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Logarithmic supersymmetric electroweak effects on four-fermion processes at TeV energies
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We compute the minimal supersymmetry model one-loop contributions to the asymptotic energy behavior of
fermion-antifermion pair production at future lepton-antilepton colliders. In addition to the conventional loga-
rithms of renormalization group origin, extra supersymmetry linear logarithmic terms appear of “Sudakov-
type.” In the TeV range their overall effect on a variety of observables can be quite relevant and drastically
different from that obtained in the standard model case.
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[. INTRODUCTION TeV energies, not generating special theoretical diseases. On
the contrary, in the Sudakov case a subtle mechanism of
In recent paperfl, 2], the effects of one-loop diagrams on opposite linear and quadratic logarithms contributions often
fermion-antifermion pair production at future lepton- appears that makes the overall effect less controlable. Thus,
antilepton colliders were computed in the standard modeheglecting the non-RG asymptotic effects in the considered
(SM) for both massleskl] and massivéin practice, bottom processes would certainly be a theoretical disaster.
production [2] fermions. As a result of that calculation it ~ The aim of this paper is that of investigating whether
was found that in the high-energy region, contributions arisesimilar conclusions can be drawn when one works in the
that are both of linear and of quadratic logarithmic kind in framework of a supersymmetric extension of the SM. In par-
the c.m. energy, but are not of renormalization gréR®)  ticular, although the same analysis could be performed in a
origin. For this reason they were callg8] “Sudakov-type,”  more general case, we shall fix our attention here on the
[4], although the theoretical mechanism that generates thefimplest minimal supersymmetrSUSY) model (MSSM)
is not, rigorously speaking, of infrared origin, as exhaus{6]. We are motivated in this search kgt least two quali-
tively discussed in Ref5]. In this paper, we shall retain the tative reasons. These are a consequence of the results ob-

original “Sudakov-type” notation, but one might call these te_lined in Ref.[1], showing that in some cases the relative _
terms, e.g., “not of RG origin” to avoid theoretical confu- SIZ& of the effects becomes larger than the expected experi-

sion. mental accuracy. If SUSY extra diagrams increased this

As a by-product of our computations, it was also stresseéf_alue' their rigorous inclusion at on_e-loop would be essen-
in Ref. [2] that, in the special case of bottom-antibottom U@l €., for a test of the theory if SUSY partners were
production, extra terms appear that are “of Sudakov-type”d'scovered' But even if direct production were still lacking
and also quadratic in the top mass, a situation that reminds (f8" SOme special “heavy” SUSY particldg.g., neutralinos

. . o —  a large virtual effect in some observable might be, in prin-
of theZ peak in the calculation of the partiBiwidth into bb. iple, detectable. In this spirit, we shall proceed in this paper

Neglecting these terms would produce a serious the‘ﬂem%s follows. We shall assume that SUSY has been at least
mistake in the case of certain observables, particularipthe partially detected, and that for all the masses of the model a
cross section, and in princip{éor very high lumonisity also  “natuyral” mechanism[7] exists that confines their values
in the bb longitudinal polarization asymmetry. below the TeV limit(in practice, they might roughly be of
When the c.m. energy crosses the typical TeV limit, thethe same size as the top mada this spirit, the c.m. energy
relative effects of the “Sudakov-type” logarithms begin to region beyond one TeV can be considered as “nearly”
rise well beyond thétolerablg few percent threshold, mak- asymptotic. This means that we shall have in our minds,
ing the validity of a one-loop approximation not always ob- more than the future 500 GeV Linear Collid&C) [8] case,
vious, depending on the chosen observable. In particulathat of the next CERN Compact Linear CollidgZLIC) [9],
hadronic production seems to be in a critical shape, as disupposed to be working at energies between 3 and 5 TeV.
cussed in Refl5]. These conclusions are quite different from With due care, though, we feel that a number of our conclu-
those that would be obtained if only the RG linear sions might well be extrapolated to the LC situation, as il-
asymptotic logarithms were retained. In that case, the smootlustrated in the original Refl].
relative effect would remain systematically under control at In Sec. Il of this paper we shall review the various MSSM
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diagrams that give rise to Sudakov logarithms and discusSM from two kinds of diagrams. Vertices with one or two
the analogies and the differences with respect to the SM. WimternalW'’s or one internalZ generate both linear and qua-
shall discuss separately the various contributions both in theratic logarithms; boxes with eith&¥’s or Z's do the same.
massless case and in thathh production(the case of top For massless fermions, there are no other types of loga-
production, that requires a modification of the adopted theorithms. However, for final bottom-antibottom production,
retical scheme, will be treated separately in a forthcomingrertex diagrams produce extra linear logarithms that are also
papey. For final bottom, we shall show that the overall loga- quadratic in the top mass, and cannot be neglected. All these
rithmic genuine SUSY contributions that are also quadratigesults can be found in Refigl,2]; for completeness we have

in the top mass enhance the corresponding SM ones. Morejso written the same type of terms quadratic in the bottom
over, there appear terms that are quadratic in the bottorfhass although they are numerically negligible.

mass and are multiplied by t48, which could also be siz-  When one moves to the MSSM, the situation becomes, at
able for very large values of t3. The obtained expressions |east for what concerns this special topic, relatively simpler.
of the various observables will be shown in Sec. Ill, and thein fact, one discovers immediately that box diagrams with
features of the MSSM relative effects will be displayed ininternal SUSY partners do not generate asymptotic loga-
several figures. It will appear that the MSSM logarithmic rithms. This feature, which is quite different from the SM
effects are drastically different from those of the SM, andone, is due to the different spin structure of the fermion-
again quite different from those obtained in the pure RGfermion-scalar couplings which arise in supersymmetry and
approximation. The expectable validity of a logarithmic pa-replace the fermion-fermion-vector couplings arising in the
rametrization will be discussed in the final Sec. IV, with SM. As a consequence, when the energy increases, the su-
special emphasis on the CLIC energy region but also on thgersymmetry box contribution vanish as an inverse power of
LC case. The possibility of a relatively simple parametriza-q2, Thus only self-energies and vertices must be considered.
tion to be used in the TeV energy range will be also quali-Self-energies will generate the RG logarithmic behavior.

tatively motivated. Finally, a short Appendix will contain the Summing the various bubbles involving SUSY partndrs (
detailed asymptotic logarithmic contributions from various _ + ¥9), Higgs bosons A°, H®, h°), and Goldstones, we

diagrams to the four gauge-invariant functions that in OUfopain ‘the self-energy contributions to the four functions
approach generate all the observable quantities of the cons@— VZ N2V . : :
af» Rig, V5, Vii? given in the Appendix. Using the rela-

ered process at the electroweak one loop. : " ) -
tions between these contributions and the expressions giving
the running ofg;, g,, s& established in Ref1], we have
[l. MSSM DIAGRAMS GENERATING ASYMPTOTIC checked that our result agrees with the running quoted in the
LOGARITHMS literature[12] for both the SM and the MSSM cases.

For vertices, the analysis is, to our knowledge, new and,
our opinion, interesting. First, and again because of the
; : X absence of helicity conserving fermion-fermion-vector cou-
was lllustrated in severa_l previous papgts] and was con- lings, in SUSY there is no helicity structure analogue to the
veniently used to describe the process of_electron—posnro ne brought by the SMWW?1 triangle and then no qua-
annihilation into a final fermiOI(lf) an'[ifel’mionf, that can be dratic |Ogarithmic contribution. However’ there appears lin-
either a lepton-antilepton or a “light” ,d,s,c,b) quark-  ear |ogarithmic contributions called “Sudakov-type” be-
antiquark pair. For what concerns the genuine electroweakayse they are not universal and do not contribute to RG. For
sector Of the pI’OCGSS, a” the relevant information iS prOVided'nass|ess fermionS, they are generated by the diagrams that
by four gauge-invariant functions @f* and 6 (the squared inyolve chargings) or neutralings) together with sfermions
c.m. energy and scattering angteat are called\ ,;s, Ry, exchanges as shown in Fig. 1; the related effects on the four
V¥, V{7 and describe one-loop transitions of various Lor-functions are given in the Appendix. They can be compared
entz structuréphoton-photonZ-Z, photonZ, andZ-photon, ~ with the corresponding SM effects computed in Rf],
respectively. These functions vanish by constructioncgt ~ Sec. Il C. _ _ o
-0 (A,) and q2=M§ (the other three quantitigsrespec- One should also note at this point a remarkable simplifi-

tively, and are ultraviolet finite. They enter the theoreticalCalion which appears in the asymptotic regime. Each

expression of the various cross sections and asymmetries infgutralino- or chargino-sfermion-fermion coupling depends
way that is summarized in Appendix B of RéL], and we 0N MiXing matrix elements involving several parameters of

will not insist on their properties here. the MSSM; however, in the high-energy limis¥M?),

At one loop, the previous four gauge-invariant functionsWhen summing the contributions of the four neutralino
receive contributions from diagrams of self-energy, vertexStates, or of the two chargino states, one can use the unitary
and box type. Self-energy diagrams with a small addition ofProperties of the mixing matrices szo that the leading logarith-
the “pinch” part of the WW vertex generate asymptotically Mic terms only depend or andsyy, as one can check in
logarithms of the c.m. energy in agreement with the renorEds.(A4)—(A14). o
malization group (RG) treatment. Extra logarithms of A special discussion is due to the case of finalproduc-
“pseudo-Sudakov” typgwe follow the original denomina- tion. Here to the previous SUSY diagrams one must add the
tion of Degrassi and Sirlin11], whose description of four- contributions from the MSSM Higgs bosons, exactly like in

fermion processes has been adopted in our yarise in the the SM case. So we shall have both contributions of

The theoretical analysis of this paper is based on the use
of the so-called Z-peak-subtracted” representation, which
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FIG. 2. Triangle diagrams with SUSY partners exchanges con-
tributing to the asymptotic logarithmic behavior in the energy;
represent either charginos or neutralinos.

[1,11]. One easily finds first thg contribution and secondly
the (H) contribution
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FIG. 1. Standard model triangle and box diagiams, with addi-
tional triangles from the Higgs sector in the casébfproduction. (2.9

. _ _ o _ whereP g=(1% y°)/2.

chargino-neutralino—sfermion origin, see Fig(denoted by In the previous equations, we have retained not only the
a symboly), and of Higgs origin, see Fig. @lenoted by @  terms proportional tan? and tomZtar?, as usually done
symbolH). Note that, being interested in the additional con-(ihe |atter ones become competitive for large favalues,
tribution brought by SUSY, to be later on added to the SMy;t a1s0 those simply proportional to?, which are usually
contribution in order to get the full MSSM one, in the Higgs giscarded. Note that we did not retain SUSY masses inside
part (H), we write the total MSSM Higgs contribution minus the |ogarithm, being for the moment only interested in the
the SM Higgs contribution. asymptotic energy limit. In principle, we could use a com-

For the purposes of the following discussion it is conve-mon reference massl and discard constant terms in the
nient to write the effects of the previous diagrams, rathefformulas. In fact, these possible constants will be thoroughly
than on the gauge-invariant subtracted functions, on the phatiscussed in the final part of this paper. Thus, all(thattom,
ton andZ verticesIl'}, Fi, defined in a conventional way top) mass terms contributing the asymptotic logarithms have

095010-3



M. BECCARIA, F. M. RENARD, AND C. VERZEGNASSI PHYSICAL REVIEW 53 095010

>

been retained and, as one sees, they are not vanishing and
principle numerically relevant, as one could easily verify by
computing their separate effects on the various observables

This is, in principle, no surprise since the corresponding f’;,—'
terms in the SM were also, as we said, not negligible. To be, z 1 Z ~mmmana’” :
more precise, we write the “massive” SM vertices, that T
were computed in Ref2], simply adding the terms propor- H
tional to mf, that were neglected in that paper, obtaining the
expressions b
'/ (SM, massive ’
~| =5 | N[ (y*PL) + mi(¥*PR)] 5o
487TM\2NS\2N q t L b R ”/
VA WMMN\ b
2 ™.
mb 2 “ “ 50
—| 5 | g (PO +(¥*PR], (25
487 My,Sw
b
FZ(SM, massive FIG. 3. Triangle diagrams of SUSY Higgs boson origin contrib-
K uting to the asymptotic logarithmic behavior in the ener§rep-
ea , (3 , ) ) resent neutral Higgs bosoi®,H° h°, or GoldstoneG®.
——| | Ing?| | 5 — sk |mZ(y*PL)
487M2,3,C0 2 SwjMEyY L
) and themﬁ one by 2(ktarfB).! Note again that this re-
2,20 eam, markable and simple result only arises in the asymptotic re-
~SwMp(Y*Pr) |~ 23 i ing to th kind of unit ties of th
487M2S3 cyy gime owing to the same kind of unitary properties of the
mixing matrices already mentioned in the case of massless
J(3 B 2 final fermions. Among all the MSSM parameters of the su-
XIng%| 5 =sw|(Y*PU=sw(¥*Pr)| (2.6 persymmetry sector only t3A remains in the leading terms:

this will have practical consequences that will be fully illus-
trated in Sec. lll.
and adding Eqgs(2.1)—(2.4) we obtain the total massive
terms in the MSSM
. ASYMPTOTIC EXPRESSIONS OF THE

] OBSERVABLES
I'7(MSSM, massive _ _
We are now ready to compute the dominant asymptotic

ea a?\ logarithmic terms in the various observables. For the mass-
SATMZ L In(?)[mt(l"i_ cof B)(y*PL) less SUSY partner sector of the MSSM, they will only be
WoW t produced by self-energigshe RG componeintand by the
+m2(1+tartB){(y*P) +2(y*Pr)}l, (2.7 vertices withy ™, x° shown in Fig. 1, computed for massless
fermions (the Sudakov-type termsFor the massive sector
they will be produced both byy) mass effects of Fig. 1 and

— —

Fi(MSSM,massiv;e by (I_-|) mass effects of Fig. 2 as o_liscussed in_ the preceding
section. Using the standard coupling conventifibg leads
ea 2 3 to expressions for the photon addvertices that can be eas-
| =—5=—|In —2)[mf(§—s\2,\,) ily “projected” on the four gauge-invariant functions. From
24mMySwCw M the equations given in Appendix B of Réf] one can then

derive the effect on various observables. To save space and

time, we omit these intermediate steps and give directly the

latter expressions in the following equations. We have con-
(2.8 sidered here both the case of unpolarized production of the

X (14 cofB)(y*PL)+m3(1+tartB)

X

3 2 2
E—SW)WPL)—stw“PR)] .

Note that there exists a very simple practical rule to move *we have checked that the signs of our vertices agree with those
from the SM to the MSSM for the asymptotic mass effects.of Ref.[13] satisfying their positivity prescription for the imaginary
One just multiplies themt2 term of the SM by 2 (% cot’p) part of the external fermion self-energies.
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five “light” quarks and leptons and that of polarized initial linear massless Sudak@g®USY) term (scaled by the com-
electron beams. The latter case would lead to the observationon massM), the linear massive SudakdBUSY) term
of a number of longitudinal polarization asymmetries, whosearising from the quadratimt2 contribution(scaled by a com-
properties have been exhaustively discussed elseyyhBfe  mon massv’) and in curly brackets the same term to which
We have considered for final quarks the overall hadronighe mitar?3 contribution is added for tafi=40. This was
production(symbol 5) and that of the separate bottym-  done in order to show precisely the difference between the
bol b), that exhibits interesting features that will be dis- total SM prediction and the total SUSY part. We have cho-
cussed. The overall results shown in the following equationgen to use for simplicity common mass scalsand M’
also include the SM effects previously compuféc?]. because of the present ignorance of the physical masses of
The various terms are grouped in the following order: firstthe charginos, neutralinos and sfermions appearing in the
the RGSM) with the mass scalg, followed by the linear triangle diagrams of Fig. 2 as well as those of the charged
and quadratic Sudakod8M, W) terms, the linear and qua- and neutral Higgs bosons appearing together with the top and
dratic Sudakov(SM, Z) terms, and finally, in the case of the bottom quark in Fig. 3. A change of reference scale is
hadronic observables, the linear Sudakov term arising fronequivalent to the addition of an asymptotically negligible
the quadratien? contribution; then, the SUSY contributions, constant term; as already mentioned in Sec. I we will dis-
first the RG(SUSY) term with the mass scalg, then the cuss the possible inclusion of constant terms in Sec. IV:

o,=0
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In the previous equations denotes cross section&gg

asymptotic terms in Figs. 4—12, with the following conven-

forward backward asymmetried, r longitudinal polariza- tion: for cross sections, we show the relative effect; for
tion asymmetries, A, the forward-backward polarization asymmetries, the absolute effect. To fix a scale, we also write
asymmetry{16]. They are computed numerically using Egs. in the figure captions the value of tifasymptoti¢ “Born”
(B.1)—(B.5) of Ref.[1] in which the analytic expressions of terms. We have also pyi=M; for the RG terms and
A, R V,z, andVz, given in the Appendix of the present =M'=m for the SUSY terms. The plots have been drawn
paper are plugged in. The various “subtracted” Born termsin an energy region between one and ten TeV. Higher values
are defined in Refd.1,2]. As one can see explicitly in Egs. seem to us not realistic at the moment. For lower values we
(B.1)-(B.5) of Ref. [1] they depend on the inputg(0) and  feel that the asymptotic approximation might be “prema-
I'(z—ff), s? taken from the experimental measurements ature” for SUSY masses of a few hundred GeV that we as-

Z peak[17].
Equationg3.1)—(3.9) are the main result of this paper. To sion.

sumed, and we shall return to this point in the final discus-

better appreciate their message, we have plotted the As one sees from Figs. 4-12, a number of clean conclu-
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sions can be drawn in the considered energy range. In paishing so that only linear logarithms survive. The delicate
ticular, we note the following. cancellation mechanism between linear and quadratic loga-
(1) The shift between the SM and the MSSM effects isrithms, that was deeply upset in the case of the other vari-
systematically large and visible in all the considered observables by the extra linear SUSY logarithms, is therefore ab-
ables at the reasonably expected luminosity vali@$ew  sent in the unpolarized asymmetries case.
hundreds of fb! per year at LC or CLIC leading to an (2) The pure RG logarithmic approximation, shown in
accuracy close to the percent levéh all the cross sections, Figs. 4—12, is in general rather different from the overall
this shift is dramatic, sometimes changing the sign of thdRG + Sudakoy one in a way that can be energy dependent.
effect and increasing or decreasing its absolute value by fad-or all the considered observables with the exception of
tors of 2-3. Similar conclusions are valid for the set of po-A g , and A g, this difference remains large and measur-
larized asymmetries; for unpolarized asymmetries, the effecble at the expected luminosity in the “CLIC special” en-
is less spectacular, but still visible. This decrease of speaergy region (3—5 Te\). Therefore, approximating the
tacularity has a simple technical reason: for unpolarizedasymptotic logarithmic terms with the pure RG components
asymmetries, the SM squared logarithms are practically varfor the considered processes would be a catastrophic theoret-

LR, n
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ical error in the MSSM case, exactly as it would have been irseems therefore that in some cases supersymmetry makes the
the SM situation. SM one-loop effect less “dangerous,” in other cases it re-
(3) Looking at the size of the effect, one notices that thisverses the situation. Fers the reduction of the effect in the
must be separately discussed for each specific observable @LIC region would guarantee a reasonable validity of the
different energies. If one sticks to the CLIC energy region,perturbative expansion; for bottom production, the conclu-
one notices that fos, the MSSM effect is now comparable sion depends on the value of t#h Note, though, that for
(but of opposite signto the SM case, reaching values of a higher energies these conclusions might change, as shown by
few percent. Fow the effect is now reduced from beyond the shape of the various curves. As a general comment, our
the SM ten percent to a value oscillating around the fewfeeling is that in the TeV regime, for the MSSM, the validity
percent level. For bottom production, the effect is stronglyof a one-loop perturbative expansion is apparently safer than
dependent on taf and reaches values of more than 10% forin the SM case, with the remarkable exceptionogfin the
tanB=40. For the asymmetries, as one can see from Figs. Brge tan3 case.
and 10 the effect is sometimes increased and sometimes re- One final point remains to be discussed. Up to now we
duced and is always remaining of the few percent size. lhave only considered the dominant asymptotic SUSY terms

ALR,S
0.10 . .
0.05 - i
0.00 - Ny _
= R
T eswi—e FIG. 8. Absolute effects i\ g5 due to the
- NS T T T T T T T s e e i I i ’
3 _0.05 - e TNUs. i asymptotic logarithmic terms. The Born value for
Ja . S ~ 2
< e TNTmeo largeq” is 0.46.
-0.10 | T~ TUe-IlTe— -
—— sM T T
——- SM+SUSY (tanf = 1.0) T
015 | — - — Universal RG B
—-— SM4#SUSY (tanp = 40.0)
-0.20 ' : ‘ :
0 2 4 6 8 10

sqrt(q) (TeV)
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Gb
0.20 . .
0.10 f 1
N I
N T T T
<N
0.00 ST 1
~. *\\t\
- :\\Q\\\:\ FIG. 9. Relative effects ino, due to the
g. 010} Thsl TTERL | asymptotic logarithmic terms. The Born expres-
< - TThEs ; 2 2 2
E RSN Q\\\\\Q\ sion for largeq is 92 fb/(q“/TeV-).
‘\‘\5\ \\%
-0.20 f T
— SM
——- SM+SUSY (tanP = 1.0)
~0.30 F — - — Universal RG -
—-— SM+SUSY (tanf = 40.0)
-0.40 s w ‘ .
0 2 4 6 8 10
sqri(q) (TeV)

in the 1-10 TeV range. For the SM case, it was dd¢that  to derive, in this case, an extra constant asymptotic contribu-
these were able to reproduce with good accul@tyhe few  tion. This will be shortly discussed in what follows.

percent levelthe complete effect, and that in order to give a

more complete parametrization it was sufficient to add to the

logarithmic terms a constant one, depending on the observ- IV. A SIMPLE ASYMPTOTIC FIT FOR A

able and which can be determined, e.g., by a standard best fit SUPERSYMMETRY EEFECT

procedure. This was possible because in the SM there were

no other free parameters left. In the MSSM case, the situa- The logarithmic terms that we have computed are sup-

tion is at the moment more complicated, since all the paramposed to be the dominant SUSY ones at asymptotic energies.
eters of the model are nowadays unknoftinis might no  For realistic smaller energy regions, there might be other

longer be a problem in a few yeardo try to get at least a SUSY contributions that cannot be neglected. The simplest
feeling of what could happen, we have devoted Sec. IV texample is that of constant terms, whose presence would
the discussion of the simplest example that we can providdead to an expansion for a general cross section or asymme-
that of the SUSY Higgs effect. Our aim is only that of trying try of the kind

AFB,b
0.09 —— SM |
——- SM+SUSY (tanf=1)
— — - Universal RG
0.07 + —-— SM+SUSY (tanB=40) B
0.05 - eI T e ]
L j;///
e FIG. 10. Absolute effects if\gg, due to the
e 003 7 1 asymptotic logarithmic terms. The Born value for
g e
< largeq” is 0.64.
0.01 | 4
-0.01 | T T T T T
-0.03 + J
-0.05 ' L L !
0 2 4 6 8 10
sqrt(q’) (TeV)
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FIG. 11. Absolute effects if\ g, due to the
asymptotic logarithmic terms. The Born value for
- largeqg? is 0.62.

ALR.b
0.05 ' ' ‘
—— sM
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— - — Universal RG
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\\\
\ ~.
AN ~.
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\\\\\\
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gBor+ (one loop SUSY)_ Born q2
Bom = E( C1,U|OQW +Copt - |,
(4.1)
o q2
ABorn+(one loop SUSY) ABorn— E( C1A|OQW + CO,A+ con ],
4.2

where “Born” now includes the SM value. Hereg, c, are
in principle functions of all the free parametefixing
angles and massesf the virtual contributions under consid-
eration. The choice of the mass scilaffects the definition
of ¢y and will be discussed below. The labelche loop

SUSY)” stands for a definite subset of one loop diagrams
(e.g., SUSY Higgs exchange, SUSY gauginos exchange

In the SM case, an analogous simple possibility was con-
sidered[1,2] and it was shown that the resulting expression
was fitting the accurate results to quite a gdfev permille
accuracy also in an energy range between 500 GeV and one
TeV, where in principle it might have been a “poor” ap-
proximation. This was interpreted as a consequence of a
“precocious” asymptotism in the SM case, where all the
relevant masses are well below the TeV value. In the MSSM,
the situation might be worse if the SUSY masses are rela-
tively heavy. Still, the possibility of a simple parametriza-
tion, e.g., valid in the CLIC region, appears qualitatively
motivated. The practical investigation of this idea would re-

A,
— SM
0.09 ——- SM+SUSY )
—-— Universal RG
007 | —-— SM+SUSY (tanp = 40) |
LT T T T T e e
005 T T T e 1
P FIG. 12. Absolute effects iA, due to the
. 003 T~ ] asymptotic logarithmic terms. The Born value for
< T T . '
< ST largeq? is 0.46.
\\\ \\..
0.01 | \\\\\\\\ T
-0.01 - - 1
003+ T -
-0.05 : !
0 2 4 6 8 10

sqrt(q) (TeV)
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quire, in principle, a lengthy calculation given the number of 9
parameters of the modelsnasses, mixings..). The latter tanp=2.0
ones typically disappear in the asymptotic terms as we 2 ‘
stressed, but would reappear in subleading terms such as tt .
constantcg, as one can easily check by calculation, e.g., of T
the massless vertices.

In this short final section, we have analyzed the simplest 1t
case of the SUSY Higgs contribution, whose asymptotic ex- <
pression we have derived. What we want to do is to isolate ii‘y‘i;p.om value
this effect and try to estimate its subleading constant term.

With this purpose, we have considered all those hadronic g |- - — S P
observables to which the SUSY Higgs diagrams do contrib-
ute; the exactnot asymptotif expression of the observables
at the one loop level is of the kind

oBOn+SUSY Higgs_ ;Bomn 0.1 02 0.3 0.4 0.5

o
_ 2 o
O.Born - At Fu(q ’tanﬂl M A), (4.3) M, (TeV)

FIG. 13. Effective parametrization of the SUSY Higgs boson
effects inos. The constants, andc; are obtained by &? fit in the
ABomn+SUSY Higgs  pBorn_ iFA(qz,tanB,MA), energy range between 2 and 10 TeV with gn2.0. The error
4 quoted is the maximum absolute differenceith respect tog?)
(4.4 between the effective parametrization and the exact full calculation
and is always negligible. The constantis very near its analytical
whereg is the mixing angle related to the two Higgs vacuum asymptotic value and as such is also roughly independein gn
expectation valuesdyl , is the mass of th€ P odd supersym-  On the other hand, the constant tecgiis smoothly dependent on
metry Higgs bosomA®, and the masses of the other super-M,.
symmetry Higgs particles have been determined by means of

the codeFEYNHIGGS[18]. dent because the logarithm in the one loop vertex is simply
Away from resonances, the functi¢ty, (O=0c or A) is  related to the mass independent residue of its pole diver-

expected to be gence.
We have also tried to determine the possible dependence

9 of ¢y, ¢4 on the free parameter tghat fixedM,. From a
Fo=cio(tanB,Mp)log— +cop(tang,Mu). (4.5 numerical thorough analysis and motivated by the depen-
M2 dence on tag@ of the diagrams with charged SUSY Higgs

boson exchange, we checked that forganl the following
We carefully analyzed the behavior of the hadronic observfynctional form:

ablesoy,, 05, Argb, ALrbs ALrs, andA,. As a represen-

tative example, we consider here in some details the case of Ci,O(tan,ByMA):CiJrO(MA)tanZB"_ CFO(MA)COIZ,B

os. In Fig. (13), we plot the coefficients, andc, as func- ' ' 4.7

tions of M, at tanB=2.0. We obtained them by fitting with

a standardg? procedure the full computation of the diagrams reproduces the exact calculation perfectly with mildiiy,

in the energy range between 2 and 10 TeV. As one can sedependent coefficientgfo. The plot ofc;” in the case ofrs

the maximum absolute error in the fitdefined as is shown in Fig. 14, where we remark that the coefficients of
the logarithmc; are, as expected, roughly independent on

M A . The remarkabléin our opinior) fact is that the analytic
g(tanﬁvMA):ma% Fo(g%tanB,M,) —c1o(tanB,M,) parametrization reproduces the exact numerical calculation
o2 practically identically, as seen in Fig. 13. It should be added
2 that a similar parametrization in the energy region from 500
xlogq—z—coo(tanﬂ,MA) (4.6) GeV to 1 TeV would be much less satisfactory, and much
M ' more M 5, dependent. Just to give an example, we show in

Fig. 15 what happens in the casemf at tanB=2.0. Due to
is completely negligible. This holds true as far as the fittinga resonance at aboyig?=2m, in the vertex with two top
range does not include resonances. We checked that the rguark lines and a single charged Higgs boson, the simple
gion \s>2 TeV andM,<500 GeV is safe and perfectly logarithmic representation of the effect is not accurate and, in
reproduced for all the considered observables. An importanparticular, the fitted coefficiert, is far from its asymptotic
check of the fitting procedure is provided by the value ofvalue.
C10, Whose analytical expression we know. Indeed, as one The lesson that we learn from this example is, therefore,
can read in Fig. 13, the fitted coefficient is very near its exacthat a priori one can expect to be able to reproduce with
value for allM . We remark that it has to bl , indepen-  simple analytical expressions dominated by logarithms the
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O for instance, where the availability of such a simple expres-

= ¢ tan’p + ¢, cotB sion might be essential. In a forthcoming paper, we shall

8 ‘ develop a more complete study of this problem that also

includes the other supersymmetry contributions of “not
To— supersymmetry-Higgs-bosons” type.

— g ‘ V. CONCLUSIONS

4 . In this paper we have extended to the SUSY case the
e study of the high energy behavior of four-fermion processes

e"e —ff, f being a lepton or a light quarku(d,s,c,b),

2+ . that we had previously performed in the SM case. We have
considered the asymptotic behavior of the four-fermion am-

plitudes at one loop and we have observed that specific fea-
tures differentiate the SUSY part from the SM part.

In both cases we first obtained the single logarithmic
. . + . . terms due to photon and self-energy contributions leading
‘ ‘ - T to the well-known renomalization group effects. However, in
0.1 0.2 0.3 0.4 0.5 addition, we have found large logarithmic terms due to non-

M, (TeV) universal diagrams, called “Sudakov type.” In the SM there
appear linear logarithmic and quadratic logarithmic terms. In
the SUSY part there are only linear logarithmic terms. No
the constantgg, in ¢;=c;" tar?8+c; cofB. This functional form q_u_adrat_ic logarithmic terms are generated because of the spe-
turns out to be’perfectly matched by the exact calculation. We in-CIfIC Spin s_trupture of ,the couplings to the Sl,JSY pa_rtners
terpret this fact as a dominance of the diagrams with exchange diPPearing inside the diagrams. In the Appendix we give the
charged SUSY Higgs bosons that have this dependence gn tan€XPliCit analytical asymptotic expressions of these various
Again, the coefficients of the logarithaj are roughly independent ontributions(RG and Sudakgvfor both the SM and the
of M,. MSSM.

The Sudakov terms arising in SUSY have additional spe-
cific and very interesting features. Contrary to the SM where
a partial cancellatiortat moderately high energieappears
. . : between linear and quadratic logarithmic terms, in the SUSY
TeV regime. This would be rather useful in ttepparently [f)art linear terms areq alone andgremain important. In particu-

probable case of need of a perturbative expansion beyon ; 2 ; .
the one-loop order, but could also be used for the purposes o?r they enhance the massmef, mp, asymptotic contribu

technical operations to be performed at one I6QED ISR, tions to bEproduction by factors that depend on4gnin a
potentially visible way.

We have computed the effects of these asymptotic terms

FIG. 14. Dependence on tgnin the effective parametrization of
the SUSY Higgs boson effects ins. For eachM 5, we determine

MSSM prediction for all the relevant observables of the pro-
cess ofe*e” annihilation into a fermion-antifermion in the

Gi . . . .
: in the various unpolarized and polarized observables, cross
08 ‘““sz‘(’ ‘ sections, and asymmetries. We have made illustrations for
X the high-energy range accessible to a future LC or CLIC, and
oL ——- ohor | we have shown the specific behavior of the SM and of the
asymptotic value MSSM cases, emphasizing also the large departure from

what would have been expected taking only the RG effects
into account.
" . These results are important for the tests of electroweak
e e | properties which will be performed at these machines. They
Tt B also indicate that for very high energies, if a high accuracy is
o achievable, the one loop treatment might be more reliable
. than in the SM case with the remarkable exception oftthe
cross section, for which a more complete two loop calcula-
tion might be necessary, a situation which already occured at
401 02 03 o4 05 the Z peak Ref[19].2 On the other hand, for moderate ener-
M, (TeV) gies (close to 1 TeV, when SUSY masses fall in the few
hundred GeV range so that one is not yet in an asymptotic

04 F

0.2 -

FIG. 15. Effective parametrization of the SUSY Higgs boson
effects inos5 in the energy range between 500 GeV and 1 TeV. This____
region is definitely nonasymptotic and the constagtsc, afforded
by the best fit procedure turn out to be strongly dependei gras 2We are indebted to R. Barbieri for a clarifying discussion on this
discussed in the text. point.
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regime, we have shown that simple empirical formulas can , a 3_83\2/v+ 125&/
reproduce the effect of subleading terms. We have made one Reu(9°)— ;In q e |’ (A5)
illustration with the SUSY Higgs effects on the total had- Swew
ronic cross section. For a complete treatment much more 5 5
work is required and this point is at present under investiga- V,z,eu(d9) =Vzye,(0°)
tion [20]. @ 9— 3082+ 24s%,
—|—=In q2 168—3 . (AB)
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- 5 a ) -7+ SS\ZN
APPENDIX: ASYMPTOTIC LOGARITHMIC Baedd)=| ZING" )| —g ), (A7)

CONTRIBUTIONS IN THE MSSM

1. Universal (y,Z-self-energy SUSY contributions R 5 al 5 27— 588\2,\,+ 6453\,
They arise from the bubblggnd associated tadpole dia- ed @) —| ZInG 7254,C4 ’
grams involving internal L and R sleptons and squarks, (A8)

charginos, neutralinos, as well as the charged and neutral

Higgs bosons and Goldstongsubtracting the standard o 45— 14652+ 12650,
. o 2y [0 g2
Higgs boson contribution V,zedd%) (Wlnq )( 1448,C2, )

- 16N (A9)

Aﬁnw(qz)—’% 3+ T)(In 9%, (A1)
Vo AGD) (al 2)(81—210sév+1285‘v‘\,)

— | —In
. o \[13-263+18st, zred @) 74 1445,y
RunN(qZ)_}_ > (AlO)
Amshca, 6
oN Contribution toe* e~ —uu,cc:
+(3—6s3,+ 853\,)? (Ing?), (A2)
~ — 71+ 825}
Aa,eu(qz)e(glnqz)(—zxw), (A11)
unive 2\ __\sunive 2 i 72CW
Viz (49)=Vz, (q°)—— pp———
. R(GD) (al 2)(27—67sa,+825‘v‘v)
13- 18s, 2N el @)= | =N || —— |
X|———+(3-8s%)—|(Ing?), (A3 g 725y Cw
5 +t(3-8s{)—-|(Ing?), (A3) AL2)

whereN is the number of slepton and squark families. These
terms contribute to the RG effects.

2 4
o [@ | (632008, + 164,
Vized ) (qu )( 4k, )"

2. Nonuniversal SUSY contributions (A13)

These are the contributions coming from triangle dia-
grams connected either to the initife™ or to the finalff Vz, eu(qz)_)(ﬁm QZ)(
lines, and containing supersymmetry partners, sfermfons ' ™
charginos or neutralinog;, or SUSY Higgs bosongsee
Figs. 1, 2; external fermion self-energy diagrams are added
making the total contribution finite. These nonuniversal 3. Nonuniversal SUSY contributions, finalbb
terms consist im;-independent terms and im;-dependent
terms (quadraticm? and m2 terms. In this subsection we

81— 24083+ 16453V)

14483,
(A14)

We now list them? andm? dependent terms appearing in

write the m;-independent terms appearing in eaghe™ e'e —bb:
—ff process, them-dependent terms being given, for o m2
e*e”—bb, in the next subsection. A er(0?) = A, ed(9?) - 5 Ing? s\z,\,—tz(1+2 cofpB)
Contribution toete™ —u* u™: 24msyy M
— 2 m2
3 2 [ % 2| [ Z2FOSw +(3-83)(1+2 tafB)— A15
Ay eu(d?) (Wlnq> rrealt (A4) (3=sw)( 'B)M\ZN' (A15)
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4, Universal SM contributions

« ZSW
Reb(qz)_’Red(qz)+167Tsz In g (1_ 3 In order to allow an easy comparison of the above SUSY
w contributions with the SM ones we now recall, in the next
m?2 282 three subsections, the results obtained in ReR2] for the
xM—;(1+2 colB)+| 1+ TW> same four gauge invariant functions:
" . a(u?)[3 ¢?
m2 AR9 (g2, 6)— Tom 3N 21/In| — |, (A19)
><(1+2tar?B)M—2 , (A16) K
W
w 2 R(RO)(q2 a(MZ) 20—40c5V+32c3VN
Vize @)=V oz ed 07 + z4wsw'”qz(m(”2c°‘2ﬁ> (0=~ s, 9
1-2c3,—42cy 2
m2 n #V In( q—z) , (A20)
- —(1+2tarfp) |, (A17) i
Ile
2
o SW V(RG) 2’ 0 :V(RG) 2’ 0
Vzy,eb(08) = Vzy,ed 08 + To———IN0?| 1- —= e (4.0 =Ve (a59)
16msyCw 3 5 2 2
a(p?) [10-16c3,  1+42c2,
m? m T 3mSuCw| 6 "7
X| —5(1+2cofB)— —-(1+2tarfp) |.
M M | qz A21
XIn| —|.
5. Nonuniversal SM contributions, final fermionsf#b
2 2 a@-vi-od[_ ¢* P
155 —65 C2slinart 2 (st 282y U T g 4 e 4
alf(q 0)— —[ al an 277( u @)In M\z/v 64775\2,VC\2,V nM_§ n M%
2 2 2
q q 1—-cosé q q 1+cosé
2+ n———1(8,+8q)+| In>—+ —
ZW(InM 2|MW| o | (8t 89)+| In? T 2'|v| Nz In— !
———— | (1-vd)(1—vH)| | qz| L cosh A22
2567-er54 7| (1-vh)(1-vp) "MZ "= coso (A22)
2 2 2
a Sw 2sy q
Rffs)(qz,e)ﬁ—hs\zN 2c5v—5ﬂ—(1—?> 5u—<1 3 )5d In—s MZ,
2 2 2 2 2 2
@ Sw 2sy q®>  a(2+4+3v{+3v7) q q
- S| 1- ) syt | 1— =2 | 54|In? In—5—In?—
Amsy| * 3/ 3 ) } M3 64mSs3,Cly MZ " M2
2 2 2 2
aC 1—-cos# 1+cos6
+— (|n2q +21 q2|—(5 +89)+| In? q LI |—)5u}
27s2, 2 Teiyz T Mz, <z,
o a I q2I 1+cosé A3
Sy LI nMi N cosal’ (A23)
(S) (2 @ 2 2 q* 2, , 0
VyZ,If(q ,a)ﬁm [3—120W+20W(5u+26d)]an— 1+ §CW(5U+25d) In WV
_|aun(l- vi)  alQqlvg 9 q>]  acy g 9> 1-cos
3I—5—IN’—|+ — | INP—5+2In—5In———|(5,+ 4,
1287S3C3, | 8msuCw MZ M2|t 2as | Mg T2 Mz N[Ot %)
e , O @, q2| L+coso| ] « L2 2| 1+ cosé A4
Nz 2 Iz In ST LIS )an N~ cosd|’ (A24)
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(9 « a* 2 2 . &
VEi(@® 6)— 5|3~ 122, 2528, +25d)]ln—2— 1- 353(8,+26,) |In Vi
avi(1-vf) av, q® q? aCy q? q’> 1-cosé
- + 3In——In>—|+ I — 42 In—In———
1287|Qq|sacy,  8TSwew M2 M2| " 2msy M2, M 2
< (8,4 59+ | -0y 42Ty 51 @ P b
(0 00+ gz +2Inyz I3 Mo L Vel
(A25)
|
where s, , =1 for f—,u u,d, and O otherwise and,=1 7. Nonuniversal massive MSSM contributions, finabb

—45s%, vi=1—4|Q{ s . In each of the above equations,

we have su sively added the contributions comina from Finally we find it interesting to sum up all the mass'mé
€ have successively a co ons coming fron 4 mb terms appearing in the MSSKSM and SUSY non-
triangles containing one or twe/, from triangles containing
oneZ, from WW box and finally fromZZ box. universal massive contributions & e~ —bb). We remark
that the net effect as compared to the SM result is a factor
— 2
6. Nonuniversal SM contributions, final bb fh(é;fgi’g) for the m; term and a factor 2(% tarf ) for
b

For bb production there are additional SM contributions

proportional tom? andm arising from triangles involving -~ b ) Y |, M 2
G*%orHgy lines and Yukawa couplings involving, or m, aeb(07) = A g edd )_127755\/'”‘1 Sw, (1+cot )
(thosem, terms which only come from the kinematics and w
give contributions vanishing ax;lf,/q2 have been safely ne- mf,
glected: +(3—s§v)(1+tar?ﬂ)M—2 , (A30)
W
(09 =B 0o @D~ 5p (l @
ab(A7)—=R414(47) — ARLrYY 2\ 2
' 241 M a 25y m
o Ret( @)= Red %) + = qu“1 T)—;
] m; Miw
X|si| =7 | +(3=si)| == ||, (A26) , ,
My My 2sy, mg
X (1+cofB)+ 1+— (1+tarfB)—|,
q? 22, M
Rin(a?)— Ria(a?) + 16W33V Ingz)| |13 (A31)
2 2 2
my ZSW b aCy
x|z | 1 T)(Wv CA2D) V2 @)= Vozedd) o ing?
2 2
aCy q2 mI mb
Vyzi6(@2) = V,z a(6%) + 24WSW( '”W) x(mmcoﬁﬁ)— M—\2N(1+tar\2/3)) ,
m? mZ (A32)
X ===zl (A28)
MW IVIW ZS\zN
i i N q Vzyet(d9)—Vz, ed(9?) + mlnq (1— T)
Vzy6(d%)—Vz,,14(d )+m Iz 2
22 \[ [ m? 2 (1+cot2B)— (1+tanz,8))
o) ()]
3 My w (A33)
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