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Logarithmic supersymmetric electroweak effects on four-fermion processes at TeV energies
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We compute the minimal supersymmetry model one-loop contributions to the asymptotic energy behavior of
fermion-antifermion pair production at future lepton-antilepton colliders. In addition to the conventional loga-
rithms of renormalization group origin, extra supersymmetry linear logarithmic terms appear of ‘‘Sudakov-
type.’’ In the TeV range their overall effect on a variety of observables can be quite relevant and drastically
different from that obtained in the standard model case.
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I. INTRODUCTION

In recent papers@1,2#, the effects of one-loop diagrams o
fermion-antifermion pair production at future lepto
antilepton colliders were computed in the standard mo
~SM! for both massless@1# and massive~in practice, bottom
production! @2# fermions. As a result of that calculation
was found that in the high-energy region, contributions ar
that are both of linear and of quadratic logarithmic kind
the c.m. energy, but are not of renormalization group~RG!
origin. For this reason they were called@3# ‘‘Sudakov-type,’’
@4#, although the theoretical mechanism that generates t
is not, rigorously speaking, of infrared origin, as exhau
tively discussed in Ref.@5#. In this paper, we shall retain th
original ‘‘Sudakov-type’’ notation, but one might call thes
terms, e.g., ‘‘not of RG origin’’ to avoid theoretical confu
sion.

As a by-product of our computations, it was also stres
in Ref. @2# that, in the special case of bottom-antibotto
production, extra terms appear that are ‘‘of Sudakov-typ
and also quadratic in the top mass, a situation that remind
of theZ peak in the calculation of the partialZ width into bb̄.
Neglecting these terms would produce a serious theore
mistake in the case of certain observables, particularly thebb̄
cross section, and in principle~for very high lumonisity! also
in the bb̄ longitudinal polarization asymmetry.

When the c.m. energy crosses the typical TeV limit, t
relative effects of the ‘‘Sudakov-type’’ logarithms begin
rise well beyond the~tolerable! few percent threshold, mak
ing the validity of a one-loop approximation not always o
vious, depending on the chosen observable. In particu
hadronic production seems to be in a critical shape, as
cussed in Ref.@5#. These conclusions are quite different fro
those that would be obtained if only the RG line
asymptotic logarithms were retained. In that case, the sm
relative effect would remain systematically under control
0556-2821/2001/63~9!/095010~16!/$20.00 63 0950
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TeV energies, not generating special theoretical diseases
the contrary, in the Sudakov case a subtle mechanism
opposite linear and quadratic logarithms contributions of
appears that makes the overall effect less controlable. T
neglecting the non-RG asymptotic effects in the conside
processes would certainly be a theoretical disaster.

The aim of this paper is that of investigating wheth
similar conclusions can be drawn when one works in
framework of a supersymmetric extension of the SM. In p
ticular, although the same analysis could be performed
more general case, we shall fix our attention here on
simplest minimal supersymmetry~SUSY! model ~MSSM!
@6#. We are motivated in this search by~at least! two quali-
tative reasons. These are a consequence of the results
tained in Ref.@1#, showing that in some cases the relati
size of the effects becomes larger than the expected ex
mental accuracy. If SUSY extra diagrams increased
value, their rigorous inclusion at one-loop would be ess
tial, e.g., for a test of the theory if SUSY partners we
discovered. But even if direct production were still lackin
for some special ‘‘heavy’’ SUSY particles~e.g., neutralinos!,
a large virtual effect in some observable might be, in pr
ciple, detectable. In this spirit, we shall proceed in this pa
as follows. We shall assume that SUSY has been at l
partially detected, and that for all the masses of the mod
‘‘natural’’ mechanism@7# exists that confines their value
below the TeV limit~in practice, they might roughly be o
the same size as the top mass!. In this spirit, the c.m. energy
region beyond one TeV can be considered as ‘‘near
asymptotic. This means that we shall have in our min
more than the future 500 GeV Linear Collider~LC! @8# case,
that of the next CERN Compact Linear Collider~CLIC! @9#,
supposed to be working at energies between 3 and 5 T
With due care, though, we feel that a number of our conc
sions might well be extrapolated to the LC situation, as
lustrated in the original Ref.@1#.

In Sec. II of this paper we shall review the various MSS
©2001 The American Physical Society10-1
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diagrams that give rise to Sudakov logarithms and disc
the analogies and the differences with respect to the SM.
shall discuss separately the various contributions both in
massless case and in that ofbb̄ production~the case of top
production, that requires a modification of the adopted th
retical scheme, will be treated separately in a forthcom
paper!. For final bottom, we shall show that the overall log
rithmic genuine SUSY contributions that are also quadra
in the top mass enhance the corresponding SM ones. M
over, there appear terms that are quadratic in the bot
mass and are multiplied by tan2b, which could also be siz-
able for very large values of tan2b. The obtained expression
of the various observables will be shown in Sec. III, and
features of the MSSM relative effects will be displayed
several figures. It will appear that the MSSM logarithm
effects are drastically different from those of the SM, a
again quite different from those obtained in the pure R
approximation. The expectable validity of a logarithmic p
rametrization will be discussed in the final Sec. IV, wi
special emphasis on the CLIC energy region but also on
LC case. The possibility of a relatively simple parametriz
tion to be used in the TeV energy range will be also qu
tatively motivated. Finally, a short Appendix will contain th
detailed asymptotic logarithmic contributions from vario
diagrams to the four gauge-invariant functions that in o
approach generate all the observable quantities of the con
ered process at the electroweak one loop.

II. MSSM DIAGRAMS GENERATING ASYMPTOTIC
LOGARITHMS

The theoretical analysis of this paper is based on the
of the so-called ‘‘Z-peak-subtracted’’ representation, whic
was illustrated in several previous papers@10# and was con-
veniently used to describe the process of electron-posi
annihilation into a final fermion~f ! antifermionf̄ , that can be
either a lepton-antilepton or a ‘‘light’’ (u,d,s,c,b) quark-
antiquark pair. For what concerns the genuine electrow
sector of the process, all the relevant information is provid
by four gauge-invariant functions ofq2 and u ~the squared
c.m. energy and scattering angle! that are calledD̃a l f , Rl f ,
Vl f

gZ , Vl f
Zg and describe one-loop transitions of various Lo

entz structure~photon-photon,Z-Z, photon-Z, andZ-photon,
respectively!. These functions vanish by construction atq2

50 (D̃a) and q25MZ
2 ~the other three quantities!, respec-

tively, and are ultraviolet finite. They enter the theoretic
expression of the various cross sections and asymmetries
way that is summarized in Appendix B of Ref.@1#, and we
will not insist on their properties here.

At one loop, the previous four gauge-invariant functio
receive contributions from diagrams of self-energy, vert
and box type. Self-energy diagrams with a small addition
the ‘‘pinch’’ part of theWW vertex generate asymptoticall
logarithms of the c.m. energy in agreement with the ren
malization group ~RG! treatment. Extra logarithms o
‘‘pseudo-Sudakov’’ type~we follow the original denomina-
tion of Degrassi and Sirlin@11#, whose description of four-
fermion processes has been adopted in our work! arise in the
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SM from two kinds of diagrams. Vertices with one or tw
internalW8s or one internalZ generate both linear and qua
dratic logarithms; boxes with eitherW8s or Z8s do the same.
For massless fermions, there are no other types of lo
rithms. However, for final bottom-antibottom productio
vertex diagrams produce extra linear logarithms that are
quadratic in the top mass, and cannot be neglected. All th
results can be found in Refs.@1,2#; for completeness we hav
also written the same type of terms quadratic in the bott
mass although they are numerically negligible.

When one moves to the MSSM, the situation becomes
least for what concerns this special topic, relatively simp
In fact, one discovers immediately that box diagrams w
internal SUSY partners do not generate asymptotic lo
rithms. This feature, which is quite different from the S
one, is due to the different spin structure of the fermio
fermion-scalar couplings which arise in supersymmetry a
replace the fermion-fermion-vector couplings arising in t
SM. As a consequence, when the energy increases, the
persymmetry box contribution vanish as an inverse powe
q2. Thus only self-energies and vertices must be conside
Self-energies will generate the RG logarithmic behavi
Summing the various bubbles involving SUSY partnersf̃ ,
x6, x0), Higgs bosons (A0, H0, h0), and Goldstones, we
obtain the self-energy contributions to the four functio
D̃a l f , Rl f , Vl f

gZ , Vl f
Zg given in the Appendix. Using the rela

tions between these contributions and the expressions gi
the running ofg1 , g2 , sW

2 established in Ref.@1#, we have
checked that our result agrees with the running quoted in
literature@12# for both the SM and the MSSM cases.

For vertices, the analysis is, to our knowledge, new a
in our opinion, interesting. First, and again because of
absence of helicity conserving fermion-fermion-vector co
plings, in SUSY there is no helicity structure analogue to
one brought by the SM (WW f) triangle and then no qua
dratic logarithmic contribution. However, there appears l
ear logarithmic contributions called ‘‘Sudakov-type’’ be
cause they are not universal and do not contribute to RG.
massless fermions, they are generated by the diagrams
involve chargino~s! or neutralino~s! together with sfermions
exchanges as shown in Fig. 1; the related effects on the
functions are given in the Appendix. They can be compa
with the corresponding SM effects computed in Ref.@1#,
Sec. II C.

One should also note at this point a remarkable simp
cation which appears in the asymptotic regime. Ea
neutralino- or chargino-sfermion-fermion coupling depen
on mixing matrix elements involving several parameters
the MSSM; however, in the high-energy limit (s@Mi

2),
when summing the contributions of the four neutrali
states, or of the two chargino states, one can use the un
properties of the mixing matrices so that the leading logar
mic terms only depend ona and sW

2 , as one can check in
Eqs.~A4!–~A14!.

A special discussion is due to the case of finalbb̄ produc-
tion. Here to the previous SUSY diagrams one must add
contributions from the MSSM Higgs bosons, exactly like
the SM case. So we shall have both contributions
0-2
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LOGARITHMIC SUPERSYMMETRIC ELECTROWEAK . . . PHYSICAL REVIEW D63 095010
chargino-neutralino–sfermion origin, see Fig. 1~denoted by
a symbolx), and of Higgs origin, see Fig. 2~denoted by a
symbolH). Note that, being interested in the additional co
tribution brought by SUSY, to be later on added to the S
contribution in order to get the full MSSM one, in the Higg
part (H), we write the total MSSM Higgs contribution minu
the SM Higgs contribution.

For the purposes of the following discussion it is conv
nient to write the effects of the previous diagrams, rat
than on the gauge-invariant subtracted functions, on the p
ton andZ verticesGm

g , Gm
Z , defined in a conventional wa

FIG. 1. Standard model triangle and box diagrams, with ad

tional triangles from the Higgs sector in the case ofbb̄ production.
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@1,11#. One easily finds first thex contribution and secondly
the ~H! contribution

Gm
g ~x!→2S ea

48pMW
2 sW

2 D ln q2Fmt
2S 11

1

tan2b
D ~gmPL!

1mb
2~11tan2b!$~gmPL!12~gmPR!%G , ~2.1!

Gm
Z~x!→2S ea

48pMW
2 sW

3 cW
D ln q2F S 3

2
2sW

2 Dmt
2~11cot2b!

3~gmPL!1mb
2~11tan2b!H S 3

2
2sW

2 D ~gmPL!

22sW
2 ~gmPR!J G , ~2.2!

Gm
g ~H !→2S ea

48pMW
2 sW

2 D ln q2@mt
2cot2b~gmPL!

1mb
2tan2b$~gmPL!12~gmPR!%#, ~2.3!

Gm
Z~H !→2S ea

48pMW
2 sW

3 cW
D ln q2F S 3

2
2sW

2 Dmt
2cot2b~gmPL!

1mb
2tan2bH S 3

2
2sW

2 D ~gmPL!22sW
2 ~gmPR!J G ,

~2.4!

wherePL,R5(17g5)/2.
In the previous equations, we have retained not only

terms proportional tomt
2 and to mb

2tan2b, as usually done
~the latter ones become competitive for large tanb values!,
but also those simply proportional tomb

2 , which are usually
discarded. Note that we did not retain SUSY masses ins
the logarithm, being for the moment only interested in t
asymptotic energy limit. In principle, we could use a com
mon reference massM and discard constant terms in th
formulas. In fact, these possible constants will be thoroug
discussed in the final part of this paper. Thus, all the~bottom,
top! mass terms contributing the asymptotic logarithms ha

i-

FIG. 2. Triangle diagrams with SUSY partners exchanges c
tributing to the asymptotic logarithmic behavior in the energy;x i

represent either charginos or neutralinos.
0-3



n
by
le

in
b

at
-
h

e

v
ts

re-
he
less
u-
;
s-

tic
ss-
e

ss
r

ing

-

and
the
on-
the

ose
y

ib-
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been retained and, as one sees, they are not vanishing a
principle numerically relevant, as one could easily verify
computing their separate effects on the various observab
This is, in principle, no surprise since the correspond
terms in the SM were also, as we said, not negligible. To
more precise, we write the ‘‘massive’’ SM vertices, th
were computed in Ref.@2#, simply adding the terms propor
tional to mb

2 that were neglected in that paper, obtaining t
expressions

Gm
g ~SM,massive!

→2S ea

48pMW
2 sW

2 D ln q2@mt
2~gmPL!1mb

2~gmPR!#

2S eamb
2

48pMW
2 sW

2 D ln q2@~gmPL!1~gmPR!#, ~2.5!

Gm
Z~SM,massive!

→2S ea

48pMW
2 sW

3 cW
D ln q2F S 3

2
2sW

2 Dmt
2~gmPL!

2sW
2 mb

2~gmPR!G2S eamb
2

48pMW
2 sW

3 cW
D

3 ln q2F S 3

2
2sW

2 D ~gmPL!2sW
2 ~gmPR!G ~2.6!

and adding Eqs.~2.1!–~2.4! we obtain the total massiv
terms in the MSSM

Gm
g ~MSSM,massive!

→2S ea

24pMW
2 sW

2 D lnS q2

mt
2D @mt

2~11cot2b!~gmPL!

1mb
2~11tan2b!$~gmPL!12~gmPR!%#, ~2.7!

Gm
Z~MSSM,massive!

→2S ea

24pMW
2 sW

3 cW
D lnS q2

mt
2D Fmt

2S 3

2
2sW

2 D
3~11cot2b!~gmPL!1mb

2~11tan2b!

3H S 3

2
2sW

2 D ~gmPL!22sW
2 ~gmPR!J G . ~2.8!

Note that there exists a very simple practical rule to mo
from the SM to the MSSM for the asymptotic mass effec
One just multiplies themt

2 term of the SM by 2(11cot2b)
09501
d in
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and themb
2 one by 2(11tan2b).1 Note again that this re-

markable and simple result only arises in the asymptotic
gime owing to the same kind of unitary properties of t
mixing matrices already mentioned in the case of mass
final fermions. Among all the MSSM parameters of the s
persymmetry sector only tan2b remains in the leading terms
this will have practical consequences that will be fully illu
trated in Sec. III.

III. ASYMPTOTIC EXPRESSIONS OF THE
OBSERVABLES

We are now ready to compute the dominant asympto
logarithmic terms in the various observables. For the ma
less SUSY partner sector of the MSSM, they will only b
produced by self-energies~the RG component! and by the
vertices withx6,x0 shown in Fig. 1, computed for massle
fermions ~the Sudakov-type terms!. For the massive secto
they will be produced both by (x) mass effects of Fig. 1 and
by ~H! mass effects of Fig. 2 as discussed in the preced
section. Using the standard coupling conventions@14# leads
to expressions for the photon andZ vertices that can be eas
ily ‘‘projected’’ on the four gauge-invariant functions. From
the equations given in Appendix B of Ref.@1# one can then
derive the effect on various observables. To save space
time, we omit these intermediate steps and give directly
latter expressions in the following equations. We have c
sidered here both the case of unpolarized production of

1We have checked that the signs of our vertices agree with th
of Ref. @13# satisfying their positivity prescription for the imaginar
part of the external fermion self-energies.

FIG. 3. Triangle diagrams of SUSY Higgs boson origin contr
uting to the asymptotic logarithmic behavior in the energy;S0 rep-
resent neutral Higgs bosonsA0,H0,h0, or GoldstoneG0.
0-4
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five ‘‘light’’ quarks and leptons and that of polarized initia
electron beams. The latter case would lead to the observa
of a number of longitudinal polarization asymmetries, who
properties have been exhaustively discussed elsewhere@15#.
We have considered for final quarks the overall hadro
production~symbol 5) and that of the separate bottom~sym-
bol b), that exhibits interesting features that will be di
cussed. The overall results shown in the following equati
also include the SM effects previously computed@1,2#.

The various terms are grouped in the following order: fi
the RG~SM! with the mass scalem, followed by the linear
and quadratic Sudakov~SM, W) terms, the linear and qua
dratic Sudakov~SM, Z) terms, and finally, in the case o
hadronic observables, the linear Sudakov term arising fr
the quadraticmt

2 contribution; then, the SUSY contribution
first the RG~SUSY! term with the mass scalem, then the
09501
on
e

c

s

t

m

linear massless Sudakov~SUSY! term ~scaled by the com-
mon massM ), the linear massive Sudakov~SUSY! term
arising from the quadraticmt

2 contribution~scaled by a com-
mon massM 8) and in curly brackets the same term to whi
the mb

2tan2b contribution is added for tanb540. This was
done in order to show precisely the difference between
total SM prediction and the total SUSY part. We have ch
sen to use for simplicity common mass scalesM and M 8
because of the present ignorance of the physical masse
the charginos, neutralinos and sfermions appearing in
triangle diagrams of Fig. 2 as well as those of the charg
and neutral Higgs bosons appearing together with the top
the bottom quark in Fig. 3. A change of reference scale
equivalent to the addition of an asymptotically negligib
constant term; as already mentioned in Sec. II we will d
cuss the possible inclusion of constant terms in Sec. IV:
sm5sm
BF11

a

4p H ~7.72N220.58!ln
q2

m2 1S 35.27 ln
q2

MW
2

24.59 ln2
q2

MW
2 D

1S 4.79 ln
q2

MZ
2

21.43 ln2
q2

MZ
2D 1~3.86N17.75!ln

q2

m2 210.02 ln
q2

M2J G , ~3.1!

AFB,m5AFB,m
B 1

a

4p H ~0.54N25.90!ln
q2

m2 1S 10.19 ln
q2

MW
2

20.08 ln2
q2

MW
2 D

1S 1.25 ln
q2

MZ
2

20.004 ln2
q2

MZ
2D 1~0.27N11.57!ln

q2

m2 20.079 ln
q2

M2J , ~3.2!

ALR,m5ALR,m
B 1

a

4p H ~1.82N219.79!ln
q2

m2 1S 30.76 ln
q2

MW
2

23.52 ln2
q2

MW
2 D

1S 0.78 ln
q2

MZ
2

20.17 ln2
q2

MZ
2D 1~0.91N15.25!ln

q2

m2 23.69 ln
q2

M2J , ~3.3!

s55s5
BF11

a

4pH ~9.88N242.66!ln
q2

m2 1S 46.58 ln
q2

MW
2

26.30 ln2
q2

MW
2 D 1S 7.25 ln

q2

MZ
2

22.03 ln2
q2

MZ
2D

21.21 ln
q2

mt
2

1~4.94N113.66! ln
q2

m2 210.99 ln
q2

M2 23.65$25.21% ln
q2

M 82J G , ~3.4!

ALR,55ALR,5
0 1

a

4p H ~2.11N222.95!ln
q2

m2 1S 24.07 ln
q2

MW
2

23.12 ln2
q2

MW
2 D 1S 1.63 ln

q2

MZ
2

20.55 ln2
q2

MZ
2D

20.53 ln
q2

mt
2

1~1.05N16.09! ln
q2

m2 23.63 ln
q2

M221.60$10.44% ln
q2

M 82J , ~3.5!

sb5sb
BH 11

a

4pF ~10.88N253.82!ln
q2

m2 1S 76.75 ln
q2

MW
2

27.10 ln2
q2

MW
2 D 1S 11.98 ln

q2

MZ
2

22.45 ln2
q2

MZ
2D

28.42 ln
q2

mt
2

1~5.44N116.61! ln
q2

m2 211.82 ln
q2

M2225.3$236.0% ln
q2

M 82G J , ~3.6!
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AFB,b5AFB,b
B 1

a

4p H ~0.56N26.13!ln
q2

m2 1S 17.23 ln
q2

MW
2

20.31 ln2
q2

MW
2 D 1S 0.96 ln

q2

MZ
2

20.08 ln2
q2

MZ
2D

20.36 ln
q2

mt
2

1~0.28N11.63! ln
q2

m2 20.38 ln
q2

M2 21.10$10.26% ln
q2

M 82J , ~3.7!

ALR,b5ALR,b
B 1

a

4pH ~1.88N220.46!ln
q2

m2 1S 27.91 ln
q2

MW
2

22.35 ln2
q2

MW
2 D 1S 1.92 ln

q2

MZ
2

20.52 ln2
q2

MZ
2D

22.39 ln
q2

mt
2

1~0.94N15.43! ln
q2

m2 22.86 ln
q2

M227.16$12.57% ln
q2

M 82J , ~3.8!

Ab5Ab
01

a

4p H ~1.41N215.38!ln
q2

m2 1S 31.03 ln
q2

MW
2

21.76 ln2
q2

MW
2 D 1S 4.30 ln

q2

MZ
2

20.49 ln2
q2

MZ
2D

22.38 ln
q2

mt
2

1~0.71N14.08! ln
q2

m2 22.25 ln
q2

M2 27.14$13.18% ln
q2

M 82J . ~3.9!

FIG. 4. Relative effects insm due to the
asymptotic logarithmic terms. The Born expre
sion for largeq2 is 111 fb/(q2/TeV2).
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In the previous equationss denotes cross sections,AFB
forward backward asymmetries,ALR longitudinal polariza-
tion asymmetries,Ab the forward-backward polarizatio
asymmetry@16#. They are computed numerically using Eq
~B.1!–~B.5! of Ref. @1# in which the analytic expressions o
D̃a , R, VgZ , andVZg given in the Appendix of the presen
paper are plugged in. The various ‘‘subtracted’’ Born ter
are defined in Refs.@1,2#. As one can see explicitly in Eqs
~B.1!–~B.5! of Ref. @1# they depend on the inputsa(0) and
G(Z→ f f̄ ), sf

2 taken from the experimental measurements
Z peak@17#.

Equations~3.1!–~3.9! are the main result of this paper. T
better appreciate their message, we have plotted
09501
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asymptotic terms in Figs. 4–12, with the following conve
tion: for cross sections, we show the relative effect;
asymmetries, the absolute effect. To fix a scale, we also w
in the figure captions the value of the~asymptotic! ‘‘Born’’
terms. We have also putm5MZ for the RG terms andM
5M 85mt for the SUSY terms. The plots have been draw
in an energy region between one and ten TeV. Higher val
seem to us not realistic at the moment. For lower values
feel that the asymptotic approximation might be ‘‘prem
ture’’ for SUSY masses of a few hundred GeV that we a
sumed, and we shall return to this point in the final disc
sion.

As one sees from Figs. 4–12, a number of clean con
0-6
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FIG. 5. Absolute effects inAFB,m due to the
asymptotic logarithmic terms. The Born value fo
largeq2 is 0.47.
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sions can be drawn in the considered energy range. In
ticular, we note the following.

~1! The shift between the SM and the MSSM effects
systematically large and visible in all the considered obse
ables at the reasonably expected luminosity values~a few
hundreds of fb21 per year at LC or CLIC leading to a
accuracy close to the percent level!. In all the cross sections
this shift is dramatic, sometimes changing the sign of
effect and increasing or decreasing its absolute value by
tors of 2–3. Similar conclusions are valid for the set of p
larized asymmetries; for unpolarized asymmetries, the ef
is less spectacular, but still visible. This decrease of sp
tacularity has a simple technical reason: for unpolariz
asymmetries, the SM squared logarithms are practically v
09501
r-

-

e
c-
-
ct
c-
d
n-

ishing so that only linear logarithms survive. The delica
cancellation mechanism between linear and quadratic lo
rithms, that was deeply upset in the case of the other v
ables by the extra linear SUSY logarithms, is therefore
sent in the unpolarized asymmetries case.

~2! The pure RG logarithmic approximation, shown
Figs. 4–12, is in general rather different from the over
~RG 1 Sudakov! one in a way that can be energy depende
For all the considered observables with the exception
ALR,m and ALR,b this difference remains large and measu
able at the expected luminosity in the ‘‘CLIC special’’ en
ergy region ~3–5 TeV!. Therefore, approximating the
asymptotic logarithmic terms with the pure RG compone
for the considered processes would be a catastrophic the
r

FIG. 6. Absolute effects inALR,m due to the

asymptotic logarithmic terms. The Born value fo
largeq2 is 0.063.
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FIG. 7. Relative effects ins5 due to the
asymptotic logarithmic terms. The Born expre
sion for largeq2 is 641 fb/(q2/TeV2).
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ical error in the MSSM case, exactly as it would have been
the SM situation.

~3! Looking at the size of the effect, one notices that t
must be separately discussed for each specific observab
different energies. If one sticks to the CLIC energy regio
one notices that forsm the MSSM effect is now comparabl
~but of opposite sign! to the SM case, reaching values of
few percent. Fors5 the effect is now reduced from beyon
the SM ten percent to a value oscillating around the f
percent level. For bottom production, the effect is stron
dependent on tanb and reaches values of more than 10%
tanb540. For the asymmetries, as one can see from Fig
and 10 the effect is sometimes increased and sometime
duced and is always remaining of the few percent size
09501
n

s
at

,

y
r
5

re-
It

seems therefore that in some cases supersymmetry make
SM one-loop effect less ‘‘dangerous,’’ in other cases it
verses the situation. Fors5 the reduction of the effect in the
CLIC region would guarantee a reasonable validity of t
perturbative expansion; for bottom production, the conc
sion depends on the value of tan2b. Note, though, that for
higher energies these conclusions might change, as show
the shape of the various curves. As a general comment,
feeling is that in the TeV regime, for the MSSM, the validi
of a one-loop perturbative expansion is apparently safer t
in the SM case, with the remarkable exception ofsb in the
large tanb case.

One final point remains to be discussed. Up to now
have only considered the dominant asymptotic SUSY te
r

FIG. 8. Absolute effects inALR,5 due to the

asymptotic logarithmic terms. The Born value fo
largeq2 is 0.46.
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FIG. 9. Relative effects insb due to the
asymptotic logarithmic terms. The Born expre
sion for largeq2 is 92 fb/(q2/TeV2).
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in the 1–10 TeV range. For the SM case, it was seen@1# that
these were able to reproduce with good accuracy~at the few
percent level! the complete effect, and that in order to give
more complete parametrization it was sufficient to add to
logarithmic terms a constant one, depending on the obs
able and which can be determined, e.g., by a standard be
procedure. This was possible because in the SM there w
no other free parameters left. In the MSSM case, the si
tion is at the moment more complicated, since all the para
eters of the model are nowadays unknown~this might no
longer be a problem in a few years!. To try to get at least a
feeling of what could happen, we have devoted Sec. IV
the discussion of the simplest example that we can prov
that of the SUSY Higgs effect. Our aim is only that of tryin
09501
e
v-

t fit
re

a-
-

o
e,

to derive, in this case, an extra constant asymptotic contr
tion. This will be shortly discussed in what follows.

IV. A SIMPLE ASYMPTOTIC FIT FOR A
SUPERSYMMETRY EFFECT

The logarithmic terms that we have computed are s
posed to be the dominant SUSY ones at asymptotic energ
For realistic smaller energy regions, there might be ot
SUSY contributions that cannot be neglected. The simp
example is that of constant terms, whose presence wo
lead to an expansion for a general cross section or asym
try of the kind
r

FIG. 10. Absolute effects inAFB,b due to the

asymptotic logarithmic terms. The Born value fo
largeq2 is 0.64.
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FIG. 11. Absolute effects inALR,b due to the
asymptotic logarithmic terms. The Born value fo
largeq2 is 0.62.
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sBorn1(one loop SUSY)2sBorn

sBorn
5

a

4p S c1,slog
q2

M2
1c0,s1••• D ,

~4.1!

ABorn1(one loop SUSY)2ABorn5
a

4p S c1,Alog
q2

M2
1c0,A1••• D ,

~4.2!

where ‘‘Born’’ now includes the SM value. Here,c0 , c1 are
in principle functions of all the free parameters~mixing
angles and masses! of the virtual contributions under consid
eration. The choice of the mass scaleM affects the definition
of c0 and will be discussed below. The label ‘‘~one loop
09501
SUSY!’’ stands for a definite subset of one loop diagram
~e.g., SUSY Higgs exchange, SUSY gauginos exchange!.

In the SM case, an analogous simple possibility was c
sidered@1,2# and it was shown that the resulting expressi
was fitting the accurate results to quite a good~few permille!
accuracy also in an energy range between 500 GeV and
TeV, where in principle it might have been a ‘‘poor’’ ap
proximation. This was interpreted as a consequence o
‘‘precocious’’ asymptotism in the SM case, where all th
relevant masses are well below the TeV value. In the MSS
the situation might be worse if the SUSY masses are r
tively heavy. Still, the possibility of a simple parametriz
tion, e.g., valid in the CLIC region, appears qualitative
motivated. The practical investigation of this idea would r
r

FIG. 12. Absolute effects inAb due to the

asymptotic logarithmic terms. The Born value fo
largeq2 is 0.46.
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quire, in principle, a lengthy calculation given the number
parameters of the models~masses, mixings, . . .!. The latter
ones typically disappear in the asymptotic terms as
stressed, but would reappear in subleading terms such a
constantc0, as one can easily check by calculation, e.g.,
the massless vertices.

In this short final section, we have analyzed the simp
case of the SUSY Higgs contribution, whose asymptotic
pression we have derived. What we want to do is to iso
this effect and try to estimate its subleading constant ter

With this purpose, we have considered all those hadro
observables to which the SUSY Higgs diagrams do cont
ute; the exact~not asymptotic! expression of the observable
at the one loop level is of the kind

sBorn1SUSY Higgs2sBorn

sBorn
5

a

4p
Fs~q2,tanb,MA!, ~4.3!

ABorn1SUSY Higgs2ABorn5
a

4p
FA~q2,tanb,MA!,

~4.4!

whereb is the mixing angle related to the two Higgs vacuu
expectation values,MA is the mass of theCP odd supersym-
metry Higgs bosonA0, and the masses of the other sup
symmetry Higgs particles have been determined by mean
the codeFEYNHIGGS @18#.

Away from resonances, the functionFO (O5s or A) is
expected to be

FO.c1,O~ tanb,MA!log
q2

MA
2

1c0,O~ tanb,MA!. ~4.5!

We carefully analyzed the behavior of the hadronic obse
ablessb , s5 , AFB,b , ALR,b , ALR,5, andAb . As a represen-
tative example, we consider here in some details the cas
s5. In Fig. ~13!, we plot the coefficientsc0 andc1 as func-
tions of MA at tanb52.0. We obtained them by fitting with
a standardx2 procedure the full computation of the diagram
in the energy range between 2 and 10 TeV. As one can
the maximum absolute error in the fit« defined as

«~ tanb,MA!5max
q2

UFO~q2,tanb,MA!2c1,O~ tanb,MA!

3 log
q2

MA
2

2c0,O~ tanb,MA!U ~4.6!

is completely negligible. This holds true as far as the fitti
range does not include resonances. We checked that th
gion As.2 TeV andMA,500 GeV is safe and perfectl
reproduced for all the considered observables. An impor
check of the fitting procedure is provided by the value
c1,O , whose analytical expression we know. Indeed, as
can read in Fig. 13, the fitted coefficient is very near its ex
value for allMA . We remark that it has to beMA indepen-
09501
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re-

nt
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dent because the logarithm in the one loop vertex is sim
related to the mass independent residue of its pole di
gence.

We have also tried to determine the possible depende
of c0 , c1 on the free parameter tanb at fixed MA . From a
numerical thorough analysis and motivated by the dep
dence on tanb of the diagrams with charged SUSY Higg
boson exchange, we checked that for tanb.1 the following
functional form:

ci ,O~ tanb,MA!5ci ,O
1 ~MA!tan2b1ci ,O

2 ~MA!cot2b
~4.7!

reproduces the exact calculation perfectly with mildlyMA

dependent coefficientsci ,O
6 . The plot ofci

6 in the case ofs5

is shown in Fig. 14, where we remark that the coefficients
the logarithmc1

6 are, as expected, roughly independent
MA . The remarkable~in our opinion! fact is that the analytic
parametrization reproduces the exact numerical calcula
practically identically, as seen in Fig. 13. It should be add
that a similar parametrization in the energy region from 5
GeV to 1 TeV would be much less satisfactory, and mu
more MA dependent. Just to give an example, we show
Fig. 15 what happens in the case ofs5 at tanb52.0. Due to
a resonance at aboutAq252mt in the vertex with two top
quark lines and a single charged Higgs boson, the sim
logarithmic representation of the effect is not accurate and
particular, the fitted coefficientc1 is far from its asymptotic
value.

The lesson that we learn from this example is, therefo
that a priori one can expect to be able to reproduce w
simple analytical expressions dominated by logarithms

FIG. 13. Effective parametrization of the SUSY Higgs bos
effects ins5. The constantsc0 andc1 are obtained by ax2 fit in the
energy range between 2 and 10 TeV with tanb52.0. The error
quoted is the maximum absolute difference~with respect toq2)
between the effective parametrization and the exact full calcula
and is always negligible. The constantc1 is very near its analytical
asymptotic value and as such is also roughly independent onMA .
On the other hand, the constant termc0 is smoothly dependent on
MA .
0-11
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MSSM prediction for all the relevant observables of the p
cess ofe1e2 annihilation into a fermion-antifermion in th
TeV regime. This would be rather useful in the~apparently
probable! case of need of a perturbative expansion beyo
the one-loop order, but could also be used for the purpose
technical operations to be performed at one loop~QED ISR,

FIG. 14. Dependence on tanb in the effective parametrization o
the SUSY Higgs boson effects ins5. For eachMA , we determine
the constantsc0,1

6 in ci5ci
1tan2b1ci

2cot2b. This functional form
turns out to be perfectly matched by the exact calculation. We
terpret this fact as a dominance of the diagrams with exchang
charged SUSY Higgs bosons that have this dependence on tb.
Again, the coefficients of the logarithmc1

6 are roughly independen
of MA .

FIG. 15. Effective parametrization of the SUSY Higgs bos
effects ins5 in the energy range between 500 GeV and 1 TeV. T
region is definitely nonasymptotic and the constantsc0 , c1 afforded
by the best fit procedure turn out to be strongly dependent onMA as
discussed in the text.
09501
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for instance!, where the availability of such a simple expre
sion might be essential. In a forthcoming paper, we sh
develop a more complete study of this problem that a
includes the other supersymmetry contributions of ‘‘n
supersymmetry-Higgs-bosons’’ type.

V. CONCLUSIONS

In this paper we have extended to the SUSY case
study of the high energy behavior of four-fermion proces
e1e2→ f f̄ , f being a lepton or a light quark (u,d,s,c,b),
that we had previously performed in the SM case. We h
considered the asymptotic behavior of the four-fermion a
plitudes at one loop and we have observed that specific
tures differentiate the SUSY part from the SM part.

In both cases we first obtained the single logarithm
terms due to photon andZ self-energy contributions leadin
to the well-known renomalization group effects. However,
addition, we have found large logarithmic terms due to no
universal diagrams, called ‘‘Sudakov type.’’ In the SM the
appear linear logarithmic and quadratic logarithmic terms
the SUSY part there are only linear logarithmic terms. N
quadratic logarithmic terms are generated because of the
cific spin structure of the couplings to the SUSY partne
appearing inside the diagrams. In the Appendix we give
explicit analytical asymptotic expressions of these vario
contributions~RG and Sudakov! for both the SM and the
MSSM.

The Sudakov terms arising in SUSY have additional s
cific and very interesting features. Contrary to the SM wh
a partial cancellation~at moderately high energies! appears
between linear and quadratic logarithmic terms, in the SU
part linear terms are alone and remain important. In parti
lar they enhance the massivemt

2 , mb
2 asymptotic contribu-

tions tobb̄ production by factors that depend on tan2b in a
potentially visible way.

We have computed the effects of these asymptotic te
in the various unpolarized and polarized observables, c
sections, and asymmetries. We have made illustrations
the high-energy range accessible to a future LC or CLIC, a
we have shown the specific behavior of the SM and of
MSSM cases, emphasizing also the large departure f
what would have been expected taking only the RG effe
into account.

These results are important for the tests of electrow
properties which will be performed at these machines. Th
also indicate that for very high energies, if a high accuracy
achievable, the one loop treatment might be more relia
than in the SM case with the remarkable exception of thebb̄
cross section, for which a more complete two loop calcu
tion might be necessary, a situation which already occure
theZ peak Ref.@19#.2 On the other hand, for moderate ene
gies ~close to 1 TeV!, when SUSY masses fall in the few
hundred GeV range so that one is not yet in an asympt

2We are indebted to R. Barbieri for a clarifying discussion on t
point.
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regime, we have shown that simple empirical formulas c
reproduce the effect of subleading terms. We have made
illustration with the SUSY Higgs effects on the total ha
ronic cross section. For a complete treatment much m
work is required and this point is at present under investi
tion @20#.
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APPENDIX: ASYMPTOTIC LOGARITHMIC
CONTRIBUTIONS IN THE MSSM

1. Universal „g,Z-self-energy… SUSY contributions

They arise from the bubbles~and associated tadpole dia
grams! involving internal L and R sleptons and squarks
charginos, neutralinos, as well as the charged and ne
Higgs bosons and Goldstones~subtracting the standar
Higgs boson contribution!

D̃a
univ~q2!→ a

4pS 31
16N

9 D ~ ln q2!, ~A1!

Runiv~q2!→2S a

4psW
2 cW

2 D F13226sW
2 118sW

4

6

1~326sW
2 18sW

4 !
2N

9 G~ ln q2!, ~A2!

VgZ
univ~q2!5VZg

univ~q2!→2S a

4psWcW
D

3F13218sW
2

6
1~328sW

2 !
2N

9 G~ ln q2!, ~A3!

whereN is the number of slepton and squark families. The
terms contribute to the RG effects.

2. Nonuniversal SUSY contributions

These are the contributions coming from triangle d
grams connected either to the initiale1e2 or to the finalf f̄

lines, and containing supersymmetry partners, sfermionf̃ ,
charginos or neutralinosx i , or SUSY Higgs bosons~see
Figs. 1, 2!; external fermion self-energy diagrams are add
making the total contribution finite. These nonunivers
terms consist inmf-independent terms and inmf-dependent
terms ~quadraticmt

2 and mb
2 terms!. In this subsection we

write the mf-independent terms appearing in eache1e2

→ f f̄ process, themf-dependent terms being given, fo
e1e2→bb̄, in the next subsection.

Contribution toe1e2→m1m2:

D̃a,em~q2!→S a

p
ln q2D S 2516sW

2

4cW
2 D , ~A4!
09501
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Rem~q2!→S a

p
ln q2D S 328sW

2 112sW
4

8sW
2 cW

2 D , ~A5!

VgZ,em~q2!5VZg,em~q2!

→S a

p
ln q2D S 9230sW

2 124sW
4

16sWcW
3 D . ~A6!

Contribution toe1e2→dd̄, ss̄, bb̄:

D̃a,ed~q2!→S a

p
ln q2D S 2718sW

2

9cW
2 D , ~A7!

Red~q2!→S a

p
ln q2D S 27258sW

2 164sW
4

72sW
2 cW

2 D ,

~A8!

VgZ,ed~q2!→S a

p
ln q2D S 452146sW

2 1128sW
4

144sWcW
3 D ,

~A9!

VZg,ed~q2!→S a

p
ln q2D S 812210sW

2 1128sW
4

144sWcW
3 D .

~A10!

Contribution toe1e2→uū,cc̄:

D̃a,eu~q2!→S a

p
ln q2D S 271182sW

2

72cW
2 D , ~A11!

Reu~q2!→S a

p
ln q2D S 27267sW

2 182sW
4

72sW
2 cW

2 D ,

~A12!

VgZ,eu~q2!→S a

p
ln q2D S 632200sW

2 1164sW
4

144sWcW
3 D ,

~A13!

VZg,eu~q2!→S a

p
ln q2D S 812240sW

2 1164sW
4

144sWcW
3 D .

~A14!

3. Nonuniversal SUSY contributions, finalbb̄

We now list themt
2 andmb

2 dependent terms appearing

e1e2→bb̄:

D̃a,eb~q2!→D̃a,ed~q2!2
a

24psW
2

ln q2F sW
2

mt
2

MW
2 ~112 cot2b!

1~32sW
3 !~112 tan2b!

mb
2

MW
2 G , ~A15!
0-13
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Reb~q2!→Red~q2!1
a

16psW
2

ln q2F S 12
2sW

2

3 D
3

mt
2

MW
2 ~112 cot2b!1S 11

2sW
2

3 D
3~112 tan2b!

mb
2

MW
2 G , ~A16!

VgZ,eb~q2!→VgZ,ed~q2!1
acW

24psW
ln q2S mt

2

MW
2 ~112 cot2b!

2
mb

2

MW
2 ~112 tan2b!D , ~A17!

VZg,eb~q2!→VZg,ed~q2!1
a

16psWcW
ln q2S 12

2sW
2

3 D
3S mt

2

MW
2 ~112 cot2b!2

mb
2

MW
2 ~112 tan2b!D .

~A18!
09501
4. Universal SM contributions

In order to allow an easy comparison of the above SU
contributions with the SM ones we now recall, in the ne
three subsections, the results obtained in Ref.@1,2# for the
same four gauge invariant functions:

D̃a
(RG)~q2,u!→ a~m2!

12p F32

3
N221G lnS q2

m2D , ~A19!

R(RG)~q2,u!→2
a~m2!

4psW
2 cW

2 F20240cW
2 132cW

4

9
N

1
122cW

2 242cW
4

6 G lnS q2

m2D , ~A20!

VgZ
(RG)~q2,u!5VZg

(RG)~q2,u!

→ a~m2!

3psWcW
F10216cW

2

6
N1

1142cW
2

8 G
3 lnS q2

m2D . ~A21!
5. Nonuniversal SM contributions, final fermions fÅb

D̃a,l f
(S) ~q2,u!→ a

4p
@62du22dd# ln

q2

MW
2 1

a

12p
~du12dd!ln2

q2

MW
2 1

a~22v l
22v f

2!

64psW
2 cW

2 F3 ln
q2

MZ
22 ln2

q2

MZ
2G

2
a

2p F S ln2
q2

MW
2 12 ln

q2

MW
2 ln

12cosu

2 D ~dm1dd!1S ln2
q2

MW
2 12 ln

q2

MW
2 ln

11cosu

2 D duG
2

a

256pQfsW
4 cW

4 F ~12v l
2!~12v f

2!S ln
q2

MZ
2 ln

11cosu

12cosu D G , ~A22!

Rl f
(S)~q2,u!→2

3a

4psW
2 F2cW

2 2dm2S 12
sW

2

3 D du2S 12
2sW

2

3 D ddG ln q2

MW
2

2
a

4psW
2 Fdm1S 12

sW
2

3 D du1S 12
2sW

2

3 D ddG ln2
q2

MW
2 2

a~213v l
213v f

2!

64psW
2 cW

2 F3 ln
q2

MZ
22 ln2

q2

MZ
2G

1
acW

2

2psW
2 F S ln2

q2

MW
2 12 ln

q2

MW
2 ln

12cosu

2 D ~dm1dd!1S ln2
q2

MW
2 12 ln

q2

MW
2 ln

11cosu

2 D duG
1I 3 f

a

2psW
2 cW

2 Fv lv f ln
q2

MZ
2 ln

11cosu

12cosuG , ~A23!

VgZ,l f
(S) ~q2,u!→ a

8pcWsW
S @3212cW

2 12cW
2 ~du12dd!# ln

q2

MW
2 2F11

2

3
cW

2 ~du12dd!G ln2
q2

MW
2 D

2Fav l~12v l
2!

128psW
3 cW

3 1
auQf uv f

8psWcW
GF3 ln

q2

MZ
2 2 ln2

q2

MZ
2G1

acW

2psW
F S ln2

q2

MW
2 12 ln

q2

MW
2 ln

12cosu

2 D ~dm1dd!

1S ln2
q2

MW
2 12 ln

q2

MW
2 ln

11cosu

2 D duG1I 3 f

a

16psW
3 cW

3 Fv f~12v l
2!ln

q2

MZ
2 ln

11cosu

12cosuG , ~A24!
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s,
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d
-

ctor
wheredm,u,d51 for f 5m,u,d, and 0 otherwise andv l51
24 sW

2 , v f5124 uQf u sW
2 . In each of the above equation

we have successively added the contributions coming f
triangles containing one or twoW, from triangles containing
oneZ, from WW box and finally fromZZ box.

6. Nonuniversal SM contributions, final bb̄

For bb̄ production there are additional SM contributio
proportional tomt

2 and mb
2 arising from triangles involving

G6,0 or HSM lines and Yukawa couplings involvingmt or mb
~thosemb terms which only come from the kinematics an
give contributions vanishing asmb

2/q2 have been safely ne
glected!:
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7. Nonuniversal massive MSSM contributions, finalbb̄

Finally we find it interesting to sum up all the massivemt
2

andmb
2 terms appearing in the MSSM~SM and SUSY non-

universal massive contributions toe1e2→bb̄). We remark
that the net effect as compared to the SM result is a fa
2(11cot2b) for the mt

2 term and a factor 2(11tan2b) for
the mb

2 one
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