of
he initial time creation and annihilation operators
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a(k,u)=a(u)b(k)+ Bid'(k),

1 u
g;(u)z\/?exp[ﬁtfoiak(u’)du’]. (7.10
k

One easily verifies that introducing the basis functions,

c'(k,u)=—B(u)b(k)+ aj d'(k), (7.3

with the condition

land >+ Bl *=1. (7.4 Yy =ue oy o=y elfedy (7.1
Inserting the Bogoliubov transformation into E(.1) and —iy*k,+ o
identifying terms we obtain U=——o—xo=yx",
V20 (@ +7)
b (W)= a Wy =LYy, 17K, +G

VokT e X (7.12
“ V2o (@ +7T)
that the spinors are orthonormal,

We can project out the Bogoliubov coefficients using the
orthogonality of they or the ¢, namely

bic ()= B (Wy + ag (W) - (7.9

UEU k:O, Uluk: vlka 1,

which guarantees that the orthonormality condition &R

+1 ottt -
=Y b Bi=YK i - (7.9 s satisfied. Using the relationship
If we choose our initial conditions so thgt= ¢, then ini- B =y, T,
tially
one finds that
a=1, =0. (7.7 _
‘ P (Q— @) 2+ A7
For that choice, the adiabatic particle number density will |Bl*= ﬂzwk(war DO+ De+20,T+AL]"
agree initially with the initial time number density. The in- (7.13
terpolating number operators for the fermions and antifermi-
ons are defined by with
2_1_ 2
L(ku)=(a'(k,ua(k,u)), land?=1—]Bul?,
andAy given by Eq.(3.38.
N_(k,u)=(c"(k,u)c(k,u)), (7.9 K9 y Ea.(3.38

. . . - . B. First order WKB interpolating number operator
where the expectation value is taken in the initial density

matrix parametrized bjl, andN_ defined earlier. In terms ~ If we keep terms up to and including all first derivatives
of B we find that in Egs. (3.36 and (3.39, we obtain the first order WKB

wave functionsy, given by

O'(U ) )
gk (u) —Zw ex%f Fio(u")— (0 )) }
(7.149

N=(k,u)=N=(k) +[1= N (k) =N_(K) ]| Bx(W)|?,

so that the total number of particles minus antiparticles is
conserved. Sincg(u=0)=0 for adiabatic initial data, and
at late times we expeat to be independent ofi so that  The g, obeys the first order differential equation
N(k,u) becomes the out number operator at latethe

N(k,u) interpolate between the initial and final values of the gki(u)z Ii[Z)kiiAo]g,f(u), (7.15
average phase space number density of particles.

We also see that if there are no particles present initially\whereAg is
then|B(k,u)|? gives the particle spectrum, and its derivative .
is related to the rate of pair production. When particles are Ak0=0+~wk (7.16
present then the presence of these particle inhibits further 2wy

production because of Pauli blocking.
We decompose as follows:

A. Zeroth order adiabatic number operator

_ | &% + T - ik
The zeroth order in WKB wave functions are obtained (D(X)_f 27 LKLY W F ek uy, (w]et,
from Eq.(3.36) by ignoring all derivatives in Eq.3.39. This
yields where now they, are given by
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+ d . ~ + +
Vi (W) =Ay(u)| — Voﬁ_ i 3K, + a(u)}gk‘(U)x--
(7.17

One can then verify that thg, (u) are orthonormal provid-
ing we choose

AZ( ) ZZ)k Ud 5’
U)= ——= = eX Uu=—-y,|.
K 20 (D+T)+ A5 (u) 0 oy
(7.18
At time u=0 we haveA=0 and
200 ) — 2R _ N2
A (u=0) T B+ 3 N, (7.19

so that the exact and adiabatic wave functions match up

Again using the relationship
B =Y oy

one finds that

B 2= K2 (Q= @)%+ (A= Ayo)?
kIl — — —_ [
20 @+F) + AL [ Q2+ @2+ 20,5+ AZ]
(7.20
with
|ay|?=1—|Byl?

andA, given by Eq.(3.38 and Ay given by Eq.(7.16), so
that

@

Ak_AkO:E_ ﬁ
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1.0 T T

0.6 [

o/m,

0.4 )

02 | i

0.0 1 /u 1 ! L L
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

FIG. 6. Evolution ofo as a function ofi for two different values
of the dimensionless box length.

modes we include in our evaluation ofas the proper time
increases.

In what follows we discuss some of the finite size effects
of our grids. Because of the exponential dependencecsf
u the number of modes needed for an accurate answer at late
times grows rapidly. We can see the dependence of our an-

swers at late proper times on the parametershe number
of modesN as well as the time stepu in the figures below.
If we keep the number of modes fixed at 5000, and decrease

L then we increase the momentum range in our integrals and
improve the result for at late times. This is seen in Fig. 6.

In Fig. 7 we show how the evolution ef depends on the
time stepdu. We see that once we have a time stép
=0.00004 then our results are insensitive to any further re-
duction in the time step.

In Fig. 8 we see how the approach to the continuum value
of o/m;=1 depends on the number of Fourier modes. We

VIIl. RESULTS OF NUMERICAL SIMULATIONS 1.0 T T
We have solved the simultaneous equatigd26 and
(3.49 numerically by discretizing the Fourier modes in a 08 |

box of dimensionless length using antiperiodic boundary
conditions for the fermion modes. Our initial conditions were

described earlier and are based on adiabatic initial conditions ¢ |

and an equilibrium value foN. . We have varied the time .
step, length of the box, as well as the number of modes untilglo

the answer was insensitive to our choices. The sensitivity tc 4 4

some of these parameters will be displayed below. Since the
phase transition occurs near=2 or 7=7.4, we typically
continue our calculation until=4 or r=54. In that regime

of u, it was sufficient to choosé =500 and keep 5000
modes. The time step needed for these values das

=0.00004. We use a fixed grid in the dimensionless momen- g

tumk, =k of 5000 points. This was sufficient to insure that
the range of integration in the calculation eof included
physical momenturk at least of the order Xf; . Because of
our fixed grid ink,,=kr, we had to increase the number of of du.
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1.0 T

is nonzero. The limiting theory is seen to be more readily
accessed by choosing=0 and gradually lettingr— 0. For
oo/m¢=10""7 the transition point changes little. We illus-
trate this graphically below. Figure 9 displays the time evo-
lution for different initial values ofr. Figure 10 displays the
time evolution for different initial values of. As we go to
bigger initial values ofr or ¢ the transition is more a gradual
crossover rather than a sharp transition.

Based on this discussion, in the simulations presented be-
low, we will canonically use the valuesiu=0.00004,

L=500,N=5000, andoy=10""m;.

10000, 5000, 2500 Points

o/m.
o
(9]

T

A. Proper time evolution of o, N.., T and u

We have determine@(u) in terms of the mode functions
: . . using two different methods: the explicitly renormalized
40 50 60 70  equation(4.13 and the combined set of E¢4.7) and Eq.
(4.12. The latter set of equations also allows one to check
FIG. 8. Evolution ofo as a function ofi for increasing number ~ Whether one has included enough mode functions for the
of Fourier modes. coupling constant to flow logarithmically as in the con-
tinuum limit. In the previous section we have discussed how
see that at late times there is still some dependence of tHBese numerical results depended on various discretization
asymptotic value on the number of modes. parameters as well as the small initial value of the explicit
Another issue we would like to address here is the depersymmetry breaking. From the mode functions, using Eg.
dence of the evolution on the initial conditions chosen. We(7.6), one determines the Bogoliubov coefficients and then
have seen that in LOLN, if we start with the fermion massdeterminesN_.(k,u) from Eq.(7.9). By comparing Eq(7.9)
exactlyzero, then the theory is noninteracting. Thus we muswith an equilibrium parametrization
consider the massless theory as the limit of the massive _
1+ex%wk(U)+M(k,U)

0.0 ;
0.0 1.0

theory, with the understanding that in higher order the fluc- N (k,u)=

tuations ignored in LOLN will make the equation for the - T(k,u)
fermion modes nontrivial even in the unbroken symmetry

phase. To see that the theory actually approaches a limitingherew, = \/kz,]/ 7+ o we then obtain two equations for the
behavior, we considered initial condition where either thetwo parametersT(k,u) and w(k,u) as a function ofk, .
mass is small and not zero or the time derivative of the mas®#/hen these quantities are independenk pthis defines the

-1
) , (82

s s
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
1 2 3 4 1 2 3 4
s
1
0.8
0.6
0.4
0.2
1 2 3 4

FIG. 9. Evolutions as a function ol for 3 different values ofr. First figure is forr=10"1, second figure is fobr= 10™*, and third
figure is foro=10"°5.
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s s
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
1 2 3 4 1 2 3 4

1 2 3 4

FIG. 10. Evolutions as a function ofi for 3 different values ofr. First figure is foro=10"2, second figure is foor=10"2, and third
figure is fore=10"".

proper time evolving temperature and chemical potential. Because the system goes out of equilibrium after the
Some indication that an equilibrium parametrization is pos{phase transition, determinifigand u in that regime is some-
sible in a (1+1)-dimensional field theory evolution in the what arbitrary and we use a value averaged dverAs we
LOLN approximation was already shown in the work of have shown earlier, if the system evolves in local thermal
Aartset al.[34]. In our simulation we find thal andu are  equilibrium in a massless phase, thefalls as 1f. If there is
independent ok, (except at high momentununtil the sys-  a1so chemical equilibrium thep falls identically toT. We
tem undergoes the chiral phase transition. A typical examplgiill find this is precisely true before the phase transition
of the dependence dfandu onk,, is shown in Fig. 11. For  \yhen there is a second order phase transition. For the first
these initial conditions the phase. transition OCCUrs Near order transitionu appears to fall faster thaff. We also
=2. The connection betwedq, andj of the plotis given in  ghowed that if local chemical and thermal equilibrium are
Eq. (5.10, namely:k[j]=2m(j - 1/2)/L. maintained, then the spectrum of particles and antiparticles
T and muonu= 1.0 and 2.5 when plott_ed against the dimensionless mo_men?u,m kT
should be independent af Thus any change in this spectra
is an indication of the system going out of equilibrium. We
expect because of the latent heat released during a first order
transition that the distortion of the spectra would be greatest
in that case which is what we will find below. For the time
evolution of the single particle distribution, we pick two time
u=1.5 andu=2.5 which are before and after the phase tran-
sition.

Let us now focus on the four initial conditions described
earlier and look simultaneously at the time evolution of the
order parameter, T and u as a function ofu=Innmy7. We
separately plot the evolution ®f..(k,,u). In all these plots
all dimensionful parameters are scaled by the mass of the
fermion m; in the broken symmetry vacuum state.

__mu,u=25 muy, u=1.0 Case (1)up=0.2 Ty=0.3—no phase transition
0.0 / ! ) S _
00 10000 20000 30000 o 5000.0 Here we start below the phase transition so that the fer

Lo mions initially have nonzero mass. The results for the order
jof K . ST
parameteir as well as forT and u are displayed in Fig. 12.
FIG. 11. Effective temperature and chemical potential as a funcWe see here that although the chemical potential goes to zero
tion of k,, for u=1.0 andu=2.5. as the plasma expands, afte+ 1.5, all the parameters be-
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T T 1.0 T
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08 |
g
(o]
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| | B b,
05 04 AR L TR
T . N M '
P IR e
- \ Jx
. 02 | . .
R L N H
0.0 el N TS T e e T T 0.0 . g T
0.0 1.0 2.0 3.0 0.0 2.0 4.0
u u
FIG. 12. Typical evolution otr/m, x andT as a function ol FIG. 14. Evolution ofT, u ando as a function ofu for second-
for initial conditions below the phase transition temperature. order phase transition.

come relatively independent afand are defined by an equi- transition, the chemical potential goes to zero whereas the
librium freezeout temperature of approximatelyr@;2 temperature freezes out atTe=0.35m;. After the phase
For the broken symmetry case, the plasma essentiallransition, there is now a mass scatg which leads to os-
stays in equilibrium throughout the evolution in that thecillations of o around the final vacuum value. As discussed
proper time evolving\ . is relatively independent of and  earlier, to obtain non-trivial dynamics we chose a small ex-
maintains its Fermi-Dirac shape. This is seen in Fig. 13.  plicit symmetry breaking parametet,/m;=10"".
Going through a second order phase transitoespro-
Case (2)u=0.5; To=0.5—second order phase transition duce a noticeable effect in distorting the Fermi-Dirac distri-

The results for starting in the “unbroken” mode and tra- bution as shown in Fig. 15
versing a second order phase transition are shown in Fig. 14.

We notice thatr(7) shows a sharp transition during evo- ~ C25€ (3)#e=0.6; T¢=0.32—traversing the tricritical point

lution from the unbroken modeo(=0) to the broken sym- The results for this numerical simulation are shown in
metry mode. Before the phase transition the temperature fallsig. 16.
consistent with the equation of stae=e. The chemical We notice thaior(7) again shows a sharp transition during

potential follows the temperature in that regime which mean®volution from the unbroken modesrE0) to the broken
the system is also in chemical equilibrium. After the phase

08 | 4

2\
051 \ ] N

DY
\ 05 N*(u=2.5) ]

NN

\\ \\\/ N*(u=1.5)
N*(u=1.5) A

02| \ . N N (u=2.5)

0'00 0 1.0 2.0 3.0 4'0 5.0
0.0 1 0 0 . ! 0 0

0.0 0.5 1.0 1.5 2.0 k

FIG. 15. Evolution ofN. as a function ofu when there is a
FIG. 13. Evolution ofN.. as a function ofu when there is no  second order phase transition. The momentum displayekl, is
phase transition. The momentum displayedt js k. =kr.

096010-19



CHODOS, COOPER, MAO, AND SINGH PHYSICAL REVIEW B3 096010
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FIG. 16. Evolution of T, x and o as a function ofu passing
throught the tricritical point.

FIG. 18. Evolution of T, x and o as a function ofu passing
through first order phase transition.

symmetry mode, and again Fhe temperature falls cons!sterﬂ,thase transition, we find among the paramefera and o,

with the equation of state which was= € before the transi-  only the behavior of the chemical potentjalis effected by
tion and freezes out again with~0.35m;. However the  the order of the phase transition. The chemical potential falls
chemical potential in this case falls faster than the temperags 1/ for the second order phase transition and faster for the
ture. When one traverse the tricritical point the distortion offist order transition suggesting a deviation from local chemi-
the Fermi-Dirac distribution is greater than for the secondyg| equilibrium.

order phase transition case as shown in Fig. 17. The greatest change in the Fermi-Dirac distribution also
occurs for the first order transition. This is a result of con-
verting (the small amount oflatent heat into pair production

Finally we present results when we start in the unbrokerfnd is seen in Fig. 19. _ ,
mode and go through a first order phase transition. First we AS we recall from our study of the effective potential, for
display thea, u, T in Fig. 18. The results for these variables th€ GN model the first order phase transition is not very
are qualitatively the same as for going through the tricriticalStrong. The difference in energy density begwegn the false
point, however the chemical potential falls even faster in thighd true vacuum(measured in units ofn; ) is 1/4m,
case. By comparing the three different cases where there isvghereas the height of the barrier at phase coexisteseen

Case (4)up=0.8; To=0.3—first order phase transition

1.0 T T T T 1.0 T T T T

0.5 | A

N'(u=2.5)

N'(u=1.5)

g

0.0
0.0 1.0

FIG. 17. Evolution ofN.. as a function ofs when one traverses
The momentum displayedkg=Kr.

the ftricritical point.

20
k

3.0

4.0

N*(u=2.5)

*(u=1.5)

0.0
5.0 0.0

order phase transition.
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. . In Fig. 20 we show the result of plotting the energy density
2nd Order e(u) and pressure for three initial conditions.
Jot Order | In Fig. 21 we plot the pressure and energy density for the
T three initial datalcases(2), (3), (4)] for which there is a
phase transition. We see that before the phase transpion,
trackse. After the transition, the system goes out of equilib-
rium and then oscillates about its vacuum value because
there are no damping mechanisms.

In(p) & In(e)

IX. “PION” CORRELATION FUNCTION

One interesting question we can ask is how correlation
] lengths change as we go through the phase transition. In our
toy model there is no physical pion bound state in our ap-
proximation, but we still can define an effective field for the
-120, 5 10 20 30  bion and study the spatial dependence of the pion green’s
In(t) function. Other correlation functions one can study in a simi-
lar fashion are the density fluctuations as well as the conden-
FIG. 20. Evolution ofp ande as a function ot for three initial  g5te fluctuations.

conditions. We can define an effectiveeutra) pion field via

-10.0

from Fig. 2 is less than 10% of this difference. m(X)=Cii(X)i Y2 (%), 9.2

B. Numerical results for the energy density and pressure wherec is a constant. Using our mode expansion we find that

In local equilibrium in the massless phase, we have shown.~. s .\ _ E ot A3
that the equation of state would lee=p and these quantities Coiyiys) G ([0 700D

would fall as 142 as shown in Fig. 5. In our field theory q

simulations, We'\(vill find that this behavior is followed gntil :J dk,k,[2—N (k) ~N_(Kk)] _|fk|2- 9.2
the phase transition occurs. After that the energy density and du

pressure diverge from each other and oscillate. These osci Secause the integrand in E€.2) is odd, the expectation

lations would be damped if we were to go beyond mean fiel value is zero(otherwise there would be spontaneous break-
theory and include hard scatterings between the fermions own of parity P

After the phase transition we find that the energy densit For the equal time correlation function in LOLN. we ob-
oscillates around the true broken symmetry values discusse[d. q . . ’
ain the usual fermion self-energy loop. This depends on the

earlier, namel . ; o ; ; .
y time evolving distribution of fermions and antifermions.
1 Apart from an overall constant one can write the connected
€0=" 4 correlation function in the form

: : o » D(n—7n";n)=(m(n,7)7(n", 7).
For these simulations we assume the initial conditions de-

scribed earlier and plot the renormalized energy density and _ 3 N PO
pressure described by E(6.12) and Eq.(6.19. Starting in =Ty Sn=n"n)y St = m 7],
the massles@inbroken symmetpyregime we findp= € and 9.3
this falloff pertains until one goes through the phase transi- :
tion, after which the system is no longer in local equilibrium. where at equal times, the propagator is just

P [4
P
01 F o1 q 01
0.0 0.0 00
E
E E
=01 =01 =01
0.0 10 20 30 4.0 0.0 10 20 30 4.0 0.0 1.0 20 30 40
u u u

FIG. 21. From left to right: evolution of the pressure and energy density as a functiowlwén there is a second order phase transition;
evolution of the pressure and energy density as a functienadfen the trajectory passes through a tricritical point; evolution of the pressure
and energy density as a function wfvhen there is a first order phase transition.
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Correlation function: m = 0.8, T= 0.3 at u = 2 Correlation function: m = 0.8, T= 0.3 at u = 2.04

8000
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3000
2000 2000
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50 100 150 200 250 50 100 150 200 250
Correlation function: m = 0.8, T= 0.3 at u = 2.08 Correlation function: m = 0.8, T = 0.3
5000 50000
4000 40000
3000 30000
2000 20000
1000 10000
50 100 150 200 250 S0 100 150 200 250

FIG. 22. Evolution of the correlation function as a function of time. This is for a first order transition.

S(7.7" ;D) ap={[ba(n.7), 041", D]). 9.9 Fa(k,a; 7) =]l 2 f ol 2(ka— ApA g+ (D + T) (D +7) ]2

Herea, 3 take on the valuefl, 2 and are the spinor indices. +[ A Qg+ T) +A4(Q+5)1?). (9.9
Using the mode expansion E.20 we find that the equal
time propagator can be written as If we were solving a (3 1)-dimensional 4-fermion

model with actual pion composite particles we would now be

dk, .\ : in a position to determine the single particle distribution
r. = | = (7=7)[ (1 — +
SO, 7)ap f 2 et A= 2N (K)o 7) function for the pions from the Wigner distribution functions
s B ‘. which is just a particular Fourier transform of the Green’s
X g (1) +(2N_(K) = 1) by (T) i ()] function over the relative coordinate.
(9.5 In Figs. 22 and 23 we plot*D(#,7) as a function ofy

for caseq2) and(4) for a sequence of times starting near the

We could also have used the mode expansion in terms ¢inset of the phase transition.
adiabatic mode functions, EG7.1), and obtained an expres-

sion for the equal time propagator in terms of the time evolv- X. CONCLUSIONS
ing adiabatic number distributions.
Evaluating the trace we obtain In this paper we have performed simulations in the Gross-
Neveu model of an expanding plasma of fermions and anti-

4 , dk dq (e ) (') fermions. We have chosen initial conditions where the den-
7D(n—7n'i7)= f om2n e 77D(ka;7), (96 sty matrix is described by single particle distribution
functions pertinent to a plasma initially in local thermody-

where namic and chemical equilibrium. The model was treated in
the leading order in larghl approximation. In this approxi-
D(k,q)=(1-2N,(K)][1—2N,(q)]+[1-2N_(K)] mation the phase diagram at finite chemical potential and
temperature shares features with that of massless 2-flavor
X[1=2N_(q)DF1(k,a)+ (12N, (k)] QCD. We found that if we start in the unbroken symmetry

phase, the system remains in equilibrium until the phase

X[1=2N_(a)]+[1=2N.(q)] transition and then goes rapidly out of equilibrium as the

X[1—2N_(K)])F,(k,q) (9.77  phase transition is traversed. The effects of the phase transi-

tion are greatest when we traverse a first order phase transi-
and tion and are most noticeable in the antifermion distribution
function. If these effects survive hard scatterings then this
Fi(k,q; T):|fk|2|fq|2{(kAq+qu)2 should have an effect on the distribution of dileptons, just as

N 5 the overpopulation of soft pions during DCC production ef-
+[k(Qq+Tr)—q(Qk+"&)]z}, (9.8  fected the distribution of dileptons as discussed by us earlier
[35]. We also find that before the phase transition, the system

and behaves identically to an ideal fluid in local thermal equilib-
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Correlation function: m = 0.5, T= 0.5 at u = 2 Correlation function: m = 0.5, T= 0.5 at u = 2.04
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Correlation function: m = 0.5, T= 0.5 at u = 2.08 Correlation function: m = 0.5, T = 0.5 at u = 4
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FIG. 23. Evolution of the correlation function as a function of time. This is for a second order transition.

rium with equation of statp=e. After the phase transition, Baym for suggesting we study the pion correlation function
the system quickly reaches its true broken symmetry vacuurand the participants of the Riken workshop on in and out of
value for the fermion mass and for the energy density. Sincequilibrium physics, especially Dan Boyanovsky for helping
hard scatterings are ignored in this approximation, the comus clarify some issues.

petition between the expansion of the plasma and the com-

peting process for reequilibration could not be studied here. APPENDIX: SPINOR BASES, DIRAC MATRICES

Also by restricting our simulations to inhomogeneities which ) _ )

are boost invariant, we were not able to look at bubble nucle- We Wwill choose for gonvenience the following represen-
ation. In future investigations we will attempt to remedy thetation for the matrices” and y*:

shortcomings just mentioned. We will perform mean field 1 0

simulations for inhomogeneous initial conditions which we |y°=( )
discussed beforg36] and which have already been under- 0o -1/’
taken in scalar field theory in41 dimensiong34]. There

are also now two different approaches for going beyomd 1/ 3 0 1
based on Schwinger Dyson equations which we hope we can Y=\1 o (A1)
implement to study whether rethermalization can occur for

the type of expansion expected following a heavy ion colli-Thus the spinor eigenstatesiof® are

sion. These approaches are based on different approxima-

tions for the generating functional for the 2-PlI irreducible + |1
graphs[37,38 and should allow us to study the question of X ~lo
rethermalization. We also want to extend our simulation to a

more realisticO(4) 4-fermi model in 3+1 dimensions so _ |0
that we can directly study the effect of the phase transition X =1

on pion correlation functions.
In terms of this explicit representation we find that the
momentum space wave functions have the form
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