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Resumming the large-N approximation for time evolving quantum systems
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In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams
for the quarticO(N) model. These two approaches have the property that they preserve both boundedness and
positivity for expectation values of operators in our numerical simulations. These approximations can be
understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or
by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-
Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the La-

grangian isL(x,ẋ)5( 1
2 )( i 51

N ẋi
22(g/8N)@( i 51

N xi
22r 0

2#2. The key to these approximations is to treat both the
x propagator and thex2 propagator on similar footing which leads to a theory whose graphs have the same
topology as QED with thex2 propagator playing the role of the photon. The bare vertex approximation is
obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the
one and two point functions. The second approximation, which we call the dynamic Debye screening approxi-
mation, makes the further approximation of replacing the exactx2 propagator by its value at leading order in
the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum
roll problem. The bare vertex approximation captures the physics at large and modestN better than the
dynamic Debye screening approximation.

DOI: 10.1103/PhysRevD.63.096003 PACS number~s!: 11.15.Pg, 03.65.2w, 11.30.Qc, 25.75.2q
in
de
s
e
s

es
o

w
a-
d
w
ox

ro
th
ng
ve
e
m

th
th
on

pu

er of
tain
res-
al-
a-
es,

fail
aive
ond
lar

c-
rop-
on?
en

las-
ers

ults
ded
ich
ics
te

ns,

nd

as a

or
I. INTRODUCTION

The need to understand quantum systems in real time
quantum field theoretic setting arose from attempts to un
stand various early universe scenarios. These scenario
based on the evolution of scalar fields either through th
role as inflation fields or as topological defect forming field
One would like to understand the quantum evolution of th
fields rather than rely on unjustified treatments based
studying their classical evolution. The study of the ‘‘slo
rollover’’ transition in an upside down harmonic approxim
tion by Guth and Pi@1# was the first attempt to understan
whether classical approximations could be justified. Ho
ever, one really needed to go beyond the harmonic appr
mation to address the nonlinear aspects of double well~and
Mexican hat! potentials. These nonlinear aspects effect p
duction of topological defects as well as the nature of
oscillation at the bottom of the well which causes reheati

Our ultimate goal is to be able to describe accurately o
relevant time periods the nonlinear aspects of quantum fi
theory evolutions. Although in one-dimensional quantu
mechanics, one can rely on a numerical solution of
Schrödinger equation to understand the time evolution of
system accurately over long time periods, in field theory c
texts the numerical solution of the functional Schro¨dinger
equation is presently beyond the reach of the largest com
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ers. One important question is how to decrease the numb
degrees of freedom in a manner consistent with cer
physical requirements such as conservation of energy, p
ervation of positivity, and boundedness of expectation v
ues. Although this is guaranteed in variational approxim
tions, approximations based on various truncation schem
whether perturbative or nonperturbative in nature often
to preserve these physical requirements. For example, n
truncations of the coupled Green functions equations bey
the truncation at the two point function level lead to secu
behavior~unboundedness at late times!. This is also true for
the 1/N expansion which is derivable from an effective a
tion. The second question is, after guaranteeing these p
erties, how accurately have we described the time evoluti

The simplest truncations of the field theory have be
based on Gaussian variational methods@2,3#, or the related
leading order in large-N ~LOLN! approximation@4,5#. These
two approximations can be shown to be equivalent to a c
sical Hamiltonian dynamics for the variational paramet
~or equivalently the Green functions! which leads to prob-
ability conservation at the quantum level so that the res
always lead to conserved energy, and positive and boun
expectation values. Unfortunately, hard scatterings wh
lead to thermalization are ignored so that important phys
is left out. The approximation also is numerically inaccura
after a few oscillations in quantum mechanical applicatio
unless the anharmonic coupling constantg divided by the
number of fieldsN in an O(N) model is quite small. In this
paper we will be comparing our methods of going beyo
mean field theory~Hartree or large-N! with exact numerical
simulations of a quantum mechanicalO(N) model. In this
way we can see how accurate the approximations are

y,
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function ofN as well as study numerically if the approxim
tion maintains the various physical requirements we po
such as boundedness and positive definiteness of expect
values. The reason for using this quantum mechanical m
is that exact simulations can be done atall N, so that accu-
racy of the method as a function of the parameter 1/N can be
studied. By restricting ourselves to a quantum mechan
problem we unfortunately will not be able to study questio
of thermalization. A complementary approach has been
dertaken by Aarts, Bonini, and Wetterich@6# where they con-
siderclassical111-dimensionalf4 field theory~for N51!.
There one can look at some aspects of classical therma
tion ~as long as one keeps a cutoff because of the Rale
Jeans divergence! but one is restricted to low values ofN so
one cannot study theN dependence of the result. Also on
cannot study thequantumaspects of the problem. In th
above paper, Aartset al. study a truncation of the Gree
functions at the four point level, which is known to lead
unboundedness and secularity in quantum mechanica~as
well as classical! applications. It will be interesting in the
future to apply the approximations we are using here to c
sical 111-dimensionalf4 to see if, and how well, they de
scribe the thermalization.

There are several ways of approaching the problem
thinning the degrees of freedom of the quantum field theo
One of the earliest was based on making a variational
proximation to the functional Schro¨dinger equation. The
variational approach has the advantage of leading t
Hamiltonian dynamical system for the variational paramet
as well as to a density matrix which has positivity properti
Energy conservation and positivity and boundedness of
pectation values are automatically guaranteed. Howe
even for the simple problem of the quantum roll, the Gau
ian, or time dependent Hartree approximation, studied
Cooper, Pi, and Stancioff@2#, and improvements which ar
based on trial wave functions of the form of a polynom
times a Gaussian@7#, were found to be only accurate fo
relatively short time periods~one or a few oscillations! when
compared to the exact numerical solution of the Schro¨dinger
equation. In quantum mechanics, except for exceptional s
ations, the wave function in multiwell situations gets ve
complicated very quickly and is not easily described by
small number of variational parameters.

A second approach has been a direct 1/N expansion
of the path integral in the Schwinger-Keldysh-Baks
Mahanthappa closed time path formalism@8#. In this ap-
proach the connected Green functions have the property
they start at orderG2n}1/Nn21. Thus if we retain only a
certain order in the expansion, there is a truncation in
order of Green functions retained. This approach was app
recently to the quantum roll problem@9# and was found to
suffer from the secularity problem—although the short tim
behavior of the result was improved by including 1/N cor-
rections, an exact reexpansion in terms of 1/N leads to cor-
rections in the Green functions that are of the form6t/N
and so the individual corrections become unbounded as
as nonpositive definite. In this approach, although energ
conserved, individual contributions are not positive defin
and unphysical behavior is found.
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A third approach has been to consider the complete se
equal time Green functions. These obey first order lo
equations in time, as in the Schro¨dinger approach. This ap
proach has been nicely systematized and an equation fo
generating functional obtained by Wetterich and collabo
tors in a series of papers@10#. However, naive truncations o
the equal time Green function hierarchy again have the pr
lem that although there is a conserved energy, one ca
show that this truncation~except at the two point level! cor-
responds to a positive definite probability so that expecta
values are not necessarily bounded or positive definite. Tr
cated at the two point function level, this approach is iden
cal to the Hartree approximation. However, simulatio
based on truncations assuming sixth order or eighth o
one-particle-irreducible~1PI! graphs, could be set to zero
were carried out for theO(N) x4th oscillator problem, and
secularity was found for many choices of initial conditio
@11#. So we, as quantum field theorists, having entered
domain of nonequilibrium phenomena, are now beset w
all the problems faced by our plasma and condensed m
brethren more than 40 years ago.

In both quantum and classical many-body systems,
dynamical equations are an infinite hierarchy of coup
equations which relate given ensemble averages, whe
classical or quantum, to successively more complicated o
To make the solution of this hierarchy possible, some tr
cation scheme is necessary. Most naive truncation sche
which, for example, just truncate the hierarchy of coup
correlators at a particular order, do not preserve vari
physical properties required of the system—such as pos
ity of the spectral components of the Green function a
conservation of probability. A corollary of this is that in mo
perturbation schemes, secularity arises quickly with e
term in the perturbation series, growing with higher powe
of the timet. In his seminal paper of 1961, Robert Kraichn
@12# discussed in detail the key issues and obtained a pa
solution to the problem by demanding that the approxim
tions one should use should correspond to some physic
realizable dynamical system. This would guarantee positiv
and secularity would be avoided. The reason why variatio
approximations avoid these problems is exactly because
lead to a Hamiltonian dynamical system for the variation
parameters~which are related to equal time correlation fun
tions!. He also discussed scenarios where particular cla
of graphs, which contained the relevant dynamics,
summed and he suggested some physically motivated
proximations which did not suffer from any diseases. In fie
theory one rarely has the parameter control to make s
guesses, however, some progress in QCD has been mad
summing hard thermal loops@13#, which already tells us
some of the graphs that we want to include. In plasma ph
ics, one wants to make sure that the approximation to
dynamics is robust enough so that the photon propag
includes polarization effects, which give Debye screeni
This is related to the hard thermal loop summation in QC

To find resummation schemes that avoid the secula
problem we will rely on the experience of our many-bo
and plasma physics friends. To calculate the conductivity
a nonrelativistic plasma, it is known what graphs are nec
3-2
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RESUMMING THE LARGE-N APPROXIMATION FOR . . . PHYSICAL REVIEW D 63 096003
sary to sum in order to get agreement with experimen
results@26,27#. Basically the conductivity is found from th
vertex function which must satisfy an integral equati
which sums ladders of the Debye screened photon prop
tor. The two approximations we will discuss here will diffe
on whether the equivalent of the Debye screened pho
propagator for the anharmonic oscillator is treated in low
order in mean field theory, or is self-consistently determin
In studying the conductivity of a relativistic plasma the fir
approximation has the advantage of obeying the cor
Ward identities~but violating energy conservation to ord
1/N! whereas the second preserves energy conservation
violates Ward identities~to order 1/N2!. Here we are not
studying QED, and the Ward identities of theO(N) model
for the quantum mechanics problem are much simpler t
those of QED and energy conservation is a more impor
constraint on the accuracy of the answer. We will inclu
both approximations here mainly because of the recent in
est in the gauge invariant approximation for the relativis
plasma@19#, and also because in truncations of Schwing
Dyson equations, it is often too difficult to solve for th
photon propagator self-consistently, and so one is o
forced to try the more drastic approximation of using t
mean field propagator in the resummation scheme. By stu
ing this approximation in a quantum mechanics problem
will see the shortcomings of such an approach.

In what follows we will discuss two approaches to obta
ing the above two truncations of the exact Schwinger-Dy
equation and apply them to the problem of the quant
roll—the long time behavior ofN coupled anharmonic oscil
lators with ‘‘radial’’ symmetry in anN-dimensional space
This particular problem has been studied by us previously@9#
exactly and in the next to leading order in the large-N ap-
proximation ~NLOLN! and is interesting because exact n
merical solutions can be found for arbitraryN. What we
found previously, is that for the parameter set studied~g
'1, M252!, the next to leading order in large-N contribu-
tions became unbounded forN,21. For largerN, where the
approximation was physical, it had the failing that it w
unable to track the spreading of the exact wave funct
which led to the envelope of the oscillations found f
^x̂2(t)& contracting at late times and then reexpanding.
related study of largeN for quantum mechanics in the con
text of the equal time correlators by Bettencourt and Wet
ich @11#, also displayed growing modes for various initi
conditions.

The resummation presented here will allow one to tra
the contraction for some period, but at later times it also fa
in that it leads to small oscillations about a fixed point valu
In field theory settings, where one hopes that this appro
mation will lead to thermalization, optimistically this fixe
point behavior will become physical and be related to th
mal equilibration. Whether this is true or not can be check
by studying this approximation for classical evolutions av
aged over a distribution of initial conditions described by
initial probability distribution in phase space.

In what follows we will present numerical solutions fo
the quantum roll problem for theO(N) model, and compare
them to these two different approximations to t
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Schwinger-Dyson equations, which sum infinite numbers
leading order and next to leading order in 1/N graphs. Our
approach will be to introduce a composite ‘‘field’’

x5
g

2 S (
i 51

N

xi
22r 0

2D ,

which is treated on equal footing to the fieldx. By doing that,
the Schwinger-Dyson equations for the theory will have
same topology as those of QED withx playing the role of the
electron andx the role of the photon. At leading order i
large N in N flavor QED, one sums all the fermion loo
vacuum polarization corrections to the photon propaga
which gives the Debye screening. Here the bare pho
propagator is replaced by a local interaction in the graphs
the x propagator in LOLN. The next consideration, impo
tant for charged plasmas, is that to obtain reasonable ag
ment with experiments on the conductivity of the plasma,
vertex function must sum all the ladders with the Deb
screened propagator as the kernel in the integral equa
The two resummation schemes which we discuss in this
per both have this property.

The approximation which we call the bare vertex appro
mation ~BVA !, uses the full Green function forx as well as
the full Green function forx in a two-particle-irreducible
~2PI! Hartree graph contribution to the effective action. Th
is in contrast to an earlier scheme for going beyond 1/N @14#
using the 2PI formalism which is based only on thex Green
functions. The BVA approximation sums an infinite Geom
ric series of 2PI graphs of the single field formalism. Rec
simulations in a toy 111-dimensional scalar field theor
@15# show that the approximation described in Ref.@14# al-
ready has the ability to thermalize arbitrary initial condition
so we are confident that the BVA approximation will als
have that feature when applied to a field theory problem. T
BVA can also be obtained by setting the full vertex functi
to unity in the Schwinger-Dyson equations for the one a
two point functions with external sources hence the origin
its name. The second approximation we will study, which
call the dynamic Debye screening approximation~DDSA!,
makes the further assumption that the fullx propagator can
be replaced by the lowest order in 1/N composite field propa-
gator in all the integral equations. The main interest in
DDSA results from it being the lowest order resummati
scheme thatexactly preserves QED Ward identities. Bot
these approximations are free from the difficulties found
the perturbative 1/N expansion, which we display for com
parison. We find that the BVA is accurate at modest tim
<25 oscillations whenN.10. At later times it settles down
to oscillating about an unphysical fixed point. The DDS
approximation violates energy conservation at order 1/N and
as a result becomes inaccurate after several oscillations
spite of this, it is numerically more accurate for a long
period of time than the Hartree approximation at small a
modest values ofN.

It should be kept in mind that quantum mechanics a
quantum field theory are very different. For example, in t
quantum mechanics application discussed here, the grap
the O(1/N) corrections do not correspond to interpartic
3-3
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collisions~as they do in field theory! since we are restricting
ourselves to one-particle quantum mechanics. Neverthe
quantum mechanical examples provide excellent test b
for key issues such as positivity violation, boundedness,
late time accuracy of the approximations. It is precisely th
questions that we are hoping to understand in this paper

II. O(N) MODEL

The classical Lagrangian for theO(N) model of N non-
linear oscillators is given by

L~x,ẋ!5
1

2 (
i 51

N

ẋi
22

g

8N S (
i 51

N

xi
22r 0

2D 2

. ~1!

The Schro¨dinger equation for this problem is given by

H 2
1

2 (
i 51

N
]2

]xi
2 1V~r !J c~x,t !5 i

]c~x,t !

]t
, ~2!

whereV(r ) is a potential of the form

V~r !5
g

8N
~r 22r 0

2!2, r 25(
i 51

N

xi
2. ~3!

For the quantum roll problem there is spherical symme
and we can assume a solution of the formc(r ,t)
5f(r ,t)/r (N21)/2, in which case the time dependent Schr¨-
dinger equation forf(r ,t) reduces to@16#

H 2
1

2

]2

]r 2 1U~r !J f~r ,t !5 i
]f~r ,t !

]t
, ~4!

with an effective one dimensional potentialU(r ) given by

U~r !5
~N21!~N23!

8r 2 1
g

8N
~r 22r 0

2!2. ~5!

It is this equation that we will solve numerically to obta
exact numerical solutions as a function ofN. U(r ) has a
minimum atr 5r min . In our simulations, we have fixed ou
mass scaleM2, defined as the second derivative ofU(r ) at
the minimum, to have a value of 2, independent ofN.

Returning to the Lagrangian formulation, it is useful f
the purposes of obtaining a large-N expansion to introduce
scaled variables:

xi→ANxi , r 0→ANr0 . ~6!

Then the Lagrangian scales by a factor ofN:

L/N5LN~x,ẋ!5
1

2 (
i 51

N

ẋi
22

g

8 S (
i 51

N

xi
22r 0

2D 2

. ~7!

We use these scaled variables in this paper, so that the
caledr 0'1. Next we introduce a composite coordinatex by
adding to Eq.~7! a term
09600
ss
ds
d
e

y

es-

1

2g Fx2
g

2 S (
i 51

N

xi
22r 0

2D G2

. ~8!

The Lagrangian~7! then becomes

LN~x,x; ẋ,ẋ !5(
i 51

N F1

2
~ ẋi

22xxi
2!1 j ixi G1

r 0
2x

2
1

x2

2g
1Jx,

~9!

where we have also added sourcesj i andJ coupling toxi and
x, respectively. From this Lagrangian we get the Heisenb
equations of motion for the operatorsx̂i(t) and x̂(t):

x̂̈i~ t !1x̂~ t !x̂i~ t !5 j i~ t !,
x̂~ t !

g
5

1

2 S (
i 51

N

x̂i
2~ t !2r 0

2D 2J~ t !.

~10!

Here, and in the following, we indicate operators by ‘‘hats
Taking expectation values with respect to an initial dens
matrix we obtain thec-number equations

^ x̂̈~ t !&1^x̂~ t !x̂i~ t !&5 j i ,

^x̂~ t !&
g

5
1

2 S K (
i 51

N

x̂i
2~ t !L 2r 0

2D 2J~ t !. ~11!

By rewriting the quartic interaction in terms of the compos
field x, the induced interaction of the formxxi

2 is reminis-

cent ofN flavor QED with interactionAmc̄ ig
mc i . The fact

that these two theories have the same topological struc
will allow us to use the intuition gained in classical plasm
to make appropriate approximations.

To simplify notation we include all independent coord
nates in one vector. We define

xa~ t !5@x~ t !,x1~ t !,x2~ t !,...,xN~ t !#,

j a~ t !5@ J̃~ t !, j 1~ t !, j 2~ t !,...,j N~ t !# ~12!

for a50,1,...,N, and whereJ̃(t)5J(t)2r 0
2/2. Absorbing the

factor r 0
2/2 into the current means thatJ̃(t) is not zero when

J(t) is set to zero. Greek indices run from 0 toN, whereas
Latin indices go from 1 toN. Using this extended notation
the generating functionalZ@ j # and connected generatorW@ j #
is given by the path integral

Z@ j #5eiNW@ j #5 )
a50

N E dxa exp$ iNSN@x; j #%, ~13!

where the actionSN@x; j # is given by

SN@x; j #52
1

2 (
a,b

E
C
dtE

C
dt8xa~ t !

3Da,b
21 @x#~ t,t8!xb~ t8!1(

a
E

C
dtxa~ t ! j a~ t !,

~14!
3-4
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and whereDa,b
21 @x#(t,t8) is given by

Da,b
21 @x#~ t,t8!5S D21~ t,t8! 0

0 Gi j
21@x#~ t,t8!

D , ~15!

with

D21~ t,t8!52
1

g
dC~ t,t8!,

Gi j
21@x#~ t,t8!5H d2

dt2
1x~ t !J d i j dC~ t,t8!. ~16!

In what follows it will be useful to introduce another matr
inverse Green functionGab

21@x#(t,t8) as follows:

Ga,b
21 @x#~ t,t8!52

d2SN@x; j #

dxa~ t !dxb~ t8!

5S D21~ t,t8! K̄ j
21~ t,t8!

Ki
21~ t,t8! Gi , j

21~ t,t8!
D , ~17!

with D21(t,t8) and Gi , j
21(t,t8) given by Eq. ~16!, and

Ki
21@x#(t,t8)5K̄ i

21@x#(t,t8)5xi(t)dC(t,t8).

III. SCHWINGER-DYSON EQUATIONS

The Schwinger-Dyson equations are integral equations
the Green functions. The Green functions can be obtaine
functional differentiation of the path integral for the gener
ing function in the presence of external sources. After set
the external sources to zero, one obtains an infinitely coup
hierarchy of coupled equations for the Green functions.
an initial value problem, the boundary conditions on t
Green functions can be implemented by using a time orde
product where the time ordering refers to the closed ti
path contour of the Schwinger-Keldysh-Baksh
Mahanthappa formalism@8#. A detailed discussion of tha
formalism as applied to implementing the 1/N expansion for
this particular problem is described in Ref.@5#. One way to
generate the equations is to consider the identity@17#

)
b

E dxb

d

dxa~ t !
eiNSN@x; j #50, ~18!

from which we find

2
1

g
x~ t !1

1

2 H(
i

Fxi
2~ t !1

1

N
Gi i ~ t,t !/ i G2r 0

2J 5J~ t !,

H d2

dt2
1x~ t !J xi~ t !1

1

N
Ki~ t,t !/ i 5 j i~ t !, ~19!

wherexi(t) andx(t) areaverage valuesof the operators,

xi~ t ![
dW@J, j #/ i

d j i~ t !
5^x̂i~ t !&, x~ t ![

dW@J, j #/ i

dJ~ t !
5^x̂~ t !&,

and where the Green functionsGa,b@ j #(t,t8) are defined by
09600
or
by
-
g
d
r

d
e

Ga,b@ j #~ t,t8!5
dxa~ t !

d j b~ t8!
5

d2W@ j #

d j a~ t !d j b~ t8!

5S D~ t,t8! Kj~ t,t8!

K̄i~ t,t8! Gi , j~ t,t8!
D . ~20!

Equation~19! is identical to Eq.~11!. In this equation and in
what follows, xi and x now correspond to the expectatio
values.

The Green functions are explicitly given by

D~ t,t8!5
d2W@J, j #

dJ~ t !dJ~ t8!
, Ki~ t,t8!5

d2W@J, j #

dJ~ t !d j i~ t8!
,

K̄i~ t,t8!5
d2W@J, j #

d j i~ t !dJ~ t8!
, Gi , j~ t,t8!5

d2W@J, j #

d j i~ t !d j j~ t8!
.

The integrability conditions require thatK̄i(t,t8)5Ki(t8,t).
To obtain the Schwinger-Dyson equations it is advantage
to Legendre transform to the expectation value of the co
dinate variablesxa(t), as the independent variable instead
the currents. The effective action generating functional
1PI graphs is given by a Legendre transformation:

G@x#5W@ j #2E
C
dt(

a
$xa~ t ! j a~ t !%. ~21!

So since j a(t)52dG@x#/dxa(t), the equations of motion
~19! give values for derivatives ofG@x#:

2
dG@x#

dx~ t !
52

1

g
x~ t !1

1

2 H(
i

Fxi
2~ t !1

1

N
Gi i ~ t,t !/ i G2r 0

2J
~22!

2
dG@x#

dxi~ t !
5H d2

dt2
1x~ t !J xi~ t !1

1

N
Ki~ t,t !/ i . ~23!

However, the Green functions here,Gi i (t,t) andKi(t,t), are
defined in Eq.~20! as functionals of the currentsj a(t).
These must be expressed as functionals ofxa(t) by inverse
relations. We define these inverse Green functions, which
functionals ofxa(t), by

Gab
21@x#~ t,t8!5

d j a~ t !

dxb~ t8!
52

d2G@x#

dxa~ t !dxb~ t8!

5S D21~ t,t8! K̄j
21~ t,t8!

Ki
21~ t,t8! Gi , j

21~ t,t8!
D ,

where explicitly

D21~ t,t8!52
d2G@x,x#

dx~ t !dx~ t8!
, K̄i

21~ t,t8!52
d2G@x,x#

dx~ t !dxi~ t8!
,

Ki
21~ t,t8!52

d2G@x,x#

dxi~ t !dx~ t8!
, Gi , j

21~ t,t8!52
d2G@x,x#

dxi~ t !dxj~ t8!
.

3-5
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Again we haveK̄i
21(t,t8)5Ki

21(t8,t). The inverse Green
functions are given by differentiating the equations of m
tion, Eqs.~22! and~23!, with respect to the coordinates. U
ing

E
C
dt8(

b
Ga,b

21 @x#~ t,t8!Gb,g@ j #~ t8,t9!5da,gdC~ t,t9!,

we find

dGa,b@ j #~ t1 ,t2!

dxg~ t3!
52E

C
dt4EC

dt5(
d,e

Ga,d@ j #~ t1 ,t4!

3Gd,e,g@x#~ t4 ,t5 ,t3!Ge,b@ j #~ t5 ,t2!,

~24!

whereGa,b,g@x#(t1 ,t2 ,t3) is the three-point vertex function
defined by

Ga,b,g@x#~ t1 ,t2 ,t3!5
dGa,b

21 @x#~ t1 ,t2!

dxg~ t3!

52
d3G@x#

dxa~ t1!dxb~ t2!dxg~ t3!
. ~25!

Explicitly, we find an equation of the form

Ga,b
21 ~ t,t8!5Ga,b

21 ~ t,t8!1Sa,b~ t,t8!, ~26!

whereGa,b
21 (t,t8) is given by Eq.~17!. The generalized self

energySa,b(t,t8) is given by

Sa,b~ t,t8!5S P~ t,t8! V j~ t,t8!

V̄ i~ t,t8! S i j ~ t,t8!
D , ~27!

and where the polarizationP(t,t8), self-energyS i j (t,t8),
and the off diagonal termsV i(t,t8) and V̄ i(t,t8) are given
by

P~ t,t8!5
i

2N (
i ,a,b

E
C
dt1EC

dt2Gi ,a~ t,t1!

3Ga,b,0~ t1 ,t2 ,t8!Gb,i~ t2 ,t !,

S i j ~ t,t8!5
i

N (
a,b

E
C
dt1EC

dt2Gi ,a~ t,t1!

3Ga,b, j~ t1 ,t2 ,t8!Gb,0~ t2 ,t !,

V i~ t,t8!5
i

2N (
j ,a,b

E
C
dt1EC

dt2Gj ,a~ t,t1!

3Ga,b,i~ t1 ,t2 ,t8!Gb, j~ t2 ,t !,

V̄ i~ t,t8!5
i

N (
ab

E
C
dt1EC

dt2Gi ,a~ t,t1!

3Ga,b,0~ t1 ,t2 ,t8!Gb,0~ t2 ,t !. ~28!
09600
-

In order to solve the equation for the two point functio
Eq. ~26!, one requires knowledge of the three point functio
defined by Eq.~25!. This in turn requires knowledge of th
four point function,ad infinitum. It is this infinite hierarchy
of coupled Green function equations that corresponds
solving exactly the Schro¨dinger equation.

The matrix inversion of Eq.~26! gives the set of coupled
equations

Ga,b~ t,t8!5Ga,b~ t,t8!2(
g,d

E
C
dt1EC

dt2Ga,g~ t,t1!

3Sg,d~ t1 ,t2!Gd,b~ t2 ,t8!, ~29!

where

Ga,b~ t,t8!5S D~ t,t8! Ki~ t,t8!

K̄ i~ t,t8! Gi j ~ t,t8!
D ~30!

with

(
j

H F d2

dt2
1x~ t !Gd i j 1gxi~ t !xj~ t !J Gjk~ t,t8!5d ikdC~ t,t8!,

~31!

D~ t,t8!52gdC~ t,t8!1g2(
i j

xi~ t !Gi j ~ t,t8!xj~ t8!,

~32!

K̄ j~ t,t8!5K j~ t8,t !5g(
i

Gji ~ t,t8!xi~ t8!. ~33!

Whenxi(t)Þ0, one notes thatD(t,t8) is not the inverse of
D21(t,t8).

The vertex functionGa,b,g@x#(t1 ,t2 ,t3) defined in Eq.
~25! is obtained by differentiation of Eq.~26! with respect to
xg(t). We find

Ga,b,g@x#~ t1 ,t2 ,t3!

5
dGa,b

21 @x#~ t1 ,t2!

dxg~ t3!

5 f a,b,gdC~ t1 ,t2!dC~ t1 ,t3!1Fa,b,g@x#~ t1 ,t2 ,t3!.

~34!

Here f i , j ,05 f 0,i , j5 f i ,0,j5d i j , otherwise f is zero.
Fa,b,g@x#(t1 ,t2 ,t3) is given by derivatives of the self
energy matrix:

Fa,b,g@x#~ t1 ,t2 ,t3!5
dSa,b@x#~ t1 ,t2!

dxg~ t3!
, ~35!

and is of order 1/N.
We are interested in resummation schemes that are e

to order 1/N for ^xi
2&. We see from Eqs.~34! and~35! that it

is consistent to replaceGa,b,g@x#(t1 ,t2 ,t3) in Eq. ~29! by the
first term in Eq.~34! to obtain a resummation which is exa
to order 1/N. To simplify our discussion of the exac
Schwinger-Dyson equation for the vertex function, we w
only consider the case of the quantum roll wherexi(t)50.
3-6
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FIG. 1. Schwinger-Dyson equations for th
vertex function. Solid lines represent theGi j (t,t8)
propagator and heavy wiggly lines are th
D(t,t8) propagator.
he
Following the treatment of Ref.@18#, we have for the
three-x vertex

L~ t1 ,t2 ,t3!5
dD21~ t1 ,t2!

dx~ t3!

5(
i jk

E
C
dt4EC

dt5Gi j ~ t3 ,t4!Gik~ t3 ,t5!

3M jk~ t4 ,t2 ;t5 ,t1!,
s

as
e

o
s
n
e

w
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whereM jk(t4 ,t2 ;t5 ,t1) is 1PI in the channelx1x→x1x.
The lowest order in 1/N contribution toM (t4 ,t5 ;t2 ,t3) is

M jk~ t4 ,t2 ;t5 ,t1!5dC~ t4 ,t2!dC~ t5 ,t1!Gjk~ t2 ,t1!. ~36!

Whenxi(t)50, the exact Schwinger-Dyson equation for t
x-x-x vertex is
G i j ~ t1 ,t2 ,t3!5
dG21~ t1 ,t2!

dx~ t3!
5d i j dC~ t1 ,t2!dC~ t1 ,t3!2E

C
dt4EC

dt5EC
dt6EC

dt7

3H (
klmn

Gkl~ t4 ,t5 ,t3!Gkm~ t4 ,t6!Gln~ t5 ,t7!K1mn~ t5 ,t2 ;t7 ,t1!1L~ t4 ,t5 ,t3!

1D~ t4 ,t5!D~ t6 ,t7!K2i j ~ t5 ,t2 ;t7 ,t1!J , ~37!
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whereK1 andK2 are thes-channel 2PI scattering amplitude
for the reactions:x1x→x1x and x1x→x1x, respec-
tively.

This is shown pictorially in Fig. 1. In general one then h
to obtain equations for the 2PI scattering amplitudes as w
as for L. These will depend on even highern-point func-
tions, ad infinitum. In our approximations made at the tw
point function level, the 2PIs-channel scattering amplitude
K1 and K2 , used in the equations for the vertex functio
will turn out to be graphs for one-particle exchange in tht
channel of thex andx particles, respectively.

In our truncations of the Schwinger-Dyson equations,
will always replace the full three point vertex function by th
bare one in the equations forx and G in the presenceof
external sources. Once this truncation is made, then for
problem we are addressing here~the approximate time evo
lution of N quantum anharmonic oscillators! one never needs
any of theN point functions beyond the one and two poi
function equations. What will distinguish a further approx
mation we will call the DDSA is that we will also furthe
approximate thex propagator to be that of the LOLN ap
proximation.

By making this bare vertex approximation in the equ
tions for the one and two point Green functions, we havenot
relinquished our ability to calculate in this approximation
ll

,

e

e

-

l

the higher connected Green functions. These are obtain
by further functional differentiation of the effective action. I
particular if we wanted to use linear response theory~the
Kubo formula! to obtain the electrical conductivity for a
QED plasma, one would functionally differentiate the equ
tion for the inverse two point for the electron function wi
respect toAm . In our problem the photon is replaced by th
composite fieldx, and the electron byxi .

Because of recent interest in studying plasma conducti
in both QED and QCD, we will spend extra time on com
paring the equations obtained for the vertex function in
three approximations considered here. In conductivity cal
lations, it is necessary to sum all the ladder graphs in
equation for the vertex function to get good results for dilu
plasmas. We will find that in NLOLN the vertex function i
not an integral equation but is rather the sum of a few d
grams whereas the other two approximations lead to inte
equations that sum an infinite number of diagrams. Anot
issue is in preserving Ward identities. One of the reasons
large-N expansion was so interesting is that it is a compl
reexpansion of the field theory which preserves Ward id
tities at each order. The QED plasma conductivity probl
people@19# became interested in the DDSA because itex-
actly obeyed the Ward identities, whereas the BVA appro
mation violates Ward identities at order 1/N2. It is for this
3-7
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reason we thought it appropriate to study the DDSA appro
mation, even though it violated energy conservation alre
at order 1/N, hoping that at least at largeN it would be
numerically accurateandsatisfy Ward identities in QED ap
plications.

The exact formula for the energy is given by

E/N5
1

2 K (
i

$ x̂̇i
2~ t !1x̂~ t ! x̂i

2~ t !2r 0
2x̂~ t !2x̂2~ t !/g%L .

~38!

Whenxi(t)5^x̂i(t)&50 andẋi(t)50, one obtains

E/N5
1

2 (
i

H ]2G~ t,t8!/ i

]t]t8
U

t85t

1x~ t !G~ t,t !/ i 2r 0
2x~ t !

2
1

gFx2~ t !1
1

N
D~ t,t !/ i G1

1

N (
i jk

E
C
dt1EC

dt2EC
dt3

3D~ t1 ,t2!Gi j ~ t1 ,t !Gik~ t,t1!G jk~ t,t3 ,t2!J , ~39!

whereG jk(t3 ,t4 ,t2) is the full vertex function given in Eq
~37!.

IV. EFFECTIVE ACTION FOR TWO-PARTICLE
IRREDUCIBLE GRAPHS

Since the approximations we are going to consider hav
simple interpretation in terms of keeping a particular 2
vacuum graph in the generating functional of the 2PI grap
we would like to review this formalism following the ap
proach of Cornwall, Jackiw, and Tomboulis~CJT! @20#.

The first Legendre transform of the generating functio
W@ j # of connected Green functions is widely known a
used and is called the ‘‘effective action.’’ The higher Le
endre transforms~second, third, etc.! were introduced by De
Dominicis and Martin@21# in quantum statistics. Dahme
and Jona-Lasinio@22#, and later Visil’ev and Kazanskii@23#,
extended these ideas to quantum field theory. These met
were then used by Cornwall, Jackiw, and Tomboulis to d
cuss dynamical symmetry breaking in Hartree type appro
mations which later led to the second Legendre transfor
tion formalism being called the CJT formalism. These high
order Legendre transformed actions have the advantag
being able to treat higher order Green functions on the s
footing as the coordinates.

We will first summarize the general results of that pap
before proceeding to the specific approximations we cons
in this paper. The method of CJT is to introduce one- a
two-body sources for the coordinatesxa(t) and the Green
functionsGa,b(t,t8) in the action, and then make a Legend
transformation to the one and two point functions. The
sulting action, as a function ofx and G, contains a term
which is the sum of all two-particle irreducible vacuu
graphs. This term can be written using the vertices of
interaction andG. We use the extended notation for the c
ordinates and one-body sources, given in Eq.~12!.
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Thus the generating functionalZ@ j ,k# for the CJT action
is given by

Z@ j ,k#5eiNW@ j ,k#5 )
a50

N E dxa exp$ iNSN@x; j ,k#%,

with

SN@x; j ,k#5Sclass@x#1(
a

E
C
dtxa~ t ! j a~ t !

1
1

2 (
a,b

E
C
dtE

C
dt8xa~ t !ka,b~ t,t8!xb~ t8!,

~40!

where

Sclass@x#52
1

2 (
a,b

E
C
dtE

C
dt8xa~ t !

3Da,b
21 @x#~ t,t8!xb~ t8!

5S01Sint@x#, ~41!

S052
1

2 (
a,b

E
C
dtE

C
dt8xa~ t !

3D0a,b
21 ~ t,t8!xb~ t8!, ~42!

Sint@x#52
1

2 EC
dtd~ t !(

i
xi

2~ t !, ~43!

and whereD0a,b
21 (t,t8) is given by

D0a,b
21 ~ t,t8!5S D21~ t,t8! 0

0 G0i j
21~ t,t8!

D ,

G0i j
21~ t,t8!5H d2

dt2J d i j dC~ t,t8!

with D21(t,t8) given by Eq. ~16!. In this formalism, we
have separated out an ‘‘interaction’’ term, Eq.~43!, which
depends on the coordinatesxa(t), from a bare Green func
tion G0i j

21(t,t8), which is independent of the coordinate
xa(t), in contrast to our previous definitions in Eq.~16!. The
term r 0

2x(t)/2 has been absorbed into the definition of t

currentJ̃(t) in Eq. ~12!.
The second Legendre transform ofW@ j ,k# is the CJT ef-

fective action:

G@x,G#5W@ j ,k#2(
a

E
C
dtxa~ t ! j a~ t !

1
1

2 (
a,b

E
C
dtE

C
dt8ka,b~ t,t8!

3$xa~ t !xb~ t8!1Ga,b~ t,t8!%.

CJT showed thatG@x,G# can be obtained as a series expa
sion in terms of 2PI graphs. That is, introducing the fun
tional operator
3-8
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Ga,b
21 @x#~ t,t8!52

d2S0@x#

dxa~ t !dxb~ t8!

5S D21~ t,t8! K̄ j
21@x#~ t,t8!

Ki
21@x#~ t,t8! Gi , j

21@x#~ t,t8!
D , ~44!

which is the same as theGa,b
21 @x#(t,t8) as defined in Eq.

~17!, one can write the effective action in the form

G@x,G#5Sclass@x#1
i

2
Tr$ ln@G21#%

1
i

2
Tr$G21@x#G21%1G2@x,G#. ~45!

The quantityG2@x,G# has a simple graphical interpreta
tion in terms of all the 2PI vacuum graphs using vertic
from the interaction term. The Hartree and leading orde
large-N approximation for thex4 potential was obtained by
CJT using a single two-loop vacuum graph in theO(N)
theory written in terms of only the coordinatesxi . Our strat-
egy for obtaining a resummation of the large-N approxima-
tion is to first rewrite the theory in terms of the compos
field x, and the equivalent Lagrangian given in Eq.~9!. Us-
ing these new variables, we then choose forG2@x,G# the 2PI
graphs shown in Fig. 3, which is now written in terms of t
full x and x propagators and the trilinear couplin
x(t)xi

2(t)/2.

V. BARE VERTEX APPROXIMATION

The bare vertex approximation~BVA ! is obtained by set-
ting the vertex function equal to its bare value in the ex
equations for the one and two point functions. This is
energy conserving approximation which leads to integ
equations for the three-x vertex function as well as for the
x-x-x vertex function. The bare vertex approximation co
sists of making the replacement

Ga,b,g@x#~ t1 ,t2 ,t3!5 f a,b,gdC~ t1 ,t2!dC~ t1 ,t3! ~46!

in the exact Schwinger-Dyson equations for the se
energies, Eqs.~28!. This gives for the BVA

P~ t,t8!5
i

2N (
i j

Gi j ~ t,t8!Gj i ~ t8,t !,

V i~ t,t8!5
i

N (
j

K̄j~ t,t8!Gj i ~ t,t8!,

V̄ i~ t,t8!5
i

N (
j

Kj~ t8,t !Gj i ~ t8,t !,

S i j ~ t,t8!5
i

N
$K̄i~ t,t8!Kj~ t8,t !1Gi j ~ t,t8!D~ t8,t !%,

~47!

where we have used the symmetry property,Gi j (t,t8)

5Gj i (t8,t) and Ki(t,t8)5K̄i(t8,t). Thus we findV̄i(t,t8)
09600
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5V i(t8,t). The self-energies~47! are then used in Eqs.~26!
to find the one and two point functions. For the Green fun
tions, we find

Ga,b
21 ~ t,t8!5Ga,b

21 ~ t,t8!1SBVAa,b~ t,t8!, ~48!

with SBVAa,b(t,t8) given by Eq.~47!. The inversion of Eq.
~48! is given by Eq.~29!, which is a set of four coupled
integral equations for the four BVA Green functions, whic
must be solved simultaneously.

From Eqs.~22! and~23!, the equations of motion forxi(t)
and the gap equation forx(t) is then given by

H d2

dt2
3x~ t !J xi~ t !1

1

N
Ki~ t,t !/ i 50, ~49!

x~ t !5
g

2 H(
i

Fxi
2~ t !1

1

N
Gi i ~ t,t !/ i G2r 0

2J . ~50!

For the quantum roll, we further setxi(t)50. This means
that Ki(t,t)5K̄i(t,t)50, so thatGab(t,t8) is diagonal, and
results in the following set of equations for the Green fun
tions:

D~ t,t8!5D~ t,t8!2E
C
dt1E

C
dt2D~ t,t1!

3P~ t1 ,t2!D~ t2 ,t8!, ~51!

Gi j ~ t,t8!5Gi j ~ t,t8!2(
kl

E
C
dt1E

C
dt2Gik~ t,t1!

3Skl~ t1 ,t2!Gl j ~ t2 ,t8!, ~52!

where

P~ t,t8!5
i

2N (
i j

Gi j ~ t,t8!Gj i ~ t8,t !,

S i j ~ t,t8!5
i

N
Gi j ~ t,t8!D~ t8,t !. ~53!

The gap equation forx(t) becomes

x~ t !5
g

2 H 1

N (
i

Gi i ~ t,t !/ i 2r 0
2J . ~54!

In addition, for this case, the initial conditions imply that w
can takeGi j (t,t8) andGi j (t,t8) to be diagonal, which greatly
simplify the integral equations. The BVA for the quantu
roll requires that we solve Eqs.~51!–~54! simultaneously
using the numerical methods described in Refs.@24# and
@25#.

Because of the interest in using the BVA approximati
in QED ~and QCD! plasma conductivity problems, we wil
discuss the integral equation one obtains for the vertex fu
tion in what follows. It was precisely because this appro
mation gives the sum of the graphs used in nonrelativi
plasmas~see Fig. 2! in conductivity calculations which gave
3-9
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FIG. 2. The vertex function for the BVA. The
top figure represents Eq.~57! and the bottom fig-
ure represents Eq.~58!. Solid lines represent the
Gi j (t,t8) propagator and heavy wiggly lines ar
the D(t,t8) propagator.
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both accurate results as well as giving physical answers
initially interested us in this approximation.

The three point vertex functionsL(t1 ,t2 ,t3) and
G i j (t1 ,t2 ,t3) for the BVA is given by functional differentia-
tion of the inverse two point functions:

L~ t1 ,t2 ,t3![G000~ t1 ,t2 ,t3!5
dD21~ t1 ,t2!

dx~ t3!
, ~55!

G i j ~ t1 ,t2 ,t3![G i j 0~ t1 ,t2 ,t3!5
dGi j

21~ t1 ,t2!

dx~ t3!
, ~56!

and obtain the coupled integral equations

L~ t1 ,t2 ,t3!52
i

N E
C
dt4E

C
dt5(

i jkl
Gik~ t1 ,t4!

3Gkl~ t4 ,t5 ,t3!Gl j ~ t5 ,t2!Gj i ~ t2 ,t1! ~57!

and

G i j ~ t1 ,t2 ,t3!5d i j dC~ t1 ,t2!dC~ t1 ,t3!

2E
C
dt4E

C
dt5H(

kl
Gik~ t1 ,t4!

3Gkl~ t4 ,t5 ,t3!Gl j ~ t5 ,t2!D~ t2 ,t1!

1Gi j ~ t1 ,t2!D~ t2 ,t4!L~ t4 ,t5 ,t3!D~ t5 ,t1!J .

~58!

This is shown diagrammatically in Fig. 2. Looking at th
diagrams, if we iterate these equations, we sum all the ‘‘ra
bow’’ diagrams. As advertised, comparing these graphs w
those shown in Fig. 1,K1 is approximated in the BVA byx
exchange andK2 by x exchange in thet channel.

Let us show that this approximation is easy to obtain fr
the CJT formalism once we treatG andD andK on exactly
the same footing. We choose for our approximation toG2@G#
the 2PI graphs shown in Fig. 3. This gives

G2@G#52
1

4N (
i j

E
C
dt1E

C
dt2D~ t1,t2!Gi j ~ t1,t2!Gj i ~ t2 ,t1!

2
1

2N (
i j

E
C
dt1E

C
dt2K̄i~ t1 ,t2!Gi j ~ t1 ,t2!Kj~ t2 ,t1!.

~59!
09600
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Since theD propagator sums the contact term plus all t
polarization bubblesP of the original quartic interaction
gx4, if we reexpandD in a power series inP then the first
two terms in the series give the graphs used in the appr
mation of Refs.@14# and @15#. The CJT action is given by
Eq. ~45!. The stationary condition forGa,b(t,t8) gives

dG@x,G#

dGab
5

i

2
$Gab

21@x#2Gab
21%1

dG2@G#

dGab
50,

or

Ga,b
21 ~ t,t8!5Ga,b

21 ~ t,t8!1SBVAa,b@G#~ t,t8!,

where

SBVAa,b@G#~ t,t8!522i
dG2@G#

dGab~ t,t8!
. ~60!

Carrying out the derivatives ofG2@G# given in Eq.~59!, we
find that SBVAa,b(t,t8) is exactly the same as found in Eq
~47! using the Schwinger-Dyson equations in the BVA a
proximation. The stationary condition forxa also gives the
same equations of motion forxi(t) and gap equation forx(t)
as found in Eqs.~49! and ~50! using the Schwinger-Dyson
equations in the BVA. Thus we conclude that the CJT acti
as given in Eqs.~45! and~59!, gives exactly the same set o
equations as in the Schwinger-Dyson BVA truncation.

The energy for the BVA is obtained from Eq.~39! by
using Eq.~46! for the vertex function. We find

FIG. 3. Vacuum graphs contributing to the 2PI part of the
fective actionG2@G#. Solid lines represent theGi j (t,t8) propagator,

the wiggly to solid lines represent theKi(t,t8) andK̄i(t,t8) propa-
gator, and wiggly lines are theD(t,t8) propagator.
3-10
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E/N5
1

2 (
i

H d2G~ t,t8!/ i

]t]t8
U

t85t

1x~ t !G~ t,t !/ i 2r 0
2x~ t !2

1

gFx2~ t !1
1

N
D~ t,t !/ i G

1
1

N (
i j

E
C
dt1D~ t1 ,t !Gi j ~ t1 ,t !Gj i ~ t,t1!J ~61!

where, for our case, we have setxi(t)5 ẋi(t)50. Since the
BVA equations are derived from an effective action, ene
is conserved.

VI. DYNAMICAL DEBYE SCREENING APPROXIMATION

In plasma studies of the electric conductivity of fully ion
ized plasmas@26,27#, it was found that in order to correctl
determine the conductivity it was necessary to have an
proximation where the photon propagator included the
fects of dynamical Debye screening in the random ph
approximation. This improved propagator was then used
scattering kernel in the kinetic equations. In our model, thx
field plays the roll of the photon in the dynamics of thexi
oscillators. The lowest approximation that includes the
larization effects inD is precisely the leading order i
large-N approximation toD, namelyD0 @see Eq.~69!# which
is discussed below in our derivation of the NLOLN appro
mation. The leading order in large-N approximation is simi-
lar in spirit to the random phase approximation. The equa
for D21(t,t8) in leading order in largeN is given by

D0
21~ t,t8!52

1

g
dC~ t,t8!1P0~ t,t8!, ~62!

where
u
-

in
c

e
a
b

09600
y

p-
f-
e
a

-

n

P0~ t,t8!5
i

2N (
i j

Gi j ~ t,t8!Gji ~ t8,t !

1(
i , j

xi~ t !Gi j ~ t,t8!xj~ t8!.

In the QED plasma problem, thex propagator become
the photon propagator and the delta function inD0 is re-
placed by the bare photon propagator. It is the bubble inP0
that leads to the Debye screening of the photon. It is beca
of our interest in QED that we call this approximation th
DDSA.

Let us now specialize to the case whenxi(t)50. The
equation for the fullx propagatorG is

Gi j ~ t,t8!5Gi j ~ t,t8!2(
k,l

E
C
dt1EC

dt2Gik~ t,t1!

3Skl~ t1 ,t2!Gl j ~ t2 ,t8!, ~63!

with the self-energy depending on the fullG and the leading
order in 1/N approximation toD given by Eq.~62!:

Skl~ t,t8!5
i

N
Gkl~ t,t8!D~ t,t8!. ~64!

The gap equation is

x~ t !5
g

2 H(
i

1

N
Gi i ~ t,t !/ i 2r 0

2J . ~65!

There is a nontrivial vertex function in this approximatio
given by
G i j ~ t1 ,t2 ,t3!5
dGi j

21@x#~ t1 ,t2!

dx~ t3!

5dC~ t1 ,t2!dC~ t3 ,t2!d i j 2(
kl

E
C
dt4EC

dt5Gkl~ t4 ,t5 ,t3!Gki~ t4 ,t1!D~ t1 ,t2!Gj l ~ t2 ,t5!

2E
C
dt4EC

dt5L~ t4 ,t5 ,t3!D~ t4 ,t1!Gi j ~ t1 ,t2!D~ t2 ,t5!. ~66!
pre-

c-
ll,
This equation can be obtained from the exact integral eq
tion for G shown pictorially in Fig. 1 by making two approxi
mations. The first is to approximate the exact three-x vertex
function by the triangle graph, which is the leading term
the 1/N expansion of this function. The second is to repla
the scattering kernels,K1 andK2 by single particle exchang
in the t channel. The reason for our studying this approxim
tion is that, the same approximation made in QED can
a-

e

-
e

shown to be the lowest order resummation scheme that
serves Ward identities@19#.

The DDSA approximation can be derived from an effe
tive action by modifying slightly the approach of Cornwa
Jackiw, and Tomboulis~CJT! @20#. The discussion that fol-
lows here is due to Emil Mottola and Luis Bettencourt@19#.
Thinking of the fieldsx andx as part of anN11 component
field, and considering the case that^x̂(t)&50 where there is
3-11
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no mixed propagator, one can write a CJT-like action for
generating functional of the twice Legendre transformed
fective action as

G@x,G,D#5Sclass@x#1
i

2
Tr$ ln@D21#%1

i

2
Tr$ ln@G21#%

1
i

2
Tr$D0

21D1G21@x#G21%1G2@G#.

~67!

HereG21(t,t8) is defined by Eq.~16! andD0(t,t8) by Eq.
~62!. D0(t,t8) is considered anexternalparameter, and is no
varied to obtain the equations of motion. In the DDSA, t
2PI contribution to the action,G2@G#, for the case when
xi(t)50, is given by Eq.~59! with D(t,t8) set equal to its
LOLN value D0(t,t8):

G2@G#52
1

4N (
i j

E
C
dt1EC

dt2D0~ t1 ,t2!Gi j ~ t1 ,t2!Gj i ~ t2 ,t1!.

~68!

By varying the action~67!, we reproduce Eqs.~63! and
~65!. Although there is an effective action for the DDS
approximation, sinceD0 is treated as an external time
dependent propagator, energy conservation is violated a
der 1/N. At modestN we will find that this causes this ap
proximation to become inaccurate after several oscillatio
However, it is more accurate at these modest values oN
than the LOLN approximation, as well avoiding the u
boundedness of the NLOLN approximation we discuss n

VII. LARGE- N APPROXIMATION

The large-N expansion is obtained from Eq.~13! by first
integrating over all thexi and then evaluating the remainin
functional integral overx by steepest descent. The effecti
action, as a power series in 1/N, is obtained from the first
Legendre transform of the generating functional. In a pre
ous paper@5#, we obtained equations for the next to leadi
order large-N approximation~NLOLN! to the action, and
gave numerical results for the quantum roll. For comple
ness, we review those equations here. To order 1/N, we ob-
tain

G large-N@x#5Sclass@x#1E
C
dt

3H i

2 (
i

ln@Gii
21~ t,t !#1

i

2N
ln@D0

21~ t,t !#J ,

where Sclass@x# is given by Eq.~41!, and D0
21(t,t8) is the

inverse propagators forx in lowest order in the 1/N expan-
sion, given by
09600
e
f-

r-

s.

t.

i-

-

D0
21~ t,t8!5D21~ t,t8!1P0~ t,t8!, ~69!

with

P0~ t,t8!5
i

2N (
i , j

Gi j ~ t,t8!Gji ~ t8,t !

2(
i , j

xi~ t !Gi j ~ t,t8!xj~ t8!. ~70!

HereD21(t,t8) andGi j
21(t,t8) are the same as Eqs.~16! that

we defined earlier.
The equations of motion for the classical fieldsxi(t), to

next to leading order in 1/N, are given by

H d2

dt2
1x~ t !J xi~ t !1 i(

j
E

C
dt8Gi j ~ t,t8!D0~ t,t8!xj~ t8!50,

~71!

with the gap equation forx(t) given by

x~ t !5
g

2 H(
i

S xi
2~ t !1

1

N (
i

Gi i
~2!~ t,t !/ i D 2r 0

2J , ~72!

and where the second orderxi propagatorGi j
(2)(t,t) and self-

energyS i j (t,t8) to order 1/N is given by

Gi j
~2!~ t,t8!5Gi j ~ t,t8!2(

k,l
E

C
dt1EC

dt2Gik~ t,t1!

3Skl~ t1 ,t2!Gl j ~ t2 ,t8!, ~73!

where

S i j ~ t,t8!5
i

N
Gi j ~ t,t8!D0~ t,t8!2xi~ t !D0~ t,t8!xj~ t8!.

We see here that the equation forG is the expansion of the
BVA equation in a series of 1/N, truncated at first order.

Let us now specialize to the case of the quantum
problem wherexi(t)50. In that case the two point invers
propagator for thex field is

Gi j
21@x#~ t1 ,t2!5

d2G large-N@x,x#

dxi~ t1!dxj~ t2!

5Gi j
21@x#~ t1 ,t2!1S i j @x#~ t1 ,t2!,

with

S i j @x#~ t,t8!5
i

N
Gi j ~ t,t8!D0~ t,t8!.

However, it isGi j
(2)(t,t8) which enters into Eq.~72! and not

Gi j (t,t8). Thus the solution forGi j (t,t8), which we might
interpret aŝ x̂i(t) x̂ j (t8)&, does not enter into the dynamics o
the solution. ThisGi i (t,t) is positive definite, but quickly
blows up.

The vertex functionG i j (t1 ,t2 ,t3) is given by
3-12
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G i j ~ t1 ,t2 ,t3!5
dGi j

21@x#~ t1 ,t2!

dx~ t3!

5dC~ t1 ,t2!dC~ t2 ,t3!d i j 2
i

N
Gi j ~ t1 ,t3!Gji ~ t3 ,t2!D0~ t2 ,t1!

2
i

N E
C
dt4EC

dt5Gi j ~ t1 ,t2!D0~ t1 ,t4!L0~ t4 ,t5 ,t3!D0~ t5 ,t2!, ~74!

where the lowest order in 1/N three-x vertex is given by

L0~ t4 ,t5 ,t3!5
dD0

21~ t4 ,t5!

dx~ t3!

52
i

N (
i jk

Gi j ~ t4 ,t3!Gkl~ t3 ,t5!Gli ~ t5 ,t4!.

We immediately see that this is not an integral equation but again, is the lowest order in 1/N contribution to Eq.~57!.
The inversex propagator gets 1/N corrections which are of two types, one is a self-energy correction to thex propagator

and the other is a new three loop graph containing two lowest orderx propagators. We find

D21~1,2!5
d2G large-N@x,x#

dx~ t1!dx~ t2!

52
1

g
dC~1,2!2P0~1,2!2(

i jkl
E

C
dt3EC

dt4Gi j ~ t1 ,t3!S jk~ t3 ,t4!Gkl~ t4 ,t2!Gli ~ t2 ,t1!

1E
C
dt3EC

dt4EC
dt5EC

dt6L0~ t4 ,t1 ,t3!D0~ t3 ,t5!L0~ t5 ,t2 ,t6!D0~ t6 ,t4!.
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The last term in this equation is a 1/N correction to the
vertex function. However, it isD0 and notD which enters
Eq. ~73!, so that the BVA and the 1/N expansion will differ
only by terms of order 1/N2. The BVA approximation treats
x and x on exactly the same footing, whereas the largeN
expansion treatsx exactly, but then expands in loops ofx. So
at order 1/N2, the large-N approximation will contain graphs
omitted from the BVA approximation, and vice versa.

VIII. RESULTS AND CONCLUSIONS

In this section we present the results of exact numer
simulations of the quantum roll, using initial conditions d
scribed in our previous paper on the large-N approximation
@9#. We choose as our dimensional mass scale the se
derivative of U(r ) at the minimum of the effective one
dimensional potentialU(r ). This mass scale was chosen
have valueM252. In terms of this mass scale, the coupli
constant as well as the rescaledr 0 are of order 1 for allN.
The exact manner in whichg andr 0 runs withN is described
in Ref. @9#.

As N→` the Hartree and leading order large-N approxi-
mation become exact and an initially Gaussian wave pa
remains Gaussian with width equal to^x2(t)& oscillating in a
known manner. At modestN, 10,N,20 an initially Gauss-
09600
al

nd

et

ian wave function develops a large number of nodes and
the wave function even at modest times is of the form Gau
ian time a high order polynomial. In spite of this,^x2(t)&
shows rather simple behavior. It oscillates with a const
amplitude for a reasonable period of time with an envelo
that oscillates with a much longer time constant which
creases withN. The Hartree and leading order large-N ap-
proximations just oscillate with fixed amplitude. Th
NLOLN blows up in this regime. BVA attempts to track th
contraction of the envelope but then contracts to a fix
point. The DDSA violates energy conservation at order 1N
so it becomes numerically inaccurate when 1/N effects be-
come important which is at a timet}N. Both BVA and
DDSA do however stay bounded and positive definite dur
the time period of our numerical simulations. Higher ord
correlation functions show more complicated behavior a
the approximations presented here are only accurate f
few oscillations in the regime 3,N,20 consistent with the
increasingly complicated evolving structure of the wa
function.

In Figs. 4–6, we show the results for^x2(t)& as a function
of t, comparing the bare vertex, the dynamic Debye scre
ing, and the large-N approximations to the exact solution, fo
N53, 10, and 21. In Figs. 7 and 8, we show the same res
for ^x(t)& as a function oft, and in Figs. 9–11, we give the
3-13
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FIG. 4. Plot of^x2(t)& as a function oft, com-
paring the bare vertex, the dynamic Deby
screening, and the large-N approximations to the
exact solution, forN53.

FIG. 5. Plot of^x2(t)& as a function oft, com-
paring the bare vertex, the dynamic Deby
screening, and the large-N approximations to the
exact solution, forN510.

FIG. 6. Plot of^x2(t)& as a function oft, com-
paring the bare vertex, the dynamic Deby
screening, and the large-N approximations to the
exact solution, forN521.
096003-14
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FIG. 7. Plot of^x(t)& as a function oft, com-
paring the bare vertex, the dynamic Deby
screening, and the large-N approximations to the
exact solution, forN53.

FIG. 8. Plot of^x(t)& as a function oft, com-
paring the bare vertex, the dynamic Deby
screening, and the large-N approximations to the
exact solution, forN521.

FIG. 9. Plot of ^x2(t)& as a function oft,
comparing the bare vertex, the dynamic Deb
screening, and the large-N approximations to the
exact solution forN53.
096003-15
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FIG. 10. Plot of^x2(t)& as a function oft,
comparing the bare vertex, the dynamic Deb
screening, and the large-N approximations to the
exact solution forN510.
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results for ^x2(t)& ~for detailed views of these figures i
color, see our web site at: http://www.theory.unh.edu/resu!.

In our previous studies@9# of the large-N approximation,
we found that the next to leading order large-N approxima-
tion had the feature that the effective potential was not
fined at smallx for N<20, for our parameter set, and it wa
not until N was greater than about 20 that the large-N expan-
sion produced bounded values for^x2(t)&. This result is re-
produced here. For the limitN→` the quantitŷ x2(t)& cor-
responds to harmonic oscillations. At finiteN, however, the
exact solution forN>21 has the property that the envelo
of these oscillations contracts. As noted in the figures, o
the bare vertex approximation attempts to follow this co
traction. At N521, the BVA is accurate up to at'130 be-
fore overshooting and then oscillating about a fixed po
This fixed point behavior shows that this approximation s
neglects some important quantum phase information pre
in the exact solution.
09600
-

ly
-

t.
l
nt

In contrast to the NLOLN approximation, which break
down for N,21, both the BVA and the DDSA have th
feature that̂ x2(t)& remains positive definite, as well as b
ing bounded at allN. This is true for all the expectation
values that contribute to the energy. This conclusion
purely based on numerical evidence. We do not have a p
that this approximation corresponds to a positive defin
probability distribution. However, all the moments we ha
studied~a total of five, as shown in Fig. 12!, are all bounded.

The DDSA is more accurate than the second or
large-N approximation forN less that 20, but forN greater
than 20, the reverse becomes true. However, neither app
mation captures the true nonlinear shrinking of the envel
of the oscillations, even forN greater than 20.

Energy is conserved for the bare vertex and the sec
order large-N approximations, but not for the dynamic Deby
screening approximations, as pointed out in Sec. VI. This
a serious drawback to the dynamic Debye screening appr
mation.
he

FIG. 11. Plot of^x2(t)& as a function oft,

comparing the bare vertex approximation to t
exact solution forN521.
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FIG. 12. Plot of various contributions to th
energy for the bare vertex approximation as
function of t for N510.
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In all these figures, one can see that the bare vertex
proximation tries to follow the envelope of the exact curv
whereas the dynamic Debye screening approximation d
not do so. This is particularly striking for the cases wh
N is less than 21, where the dynamic Debye screen
approximation yield unphysically large values for the exp
tation values.

In the BVA approximation we observe that^x2(t)& at late
times has an envelope of decreasing oscillations abo
fixed point. In fact as seen in Fig. 12 all the contributions
the energy in the BVA have the same feature that they
ymptote to a fixed point. In Fig. 12 we display all five co
tributions to the energy atN510 to demonstrate this fact. I
contrast, as seen in the very long time run shown in Fig.
the exact solutions exhibit ‘‘recurrence’’ patterns of moti
which are not captured in the BVA. In the 111-dimensional
field theory simulations of Ref.@15#, all the Fourier compo-
nents of the two particles correlation function showed t
behavior which was given as evidence for thermalization.
one hopes that this ‘‘defect’’ of the BVA approximation in
quantum mechanics setting, will instead have the cor
physics of thermalization in a field theory application whe
Poincare´ recurrence times are expected to become very la
To see if this is true, we intend to study the BVA in classic
111-dimensional field theory where again exact simulatio
can be performed@6#.

In summary we have found that both resummation me
ods described here, the BVA and the DDSA, produce p
tive definite and apparently bounded results for expecta
values at all values ofN. The bare vertex approximatio
appears to provide the best description of the motion,
cannot describe recurrences of the motion. Still, it provid
an energy conserving and reasonably accurate descrip
and is a dramatic improvement over the next to leading or
09600
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large-N approximation whenN,Ncrit521. As mentioned
earlier, in the single particle quantum mechanics problem
studied here, the graphs do not correspond to particle c
sions, so there is no possibility of studying thermalizatio
Thermalization questions need to be addressed in field th
applications. It will be important to show that the BVA ap
proximation will lead to thermalization of arbitrary initia
data as found in the three-loop approximation of Ref.@15#
when applied to 111-dimensional quantum field theory. W
would also like to study the analogue of the BVA approx
mation for a Gaussian ensemble of initial conditions for
111-dimensional classical field theory since that can also
studied exactly numerically@6#. These authors have show
that the classical field theory indeed thermalizes and
would like to know how accurately the classical version
our approximation captures this physics. This will be t
subject of a future publication.
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