
PHYSICAL REVIEW D, VOLUME 63, 096002
Analogue models forT and CPT violation in neutral-meson oscillations
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Analogue models forCP violation in neutral-meson systems are studied in a general framework. No-go
results are obtained for models in classical mechanics that are nondissipative or that involve one-dimensional
oscillators. A complete emulation is shown to be possible for a two-dimensional oscillator with rheonomic
constraints, and an explicit example with spontaneousT and CPT violation is presented. The results have
implications for analogue models with electrical circuits.
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I. INTRODUCTION

Many quantum systems display oscillatory behavi
Among the most interesting are the neutral mesons, wh
oscillations between particles and antiparticles can vio
the productCP of charge conjugation~C! and parity ~P!
symmetries. In theK system, a smallCP violation is experi-
mentally seen@1#. It is associated with breaking of time
reversal symmetryT, with the productCPT being preserved
@2#. In fact, a complete formulation ofCP-violating oscilla-
tions in theK system allows alsoCPT violation with T being
preserved@3,4#. A similar formulation can be developed fo
any of the neutral mesonsK, D, Bd , andBs @5#. This more
general situation is of interest, for example, in the contex
possible experimental signals from string theory@6#.

Acquiring physical insight into the behavior of meson o
cillations in the presence ofT andCPT violation is worth-
while. One approach is to construct a simple analogue mo
in classical mechanics that displays the key features of
son oscillations.A priori, it seems most natural to adopt a
intuitive picture based on an analogue model in which
meson and its antimeson are represented by two o
dimensional oscillators interacting through some weak c
pling. Indeed, basic features of theCP-preserving physics
can correctly be modeled in this way@7#. However, modeling
T violation is more subtle@8,9#.

In this work, we investigate the issue of emulating bothT
and CPT violation in neutral-meson systems via models
classical mechanics involving small oscillations. We obt
several no-go results, showing that complete emulation
the effective Hamiltonian describing the time evolution o
neutral meson is impossible using models with no damp
or using models involving two one-dimensional oscillato
with a large class of couplings. This confirms and exten
earlier results of Rosner@8#. In contrast, models involving
two-dimensional oscillations with appropriate constraints c
display effects emulating bothT andCPT violation simulta-
neously. We give an explicit example in which the violatio
arises spontaneously.

In the next section, we present a few basic results nee
for the subsequent analysis. Section III discusses some n
results. The issue of spontaneous symmetry breaking is
sidered in Sec. IV. The general analysis leading to a co
plete emulation of neutral-meson effective hamiltonians,
cluding an explicit model, is given in Sec. V. Section V
0556-2821/2001/63~9!/096002~8!/$20.00 63 0960
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summarizes the results and discusses some open issue
cluding the implications of our results for the challenge
emulatingCP violation with electric circuits.

II. BASICS

In this section, we introduce some basic results needed
the analysis in later sections. Following a discussion of r
evant features of the neutral-meson systems, a few cons
ations appropriate for classical analogue models are
sented.

The four relevant neutral-meson systems areK0, D0, Bd
0 ,

and Bs
0 . In what follows, we denote byP0 the strong-

interaction eigenstate associated with any one of these
general neutral-meson state is a linear combination of me
and antimeson wave functions. It can be represented
two-component objectC, with time evolution determined by
a 232 effective HamiltonianL according toi ] tC5LC.
The eigenvectorsPS andPL of L are the physical propagat
ing states. The HamiltonianL is composed of a Hermitian
mass matrixM and a Hermitian decay matrixG: L5M
2 1

2 iG. Flavor oscillations andT violation are governed by
the off-diagonal elements ofL, while CPT violation is con-
trolled by the difference between its diagonal elements.

A widely used parametrization ofL is @3#

L5S 2 iD 1E3 E12 iE2

E11 iE2 2 iD 2E3
D , ~1!

whereD, E1 , E2 , E3 are complex. In this parametrization,T
violation occurs when (E1E2* 2E1* E2)Þ0 while CPT viola-
tion occurs whenE3Þ0. In terms of real and imaginary
components,T violation occurs when

~ReE2Im E12ReE1Im E2!Þ0, ~2!

andCPT violation when either or both of

ReE3Þ0, ImE3Þ0 ~3!

is satisfied. There are therefore three independent real q
tities determiningCP violation in neutral-meson systems.

The basic goal in achieving the construction of a suita
analogue model is to obtain an oscillating system in class
mechanics with a characteristic matrix reproducing the f
tures of the effective HamiltonianL. It is therefore useful to
©2001 The American Physical Society02-1
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V. ALAN KOSTELECKÝ AND ÁGNES ROBERTS PHYSICAL REVIEW D63 096002
consider the extent to which the form~1! of L can be modi-
fied without affecting the underlying meson physics.

One flexibility in the form ofL arises because theP0 and
P̄0 wave functions are eigenstates of the strong interactio
which preserve strangeness, charm, and beauty. For a g
system, the phases of the two wave functions can be rot
by equal and opposite amounts without observable co
quences. This rotation induces a corresponding change in
phase of the off-diagonal components ofL, which acts to
mix E1 and E2 but preserves the combination (E1E2*
2E1* E2) measuringT violation. It follows that a satisfactory
analogue model needs to contain features correspondin
this phase-independent measure ofT violation. Note, how-
ever, that the phase rotation cannot mix components of
mass matrixM with components of the decay matrixG.

Another flexibility relevant to the construction of an an
logue model is the choice of basis for the meson system.
effective HamiltonianL in Eq. ~1! is given in theP0-P̄0

basis. However, other unitarily equivalent bases can also
chosen. A basis transformation by a unitary matrixU con-
verts the stateC into C85UC and results in an effective
Hamiltonian L85U†LU. Appropriate choices forU can
modify the location of the parameters forT andCPT viola-
tion in the effective Hamiltonian, which may have some a
vantages in matching to an analogue model. Note that,
the phase-rotation freedom, the transformation byU cannot
mix components of the mass matrixM with components of
the decay matrixG.

As an example, consider aCP-eigenstate basisP1 , P2

obtained fromP0, P̄0 via the unitary transformation

U5
1

A2
S 1 1

1 21D . ~4!

In the new basis, the effective HamiltonianL̃ becomes

L̃5S 2 iD 1E1 E31 iE2

E32 iE2 2 iD 2E1
D . ~5!

The elements ofL̃ are similar to those ofL, except thatE1

and E3 have been interchanged. This conversion toL̃ was
used by Rosner and Slezak@9# to show that a modified
damped Foucault pendulum can be identified as an analo
model forT violation in theCP-eigenstate basis of a meso
system.

Other choices can be made. For example, combining
choice of CP-eigenstate basis with a phase rotation
exp(ip/4) of the P0 wave function and an opposite rotatio
of the P̄0 wave function yields an effective HamiltonianL̂
given by

L̂5S 2 iD 1E2 E32 iE1

E31 iE1 2 iD 2E2
D . ~6!

This corresponds to a modification ofL involving a cyclic
permutation of the three parameters: (E1 ,E2 ,E3)
→(E3 ,E1 ,E2).
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In developing an analogue model, we adopt the not
that the behavior of the strong-interaction eigenstatesP0, P̄0

can be modeled classically by identifying them with ha
monic oscillators in two generalized coordinates. The en
gies of the meson eigenstates are emulated by the oscil
frequencies, while the meson decay rates are paralleled
the oscillator dampings.

Since the strong interactions preserveCPT, in the ab-
sence ofCP violation the two frequencies and decay rat
are expected to be equal. The idea is to model the pres
of CP violation by introducing appropriate couplings b
tween the two classical oscillators. Following ideas conce
ing CPT violation in the context of conventional quantu
field theory@5,10#, we regard it as desirable to obtainCPT
violation spontaneously in an analogue model. In fact,
show below that it is also possible to generateT violation
spontaneously.

We limit attention to classical models involving small o
cillations about equilibrium with linear equations of motio
Assuming harmonic behavior, the linear generalized coo
natesq1 , q2 can be combined in two-component form
Q5Re@A exp(ivt)#, where A is a complex two-componen
object. The equations of motion can then be expressed by
action of a 232 matrixX(v) on A, asXA50. The matrixX
is the characteristic matrix of the classical oscillator.

A suitable analogue model for a neutral-meson system
one for which the characteristic matrixX reproduces the fea
tures of the meson effective Hamiltonian. In compariso
between the analogue model and the meson system,
useful to adopt a form forX analogous to that forL in Eq.
~1!. We therefore introduce the parametrization

X5S 2 iA1B3 B12 iB2

B11 iB2 2 iA2B3
D , ~7!

whereA, B1 , B2 , B3 are complex.
The reader is cautioned that, despite the similarity of

parametrizations~1! and ~7!, the detailed physical meaning
of L andX differ. For instance,L involves a first-order time
development whileX involves a second-order one. A relate
point is that the meson stateC is intrinsically complex, with
physical observables being related to the norm of the pr
ability amplitude. In contrast, the mechanical coordinateQ is
real, and the corresponding amplitudeA is complex only as a
convenient artifact. For example, opposite phase rotati
between the two coordinates could produce a physically
equivalent result in the classical analogue model, wher
similar phase rotations on the strong-interaction eigenst
have no physical effect in the meson system.

III. MODELS WITHOUT DAMPING

The intrinsic physical differences between the quant
system and the classical model might seem sufficiently
vere to exclude emulation of subtle effects such asT and
CPT violation. Indeed, several no-go results can be obtai
concerning the existence of an acceptable analogue m
for L under various circumstances. In this section, we d
cuss obstacles to the development of an analogue mod
2-2
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ANALOGUE MODELS FORT AND CPT VIOLATION IN . . . PHYSICAL REVIEW D 63 096002
the absence of damping forces. The effects of dissipation
considered in Sec. V.

Consider first a LagrangianL describing small linear os
cillations in a conservative classical-mechanical system.
present purposes, we restrict attention to a system with
degrees of freedom, although some of our formalism a
results apply more generally.

Linearity implies thatL is quadratic in the real genera
ized coordinatesQ(t) and the first time derivativesQ̇
[dQ/dt. It can be written as

L5
1

2
Q̇TTQ̇1

1

2
Q̇TGQ2

1

2
QTVQ, ~8!

whereT, G, andV are square matrices of the same dimens
as Q. By inspection,T and V are symmetric, whileG is
antisymmetric. SinceL is real, all three matrices can be take
real without loss of generality. We callT, G, andV the ki-
netic, gyroscopic, and potential matrices, respectively. N
that G violates classical time-reversal symmetry.

The Euler-Lagrange equations of motion obtained fr
the LagrangianL are

TQ̈1GQ̇1VQ50. ~9!

The gyroscopic matrixG doesnot represent damping, de
spite its association withQ̇, because it is derived from
Lagrangian and the corresponding generalized force is c
servative. For harmonic solutions withQ5Re@A exp(ivt)#,
Eq. ~9! becomesXA50, where the characteristic matrixX
has the form

X52v2T1 ivG1V. ~10!

This matrix is Hermitian and so can be diagonalized w
real eigenvalues. The normal-mode frequencies are obta
from the condition detX(v)50, which is a quadratic equa
tion in v2. The absence of damping physically implies th
there are two real normal-mode frequencies, and this ca
confirmed by inspection of the discriminant of the gene
solution forv2.

In terms of the parametrization~7! of X, we find

ReA5Im B15Im B25Im B350,

Im A52
1

2
v2~T111T22!1

1

2
~V111V22!,

ReB35
1

2
v2~T112T22!1

1

2
~V112V22!,

ReB152v2T121V12,

ReB252vG12. ~11!

The form of Eq.~11! permits several conclusions about t
feasibility of constructing nondissipative analogue mod
for CP violation in neutral-meson systems. Next, we discu
these conclusions forT andCPT violation in turn.
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To begin, observe that Eq.~11! includes the result ImB1

5Im B250 for all possible conservative classical system
In contrast, Eq.~2! implies that at least one of ImE1 and
Im E2 must be nonzero forT violation in a meson system. I
follows by comparison of Eqs.~1! and~7! thatT violation in

the P0-P̄0 basis with the effective HamiltonianL cannot be
emulated by any nondissipative classical model with two
grees of freedom.

Transformation to some other basis for the meson w
functions offers more flexibility but remains insufficient. Fo
example, in theCP-eigenstate basis a nonvanishing comp
nent ReE1 in the effective Hamiltonian~5! can be modeled
with ReB3, but no means to model ImE1 , Im E2 , Im E3

exists. The point is that neither the phase-rotation flexibi
nor the choice of wave-function basis can mix contributio
to the mass matrixM with those to the decay matrixG, as
discussed in the previous section. Since ImE1 , Im E2 ,
Im E3 are contained inG while ReE1 , ReE2 , ReE3 are
contained inM, there is no means to convert one type
contribution to another.

We conclude thatit is impossible to emulate T violation in
a neutral-meson system with any nondissipative class
model having two degrees of freedom.In essence, a succes
ful analogue model forT violation in a meson system mus
involve dissipation becauseT violation in the meson system
itself intrinsically involves dissipative oscillations.

The situation forCPT violation has both similarities and
differences. Comparison of Eqs.~1! and~7! shows that non-
zeroCPT violation in a meson system involving ReE3 can
be emulated by a classical oscillator model for whi
ReB3Þ0. The result~11! reveals that it suffices to have
difference between the diagonal elements of either the
netic or the potential matrix. This is straightforward
achieve in a physical system. In contrast, an argument s
lar to that forT violation demonstrates thatit is impossible to
emulate CPT violation involving Im E3 in a meson system
with any nondissipative classical model having two degr
of freedom.This can again be traced to the association
Im E3 with the decay matrixG and hence with dissipation in
the meson system.

The strength of these no-go results suffices to show
need for dissipative classical oscillations. However, bef
turning to issues pertaining to spontaneous breaking and
sipation, we present some remarks about gyroscopic term
the context of conservative systems.

For a completely general emulation of neutral-meson s
tems, we deem it desirable to construct an analogue m
for which all eight real parameters in Eq.~7! are nonzero.
The result~11! shows that in the absence of damping a no
zero gyroscopic matrixG is needed to obtain a nontrivia
ReB2. In fact, this also holds in the presence of dissipatio
as is shown in Sec. V. Models without gyroscopic terms
therefore of lesser interest. However, gyroscopic terms
pear in only a restricted class of models. In particular, th
is no simple means of generating a nonzeroG in models
involving two coupled one-dimensional oscillators, as w
discuss next.
2-3
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V. ALAN KOSTELECKÝ AND ÁGNES ROBERTS PHYSICAL REVIEW D63 096002
Prior to linearization, a general Lagrangian describing t
coupled one-dimensional oscillators involves a kinetic te
for each oscillator and an interaction potential. No gy
scopic term is present. By definition, the kinetic energy o
one-dimensional oscillator involves only one generalized
ordinate, so linearization of the kinetic pieces cannot gen
ate the cross-coupling needed for a nonzeroG. The potential
term would therefore need to be the source ofG. However,
the gyroscopic term is linear in the generalized velocity,
any appropriate potential term must be velocity depend
This leaves only a restricted class of possibilities.

It can be shown thatG makes no contribution to the
Hamiltonian, so any acceptable velocity-dependent poten
must describe forces that do no work. Forces that do no w
and are described by a velocity-dependent potential certa
exist. A standard example is the Lorentz force on a char
particle moving in a magnetic field. One might, for examp
consider a model involving two charged magnetic dipol
each restricted to move along a one-dimensional curve
that the only possible oscillations are indeed on
dimensional. The forceFW 21}vW 13BW 2 on one dipole is deter
mined by its velocityvW 1 and by the fieldBW 2 of the other
dipole, as needed. However, this fails to generate direct
nonzeroG becauseFW 21•vW 1[0, so the force is orthogonal t
the oscillation.

In short, we find thatit is difficult and perhaps impossibl
to emulate all eight parameters for a neutral-meson effec
Hamiltonian with any classical model involving two coupl
one-dimensional oscillators.We conjecture that an imposs
bility proof could be constructed on the basis thatG violates
classical time-reversal invariance, which imposes sev
constraints on one-dimensional systems. In any even
would be interesting to obtain an impossibility proof or
provide a simple counterexample.

The above result provides strong motivation to turn
stead to an analogue model involving one two-dimensio
oscillator. In this case, it is possible to generate a nonzerG
under suitable circumstances.

Before linearization, the kinetic term of a two
dimensional model typically involves both generalized co
dinates. If the equilibrium coordinates and configuration
independent of time~scleronomous constraints! and if there
are no ignorable coordinates, then the kinetic term is q
dratic in generalized velocities@11# and so no gyroscopic
term emerges upon linearization. However, for the spe
class of models with time-dependent~rheonomic! con-
straints, linearization of the kinetic term can generate a n
zero G matrix. For example, suppose the model involv
small oscillations about a uniform motion, characterized b
constantv0 with dimensions of velocity. Then, linearizatio
of the terms quadratic in generalized velocities can lead
expressions involving the product ofv0 and the oscillation
velocity Q̇. These are linear inQ̇ and under suitable circum
stances can yield a nonzeroG. Indeed, the term ‘‘gyro-
scopic’’ refers to the appearance of a nonzeroG matrix in the
description of small oscillations of uniformly rotating bodie
Note that the classicalT violation necessary for gyroscopi
terms emerges here as a result of the uniform motion.
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IV. SPONTANEOUS SYMMETRY BREAKING

In this section, we discuss the issue of generatingT and
CPT violation spontaneously in the classical model. T
idea is to seek an analogue model with an initial configu
tion displaying noT or CPT violation, but with a perturba-
tive instability causing a natural dynamical evolution to
stable configuration in which small oscillations violate bo
T and CPT. This parallels the mechanism for spontaneo
breaking ofCPT in string field theory@6#. Following the
discussion in the previous section, we primarily restrict
tention to the case of one two-dimensional oscillator witho
appreciable dissipation. The situation for viscous dampin
considered in the next section.

Consider first a particle moving under the influence
gravity on the interior of a spherical bowl that rotates w
constant angular speedV about the vertical axis. The con
figuration with the particle initially at the bottom of the bow
is a solution to the equations of motion. However, an oth
wise negligible friction between the particle and the bo
makes this configuration perturbatively unstable ifV2.g/a,
whereg is the gravitational acceleration anda is the bowl
radius. The position of stable equilibrium lies instead on
surface at a vertical distanceg/V2 below the center of the
bowl. This example, introduced by Lamb in his paper
kinetic stability in 1908@12#, provides a classical implemen
tation of spontaneous breaking of rotational symmetry.

By itself, this example is unsatisfactory as the basis for
analogue model forCP violation in neutral-meson system
because no restoring force is associated with a small h
zontal displacement from the equilibrium position on t
bowl’s surface. However, a more general surface with n
circular horizontal cross section can avoid this difficult
One might, for example, consider a surface that is a sphe
bowl at the bottom but that smoothly deforms into a surfa
of uniform elliptical cross section as the height increases
this case only two equilibrium points occur, located on t
semi-major axis of the elliptical cross section. In equili
rium, the particle rotates with the bowl. Small oscillatio
about either equilibrium point are stable in both vertical a
horizontal directions.

For an explicit analysis in the case of a suitable gene
surface, we adopt cylindrical coordinates (r,f,z) with ori-
gin at the bottom of the bowl. Let the bowl’s surface b
determined by the equationf (r,f,z)50, where by assump
tion f satisfies all the necessary convexity and smoothn
conditions. Then, the motion on the surface of a particle
massm under gravity is determined by the Lagrangian

L5
1

2
m@ ṙ21r2~ḟ1V!21 ż2#2mgz1ml f ~r,f,z!,

~12!

wherel is a Lagrange multiplier. See Fig. 1.
For sufficiently largeV, spontaneous symmetry breakin

occurs. The equilibrium point (r0 ,f0 ,z0) is determined by
the equationsf 50, f f50, andr0V21g fr / f z50 evaluated
at the equilibrium point, where subscripts onf indicate par-
tial derivatives. Takingr andr0f as generalized coordinate
2-4
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ANALOGUE MODELS FORT AND CPT VIOLATION IN . . . PHYSICAL REVIEW D 63 096002
for small oscillations of frequencyv about the equilibrium
point, a short calculation shows that the characteristic ma
has components

X1152~11G2!v22V22l0~ f rr12G f rz1G2f zz!,

X125X21* 522iVv2l0~ f rf1G f fz!/r0 ,

X2252v22l0f ff /r0
2 , ~13!

whereG5r0V2/g, l05g/ f z , and the partial derivatives ar
again evaluated at the equilibrium point. Note the appeara
of the off-diagonal gyroscopic terms62iVv, as expected.

For suitablef, this characteristic matrix is sufficiently gen
eral to model all four parameters ImA, ReB1 , ReB2 ,
ReB3. However, to generate a finite ReB1 in the absence o
dissipation, eitherf rf or f fz must be nonzero.

A special case, used in the next section, is a bowl w
horizontal cross sections near the equilibrium point form
ellipses of constant eccentricitye and semi-major axes with
the same orientation. For definiteness, we consider the
face determined near the equilibrium point by

f ~r,f,z!5r2~12e2cos2f!2~12e2!~z/k!2/n50.
~14!

This describes a bowl of uniform elliptical horizontal cro
section and vertical cross section along thex axis determined
by z5kxn. One of the two equilibrium points is atr0

5(V2/nkg)1/(n22), f050, z05kr0
n . Small oscillations

about this point are described in ther andr0f coordinates
by the characteristic matrix

X5S 2~11G2!v21~n22!V2 22iVv

12iVv 2v21e2V2D . ~15!

FIG. 1. Particle of massm moving under gravity on the genera
surfacef 50 of a bowl rotating at uniform speedV.
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The componentX22 involves a functione2(f0), defined gen-
erally for later purposes ase2(f0)5e2(2 cos2f021)/
(12e2cos2f0). In the present casef050, which givese2

5e2/(12e2). We note in passing that the oscillatory m
tions determined byX are stable forn.2.

In this simple model, the term ReB1 vanishes. The analy
sis in the next section shows that this can be avoided with
addition of appropriate dissipative terms. However, we n
in passing that a nonzero ReB1 can be obtained withou
dissipation by a relatively simple modification of the surfac
involving a helical twist with height. The idea is to arrang
matters so that the semi-major axis of the horizontal ellipti
cross section rotates asz increases. It suffices to replacef in
the bowl surface functionf of Eq. ~14! with a function f
1u(z). The equilibrium condition forf becomesf05
2u(z0), and the characteristic matrix for small oscillation
acquires an additional contribution. For example, choos
u(z)5tz/r0 with constantt produces a characteristic matr
equal to the sum of Eq.~15! and a twist termXt , given by

Xt5e2tGV2S tG 1

1 0D . ~16!

There is therefore a contribution to ReB1 determined by the
twist constantt.

V. MODELS WITH VISCOUS DAMPING

In this section, we consider analogue models involvi
classical oscillators with dissipation. Since we are using
ear and homogeneous equations of motion and the co
sponding characteristic matrix to model the neutral-me
effective Hamiltonians, we limit attention only to dampin
forces linear and homogeneous in the generalized coo
nates and velocities. We refer to such damping forces
viscous, although this is a somewhat broader definition t
normally used by physicists. Note that dry friction can al
give linear equations of motion, but typically leads to inh
mogeneous terms and so is disregarded here.

The standard procedure in classical mechanics is to ob
viscous damping forces from a Rayleigh dissipation fun
tion, which is a symmetric quadratic form in the generaliz
velocities. However, under special circumstances visc
damping can lead to linear homogeneous damping for
involving also the generalized coordinates@13#. This case is
of direct interest in the present context. We therefore w
here with a generalized dissipation functionF that can
handle damping in a broader class of models@14#.

Up to irrelevant terms, we takeF to be a general qua
dratic expression in the small-oscillation variablesQ andQ̇:

F5
1

2
Q̇TRQ̇1Q̇THQ. ~17!

As usual, the damping forces are determined by the der
tive of F with respect to the generalized velocities. The re
symmetric matrixR contains the standard Rayleigh dissip
tion matrix for viscous damping, along with any contrib
tions from other types of damping that generate forces lin
2-5



tri
o

f
by

t
b

e
re
so

t

he
th

n

he
icle

cous
sh
he
d
tion

id

the
d

lip-
is-
ion
a-

, it

o-
ter-
e
m-

-

le
m-

al

he

V. ALAN KOSTELECKÝ AND ÁGNES ROBERTS PHYSICAL REVIEW D63 096002
in the generalized velocities. The real antisymmetric ma
H determines damping forces linear in the generalized co
dinates.

Combined with the Euler-Lagrange equations~9!, the
generalized dissipation function~17! leads to equations o
motion for small oscillations in the classical model given

TQ̈1~G1R!Q̇1~V1H !Q50. ~18!

A harmonic solution has the formQ5Re@A exp(ivt)# as be-
fore, but in the presence of dampingv is complex. We write
v52pn1 ik5m1 ik. In what follows, we also usev2

5D212imk, whereD25m22k2. To simplify the discus-
sion, we take the magnitude of the damping to be sufficien
small that potential complications such as the issue of sta
ity require no special attention.

The characteristic matrix is

X52Tv21 i ~G1R!v1V1H. ~19!

In terms of the parametrization in Eq.~7!, we find

ReA5mk~T111T22!2
1

2
m~R111R22!,

Im A52
1

2
D2~T111T22!2

1

2
k~R111R22!

1
1

2
~V111V22!,

ReB152D2T122kR121V12,

Im B1522mkT121mR12,

ReB252mG12,

Im B252kG121H12,

ReB352
1

2
D2~T112T22!2

1

2
k~R112R22!

1
1

2
~V112V22!,

Im B352mk~T112T22!1
1

2
m~R112R22!.

~20!

Inspection of these expressions shows that a sufficiently g
eral model can indeed emulate independently all eight
parameters in the effective Hamiltonian for a neutral-me
system. Note that the parameter ReB2 is unaffected by dis-
sipation, as mentioned in Sec. III, implying that a comple
emulation of the neutral-meson systemrequires a nonzero
gyroscopic term and therefore is most readily accomplis
using a single two-dimensional oscillator. Note also that
damping force involving the matrixH contributes only to
Im B2, whereas the matrixR affects all parameters other tha
B2.
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As an explicit realization of these ideas, we revisit t
analogue model considered in Sec. IV describing a part
moving in a uniformly rotating bowl with surface functionf.
We suppose that the particle experiences an external vis
damping force. This might be implemented with a me
bowl that allows resistance to the particle motion from t
air or from some other static fluid in which the bowl an
particle are immersed. We take the generalized dissipa
function for this resistance to be

F5
1

2
mh@ ṙ21r2~ḟ1V!21 ż2#, ~21!

where the functional form ofż5 ż(r,ṙ,f,ḟ) is understood
to be determined from the bowl surface equationf 50. We
also suppose that the parameterh, which controls the mag-
nitude of the damping forces, is sufficiently small to avo
difficulties with stability.

Inspection of the forces obtained from Eq.~21! reveals
that an additional constant damping forcehr0

2V in the f
direction acts on the particle at equilibrium and moves
equilibrium position away from the previously determine
location. For example, in the special case of a uniform el
tical horizontal cross section, the equilibrium point is d
placed from the apex of the ellipse. In general, the locat
of the new equilibrium point is determined by the simult
neous solution of the three equationsf 50, f r1G f z50, and
f f2Sr0f z50, whereS5hG/V.

The dissipation functionF in Eq. ~21! describes the fluid
resistance to the particle motion. For small oscillations
includes both Rayleigh-type dissipation via a matrixR and
damping linear inQ described by a matrixH. It thus imple-
ments the form of Eq.~17!. The associated equations of m
tion can be derived, along with the accompanying charac
istic matrix. We find that the components of th
characteristic matrix are the sum of the corresponding co
ponents in Eq.~13! with additional terms given by the com
ponents of a matrixDX:

DX115 ih~11G2!v,

DX125GSv21l0S~ f rz1G f zz!2 ihGSv,

DX215DX1212hV,

DX2252S2v212l0S f fz /r02l0S2f zz

1 ih~11S2!v. ~22!

This result shows that the introduction of a relatively simp
viscous damping force suffices to ensure that all four para
eters ReA, Im B1 , Im B2 , Im B3 can become nonzero.

For the special case of the bowl with uniform elliptic
horizontal cross section described by Eq.~14!, the incorpo-
ration of viscous damping via Eq.~21! results in an equilib-
rium point at z05V2r0

2/ng, with r0
25@(12e2)nV4/

(12e2cos2f0)
n(nkg)2#1/(n22) and tanf052(12A12x)/a,

wherex5(12e2)a2 anda52h/e2V. The reality off0 con-
strains the magnitude ofh to uhu<e2uVu/2A12e2. The cor-
responding characteristic matrix for small oscillations in t
2-6
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r andr0f coordinates is given by the sum of Eq.~15! with
an additional matrixDX. In analogy with Eq.~19!, DX can
be taken to have the form

DX52DTv21 iDRv1DV1DH. ~23!

Note that a putative term of the formDG is absent, as ex
pected. The matricesDT, DR, DV, DH are

DT5S 0 2GS

2GS S2 D , ~24!

DR5S h~11G2! 2hGS

2hGS h~11S2!
D , ~25!

DV5S 0 2~n21!hV

2~n21!hV ~n22!h2 D , ~26!

DH5S 0 2hV

hV 0 D . ~27!

For smallh and hence smallS, the diagonal elements of th
matricesDT, DV can be viewed as perturbations on the
sult ~15!, which involves nonzeroT, G, andV. However, the
contributions from the off-diagonal elements ofDT, DV and
from DR, DH are crucial for the complete emulation of
neutral-meson effective Hamiltonian. In particular, Eq.~20!
shows that the parameters ReA, Im B1 , Im B2 , Im B3 are all
nonzero, as desired.

VI. SUMMARY AND DISCUSSION

This paper studied the emulation of indirectCP violation
in neutral-meson systems using oscillator models in class
mechanics. We obtained some no-go results for analo
models without damping and for ones involving two on
dimensional oscillators. The implementation of spontane
symmetry breaking was shown to be feasible. We pro
that analogue models involving one two-dimensional osci
tor with rheonomic constraints can suffice to emulate
eight real parameters in the meson effective Hamiltoni
including the three describing physicalT andCPT violation.

We presented a specific analogue model that provide
complete emulation. It involves a particle moving und
gravity on the surface of a uniformly rotating bowl of ellip
tical cross section in the presence of weak external visc
damping. The equations for small oscillations about an eq
librium point are determined by a characteristic matrix giv
as the sum ofX in Eq. ~15! andDX in Eq. ~23!. The param-
etrization ~7! of this characteristic matrix, with paramete
fixed by Eq. ~20!, can be placed in one-to-one correspo
dence with the parametrization~1! in the P0-P0 basis of the
effective HamiltonianL for a neutral-meson system. Th
correspondence isA↔D, B1↔E1 , B2↔E2 , B3↔E3. Cor-
respondences also exist with the effective Hamiltonian~5! in
the CP-eigenstate basis or, since the emulation is compl
in any other basis.
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The results we have obtained leave open some interes
issues. One is the extent to which quantitative values of
perimental observables in any neutral-meson system ca
emulated in a realistic version of the models we have d
cussed. A satisfactory match would require reproducing
relative sizes of the values of the masses, lifetimes, and
rameters forCP violation. Since the experimental data ava
able on oscillations in the four neutral-meson systems ra
from being relatively complete for theK to limited for the
Bs , the degree of difficulty in obtaining a satisfactory mat
varies considerably. In any case, the full flexibility of th
analogue models is unnecessary because noCPT violation
has been observed to date@15–17#. For the special case o
the K systemCP violation is observed to be small, so a
emulation involving small dissipation is likely to be possibl
It would be interesting to determine the feasibility of co
structing a quantitatively accurate model, including perha
constructing a working prototype.

A more ambitious task would be to explore the insigh
provided by the model aboutT and possibleCPT violation
with an eye to understanding its origin in nature and
neutral-meson systems. For example, it is intriguing that
no-go results strongly favor two-dimensional systems w
rheonomic constraints. This suggests a preference for a
namical origin ofCP violation. Similarly, it is interesting
that theCPT violation in the analogue model emerges fro
a violation of rotation invariance. This would appear to co
respond with the situation in conventional quantum fie
theory in the context of the standard model, where the kno
mechanism forCPT violation originates in the spontaneou
violation of Lorentz symmetry@18# and impliesCPT signals
in neutral-meson systems that depend on the orientation
magnitude of the meson momentum@19#.

Another interesting topic, raised by Rosner@8#, is the
emulation ofT andCPT violation by electrical circuits. The
general analysis we have provided in this work can of
some insights. A detailed analysis of this subject lies beyo
the scope of this work, but in what follows we provide a fe
remarks.

Suppose that each of the strong-interaction eigenstateP0

andP̄0 is modeled as an oscillating electric circuit, withCP
violation regarded as a weak coupling between them.
definiteness, we view the two meson wave functions as c
responding to the chargesq1(t), q2(t) flowing through the
circuits as a function of time. As in the case of the analog
model in classical mechanics, the energies of the me
eigenstates are emulated by the oscillator frequencies w
the meson decay rates correspond to the oscillator damp
Inductances in the circuit replace masses in the mechan
model, inverse capacitances replace coupling constants in
potential, and resistances provide dissipation.

The two-component meson wave functionC can be iden-
tified with a two-component objectQ(t) formed fromq1 and
q2, as for the case of a classical-mechanics model. We
the differential equations describing oscillations of t
charges in the circuit to be linear inQ and its time deriva-
tives Q̇5I andQ̈5 İ , whereI is the two-component current
In the absence of dissipation, the equation governing the
2-7
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cillatory behavior ofQ is Eq.~9!, where the matricesT, G, V
are interpreted as characterizing appropriate properties o
circuit. This means that much of the analysis in Sec. III a
plies in modified form. In particular, the results obtain
there reveal that a primary obstacle to a complete emula
of CP violation via electric circuits is the need for an an
symmetric matrixG coupling the currents in the two circuits

A suitable circuit realization ofG requires a two-port de
vice that is passive~no energy storage, increase, or dissip
tion!. The antisymmetry implies that reciprocity is broken
potentialV applied across the first port would induce a cu
rent across the second differing in phase byp relative to the
current induced across the first port when the sameV is ap-
plied across the second. Remarkably, two-port devices
this type, called gyrators, have been the subject of some
tention in the specialized electronics literature since th
original invention by Tellegen in 1948@20#. Moreover, a
variety of network realizations of a gyrator exist@21#.

We therefore suggest it is feasible to develop an elec
circuit emulating all eight parameters in the effective Ham
tonian for a neutral-meson system, including bothT and
CPT violation. A gyrator would implement the crucia
T-violating features of Eq.~9! and in particular a nonzero
ReB2 in Eq. ~11!. As in the case of the classical-mechan
oscillators, it would also be necessary to include dissipat
y,

al

c
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This requires designing a circuit that incorporates suita
damping elements leading to the oscillatory behavior giv
by Eq.~18!. A general matrixR can be obtained by a suitabl
placement of resistors in the circuit, though producing a d
sipation matrix of the form ofH might be less straightfor-
ward. Developing an electrical realization of spontaneo
symmetry breaking would also be attractive. A circuit d
signed to exhibit all these features would make an impres
tabletop demonstration emulatingT and CPT violation in
neutral-meson systems.

The results obtained in the present work may also h
application in the emulation of other quantum oscillations
physics. For example, it would be of interest to study a
logue models for neutrino oscillations. A complete analy
for this case is likely to be more involved, partly becau
three neutrino species are known and the options forCP and
CPT violation are correspondingly more complicated. Non
theless, an explicit analogue model in classical mechanic
with electric circuits could provide valuable insight.

ACKNOWLEDGMENTS

This work was supported in part by the United Sta
Department of Energy under grant number DE-FG0
91ER40661.
nd
tion

Illi-

ee
@1# J.H. Christenson, J.W. Cronin, V.L. Fitch, and R. Turla
Phys. Rev. Lett.13, 138 ~1964!.

@2# For a textbook treatment of the discrete symmetriesC, P, T,
see, for example, R.G. Sachs,The Physics of Time Revers
~University of Chicago Press, Chicago, 1987!.

@3# See, for example, T.D. Lee, and C.S. Wu, Annu. Rev. Nu
Sci. 16, 511 ~1966!.

@4# We limit attention in this work to indirectCP violation.
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