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Analogue models forT and CPT violation in neutral-meson oscillations
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Analogue models folCP violation in neutral-meson systems are studied in a general framework. No-go
results are obtained for models in classical mechanics that are nondissipative or that involve one-dimensional
oscillators. A complete emulation is shown to be possible for a two-dimensional oscillator with rheonomic
constraints, and an explicit example with spontanedbwnd CPT violation is presented. The results have
implications for analogue models with electrical circuits.
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[. INTRODUCTION summarizes the results and discusses some open issues, in-
cluding the implications of our results for the challenge of

Many quantum systems display oscillatory behavior.emulatingCP violation with electric circuits.

Among the most interesting are the neutral mesons, where

oscillations between particles and antiparticles can violate Il. BASICS

the productCP of charge conjugatiofC) and parity (P) i ) i )

symmetries. In th& system, a smalC P violation is experi- In this sgc'qon, we mtrqduce some .baS|c rgsults peeded for
mentally seer[1]. It is associated with breaking of time- the analysis in later sections. Following a discussion of rel-
reversal symmetr§f, with the produciCP T being preserved e\{ant features pf the neutral-'meson systems, a few consider-
[2]. In fact, a complete formulation o P-violating oscilla- ations appropriate for classical analogue models are pre-
tions in theK system allows als€ PT violation with T being ~ Sented- o o0
preserved3,4]. A similar formulation can be developed for Theofour relevant neutral-meson systemstéfe D°, By,

any of the neutral mesori§, D, By, andBs [5]. This more  @nd Bg. In what follows, we denote by°® the strong-
general situation is of interest, for example, in the context ofnteraction eigenstate associated with any one of these. A
possible experimental signals from string thef@y. general neutral-meson state is a linear combination of meson

Acquiring physical insight into the behavior of meson os-and antimeson wave functions. It can be represented as a
cillations in the presence of and CPT violation is worth-  two-component objec¥', with time evolution determined by
while. One approach is to construct a simple analogue moddé 2X2 effective HamiltonianA according toi o,V =AW.
in classical mechanics that displays the key features of mefhe eigenvector®s andP_ of A are the physical propagat-
son oscillationsA priori, it seems most natural to adopt an ing states. The Hamiltoniah is composed of a Hermitian
intuitive picture based on an analogue model in which themass matrixM and a Hermitian decay matrik: A=M
meson and its antimeson are represented by two one:%ir. Flavor oscillations and violation are governed by
dimensional oscillators interacting through some weak couthe off-diagonal elements of, while CPT violation is con-
pling. Indeed, basic features of tl@P-preserving physics trolled by the difference between its diagonal elements.
can correctly be modeled in this w]. However, modeling A widely used parametrization of is [3]

T violation is more subtl¢8,9]. . .

In this work, we investigate the issue of emulating both _[T'DFEs Ei-iE,
and CPT violation in neutral-meson systems via models in E,+iE, —iD—Ej3)’
classical mechanics involving small oscillations. We obtain
several no-go results, showing that complete emulation ofvhereD, E;, E,, E3 are complex. In this parametrizatioh,
the effective Hamiltonian describing the time evolution of aVviolation occurs whenE,E3 — E7 E;) # 0 while CPT viola-
neutral meson is impossible using models with no dampingdion occurs whenE;#0. In terms of real and imaginary
or using models involving two one-dimensional oscillatorscomponentsT violation occurs when
with a large class of couplings. This confirms and extends
earlier results of Rosndi8]. In contrast, models involving (ReE,Im E;—ReE;ImE;) #0, 2
tv_vo-dimensional oscill_ations with appropr_iate _cons_traints can, 4 cPT violation when either or both of
display effects emulating bofhand CPT violation simulta-
neously. We give an explicit example in which the violation ReEz#0, IME;#0 (3)
arises spontaneously.

In the next section, we present a few basic results needed satisfied. There are therefore three independent real quan-
for the subsequent analysis. Section Il discusses some no-gities determiningCP violation in neutral-meson systems.
results. The issue of spontaneous symmetry breaking is con- The basic goal in achieving the construction of a suitable
sidered in Sec. IV. The general analysis leading to a comanalogue model is to obtain an oscillating system in classical
plete emulation of neutral-meson effective hamiltonians, in-mechanics with a characteristic matrix reproducing the fea-
cluding an explicit model, is given in Sec. V. Section VI tures of the effective Hamiltonian. It is therefore useful to
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consider the extent to which the forh) of A can be modi- In developing an analogue model, we adopt the notion

fied without affecting the underlying meson physics. that the behavior of the strong-interaction eigenst@&sP°
o One ﬂeXIbI'Ity in the form ofA arises because ﬂféo and can be modeled C|assica||y by |dent|fy|ng them with har-
PY wave functions are eigenstates of the strong interactionsnonic oscillators in two generalized coordinates. The ener-
which preserve strangeness, charm, and beauty. For a giveies of the meson eigenstates are emulated by the oscillator
system, the phases of the two wave functions can be rotatddequencies, while the meson decay rates are paralleled by
by equal and opposite amounts without observable conséhe oscillator dampings.
guences. This rotation induces a corresponding change in the Since the strong interactions preser@®T, in the ab-
phase of the off-diagonal components &f which acts to sence ofCP violation the two frequencies and decay rates
mix E, and E, but preserves the combinatiorE(E} are expected to be equal. The idea is to model the presence
— E} E,) measuringT violation. It follows that a satisfactory 0f CP violation by introducing appropriate couplings be-
analogue model needs to contain features corresponding f¢/€en the two classical oscillators. Following ideas concern-
this phase-independent measureTofiolation. Note, how- ing CPT violation in the context of conventional quantum
ever, that the phase rotation cannot mix components of théeld theory[5,10], we regard it as desirable to obta@PT
mass matrixVl with components of the decay matrix violation spontaneously in an analogue model. In fact, we
Another flexibility relevant to the construction of an ana- show below that it is also possible to generatiolation
logue model is the choice of basis for the meson system. Th@pontar_le(_)usly. _ ) _ _
effective HamiltonianA in Eq. (1) is given in the PO-p° We limit attention to classical models involving small os-

basis. However, other unitarily equivalent bases can also bg!lations about equilibrium with linear equations of motion.
chosen. A basis transformation by a unitary matdxcon- Assuming harmonic behavior, the linear generalized coordi-

verts the statel into W' =UW and results in an effective Na€S0d1, gz can be combined in two-component form as
Hamiltonian A’ =UTAU. Appropriate choices folJ can Q= RdAexp(wl)], whereA is a complex two-component
modify the location of the parameters forand CPT viola- obj_ect. The equatlon_s of motion can then be expresse_d by the
tion in the effective Hamiltonian, which may have some ad-action of a 2x2 matrixX(w) onA, asXA=0. The matrixX
vantages in matching to an analogue model. Note that likéS the characteristic matrix of the classical oscillator.

the phase-rotation freedom, the transformationUbgannot A suitable analogue model for a neutral-meson system is
mix components of the mass matii& with components of ©°N€ for which the characteristic matrikreproduces the fea-
the decay matrid’. tures of the meson effective Hamiltonian. In comparisons

between the analogue model and the meson system, it is
useful to adopt a form foK analogous to that foA in Eq.
(1). We therefore introduce the parametrization

As an example, consider @P-eigenstate basi®,, P,
obtained fromP®, PP via the unitary transformation

1/1 1 r .
:_(l 1)_ @ o[ 1A+Bs BB, .
V2\1 - B,+iB, —iA—Bj’
In the new basis, the effective Hamiltonian becomes whereA, B, B,, B3 are complex.

The reader is cautioned that, despite the similarity of the
parametrization$l) and(7), the detailed physical meanings
(5) of A andX differ. For instanceA involves a first-order time
development whileX involves a second-order one. A related

The elements o\ are similar to those oA, except thaE, point is that the meson sta##e is intrinsically complex, with
and E; have been interchanged. This conversioriitavas physical observables being related to the norm of the prob-

used by Rosner and Slez4R] to show that a modified ability amplitude. In contrast, the mechanical coordir@ts

damped Foucault pendulum can be identified as an analogtﬂgal’ and the corresponding amplituélés complex only as a

A : ) convenient artifact. For example, opposite phase rotations
sr’r;/c;?eerlnforT violation in theC P-eigenstate basis of a meson between the two coordinates could produce a physically in-

Other choices can be made. For example. combinin thequivalent result in the classical analogue model, whereas
. ; o pie, NG & milar phase rotations on the strong-interaction eigenstates
choice of CP-eigenstate basis with a phase rotation byhave no physical effect in the meson system
exp(m/4) of the PY wave function and an opposite rotation '

of the P wave function yields an effective Hamiltoniak
given by

—iD+E; E3+iE,
E;—iE, —iD—E;/

Ill. MODELS WITHOUT DAMPING

The intrinsic physical differences between the quantum
©6) system and the classical model might seem sufficiently se-
vere to exclude emulation of subtle effects suchTaand
CPT violation. Indeed, several no-go results can be obtained
This corresponds to a modification af involving a cyclic  concerning the existence of an acceptable analogue model
permutation of the three parameters:E;(E,,E3) for A under various circumstances. In this section, we dis-
—(Ej3,Eq,Ey). cuss obstacles to the development of an analogue model in

]\ _|D+E2 ES_iEl
| Eg+iE;,  —ID-E,)
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the absence of damping forces. The effects of dissipation are To begin, observe that E¢L1) includes the result I'B;
considered in Sec. V. =ImB,=0 for all possible conservative classical systems.
Consider first a Lagrangiab describing small linear os- |n contrast, Eq.(2) implies that at least one of &, and
cillations in a conservative classical-mechanical system. Fofim E, must be nonzero foF violation in a meson system. It

present purposes, we restrict attention to a system with twey|jows by comparison of Eq$1) and(7) that T violation in

degrees of freedom, although some of our formalism anc[ihe P2-P? hasis with the effective Hamiltonian cannot be

reslijilrtéa?i)tl)oll)ilmngljirees gtﬁQfl_r{?‘Islyduadratic in the real general- S:Zzzitsfdfrtéyeggz]nondissipative classical model with two de-
ized coordlnatesQ(t)_ and the first time derivative® Transformation to some other basis for the meson wave
=dQ/dt. It can be written as functions offers more flexibility but remains insufficient. For
1. . 1. 1 example, in theC P-eigenstate basis a nonvanishing compo-
L= EQTTQ+ EQTG Q- EQTVQ, (8)  nent ReE; in the effective Hamiltoniar{5) can be modeled
with ReBj, but no means to model IB,, ImE,, ImE;
whereT, G, andV are square matrices of the same dimensiorEXists. The point is that neither the phase-rotation flexibility
as Q. By inspection,T and V are symmetric, whileG is ~ Nor the choice of wave-function basis can mix contributions
antisymmetric. Since is real, all three matrices can be taken to the mass matriM with those to the decay matrik, as
real without loss of generality. We cdll, G, andV the ki-  discussed in the previous section. SinceBm ImE,,
netic, gyroscopic, and potential matrices, respectively. Notém E; are contained inl" while ReE;, ReE,, ReE; are

that G violates classical time-reversal symmetry. contained inM, there is no means to convert one type of
The Euler-Lagrange equations of motion obtained fromcontribution to another.
the LagrangiarL are We conclude thait is impossible to emulate T violation in
) _ a neutral-meson system with any nondissipative classical
TQ+GQ+VQ=0. (99 model having two degrees of freeddmessence, a success-

) ) ) ful analogue model foll violation in a meson system must
The gyroscopic matrbxG doesnot represent damping, de- i,y olve dissipation becausEviolation in the meson system
spite its association witlQ, because it is derived from a itself intrinsically involves dissipative oscillations.
Lagrangian and the corresponding generalized force is con- The sjtuation forCPT violation has both similarities and
servative. For harmonic solutions wilR=ReAexp(wt)],  differences. Comparison of Eqd) and(7) shows that non-
Eq. (9) becomesXA=0, where the characteristic matr ;610 CPT violation in a meson system involving f& can
has the form be emulated by a classical oscillator model for which
ReB;#0. The result(11) reveals that it suffices to have a
difference between the diagonal elements of either the ki-
This matrix is Hermitian and so can be diagonalized withnetic or the potential matrix. This is straightforward to
real eigenvalues. The normal-mode frequencies are obtainé¢hieve in a physical system. In contrast, an argument simi-
from the condition dé(w»)=0, which is a quadratic equa- lar to that forT violation demonstrates thétis impossible to
tion in w?. The absence of damping physically implies thatemulate CPT violation involving Imgfin a meson system
there are two real normal-mode frequencies, and this can baith any nondissipative classical model having two degrees
confirmed by inspection of the discriminant of the generalof freedom.This can again be traced to the association of
solution for w?. Im E3 with the decay matrix™ and hence with dissipation in

In terms of the parametrizatiaf?) of X, we find the meson system.

The strength of these no-go results suffices to show the
need for dissipative classical oscillations. However, before
turning to issues pertaining to spontaneous breaking and dis-
ImA= — EwZ(T11+ T, + E(VHJr V), sipation, we present some remarks about gyroscopic terms in

2 2 the context of conservative systems.

For a completely general emulation of neutral-meson sys-
tems, we deem it desirable to construct an analogue model
for which all eight real parameters in EGZ) are nonzero.
The result(11) shows that in the absence of damping a non-

X=—0?T+iwG+V. (10)

ReA=ImB;=ImB,=ImB3;=0,

1 1
ReB3;= sz(Tn_ T+ E(Vll_ Vo),

ReB;=— w?T,+Vy,, zero gyroscopic matribG is needed to obtain a nontrivial
ReB.. In fact, this also holds in the presence of dissipation,
ReB,=— wG,. (11 as is shown in Sec. V. Models without gyroscopic terms are

therefore of lesser interest. However, gyroscopic terms ap-
The form of Eq.(11) permits several conclusions about the pear in only a restricted class of models. In particular, there
feasibility of constructing nondissipative analogue modelds no simple means of generating a nonz&dn models
for CP violation in neutral-meson systems. Next, we discusdnvolving two coupled one-dimensional oscillators, as we
these conclusions fof and CPT violation in turn. discuss next.
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Prior to linearization, a general Lagrangian describing two IV. SPONTANEOUS SYMMETRY BREAKING
coupled one-dimensional oscillators involves a kinetic term

for e.ach osgillator and an in_te.rgction po.tentlial. No W10°CpT violation spontaneously in the classical model. The
scopic term is present. By definition, the kinetic energy of ddea is to seek an analogue model with an initial configura-

ong-dimensiqnal o_scil!ator involvgs only one generalized cog;g, displaying noT or CPT violation, but with a perturba-
ordinate, so Ilnearlz_atlon of the kinetic pieces cannot 9generhye instability causing a natural dynamical evolution to a
ate the cross-coupling needed for a nonZérd he potential  staple configuration in which small oscillations violate both
term would therefore need to be the sourcéSofHowever, T and CPT. This parallels the mechanism for spontaneous
the gyroscopic term is linear in the generalized velocity, Sqyreaking of CPT in string field theory[6]. Following the
any appropriate potential term must be velocity dependentjiscussion in the previous section, we primarily restrict at-
This leaves only a restricted class of possibilities. tention to the case of one two-dimensional oscillator without
It can be shown thaG makes no contribution to the appreciable dissipation. The situation for viscous damping is
Hamiltonian, so any acceptable velocity-dependent potentialonsidered in the next section.
must describe forces that do no work. Forces that do no work Consider first a particle moving under the influence of
and are described by a velocity-dependent potential certainlyravity on the interior of a spherical bowl that rotates with
exist. A standard example is the Lorentz force on a chargegdonstant angular spedd about the vertical axis. The con-
particle moving in a magnetic field. One might, for example,figuration with the particle initially at the bottom of the bow!
consider a model involving two charged magnetic dipolesis a solution to the equations of motion. However, an other-
each restricted to move along a one-dimensional curve swise negligible friction between the particle and the bowl
that the only possible oscillations are indeed one-makes this configuration perturbatively unstabl@#>g/a,
dimensional. The forc& ,;%v ;X B, on one dipole is deter- Whereg is the gravitational acceleration aredis the bowl

mined by its velocitys, and by the fieldB, of the other ~radius. The position of stable equilibrium lies instead on the

dipole, as needed. However, this fails to generate directly gurface at a vertical distang#€)? below the center of the

nonzeroG becauseﬁu- 5150, so the force is orthogonal to b.OWI'. This 'e_xa'mple, mtroduceq by Lamb in h[s paper on

the oscillation. kln_etlc stability in 190812], p_rowdes a c_IassmaI implemen-
In short, we find thatt is difficult and perhaps impossible tation of spontaneous breaking of rotational symmetry.

to emulate all eight parameters for a neutral-meson effectiv%1 n;z 'tjeelfr‘n?('jsef ;(Oag]g I\?i(IJSIaLtjir(])Snaitllffr?gL?rerI?‘rietzgnbislssté?rz:n
Hamiltonian with any classical model involving two coupled becaugse no restoring force is associated with a s%all hori
one-dimensional oscillatordVe conjecture that an impossi- 9

bility proof could be constructed on the basis taviolates zontal displacement from the equilibrium position on the

classical time-reversal invariance, which imposes Severgicr)mIZrSl;gﬁgihg?VZ?c\)/:sr’ :eggr? ggge;?/loisduqﬁicseg;’f'ftigu?fn'
constraints on one-dimensional systems. In any event, | Y.

would be interesting to obtain an impossibility proof or to he might, for example, consider a surface tha_t is a spherical

: . bowl at the bottom but that smoothly deforms into a surface

provide a simple counterexample. of uniform elliptical cross section as the height increases. In
The above result provides strong motivation to turn in- P 9 '

stead to an analogue model involving one two—dimensionaﬁhIS case only two equilibrium points occur, located on the

oscillator. In this case, it is possible to generate a non@&ero f’iﬁm"rﬂ]aejora?;i('csleo:otgfesel\lllvﬁ&c?:]:rgg‘jvlSescrtrg:' olgci(ﬁg?ilcl)lr?s_
under suitable circumstances. ! P :

Before linearization, the kinetic term of a two- about either equilibrium point are stable in both vertical and

dimensional model typically involves both generalized coor—horl'zzo(?néﬁl g)'(rel‘i:é:?gi‘al sis in the case of a suitable general
dinates. If the equilibrium coordinates and configuration are of W pd i Ii)r:dri | rdinat 2) with gri
independent of timéscleronomous constraintand if there surface, we adopt cy cal coordinates, 6,2) ort-

are no ignorable coordinates, then the kinetic term is quagmt at .thedbt?tt:)hm of thte_ bowl. Le_t éhe EOWIE surface be
dratic in generalized velocitieEL1] and so no gyroscopic Cciefmined by the equa idi{p, ¢,z) =0, where by assump-

term emerges upon linearization. However, for the specia‘iion f §atisfies all the necessary convexity and smoqthness
class of models with time—dependem[heo’nomi() con.  conditions. Then, the motion on the surface of a particle of

straints, linearization of the kinetic term can generate a non1assm under gravity is determined by the Lagrangian
zero G matrix. For example, suppose the model involves
small oscillations about a uniform motion, characterized by a
constantv o with dimensions of velocity. Then, linearization
of the terms quadratic in generalized velocities can lead to (12
expressions involving the product of and the oscillation

velocity Q. These are linear i@ and under suitable circum- where\ is a Lagrange multiplier. See Fig. 1.

stances can yield a nonze®. Indeed, the term “gyro- For sufficiently large), spontaneous symmetry breaking
scopic” refers to the appearance of a nonz@rmmatrix in the  occurs. The equilibrium pointpl, ¢¢,z0) is determined by
description of small oscillations of uniformly rotating bodies. the equations=0, f ,=0, andeQZJrgfp/fZ:O evaluated
Note that the classical violation necessary for gyroscopic at the equilibrium point, where subscripts bindicate par-
terms emerges here as a result of the uniform motion. tial derivatives. Taking andpy¢ as generalized coordinates

In this section, we discuss the issue of generafirand

1 . . .
L= Em[p2+p2(¢>+Q)2+z2]—mgz+ mrf(p,d,2),
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z The componerX,, involves a functiore?(¢,), defined gen-
erally for later purposes ase?(¢)=e%(2 coS¢o—1)/
(1—€’cog¢y). In the present case,=0, which givese?
=e?/(1—e?). We note in passing that the oscillatory mo-
tions determined by are stable fon>2.

In this simple model, the term R vanishes. The analy-
sis in the next section shows that this can be avoided with the
addition of appropriate dissipative terms. However, we note
in passing that a nonzero Bg can be obtained without
dissipation by a relatively simple modification of the surface,
involving a helical twist with height. The idea is to arrange
matters so that the semi-major axis of the horizontal elliptical
Cross section rotates asncreases. It suffices to replagein
the bowl surface functior of Eq. (14) with a function ¢
+6(z). The equilibrium condition for¢p becomesd¢y=
—6(zy), and the characteristic matrix for small oscillations
acquires an additional contribution. For example, choosing
0(z) = 7zl py with constantr produces a characteristic matrix
equal to the sum of Eq15) and a twist termX ., given by

-

FIG. 1. Particle of mass1 moving under gravity on the general
surfacef=0 of a bowl rotating at uniform speed. T 1
X,= eI 02 1 ol (16)
for small oscillations of frequency about the equilibrium
point, a short calculation shows that the characteristic matrixnere is therefore a contribution to Bg determined by the
has components twist constantr.

X11=—(1+T?)0?= Q%= N\o(f,,+20'f ,, +T?f,)), V. MODELS WITH VISCOUS DAMPING

In this section, we consider analogue models involving
classical oscillators with dissipation. Since we are using lin-
ear and homogeneous equations of motion and the corre-

Xoo= — 0®—Nof 44/ p5, (13)  sponding characteristic matrix to model the neutral-meson
effective Hamiltonians, we limit attention only to damping

wherel = poQ2/g, A\y=g/f,, and the partial derivatives are forces linear and homogeneous in the generalized coordi-

again evaluated at the equilibrium point. Note the appearandeates and velocities. We refer to such damping forces as

of the 0ff-diagona| gyroscopic terms ZiQw, as expected_ VISCOUS, although this is a somewhat broader definition than

For suitabléf, this characteristic matrix is sufficiently gen- normally used by physicists. Note that dry friction can also
eral to model all four parameters Wy ReB;, ReB,, 9ive linear equations of motion, but typically leads to inho-
ReB;. However, to generate a finite Beg in the absence of Mogeneous terms and so is disregarded here. _
dissipation, eithef ,,, or f,, must be nonzero. The standard procedure in classical mechanics is to obtain

A special case, used in the next section, is a bowl withviscous damping forces from a Rayleigh dissipation func-
horizontal cross sections near the equilibrium point formingtion, which is a symmetric quadratic form in the generalized
ellipses of constant eccentricityand semi-major axes with Vvelocities. However, under special circumstances viscous
the same orientation. For definiteness, we consider the sufl@mping can lead to linear homogeneous damping forces

Xlzzle: —ZIQw—)\O(fP¢+ff¢Z)/po,

of direct interest in the present context. We therefore work
f(p,,2) = p2(1—€2c0Lh) — (1—2)(2/k) 2N =0 here with a generalized dissipation functioh that can

(14) handle damping in a broader class of modé].
Up to irrelevant terms, we tak& to be a general qua-

This describes a bowl of uniform elliptical horizontal cross dratic expression in the small-oscillation variab@snd Q:
section and vertical cross section along xtexis determined 1

by z=kx". One of the two equilibrium points is atg F=-0TRO+QTHO. (17)
=(Q2nkg)¥"=2) 4,=0, zo=kp]. Small oscillations 2

about this point are described in theand py¢ coordinates

by the characteristic matrix As usual, the damping forces are determined by the deriva-

tive of F with respect to the generalized velocities. The real

_ o o _ 2 . symmetric matrixR contains the standard Rayleigh dissipa-

_ (1+I9 e+ (n-2)Q 210w (15) tion matrix for viscous damping, along with any contribu-
+2iQw —w?+€202) tions from other types of damping that generate forces linear
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in the generalized velocities. The real antisymmetric matrix As an explicit realization of these ideas, we revisit the
H determines damping forces linear in the generalized cooranalogue model considered in Sec. IV describing a particle
dinates. moving in a uniformly rotating bow! with surface functidn
Combined with the Euler-Lagrange equatio(®, the  We suppose that the particle experiences an external viscous
generalized dissipation functiof17) leads to equations of damping force. This might be implemented with a mesh
motion for small oscillations in the classical model given bybowl that allows resistance to the particle motion from the
B ) air or from some other static fluid in which the bowl and
TQ+(G+R)Q+(V+H)Q=0. (18)  particle are immersed. We take the generalized dissipation

) ) function for this resistance to be
A harmonic solution has the for@=Rg A exp(wt)] as be-

fore, but in the presence of dampingis complex. We write 1 o o 5, o

w=27v+ik=p+ik. In what follows, we also useo? F=5mhip™+pH(d+ Q)"+ 27, (21)

=A2+2iuk, where A%=u?— k2. To simplify the discus-

sion, we take the magnitude of the damping to be sufficientlyyhere the functional form ok=z(p,p,#,¢) is understood

small that potential complications such as the issue of stabily pe determined from the bowl surface equatfen0. We

ity require no special attention. also suppose that the parametemwhich controls the mag-
The characteristic matrix is nitude of the damping forces, is sufficiently small to avoid

. difficulties with stability.
— 2
X==To " +i(GTR)o+V+H. (19 Inspection of the forces obtained from EQ1) reveals

In terms of the parametrization in E€f), we find that an additional constant damping forpgQ in the ¢
direction acts on the particle at equilibrium and moves the
equilibrium position away from the previously determined
location. For example, in the special case of a uniform ellip-
tical horizontal cross section, the equilibrium point is dis-
1 1 placed from the apex of the ellipse. In general, the location
ImA=— EAz(Tlﬁ T22) = 5 k(RutRyo) of the new equilibrium point is determined by the simulta-

neous solution of the three equatidnsO0, f,+I'f,=0, and

1
ReA=ur(Tyy+To)— EM(R11+ R22),

1 f,—2pof,=0, whereX =hI'/Q.
+5 Vit Vo), The dissipation functiodF in Eq. (21) describes the fluid
resistance to the particle motion. For small oscillations, it
ReB;=—A%T;,— kRyy+ Vs, includes both Rayleigh-type dissipation via a mat»xand
damping linear inQ described by a matriid. It thus imple-
IMB;=—2ukTo+ uRyp, ments the form of Eq(17). The associated equations of mo-
tion can be derived, along with the accompanying character-
ReB,=—uGy, istic matrix. We find that the components of the
characteristic matrix are the sum of the corresponding com-
ImB,=—«kG,+Hy,, ponents in Eq(13) with additional terms given by the com-
ponents of a matridXA X:
ReB;=— %AZ(TM— Too) — %K(Rll— R22) AXy;=ih(14T?)w,
1 AX12=FEw2+7\OE(fPZ+FfZZ)—thEw,
+ E(Vll_ V22),
AXleAX12+ ZhQ,
IMB3=—uk(T11— T2+ %M(Rn— R22). AXo=—220%+ 2021 4o /po— N2 °f,

(20) +ih(1+3%) w. (22)

Inspection of these expressions shows that a sufficiently ger-his result shows that the introduction of a relatively simple
eral model can indeed emulate independently all eight realiscous damping force suffices to ensure that all four param-
parameters in the effective Hamiltonian for a neutral-mesoreters Ré, ImBy, ImB,, ImB3 can become nonzero.
system. Note that the parameter Reis unaffected by dis- For the special case of the bowl with uniform elliptical
sipation, as mentioned in Sec. IlI, implying that a completehorizontal cross section described by Etd), the incorpo-
emulation of the neutral-meson systesguiresa nonzero ration of viscous damping via E¢21) results in an equilib-
gyroscopic term and therefore is most readily accomplishedium point at zy=Q%pg/ng, with pj=[(1-e?)"Q*
using a single two-dimensional oscillator. Note also that the1—e?cog¢,)"(nkg?]¥"~2?) and tanp,=—(1—1—x)/a,
damping force involving the matri¥l contributes only to  wherex=(1—e?)a? anda=2h/e?(). The reality of¢, con-

Im B,, whereas the matriR affects all parameters other than strains the magnitude df to |h|<e?|Q|/2y/1—€?. The cor-
B,. responding characteristic matrix for small oscillations in the

096002-6



ANALOGUE MODELS FORT AND CPT VIOLATION IN . ..

p andpg¢ coordinates is given by the sum of HG5) with
an additional matrixA X. In analogy with Eq(19), AX can
be taken to have the form

AX=—ATw?+iARw+AV+AH. (23
Note that a putative term of the forthG is absent, as ex-
pected. The matriceAT, AR, AV, AH are

[0 —FE)

Y (24)
- h(1+I'?) —hI'y

ARZ _hrs hassy) =
_(o —(n—l)hQ)

AV= —(n=1)hQ (n=2)h? )’ 29
_(0 —hQ)

AH=| 0 ) (27)

For smallh and hence small, the diagonal elements of the
matricesAT, AV can be viewed as perturbations on the re-

sult (15), which involves nonzerd, G, andV. However, the
contributions from the off-diagonal elements®T, AV and

from AR, AH are crucial for the complete emulation of a

neutral-meson effective Hamiltonian. In particular, E20)
shows that the parameters RelmB;, ImB,, Im B are all
nonzero, as desired.

VI. SUMMARY AND DISCUSSION

This paper studied the emulation of indir€zP violation

PHYSICAL REVIEW D 63 096002

The results we have obtained leave open some interesting
issues. One is the extent to which quantitative values of ex-
perimental observables in any neutral-meson system can be
emulated in a realistic version of the models we have dis-
cussed. A satisfactory match would require reproducing the
relative sizes of the values of the masses, lifetimes, and pa-
rameters folIC P violation. Since the experimental data avail-
able on oscillations in the four neutral-meson systems range
from being relatively complete for thK to limited for the
B, the degree of difficulty in obtaining a satisfactory match
varies considerably. In any case, the full flexibility of the
analogue models is unnecessary becaus€ Rd violation
has been observed to ddte5—17. For the special case of
the K systemCP violation is observed to be small, so an
emulation involving small dissipation is likely to be possible.

It would be interesting to determine the feasibility of con-
structing a quantitatively accurate model, including perhaps
constructing a working prototype.

A more ambitious task would be to explore the insights
provided by the model abodt and possibleCPT violation
with an eye to understanding its origin in nature and the
neutral-meson systems. For example, it is intriguing that the
no-go results strongly favor two-dimensional systems with
rheonomic constraints. This suggests a preference for a dy-
namical origin of CP violation. Similarly, it is interesting
that theCPT violation in the analogue model emerges from
a violation of rotation invariance. This would appear to cor-
respond with the situation in conventional quantum field
theory in the context of the standard model, where the known
mechanism foIlCPT violation originates in the spontaneous
violation of Lorentz symmetry18] and impliesCPT signals
in neutral-meson systems that depend on the orientation and
magnitude of the meson momentyd®].

Another interesting topic, raised by Rosnd], is the

in neutral-meson systems using oscillator models in classicgmulation ofT andCPT violation by electrical circuits. The
mechanics. We obtained some no-go results for analogu@eneral analysis we have provided in this work can offer
models without damping and for ones involving two one-S°Me insights. A detailed analysis of this subject lies beyond

dimensional oscillators. The implementation of spontaneoul!® Scope of this work, but in what follows we provide a few

symmetry breaking was shown to be feasible. We proved€marks. _ o
that analogue models involving one two-dimensional oscilla- SUPPOSe that each of the strong-interaction eigensittes
tor with rheonomic constraints can suffice to emulate allandP? is modeled as an oscillating electric circuit, wiiP
eight real parameters in the meson effective Hamiltonianyiolation regarded as a weak coupling between them. For
including the three describing physicRendCP T violation.  definiteness, we view the two meson wave functions as cor-
We presented a specific analogue model that provides &sponding to the chargeg(t), g,(t) flowing through the
complete emulation. It involves a particle moving undercircuits as a function of time. As in the case of the analogue
gravity on the surface of a uniformly rotating bowl of ellip- model in classical mechanics, the energies of the meson
tical cross section in the presence of weak external viscougigenstates are emulated by the oscillator frequencies while
damping. The equations for small oscillations about an equithe meson decay rates correspond to the oscillator dampings.
librium point are determined by a characteristic matrix givenlnductances in the circuit replace masses in the mechanical
as the sum oK in Eq. (15) andAX in Eq. (23). The param- model, inverse capacitances replace coupling constants in the
etrization (7) of this characteristic matrix, with parameters potential, and resistances provide dissipation.
fixed by Eq.(20), can be placed in one-to-one correspon- The two-component meson wave functiéncan be iden-

dence with the parametrizatidf) in the PO-PY pasis of the

tified with a two-component obje®(t) formed fromq, and

effective HamiltonianA for a neutral-meson system. The d2. as for the case of a classical-mechanics model. We take

correspondence i8—~D, B;<—E;, B,~E,, B3~ Ej. Cor-
respondences also exist with the effective Hamiltor{Brin

the differential equations describing oscillations of the
charges in the circuit to be linear @ and its time deriva-

the CP-eigenstate basis or, since the emulation is completdjvestl andQ=1, wherel is the two-component current.

in any other basis.

In the absence of dissipation, the equation governing the os-
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cillatory behavior ofQ is Eq.(9), where the matrice$, G,V This requires designing a circuit that incorporates suitable
are interpreted as characterizing appropriate properties of theamping elements leading to the oscillatory behavior given
circuit. This means that much of the analysis in Sec. Il ap-by Eq.(18). A general matriXR can be obtained by a suitable
plies in modified form. In particular, the results obtainedplacement of resistors in the circuit, though producing a dis-
there reveal that a primary obstacle to a complete emulatiosipation matrix of the form oH might be less straightfor-
of CP violation via electric circuits is the need for an anti- ward. Developing an electrical realization of spontaneous
symmetric matrixG coupling the currents in the two circuits. symmetry breaking would also be attractive. A circuit de-
A suitable circuit realization o6 requires a two-port de- signed to exhibit all these features would make an impressive
vice that is passivéno energy storage, increase, or dissipa-tabletop demonstration emulatingand CPT violation in
tion). The antisymmetry implies that reciprocity is broken: aneutral-meson systems.
potentialV applied across the first port would induce a cur- The results obtained in the present work may also have
rent across the second differing in phasemyelative to the  application in the emulation of other quantum oscillations in
current induced across the first port when the sahie ap-  physics. For example, it would be of interest to study ana-
plied across the second. Remarkably, two-port devices dbgue models for neutrino oscillations. A complete analysis
this type, called gyrators, have been the subject of some ater this case is likely to be more involved, partly because
tention in the specialized electronics literature since theithree neutrino species are known and the option€ferand
original invention by Tellegen in 194820]. Moreover, a CPT violation are correspondingly more complicated. None-
variety of network realizations of a gyrator exj&1]. theless, an explicit analogue model in classical mechanics or
We therefore suggest it is feasible to develop an electriavith electric circuits could provide valuable insight.
circuit emulating all eight parameters in the effective Hamil-
tonian for a neutral-meson system, including bdthand
CPT violation. A gyrator would implement the crucial
T-violating features of Eq(9) and in particular a nonzero This work was supported in part by the United States
ReB, in Eq. (11). As in the case of the classical-mechanicsDepartment of Energy under grant number DE-FGO02-
oscillators, it would also be necessary to include dissipation91ER40661.
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