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In this paper we discuss two methods of resumming the leading and next to leading ordérdiagrams
for the quarticO(N) model. These two approaches have the property that they preserve both boundedness and
positivity for expectation values of operators in our numerical simulations. These approximations can be
understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or
by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-
Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the La-
grangian isL (x,X) = (3)=N ,%?— (g/8N)[ =N ;x?—r2]2. The key to these approximations is to treat both the
x propagator and thg? propagator on similar footing which leads to a theory whose graphs have the same
topology as QED with the® propagator playing the role of the photon. The bare vertex approximation is
obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the
one and two point functions. The second approximation, which we call the dynamic Debye screening approxi-
mation, makes the further approximation of replacing the exagiropagator by its value at leading order in
the 1N expansion. These two approximations are compared with exact numerical simulations for the quantum
roll problem. The bare vertex approximation captures the physics at large and nhodester than the
dynamic Debye screening approximation.
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[. INTRODUCTION ers. One important question is how to decrease the number of
degrees of freedom in a manner consistent with certain
The need to understand quantum systems in real time in physical requirements such as conservation of energy, pres-
quantum field theoretic setting arose from attempts to underervation of positivity, and boundedness of expectation val-
stand various early universe scenarios. These scenarios ares. Although this is guaranteed in variational approxima-
based on the evolution of scalar fields either through theitions, approximations based on various truncation schemes,
role as inflation fields or as topological defect forming fields.whether perturbative or nonperturbative in nature often fail
One would like to understand the quantum evolution of thes¢o preserve these physical requirements. For example, naive
fields rather than rely on unjustified treatments based otruncations of the coupled Green functions equations beyond
studying their classical evolution. The study of the “slow the truncation at the two point function level lead to secular
rollover” transition in an upside down harmonic approxima- behavior(unboundedness at late time$his is also true for
tion by Guth and P[1] was the first attempt to understand the 1N expansion which is derivable from an effective ac-
whether classical approximations could be justified. How-tion. The second question is, after guaranteeing these prop-
ever, one really needed to go beyond the harmonic approxerties, how accurately have we described the time evolution?
mation to address the nonlinear aspects of double (ael The simplest truncations of the field theory have been
Mexican hat potentials. These nonlinear aspects effect probased on Gaussian variational meth¢as|, or the related
duction of topological defects as well as the nature of thdeading order in largéd (LOLN) approximatior[4,5]. These
oscillation at the bottom of the well which causes reheatingtwo approximations can be shown to be equivalent to a clas-
Our ultimate goal is to be able to describe accurately ovesical Hamiltonian dynamics for the variational parameters
relevant time periods the nonlinear aspects of quantum fiel¢or equivalently the Green functionsvhich leads to prob-
theory evolutions. Although in one-dimensional quantumability conservation at the quantum level so that the results
mechanics, one can rely on a numerical solution of thealways lead to conserved energy, and positive and bounded
Schralinger equation to understand the time evolution of theexpectation values. Unfortunately, hard scatterings which
system accurately over long time periods, in field theory confead to thermalization are ignored so that important physics
texts the numerical solution of the functional Safirger s left out. The approximation also is numerically inaccurate
equation is presently beyond the reach of the largest compugfter a few oscillations in quantum mechanical applications,
unless the anharmonic coupling constantlivided by the
number of fieldsN in an O(N) model is quite small. In this
*Present address: Physics Division, Argonne National Laboratorypaper we will be comparing our methods of going beyond
Argonne, IL 60439. Email address: bogdan.mihaila@unh.edu mean field theoryHartree or largeN) with exact numerical
TEmail address: john.dawson@unh.edu simulations of a quantum mechanida(N) model. In this
*Email address: cooper@schwinger.lanl.gov way we can see how accurate the approximations are as a
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function of N as well as study numerically if the approxima- A third approach has been to consider the complete set of
tion maintains the various physical requirements we positequal time Green functions. These obey first order local
such as boundedness and positive definiteness of expectatiequations in time, as in the Schilinger approach. This ap-
values. The reason for using this quantum mechanical modg@roach has been nicely systematized and an equation for the
is that exact simulations can be doneaditN, so that accu- generating functional obtained by Wetterich and collabora-
racy of the method as a function of the parametdl d4n be tors in a series of papef40]. However, naive truncations of
studied. By restricting ourselves to a quantum mechanicthe equal time Green function hierarchy again have the prob-
problem we unfortunately will not be able to study questionsiem that although there is a conserved energy, one cannot
of thermalization. A complementary approach has been unshow that this truncatiofexcept at the two point levetor-
dertaken by Aarts, Bonini, and Wetterip8] where they con-  responds to a positive definite probability so that expectation
siderclassicall+ 1-dimensionaky* field theory(for N=1). values are not necessarily bounded or positive definite. Trun-
There one can look at some aspects of classical thermalizgated at the two point function level, this approach is identi-
tion (as long as one keeps a cutoff because of the Raleigleal to the Hartree approximation. However, simulations
Jeans divergengéut one is restricted to low values Bfso  based on truncations assuming sixth order or eighth order
one cannot study thBl dependence of the result. Also one one-particle-irreduciblg1Pl) graphs, could be set to zero,
cannot study thequantumaspects of the problem. In the were carried out for th€@(N) x*th oscillator problem, and
above paper, Aartet al. study a truncation of the Green secularity was found for many choices of initial conditions
functions at the four point level, which is known to lead to [11]. So we, as quantum field theorists, having entered the
unboundedness and secularity in quantum mecharig=sl domain of nonequilibrium phenomena, are now beset with
well as classical applications. It will be interesting in the all the problems faced by our plasma and condensed matter
future to apply the approximations we are using here to clasbrethren more than 40 years ago.
sical 1+ 1-dimensionalkp* to see if, and how well, they de- In both quantum and classical many-body systems, the
scribe the thermalization. dynamical equations are an infinite hierarchy of coupled
There are several ways of approaching the problem oéquations which relate given ensemble averages, whether
thinning the degrees of freedom of the quantum field theoryclassical or quantum, to successively more complicated ones.
One of the earliest was based on making a variational apfo make the solution of this hierarchy possible, some trun-
proximation to the functional Schdinger equation. The cation scheme is necessary. Most naive truncation schemes
variational approach has the advantage of leading to ahich, for example, just truncate the hierarchy of coupled
Hamiltonian dynamical system for the variational parametergorrelators at a particular order, do not preserve various
as well as to a density matrix which has positivity propertiesphysical properties required of the system—such as positiv-
Energy conservation and positivity and boundedness of ety of the spectral components of the Green function and
pectation values are automatically guaranteed. Howevetonservation of probability. A corollary of this is that in most
even for the simple problem of the quantum roll, the Gaussperturbation schemes, secularity arises quickly with each
ian, or time dependent Hartree approximation, studied byerm in the perturbation series, growing with higher powers
Cooper, Pi, and Stancioff], and improvements which are of the timet. In his seminal paper of 1961, Robert Kraichnan
based on trial wave functions of the form of a polynomial[12] discussed in detail the key issues and obtained a partial
times a Gaussiaf7], were found to be only accurate for solution to the problem by demanding that the approxima-
relatively short time periodéne or a few oscillationsvhen  tions one should use should correspond to some physically
compared to the exact numerical solution of the Sdimger  realizable dynamical system. This would guarantee positivity
equation. In guantum mechanics, except for exceptional situand secularity would be avoided. The reason why variational
ations, the wave function in multiwell situations gets very approximations avoid these problems is exactly because they
complicated very quickly and is not easily described by aead to a Hamiltonian dynamical system for the variational
small number of variational parameters. parametergwhich are related to equal time correlation func-
A second approach has been a dired Jxpansion tions). He also discussed scenarios where particular classes
of the path integral in the Schwinger-Keldysh-Bakshi-of graphs, which contained the relevant dynamics, are
Mahanthappa closed time path formalid®)]. In this ap- summed and he suggested some physically motivated ap-
proach the connected Green functions have the property thptoximations which did not suffer from any diseases. In field
they start at ordeG,,=1/N""1. Thus if we retain only a theory one rarely has the parameter control to make such
certain order in the expansion, there is a truncation in thguesses, however, some progress in QCD has been made by
order of Green functions retained. This approach was appliedumming hard thermal loopgl3], which already tells us
recently to the quantum roll problef®] and was found to some of the graphs that we want to include. In plasma phys-
suffer from the secularity problem—although the short timeics, one wants to make sure that the approximation to the
behavior of the result was improved by includindNl¢or-  dynamics is robust enough so that the photon propagator
rections, an exact reexpansion in terms dfl 1éads to cor- includes polarization effects, which give Debye screening.
rections in the Green functions that are of the formt/N  This is related to the hard thermal loop summation in QCD.
and so the individual corrections become unbounded as well To find resummation schemes that avoid the secularity
as nonpositive definite. In this approach, although energy igroblem we will rely on the experience of our many-body
conserved, individual contributions are not positive definiteand plasma physics friends. To calculate the conductivity of
and unphysical behavior is found. a nonrelativistic plasma, it is known what graphs are neces-
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sary to sum in order to get agreement with experimentaBchwinger-Dyson equations, which sum infinite numbers of
results[26,27]. Basically the conductivity is found from the leading order and next to leading order ilN1graphs. Our
vertex function which must satisfy an integral equationapproach will be to introduce a composite “field”
which sums ladders of the Debye screened photon propaga- N
tor. The two approximations we will discuss here will differ E x2—r2)
on whether the equivalent of the Debye screened photon AR
propagator for the anharmonic oscillator is treated in lowest
order in mean field theory, or is self-consistently determinedwhich is treated on equal footing to the fieddBy doing that,
In studying the conductivity of a relativistic plasma the first the Schwinger-Dyson equations for the theory will have the
approximation has the advantage of obeying the correctame topology as those of QED wittplaying the role of the
Ward identities(but violating energy conservation to order electron andy the role of the photon. At leading order in
1/N) whereas the second preserves energy conservation blarge N in N flavor QED, one sums all the fermion loop
violates Ward identitiegto order 1N?). Here we are not vacuum polarization corrections to the photon propagator
studying QED, and the Ward identities of tl§N) model  which gives the Debye screening. Here the bare photon
for the quantum mechanics problem are much simpler thapropagator is replaced by a local interaction in the graphs for
those of QED and energy conservation is a more importarthe y propagator in LOLN. The next consideration, impor-
constraint on the accuracy of the answer. We will includetant for charged plasmas, is that to obtain reasonable agree-
both approximations here mainly because of the recent interment with experiments on the conductivity of the plasma, the
est in the gauge invariant approximation for the relativisticvertex function must sum all the ladders with the Debye
plasma[19], and also because in truncations of Schwinger-screened propagator as the kernel in the integral equation.
Dyson equations, it is often too difficult to solve for the The two resummation schemes which we discuss in this pa-
photon propagator self-consistently, and so one is ofteper both have this property.
forced to try the more drastic approximation of using the The approximation which we call the bare vertex approxi-
mean field propagator in the resummation scheme. By studynation (BVA), uses the full Green function foras well as
ing this approximation in a quantum mechanics problem wehe full Green function fory in a two-particle-irreducible
will see the shortcomings of such an approach. (2P1) Hartree graph contribution to the effective action. This
In what follows we will discuss two approaches to obtain-is in contrast to an earlier scheme for going beyorid [1/4]
ing the above two truncations of the exact Schwinger-Dysonsing the 2PI formalism which is based only on th&reen
equation and apply them to the problem of the quantunfunctions. The BVA approximation sums an infinite Geomet-
roll—the long time behavior oN coupled anharmonic oscil- ric series of 2PI graphs of the single field formalism. Recent
lators with “radial” symmetry in anN-dimensional space. simulations in a toy # 1-dimensional scalar field theory
This particular problem has been studied by us previgi@gly [15] show that the approximation described in Ré#] al-
exactly and in the next to leading order in the lafgep- ready has the ability to thermalize arbitrary initial conditions,
proximation(NLOLN) and is interesting because exact nu-so we are confident that the BVA approximation will also
merical solutions can be found for arbitral. What we have that feature when applied to a field theory problem. The
found previously, is that for the parameter set studigd BVA can also be obtained by setting the full vertex function
~1, M2=2), the next to leading order in largé-contribu-  to unity in the Schwinger-Dyson equations for the one and
tions became unbounded fbi<21. For largemN, where the  two point functions with external sources hence the origin of
approximation was physical, it had the failing that it wasits name. The second approximation we will study, which we
unable to track the spreading of the exact wave functiorcall the dynamic Debye screening approximati@DSA),
which led to the envelope of the oscillations found for makes the further assumption that the fulpropagator can
(X2(t)) contracting at late times and then reexpanding. Abe replaced by the lowest order ifNl¢omposite field propa-
related study of largéN for quantum mechanics in the con- gator in all the integral equations. The main interest in the
text of the equal time correlators by Bettencourt and WetterDDSA results from it being the lowest order resummation
ich [11], also displayed growing modes for various initial scheme thaexactly preserves QED Ward identities. Both
conditions. these approximations are free from the difficulties found in
The resummation presented here will allow one to trackhe perturbative N expansion, which we display for com-
the contraction for some period, but at later times it also failgparison. We find that the BVA is accurate at modest times
in that it leads to small oscillations about a fixed point value.<25 oscillations wheN>10. At later times it settles down
In field theory settings, where one hopes that this approxito oscillating about an unphysical fixed point. The DDSA
mation will lead to thermalization, optimistically this fixed approximation violates energy conservation at ordsr ard
point behavior will become physical and be related to theras a result becomes inaccurate after several oscillations. In
mal equilibration. Whether this is true or not can be checkedpite of this, it is numerically more accurate for a longer
by studying this approximation for classical evolutions aver-period of time than the Hartree approximation at small and
aged over a distribution of initial conditions described by anmodest values oR.
initial probability distribution in phase space. It should be kept in mind that quantum mechanics and
In what follows we will present numerical solutions for quantum field theory are very different. For example, in the
the quantum roll problem for th®(N) model, and compare quantum mechanics application discussed here, the graphs of
them to these two different approximations to thethe O(1/N) corrections do not correspond to interparticle
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collisions(as they do in field theopysince we are restricting 1 2

N
ourselves to one-particle quantum mechanics. Nevertheless 2q X—g E x?—ré) (8)
guantum mechanical examples provide excellent test beds 9 =1
for kgy issues such as pOSItIVIty.VIOh":ltIOI’l, bpundedness, anclihe Lagrangiar(7) then becomes
late time accuracy of the approximations. It is precisely these
guestions that we are hoping to understand in this paper. N 2 2
.o 1 ) 2 . rOX X
LN(X,X;X,X)=Z 5 (XF= X)X +7+@+JX,
Il. O(N) MODEL =1 ©

The classical Lagrangian for tH@(N) model of N non-

linear oscillators is given by where we have also added sourg¢eandJ coupling tox; and

X, respectively. From this Lagrangian we get the Heisenberg
equations of motion for the operataxgt) and y(t):

1 N g N 2
L(X,X)= Eizl X2 — ﬁ(; xiz—r(z)) . (1)

U NVAD NN (o B (SO
O+ XOKO=]i0, ===3| X KO-rg| -0,
The Schrdinger equation for this problem is given by =1

(10
N 2 . . N
1 d _IP(x,t) Here, and in the following, we indicate operators by “hats.”
[_ 5;1 (7—Xi2+V(r)] PO =T =7, (2 Taking expectation values with respect to an initial density

matrix we obtain thee-number equations
whereV(r) is a potential of the form

X)X OK(D)=];,

N
9 22 .2 2 N
V(r)= o (r2=rd)? r2=> x%. (3) YD)y 1
8N 0 = M:_ > K3ty ) —r2| =J(). (1)
g 2 i=1
For the quantum roll problem there is spherical symmetry " . . .
and we can assume a solution of the forgr,t) By rewriting the quartic interaction in terms of the composite

= #(r,t)/rN"D2 in which case the time dependent Schro field x, the induced interaction of the fgn@xi2 is reminis-

dinger equation fokh(r,t) reduces td 16| cent ofN flavor QED with interactionA , ¢ v*¢; . The fact
that these two theories have the same topological structure
2 _do(r,t) will allow us to use the intuition gained in classical plasmas
[ ) W‘Fu(r)] $(r,t)=i a (4)  to make appropriate approximations.

To simplify notation we include all independent coordi-
with an effective one dimensional potentla(r) given by ~ nates in one vector. We define

_ _ Xa(t)z[)((t)!xl(t)v)(Z(t)! e va(t)]v
U(r)=w+i(r2—ré)2. (5)

8r 8N (O =30, ]1(0. 150, in(D)] (12

It is this equation that we will solve numerically to obtain for «=0,1,..N, and wheré](t)z\](t)—rzlz Absorbing the
exact numerical solutions as a function Nf U(r) has a o o

minimum atr =r,. In our simulations, we have fixed our ) o

mass scald1?, defined as the second derivativelofr) at  9(t) iS Set to zero. Greek indices run from ONp whereas

the minimum, to have a value of 2, independentof Latin |nd|ce_s go from 1 td\. Using this extended notation,
Returning to the Lagrangian formulation, it is useful for th€ generating functional[ j ] and connected generataf j |

the purposes of obtaining a largeexpansion to introduce S 9iven by the path integral

scaled variables:

xi—Nx;, ro—Nro. (6)

Then the Lagrangian scales by a factombf where the actiorBy[x;]j] is given by

factorrS/Z into the current means thaft) is not zero when

N
Z[j]=e™"I=]] | dx expliNs\x;ilh - (19

1 XN N 2 I ¢ ,
LIN=Ln0xX)= 521 X g(Zl Xiz_rg) ' @) Sl 2 azk fcdtJ'cdt XalV)

We use these scaled variables in this paper, so that the res- XA L HX](LE)xg(t) + > fdtxa(t)ja(t)y
caledry~1. Next we introduce a composite coordingtey « e
adding to Eq(7) a term (14
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and whereA 2 x](t,t") is given by X[ SW[j]
Gap )= 5 ) ™ 3.0 8141

. D (t,t") 0
BasI®O=] o gy ) @9 _( D) /Cj(t,t’)) 0
with Kit,t) Giitt))
1 Equation(19) is identical to Eq(11). In this equation and in
D Ht,t")=—=68(t,1"), what follows, x; and y now correspond to the expectation

9 values.
o2 The Green functions are explicitly given by

G X1ttt =1 ==+ x(t) | & bat,t"). 16

DA = 5+ x( >] 5 3cltt) (16) v v
D(t,t')= Ki(t,t")=

In what follows it will be useful to introduce another matrix aJ(1)8I(t")” aJ(1) 6j;(t")

inverse Green functios [ x](t,t’) as follows: . .
aslXJ(L ) FWLI ] FWL ]

MO S ey T S

. S*SNIxij]
1 ry — N
G == 5 0 o0l _

. _ The integrability conditions require that; (t,t")=K;(t’,t).
D™(tt") K Yt To obtain the Schwinger-Dyson equations it is advantageous
K-Ytt) G ltt))’ 17 1o Legendre transform to the expectation value of the coor-

b b dinate variables,(t), as the independent variable instead of
with D~1(t,t’) and Gifjl(t,t’) given by Eq.(16), and the currents. The effective action generating functional of

K Ux](tt')= Ki_l[x](t,t’)=xi(t)5c(t,t’). 1PI graphs is given by a Legendre transformation:

1. SCHWINGER-DYSON EQUATIONS F[x]:W[j]—Lth (X, (D)j (D} (22)

The Schwinger-Dyson equations are integral equations for
the Green functions. The Green functions can be obtained b$o sincej,(t)=— oI'[x]/dx,(t), the equations of motion
functional differentiation of the path integral for the generat-(19) give values for derivatives df [ x]:
ing function in the presence of external sources. After setting
the external sources to zero, one obtains an infinitely coupled oI'[x] 1 1 D
hierarchy of coupled equations for the Green functions. For — Sx(t) - a)((t)'i' 2“4
an initial value problem, the boundary conditions on the

x?(t)+$gn<t,t)/i}—ré]

Green functions can be implemented by using a time ordered (22
product where the time ordering refers to the closed time STIX] & L

path  contour of the Schwinger-Keldysh-Bakshi- B X] | d~ . Lo .
Mahanthappa formalisni8]. A detailed discussion of that oxi(t) dt2+X(t) X+ N]C'(t’t)/" 23

formalism as applied to implementing theNléxpansion for
this particular problem is described in RE5]. One way to  However, the Green functions heig;(t,t) and K;(t,t), are

generate the equations is to consider the ideffi#} defined in Eqg.(20) as functionals of the currentg,(t).
5 These must be expressed as functionalg gf) by inverse
H f dxg eINSwIxiil— o (18) relatlpns. We define these inverse Green functions, which are
3 X, (1) functionals ofx(t), by

from which we find Ojo(t) 8°T'[x]

-1 Iy — = —
Gaplx1(t,t") = Sxg(t) — OXa(t)oxa(t))

1 1 ) 1 1 5
_a)((t)+§ EI‘J Xi(t)+Ngii(trt)/l}_r0+_‘](t)i Dfl(t’t/) Igj*l(t,tr)
) L gty gt )
W+X(t)]xi(t)+ NKitni=ji), (19 where explicitly
wherex;(t) and y(t) areaverage valuesf the operators, DLt 82T x,x] o 82T x,x]
WL WL =" Samanr & T T Sy
X()=——5—=(&(1), x()=—7=—=(X(1)),
8ji() 4J(t) 82T x,X] 8T x.x]
-1 N ! -1 " ’
and where the Green functiod ,[j](t,t') are defined by <+ ("')=~ Seysyyt G ()T T St
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Again we havek, }(t,t')=K; }(t’,t). The inverse Green
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In order to solve the equation for the two point function,

functions are given by differentiating the equations of mo-Ed. (26), one requires knowledge of the three point function,
tion, Egs.(22) and(23), with respect to the coordinates. Us- defined by Eq(25). This in turn requires knowledge of the

ing

fcdt,% g;,%[x](trt,)gﬁ,y“ ](t/,t”) = 501,75C(t!t”)1

we find
0Gaplil(tst) .
Tty Ldufcdts; Ga,sl11(t1,t4)
XT 5 e[ X]1(ta,t5,13)Ge gl 1(t5,12),
(24

wherel", 5 ,[X](t1,t2,t3) is the three-point vertex function,

defined by

8G, BIX](ty,t,)
Ty g X1ty ty) = — 22220

5X7(t3)
83T [x]
=- . (29
OXo(t1) OX (o) X, (t3)
Explicitly, we find an equation of the form
G p(Lt) =G B(tt)+3, a(t,t'), (26)

WhereG;’};(t,t’) is given by Eq.(17). The generalized self-
energyz , s(t,t") is given by

H(t,t)  Qtt)
), (27

Ea’ﬁ(t't,):(f_li(t,t’) S(tt)

and where the polarizatiohl (t,t"), self;energyEij(t,t’),
and the off diagonal term®,(t,t") and Q;(t,t’) are given
by
i
I(t,t")= —E dtlf dt,Gi 4(t,t1)
2Nizs Je c
XT o poltyta, 1) Ggi(ta,1),
i
2i]-(t1t’): NE JdtlJ’ dt2gi,a(t1tl)
a,B JC C
XT 4 6t 1)Ggota,1),

JdtlJ’ dt,Gj o(t,t9)
C C

XL g pi(ty,t2,t")Gg (12,1,

i
Q=55 2,

— i
Q,(t,t")= NE/; fcdtlfcdtzgi'“(t’tl)

XFa,ﬁ,O(tlitZ1t/)gﬁyo(t2,t). (28)

four point function,ad infinitum It is this infinite hierarchy
of coupled Green function equations that corresponds to
solving exactly the Schringer equation.

The matrix inversion of Eq(26) gives the set of coupled
equations

ga,ﬁ(tat,):Ga,ﬂ(tvt’)_E fdtlfdtZGa,y(t!tl)
v,6 JC C

Xzy,ﬁ(t11t2)g5,ﬁ(t21t’)v (29)
where
(D(t,t’) Ki(t,t’))
Geop(tit)=| — ) (30)
’ Ki(t,t)) Gi(t.t')
with
d2
; HW+X(U 5i1+gxi(t)xi(t)}ij(tat’):5ik5c(t,t'),
(31
D(t,t') == gac(t.t)+ 8% X(DG; (Lt (t),
(32
Ki(Lt) =Kt ) =g Gyt (t)). (33

When x;(t) # 0, one notes thab(t,t’) is not the inverse of
D 1(t,t").

The vertex functionl’, 5 ,[X](t1,t5,t3) defined in Eq.
(25) is obtained by differentiation of E¢26) with respect to
X,(t). We find

Fa,B,y[X](tl !t2 't3)
_ G, glX](t1 o)

gxy(tB)
=f40.890c(t1,12) O¢(ty,t3) + @, g [ X](t1,t5,t3).
(34)
Here f;;0=fo;;=fioj=3ij, otherwise f s zero.

®, 5,[X](t1,t5,t3) is given by derivatives of the self-
energy matrix:

0% o plX](t1,t2)

X (t3) 39

(Da,ﬁ,y[x](tl!t21t3):

and is of order M.

We are interested in resummation schemes that are exact
to order 1N for (xi2>. We see from Eqg34) and(35) that it
is consistent to replade, s ,[ x](t1,t2,t3) in Eq.(29) by the
first term in Eq.(34) to obtain a resummation which is exact
to order 1N. To simplify our discussion of the exact
Schwinger-Dyson equation for the vertex function, we will
only consider the case of the quantum roll wharé) =0.
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= M
4. FIG. 1. Schwinger-Dyson equations for the

vertex function. Solid lines represent tég(t,t")
propagator and heavy wiggly lines are the

@ MNC) D(t,t") propagator.
= MV\< + r) x|+ A K,

Following the treatment of Ref.18], we have for the whereMj,(t4,t;;ts,t;) is 1Pl in the channek+x— x+ x.
threey vertex The lowest order in N contribution toM(t,,t5;t,,t3) is

8D (ty,tp)

A(ty,t), 1) = ————"
()= 5 ) M ji(ta,toits t1) = 8e(ta,ts) Sclts ty) Giulta,t).  (36)

=i§_; cdt4fcdt5gij(t3at4)gik(t31t5)
: Whenx;(t) =0, the exact Schwinger-Dyson equation for the
XMj(ts,to5t5,1), X-X-X vertex is

8G (ty,ty)
o) 8ij Oclty,12) d¢(ty,t3) — cht4JCdt5JCdt6J'Cdt7

X k%n [y(ts,t5,t3) Gum(ta, te) Gin(ts, t7) Kimn(ts,toit7,t) + A(ts,t5,t3)

Fij (tl 1t2 1t3) =

+D(t4,t5)D(t6at7)/C2ij(t5,t2;t7't1)]a (37)

wherek; and/C, are thes-channel 2PI scattering amplitudes the higher connected Green functions. These are obtainable
for the reactions:x+x—x+x and y+ y—x+x, respec- by further functional differentiation of the effective action. In
tively. particular if we wanted to use linear response theghe
This is shown pictorially in Fig. 1. In general one then hasKubo formulg to obtain the electrical conductivity for a
to obtain equations for the 2PI scattering amplitudes as welQED plasma, one would functionally differentiate the equa-
as for A. These will depend on even highafpoint func-  tion for the inverse two point for the electron function with
tions, ad infinitum In our approximations made at the two respect toA . In our problem the photon is replaced by the
point function level, the 2P$-channel scattering amplitudes composite fieldy, and the electron by; .
K; andK,, used in the equations for the vertex function, Because of recent interest in studying plasma conductivity
will turn out to be graphs for one-particle exchange in the in both QED and QCD, we will spend extra time on com-
channel of they andx particles, respectively. paring the equations obtained for the vertex function in the
In our truncations of the Schwinger-Dyson equations, wethree approximations considered here. In conductivity calcu-
will always replace the full three point vertex function by the lations, it is necessary to sum all the ladder graphs in the
bare one in the equations for and G in the presenceof  equation for the vertex function to get good results for dilute
external sources. Once this truncation is made, then for thplasmas. We will find that in NLOLN the vertex function is
problem we are addressing hdthe approximate time evo- not an integral equation but is rather the sum of a few dia-
lution of N quantum anharmonic oscillatgrsne never needs grams whereas the other two approximations lead to integral
any of theN point functions beyond the one and two point equations that sum an infinite number of diagrams. Another
function equations. What will distinguish a further approxi- issue is in preserving Ward identities. One of the reasons the
mation we will call the DDSA is that we will also further largeN expansion was so interesting is that it is a complete
approximate they propagator to be that of the LOLN ap- reexpansion of the field theory which preserves Ward iden-
proximation. tities at each order. The QED plasma conductivity problem
By making this bare vertex approximation in the equa-people[19] became interested in the DDSA becausext
tions for the one and two point Green functions, we hase  actly obeyed the Ward identities, whereas the BVA approxi-
relinquished our ability to calculate in this approximation all mation violates Ward identities at ordemMNE. It is for this
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reason we thought it appropriate to study the DDSA approxi- Thus the generating functionZ| j,k] for the CJT action
mation, even though it violated energy conservation alreadys given by

at order 1N, hoping that at least at largd it would be N
numerically accuratand satisfy Ward identities in QED ap- C T — alNW K] — i i
Dlications. Z[j.k]=¢€ al;[O dx,, exp{iNS\[x;],k]},
The exact formula for the energy is given by ith
wi
1 22 ~n 02 24 a2
E/N=35{ 2 (FO+ROXO 18k - (0/g} ). SIEIRSEETNEIEDY chtxaa)ja(t)
(38
1
Whenx;(t)=(%;(t))=0 andx;(t)=0, one obtains + Egg Cdtfcdt'xa(t)kaﬁ(t,t')X/s(t’).
1 PGt/ o, (40)
E/N= EEi [W t’:t+X(t)g(t’t)/I_r0X(t) where
1 1 1 1 f f
i - i+ = Seasd X]=— = dt | dt'x,(t
g{x (D) + DL/ +N”2k chtlfcdtzfcdtg clasd X] 2;;; Jdt dvxa(n
XA L HX](tE)xg(t")
XD(ty,t5)Gij (11,0 G (t,t) T (t,t3,t5) ¢ (39
=So+ Sind X1, (41)
_ . . . . 1
vg;t)arel“,k(t3,t4,t2) is the full vertex function given in Eq. Sy= 52 fdtj dt'x.(t)
. a,B JC C
-1 ’ ’
IV. EFFECTIVE ACTION FOR TWO-PARTICLE X Agq,(LT)Xp(L), (42)
IRREDUCIBLE GRAPHS 1
Sn(x1= -3 fcdmei XF(t), (43

Since the approximations we are going to consider have a
simple interpretation in terms of keeping a particular 2PI —1 N e A
vacuum graph in the generating functional of the 2PI graphs"flnd wheredo,, (t,t') is given by
we would like to review this formalism following the ap- D (t,t") 0
proach of Cornwall, Jackiw, and Tombouli€JT) [20]. Agiﬁ(t,t’)z( 1. )

The first Legendre transform of the generating functional 0 Goij (L")

WIj] of connected Green functions is widely known and d2

used and is called the “effective action.” The higher Leg- Ggijl(t,t')z[az] 8ij Oc(t,t")

endre transformgsecond, third, et¢.were introduced by De

Dominicis and Martin[21] in quantum statistics. Dahmen \ith D~1(t,t") given by Eq.(16). In this formalism, we
and Jona-Lasinip22], and later Visil'ev and Kazanski23],  haye separated out an “interaction” term, E43), which

extended these ideas to quantum field theory. These methoaépends on the coordinates(t), from a bare Green func-
were then u;ed by Cornwall, Jac;kivv_, and Tomboulis to dis_‘[ion G&_l(u,), which is independent of the coordinates
cuss dynamical symmetry breaking in Hartree type approxis (1) inJ contrast to our previous definitions in E46). The
mations which later led to the second Legendre transformat-é‘rm ’rz (t)/2 has been absorbed into the definition of the
tion formalism being called the CJT formalism. These higher oX )

order Legendre transformed actions have the advantage §HentJ(t) in Eq. (12).

being able to treat higher order Green functions on the same 1 ne second Legendre transform\{j k] is the CJT ef-

footing as the coordinates. fective action:
We will first summarize the general results of that paper
before proceeding to the specific approximations we consider I'x,g1=W[j,k]— 2 f dtx, (1) (1)
a C

in this paper. The method of CJT is to introduce one- and
two-body sources for the coordinatgg(t) and the Green

1
functionsg, g(t,t") in the action, and then make a Legendre + EE dtJ dt'k, g(t,t")
transformation to the one and two point functions. The re- ap JCc JC
sulting action, as a function of and G, contains a term X {Xa(OX5(1)+ G gL},

which is the sum of all two-particle irreducible vacuum

graphs. This term can be written using the vertices of theCJT showed thal'[x,G] can be obtained as a series expan-
interaction andj. We use the extended notation for the co-sion in terms of 2Pl graphs. That is, introducing the func-
ordinates and one-body sources, given in @Q). tional operator
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. 52S[ X] =,(t’,t). The self-energie&t7) are then used in Eq§26)

G, Xt t")=— ————— to find the one and two point functions. For the Green func-

SX (1) X 4(t") . .

tions, we find
D Nt,t') K Ux](t,t’ _ _
A B s I T =G (L) + Soaap(tt), (49

o L _ _ with 2 gya. s(t,t") given by Eq.(47). The inversion of Eq.
which is the same as thé, 5[x](t,t") as defined in Eq. (48) is given by Eq.(29), which is a set of four coupled

(17), one can write the effective action in the form integral equations for the four BVA Green functions, which
_ must be solved simultaneously.
| . .
I[X,G]= Suncd X]+ = THIN[G 1 From Eqs(22) and(23), the equations of motion fog(t)
[x,G1=Saasdx] + 5 THIN[G 7} and the gap equation foy(t) is then given by
i -1 d? 1 .
+5 TG X]IG- 1+ Ta[xG]. (49 G XXM i)+ S (=0, (49)

The quantityl',[ x,G] has a simple graphical interpreta- g
tion in terms of all the 2Pl vacuum graphs using vertices x(H)= _[E
from the interaction term. The Hartree and leading order in 29
largeN approximation for thex* potential was obtained by .
CJT using a single two-loop vacuum graph in tB¢N) For the quantum roll, we further set(t)=0. This means
theory written in terms of only the coordinates Our strat-  that KCi(t,t) = K(t,t) =0, so thatG ,4(t,t") is diagonal, and
egy for obtaining a resummation of the larlyeapproxima- results in the following set of equations for the Green func-
tion is to first rewrite the theory in terms of the composite tIONS:
field x, and the equivalent Lagrangian given in Eg). Us-
ing these new variables, we then chooselfgix,J] the 2PI D(t,t’)=D(t,t’)—J dtlf dt,D(t,t;)
graphs shown in Fig. 3, which is now written in terms of the C C
full x and x propagators and the trilinear coupling

X2(t) + ig-'(t t)/i}—rzl (50)
i N il of-

X(OXF(t)/2. XTI(ty,t) Dt 1), (51)
V. BARE VERTEX APPROXIMATION Gi(t,t)=Gy(t,t)— >, J dtlj dt,G i (t,ty)
oJe e
The bare vertex approximatidiBVA) is obtained by set- ,
ting the vertex function equal to its bare value in the exact X (g, t2) G (t2,t7), (52

equations for the one and two point functions. This is an

energy conserving approximation which leads to integralVhere

equations for the threg-vertex function as well as for the i

X-X-x vertex function. The bare vertex approximation con- H(t,t) == > G (Lt G5t 1),
sists of making the replacement 2N 4

[ g [X1(ty 1o, t) =1, 5, 0c(t,t5) 6c(ty,t3)  (46)

in the exact Schwinger-Dyson equations for the self-
energies, Eqs28). This gives for the BVA

Eij(t,t,):Iﬁgij(t!t,)’D(t,’t)‘ (53)

The gap equation fog(t) becomes

i
() =552 Gy(tt)G(t' ), g[1 .
2N 47 7 I X(=> NZ Gi(t,t)li—r3}. (54)
Qi(t,t")= INE Ej(t,t’)gji(t,t’), In addition, for this case, the initial conditions imply that we
I can takeG;;(t,t") andg;;(t,t") to be diagonal, which greatly
| simplify the integral equations. The BVA for the quantum
Qi(tt )= — K.t DG (1 1), roll requires that we solve Eq$51)—(54) simultaneously
(6t NEj: (DG (Y using the numerical methods described in R¢4] and
[25].

Because of the interest in using the BVA approximation
in QED (and QCD plasma conductivity problems, we will
(47) discuss the integral equation one obtains for the vertex func-
tion in what follows. It was precisely because this approxi-
where we have used the symmetry proper;(t,t')  mation gives the sum of the graphs used in nonrelativistic
=G;(t',t) and Ki(t,t")=K;(t’,t). Thus we find(;(t,t") plasmagsee Fig. 2in conductivity calculations which gave

3t = IN{Ei(t,t')icj(t’,t)Jrg”-(t,t’)D(t’,t)},
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FIG. 2. The vertex function for the BVA. The
top figure represents E¢7) and the bottom fig-
ure represents Eq58). Solid lines represent the
Gij(t,t") propagator and heavy wiggly lines are
the D(t,t’) propagator.

both accurate results as well as giving physical answers th&ince theD propagator sums the contact term plus all the

initially interested us in this approximation.

The three point vertex functionsA(t,,t,,t3) and
[ (t1,t5,t3) for the BVA is given by functional differentia-
tion of the inverse two point functions:

5D Y(ty,tp)
A(ty,tp,t3)=Tgodty,to,t3) = oty (59

8G; (ty,tp)
Fij(tl,tz'ts)EFijo(tLtzvts):(;XT;Z, (56)

and obtain the coupled integral equations

i
A(tl,tz,t3)=—NJ dt4f dtsz Gik(ty,ts)
C C ijkl
X T (ts,t5,t3) Gij(ts,12) Gji(t2,t1)  (57)
and
[ij(ty,to,t3) = 65 6c(ty,t2) Oc(ty,t3)
—f duf dt5[2 Gi(t1,ta)
c Jc ki
X Tty t5,t3) Gij (t5,t5) D(t5,ty)
+Gij(t1,12)D(t2,t) Aty t5,t3) D(ts,ty) ¢ -

(58)

polarization bubbledI of the original quartic interaction
gx*, if we reexpandD in a power series idl then the first
two terms in the series give the graphs used in the approxi-
mation of Refs[14] and[15]. The CJT action is given by
Eq. (45). The stationary condition fog, 4(t,t") gives

- S(ei-G.h+ S -0,
or

G (L) =G Bt t) +Zgya,. gL GI(LL),
where

ST G
Sevaa g Gl(LE) = = 2i 461

Gt (60

Carrying out the derivatives df,[ G] given in Eq.(59), we
find thatZgya, g(t,t") is exactly the same as found in Eq.
(47) using the Schwinger-Dyson equations in the BVA ap-
proximation. The stationary condition for, also gives the
same equations of motion fay(t) and gap equation fop(t)

as found in Eqs(49) and (50) using the Schwinger-Dyson
equations in the BVA. Thus we conclude that the CJT action,
as given in Eqs(45) and(59), gives exactly the same set of

This is shown diagrammatically in Fig. 2. Looking at the equations as in the Schwinger-Dyson BVA truncation.

diagrams, if we iterate these equations, we sum all the “rain-

The energy for the BVA is obtained from E39) by

bow” diagrams. As advertised, comparing these graphs witlusing Eq.(46) for the vertex function. We find

those shown in Fig. 1, is approximated in the BVA by
exchange and, by x exchange in thé channel.

Let us show that this approximation is easy to obtain from G

the CJT formalism once we tregtandD and C on exactly
the same footing. We choose for our approximatiof' $pG]
the 2PI graphs shown in Fig. 3. This gives

1
r6=- 353 | dt [ dupat )

1 _
- m% CdtljcdtZKi(tl1t2)gij(tlat2)lcj(t21tl)-

(59

K
rfjjc\
+
G \Fr_)/J
K
FIG. 3. Vacuum graphs contributing to the 2PI part of the ef-
fective actionl',[G]. Solid lines represent th@; (t,t") propagator,
the wiggly to solid lines represent thg(t,t’) and;(t,t") propa-
gator, and wiggly lines are thB(t,t') propagator.
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1 52G(t,t") /i
E/N= EZ [ atot’

y(t,t')= ZI—N; Gij(t,t)Gji(t',1)

t'=t
+ (OGO —rdx(t)— é[xz(t) + %D(t,t)/i} + IEJ) Xi() Gy (t,t")x;(t").

1

n - IEI: Cdtlp(tlat)gij(tlyt)gji(tatl)} 61) In the QED plasma problem, the propagator becomes

the photon propagator and the delta functionZig is re-
placed by the bare photon propagator. It is the bubblE jn
where, for our case, we have sgft) =X;(t)=0. Since the that leads to the Debye screening of the photon. It is because
BVA equations are derived from an effective action, energyof our interest in QED that we call this approximation the

is conserved. DDSA.
Let us now specialize to the case wheyf{t)=0. The
VI. DYNAMICAL DEBYE SCREENING APPROXIMATION equation for the fullx propagatol§ is

In plasma studies of the electric conductivity of fully ion-
ized plasma$26,27], it was found that in order to correctly " "N
determine the conductivity it was necessary to have an ap- Gij (L) =G; (L) ; fcdtlfcdtzeik(t'tl)
proximation where the photon propagator included the ef-
fects of dynamical Debye screening in the random phase X (g, t2) G (t2,t7), (63)
approximation. This improved propagator was then used in a ) )
scattering kernel in the kinetic equations. In our model,¢he With the self-energy depending on the fglland the leading
field plays the roll of the photon in the dynamics of the ~©rder in 1N approximation taD given by Eq.(62):
oscillators. The lowest approximation that includes the po-
larization effects inD is precisely the leading order in i
largeN approximation taD, namelyD, [see Eq(69)] which Sttt = Ngm(t,t’)D(t,t')- (64)
is discussed below in our derivation of the NLOLN approxi-
mation. The leading order in largeé-approximation is simi- T
lar in spirit to the random phase approximation. The equation
for D~1(t,t") in leading order in largé\ is given by

he gap equation is

L x(0=3 2 %gn(t,tm—ré : (65
Dy H(t,t")=— = 8a(t,t")+Tg(1,1"), (62)
g There is a nontrivial vertex function in this approximation

where given by

8G; Tx](ty,tp)

Lij(ty,ty,t3) = ox(t3)

= 0c(ty,t2) O¢(ta,tz) 6ij — % fcdt4fcdt5rkl(t4at5vts)gki(tmtl)D(tlat2)gjl(t2vt5)

- fcdt4fcdt5/\(t4,t5,t3)D(t4,t1)gij(tl,tz)D(tg,t5). (66)

This equation can be obtained from the exact integral equashown to be the lowest order resummation scheme that pre-
tion for I shown pictorially in Fig. 1 by making two approxi- serves Ward identitieglL9].

mations. The first is to approximate the exact thyeertex The DDSA approximation can be derived from an effec-
function by the triangle graph, which is the leading term intive action by modifying slightly the approach of Cornwall,
the 1N expansion of this function. The second is to replaceJackiw, and Tombouli$CJT) [20]. The discussion that fol-
the scattering kernel&; andK, by single particle exchange lows here is due to Emil Mottola and Luis Bettencolur®)].

in thet channel. The reason for our studying this approxima-Thinking of the fields< and y as part of arN+1 component
tion is that, the same approximation made in QED can bdield, and considering the case ti&{(t))=0 where there is
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no mixed propagator, one can write a CJT-like action for the D, 1(t,t’) — D‘l(t,t’)+H0(t,t’), (69)
generating functional of the twice Legendre transformed ef-
fective action as with

i i Mo(t,t') = Z'—NZ Gij(t,t)Gi(t,1)
I[X.9.D]=Syasx1+ 5 THIN D'} + 5 TH{In[G ]} :

: =2 (DG (tt)x(t"). (70
+ 5 TH{Dy "D+ G [x1G—1}+T3[G]. 8

67) HereD ~1(t,t") andGijl(t,t’) are the same as Eq4.6) that
we defined earlier.
The equations of motion for the classical fiekj$t), to
Here G 1(t,t") is defined by Eq(16) andDy(t,t') by Eq.  next to leading order in N, are given by
(62). Dy(t,t") is considered apxternalparameter, and is not
varied to obtain the equations of motion. In the DDSA, the | d? _ , , ) ,
2PI1 contribution to the actionl’,[G], for the case when W“LX(t)}Xi(t)“L'zj: J’Cdt Gij (1,") Do(t,1")x(1") =0,
xj(t)=0, is given by Eq.(59) with D(t,t") set equal to its (72)
LOLN value Dy(t,t'):
with the gap equation fog(t) given by

1
Fz[g]:_m%: fcdtlfcdtZDO(tlatz)gij(tlvt2)gji(t2!t1)- X(t):g[z (Xiz(t)ﬁ-%z gfp(t,t)/i) —r%], 72
(69) i i

By varying the action(67), we reproduce Eqs63) and and where the second orderpropagatoGi?(t,t) and self-
(65). Although there is an effective action for the DDSA energy;(t,t') to order 1N is given by
approximation, sinceD, is treated as an external time-
dependent propagator, energy conservation is violated at or- (2) /4 41y _ N
der 1N. At modestN we will find that this causes this ap- Gii (LU)=Gy(Lt) %‘ fcdtlfcdtzeik(t’tl)
proximation to become inaccurate after several oscillations.
However, it is more accurate at these modest valuehl of XZp(t1,t2) Gtz ), (73)
than the LOLN approximation, as well avoiding the un-
boundedness of the NLOLN approximation we discuss nextwhere

i
VII. LARGE- N APPROXIMATION Eij(t,t'): NGij(tat/)Do(t’t’)_Xi(t)Do(t:t/)Xj(t,)-

The largeN expansion is obtained from E¢L3) by first ) i )
integrating over all the; and then evaluating the remaining We see here that the equation @ris the expansion of the
functional integral overy by steepest descent. The effective BVA €quation in a series of I, truncated at first order.
action, as a power series inNL/ is obtained from the first L€t US now specialize to the case of the quantum roll
Legendre transform of the generating functional. In a previProPlem wherex;(t) =0. In that case the two point inverse
ous papef5], we obtained equations for the next to leading propagator for the field is

order largeN approximation(NLOLN) to the action, and
g bp ( ) 52FIargeN[XaX]

ess, e review thoss equations here. To orck e b 91 I = BTt o
- =G [x1(ty,t) + [ x](ty, 1),
with
1—‘IargeN[X] = Sclasgx] + fcdt i
. _ LX) = 5 Gy (1,1 Do(t,t).
X[%Z LGy (O] + zl_Nln[Dal(t't)] ' However, it iSQi(jZ)(t,t’) which enters into Eq(72) and not

Gij(t,t"). Thus the solution foiG;;(t,t"), which we might
interpret ag X;(t)X;(t")), does not enter into the dynamics of
where S, .. x] is given by Eq.(41), and D, *(t,t’) is the  the solution. ThisG;(t,t) is positive definite, but quickly
inverse propagators foy in lowest order in the M expan-  blows up.
sion, given by The vertex functiorl'j; (t,t,,t3) is given by
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8G;; Ix1(t,t)

Fij(t11t21t3): 5X(t3)

i
= 0c(t1,12) 8e(12,t3) 0 — 5 Gij (11,13) Gji (13, 12) Do(t2, 1)

i
N Ldt4fcdt56ij(tlatz)Do(tl,t4)Ao(t4,t5,ts)Do(tsytz), (74)
where the lowest order in l/ threex vertex is given by

8D, Mty ts)

Ao(ty,ts,t3)= “ox(ta)
i

== N”Ek Gij(t4,t3)Gy(13,t5)Gyi(ts,t4).

We immediately see that this is not an integral equation but again, is the lowest orddr ¢oritfibution to Eq.(57).
The inversey propagator gets IV corrections which are of two types, one is a self-energy correction t& grepagator
and the other is a new three loop graph containing two lowest grgieopagators. We find

52FIarge-N[XaX]

_1 —
D=5 ) ox(ty)

1
- 6c(1,2 —11p(1,2) — % CdtsfcthGij(tl t3) 2 jk(t3,t4) Gy (s, 12) Gy (tp,ty)

+ LdtsLdt4fcdt5fcdt6/\o(t4at1'ts)Do(ts:ts)Ao(t5:tz,te)po(tsltzt)-

The last term in this equation is aN/correction to the ian wave function develops a large number of nodes and so
vertex function. However, it i, and notD which enters the wave function even at modest times is of the form Gauss-
Eq. (73), so that the BVA and the ¥ expansion will differ  ian time a high order polynomial. In spite of thié¢?(t))

only by terms of order N?. The BVA approximation treats shows rather simple behavior. It oscillates with a constant
x and y on exactly the same footing, whereas the lage- amplitude for a reasonable period of time with an envelope
expansion treats exactly, but then expands in loopspfSo  that oscillates with a much longer time constant which in-
at order 1IN?, the largeN approximation will contain graphs creases wittN. The Hartree and leading order larljeap-
omitted from the BVA approximation, and vice versa. proximations just oscillate with fixed amplitude. The
NLOLN blows up in this regime. BVA attempts to track the
contraction of the envelope but then contracts to a fixed
point. The DDSA violates energy conservation at ordét 1/

In this section we present the results of exact numericaso it becomes numerically inaccurate wheh Bffects be-
simulations of the quantum roll, using initial conditions de- come important which is at a timex<N. Both BVA and
scribed in our previous paper on the lafgeapproximation DDSA do however stay bounded and positive definite during
[9]. We choose as our dimensional mass scale the secortde time period of our numerical simulations. Higher order
derivative of U(r) at the minimum of the effective one- correlation functions show more complicated behavior and
dimensional potentiaU(r). This mass scale was chosen to the approximations presented here are only accurate for a
have valueM?=2. In terms of this mass scale, the coupling few oscillations in the regime 8N<20 consistent with the

VIIl. RESULTS AND CONCLUSIONS

constant as well as the rescalegare of order 1 for allN. increasingly complicated evolving structure of the wave
The exact manner in whiofpandr runs withN is described  function.
in Ref.[9]. In Figs. 4—6, we show the results for?(t)) as a function

As N— o the Hartree and leading order larljeapproxi-  of t, comparing the bare vertex, the dynamic Debye screen-
mation become exact and an initially Gaussian wave packeng, and the largéN approximations to the exact solution, for
remains Gaussian with width equal(?(t)) oscillatingina N=3, 10, and 21. In Figs. 7 and 8, we show the same results
known manner. At modeN, 10<N< 20 an initially Gauss- for (x(t)) as a function ot, and in Figs. 9-11, we give the
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FIG. 4. Plot of(x?(t)) as a function of, com-
paring the bare vertex, the dynamic Debye
screening, and the lardé-approximations to the
exact solution, folN=3.

FIG. 5. Plot of(x?(t)) as a function of, com-
paring the bare vertex, the dynamic Debye
screening, and the lardé-approximations to the
exact solution, foN=10.

FIG. 6. Plot of(x?(t)) as a function of, com-
paring the bare vertex, the dynamic Debye
screening, and the largé-approximations to the
exact solution, foN=21.
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151 i o I . T

FIG. 7. Plot of(x(t)) as a function of, com-
paring the bare vertex, the dynamic Debye
screening, and the lardé-approximations to the
exact solution, foN=3.
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FIG. 8. Plot of(x(t)) as a function of, com-
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e s ,A \ J , ~ screening, and the largé-approximations to the
0 exact solution, folN=21.
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FIG. 9. Plot of (x2(t)) as a function oft,
comparing the bare vertex, the dynamic Debye
screening, and the largé-approximations to the
exact solution folN=3.
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results for(x2(t)) (for detailed views of these figures in In contrast to the NLOLN approximation, which breaks
color, see our web site at: http://www.theory.unh.edu/resum down for N<21, both the BVA and the DDSA have the
In our previous studief9] of the largeN approximation, ~feature thatx?(t)) remains positive definite, as well as be-
we found that the next to leading order lafyeapproxima- ing bounded at alN. This is true for all the expectation
tion had the feature that the effective potential was not devalues that contribute to the energy. This conclusion is
fined at smalk for N<20, for our parameter set, and it was Purely based on numerical evidence. We do not have a proof
not until N was greater than about 20 that the laNjexpan- that thl_s_ approximation corresponds to a positive definite
sion produced bounded values fo(t)). This result is re- prob_ab|I|ty d|str|bqt|on. However_, aII_ the moments we have
produced here. For the limN— o the quantity(xz(t)) cor- studied(a total of five, as shown in Fig. 12are all bounded.

responds to harmonic oscillations. At finie however, the The DDSA is more accurate than the second order

. largeN approximation forN less that 20, but foN greater
exact solutlo.n fqu>21 has the property _that th? envelope than 20, the reverse becomes true. However, neither approxi-
of these oscillations contracts. As noted in the figures, onl

e - ¥nation captures the true nonlinear shrinking of the envelope
the bare vertex approximation attempts to follow this con-g¢ e oscillations, even foN greater than 20.

traction. AtN=21, the BVA is accurate up to &= 130 be- Energy is conserved for the bare vertex and the second
fore overshooting and then oscillating about a fixed pointgrger largeN approximations, but not for the dynamic Debye
This fixed pOint behavior shows that this apprOXimation Sti”screening approximationS, as pointed out in Sec. VI. This is
neglects some important quantum phase information preseatserious drawback to the dynamic Debye screening approxi-

in the exact solution. mation.
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FIG. 12. Plot of various contributions to the
energy for the bare vertex approximation as a
function oft for N=10.

0 20 40 60 80 100 120

In all these figures, one can see that the bare vertex apargeN approximation whenN<N;=21. As mentioned
proximation tries to follow the envelope of the exact curve,earlier, in the single particle quantum mechanics problem we
whereas the dynamic Debye screening approximation doegfudied here, the graphs do not correspond to particle colli-
not do so. This is particularly striking for the cases whensions, so there is no possibility of studying thermalization.
N is less than 21, where the dynamic Debye screenind’hermalization qgestio_ns need to be addressed in field theory
approximation yield unphysically large values for the expec-2pplications. It will be important to show that the BVA ap-
tation values. proximation will lead to thermalization of arbitrary initial

In the BVA approximation we observe that3(t)) at late data as found in the three-loop approximation of Ref]
times has an envelope of decreasing oscillations about }nen applied to & 1-dimensional quantum field theory. We
fixed point. In fact as seen in Fig. 12 all the contributions toWUld also like to study the analogue of the BVA approxi-

the energy in the BVA have the same feature that they ag_nation for a Gaussian ensemble of initial conditions for a
ymptote to a fixed point. In Fig. 12 we display all five con- 1+ 1-dimensional classical field theory since that can also be

tributions to the energy at=10 to demonstrate this fact. In Studied exactly numericall{6]. These authors have shown
contrast, as seen in the very long time run shown in Fig. 11that the classical field theory indeed thermalizes and we
the exact solutions exhibit “recurrence” patterns of motion Would like to know how accurately the classical version of
which are not captured in the BVA. In thetll-dimensional our approximation captures this physics. This will be the
field theory simulations of Ref15], all the Fourier compo- subject of a future publication.
nents of the two particles correlation function showed this
behavior which was given as evidence for thermalization. So
one hopes that this “defect” of the BVA approximation ina  We wish to thank Salman Habib for helpful discussions
quantum mechanics setting, will instead have the correcbn understanding the numerical simulations and for contin-
physics of thermalization in a field theory application whereued advice. We wish to thank Professor Gabor Kalman for
Poincargecurrence times are expected to become very largeexplaining relevant plasma conductivity approximations, and
To see if this is true, we intend to study the BVA in classical Emil Mottola for suggesting our study of the “dynamic De-
1+ 1-dimensional field theory where again exact simulationsbye screening” approximation and explaining its derivation
can be performeg6]. from the CJT formalism. We also thank Juergen Berges for
In summary we have found that both resummation methdiscussing with us his recent results on thermalization in a
ods described here, the BVA and the DDSA, produce posirelated approximation. J.F.D. is supported in part by the U.S.
tive definite and apparently bounded results for expectatiobepartment of Energy under grant DE-FG02-88ER40410.
values at all values oN. The bare vertex approximation He would like to thank the T-8 theory group at LANL, and
appears to provide the best description of the motion, buthe Institute for Nuclear Theory at the University of Wash-
cannot describe recurrences of the motion. Still, it providesngton, for hospitality during the course of this work. F. C.
an energy conserving and reasonably accurate descriptiowould like to thank Boston College and UNH for hospitality
and is a dramatic improvement over the next to leading ordeduring the course of this work.
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