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Gluon propagator without lattice Gribov copies
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We study the gluon propagator in quenched lattice QCD using the Laplacian gauge which is free of lattice
Gribov copies. We compare our results with those obtained in the Landau gauge on the lattice, as well as with
various approximate solutions of the Dyson-Schwinger equations. We find a finite vt#s MeV) ? for
the renormalized zero-momentum propagdtaking our renormalization point at 1.943 Gedhd a pole mass

~640+140 MeV.
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I. INTRODUCTION DSE’s where the claim is that the only gauge dependence

appears in the free part. Cornwall’'s solution, in addition to
Over the last 20 years, widely different conjectures haveulfilling the Ward identities, allows a dynamical mass gen-
been proposed for the infrared behavior of the gluon propaeration. Thus this formulation has the additional attractive
gator. Although it is a gauge dependent quantity, it can béeature that the gluon mass vanishes in the ultraviolet as
discussed in a given gauge. Even within the same gauge, thequired perturbatively. Since the self-energy obtained by
proposals for the infrared dependence differ drasticdlly  Cornwall is claimed to be gauge independent, we will use his
We mainly summarize here the results that are given in thenogel to fit the propagator both in the Landau and in the
literature within the Landau gauge, since that gauge is gplacian gauges.
widely used in studies of Dyson-Schwinger equations |n contrast with all the approaches described above, lat-
(DSE's) as well as in lattice QCD. Early predictions were tice QCD provides a framework for the calculation of the
obtained by solving approximately the DSE's. Mandelstamg|yon propagator starting directly from the QCD Lagrangian
[2] obtained a solution of a set of truncated DSE’s with anang can thus yield a conclusive result. Attempts to calculate
infrared behavior of the formgf) ~# for the gluon propaga-  the gluon propagator started more than ten yeard ad 2
tor. Such an infrared enhancement was shown, if obtained ign rather small lattices. These early results could be inter-
any gauge, to lead to an area law for the Wilson If®pand  preted in terms of a massive scalar propagator, but confirmed
thus to be sufficient for confinement. Infrared enhancemene expectation that a Lehmanniia representation is not
was assumed in various phenomenological stufiésand  applicable: positivity of the transfer matrix is lost after non-
corroborated by later studies of DSE’s with refined approxi-jocal gauge fixing. Results on larger lattices were accounted
mations[5]. A different perspective was taken by Grib@,  for by assuming a positive anomalous dimensjia]. Re-
who showed that avoiding gauge copies one would obtain gently, a detailed study of the gluon propagator on very large
gluon propagator which vanishes in the infrared in the Lan4attices[14] has been performed, which makes an impressive
dau and Coulomb gauges, of the form effort towards bringing under control errors due to the finite
lattice spacing and to the finite lattice volume. However, up
1) to now, all lattice studies have used a similar implementation
of the Landau gauge on the lattice. Gauge fixing is accom-
plished by using a local iterative procedure which identifies
An infrared suppressed behavior was advocated by Stindbcal stationarity, but in general fails to determine the global
[7], and recently by otherg8], as a possible solution extremum. Which local extremurtilattice Gribov copy”)
to DSE’s. Following a procedure similar to that by Gribov, is selected depends on the starting condition. These lattice
Zwanziger[9] gave arguments to show that, on the lattice,Gribov copies cannot be eliminated. In this situation, their
for any finite spacing in the limit of infinite volume, effect has repeatedly been claimed to be sifid]. As dis-
D(g%?=0)=0. cussed in Sec. Ill, we are not convinced by such claims.
We will also consider in this work the parametrization Results obtained so far will have a safer foundation if the
deduced by Cornwall10] using a resummation of Feynman effects of lattice Gribov copies are better understood.
graphs which leads to gauge-invariant amplitudes. The gluon In this work we address the problem of Gribov copies.
propagator is obtained as a solution to this special set diVe use a different gauge condition, which produces a
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smooth gauge field like the Landau gauge, but which speciF(qg?) is determined by projecting the longitudinal part of
fies the gauge uniquely: no ambiguity arises due the |attic®ii(q) using the symmetric tensap“q”.

gauge fixing procedure. This is accomplished by using the “On the lattice the dimensionless gluon field can be defined
Laplacian gauggl7]. The motivation and implementation of by

this gauge are given in Sec. Ill.

We calculate the gluon propagator in quenched QCD on . 1 1
lattices of sizes 816* and 16x 32 at3=5.8 and 6.0, in an AL(X+pl2)= T[ [U,(x)—UL(x)]- 3 TMUL(X)
attempt to study its zero-temperature behavior. Our proce- Yo
dure can be extended straightforwardly to finite temperature + 3
where the infrared behavior of the propagator yields the —UM(X)]}JFO(a ) )
chromo-electric and chromo-magnetic screening masses. The

results that we obtain, within the Laplacian gauge, show thyhere a is the lattice spacing. One may consider different
same ultraviolet behavior as in the Landau gauge. Howevegefinjtions for the gluon field\, , accurate to higher order in
there are significant modifications in the infrared. In particu-5 |t has been founfl19] that these different definitions give
lar we find that the zero-momentum propagator is finite,ise to modifications that can be absorbed in the multiplica-
obeys scaling, and becomes volume independent for largge field renormalization constant. The gluon propagator in

enough volumes. It should not however be used as a definiomentum space is constructed by taking the discrete Fou-
tion of the gluon mass, since the zero-momentum limit of the;jar transform ofA . for each color component
y2a 1

propagator is gauge dependent. It is simply a measure of the

susceptibility of the gauge-fixed field, in the Laplacian , . .

gauge. A quantity which instead can be shown to be gauge Al(q)=2 e 19 0F DAL (x+ 11]2), (6)
independent to all orders in perturbation theory is the pole X

2
mass of the transverse p&f{qg“) of the propagatof18]. To where the discrete momentum=(q,, =1, .. . 4) takes

determine this pole if it exists at all, an extrapolation to negay . es
tive g2 is necessary. We compare the inverse propagator

D 1(g?) in the Laplacian and the Landau gauges. Using a o 1 1
variety of extrapolatiomAnsaze in particular a fit to Corn- d,=——N,, N,=- (—Lﬂ—l), o ,(—Lﬂ) (7)
wall’'s model [10] which describes the momentum depen- aL, 2 2

dence of our results rather well, we find that data in the )
Laplacian gauge give support for the existence of a pole at "d the momentum-space gluon propag®gf,(q) is de-
mass of ~640(140) MeV. Data at smaller momenta are fined by

needed to consolidate this result.

Section Il introduces our notation, Sec. Ill motivates and V 8(q—q")D30(a)=(A%()AX—q")) (8)
describes our choice of the Laplacian gauge, and Sec. IV ) )
presents our results. They are summarized in Sec. V. with V the lattice volume. In the ultraviolet the gluon propa-
gator is expected to behave likegt/ Since on the lattice the
Il. DEFINITION OF THE GLUON PROPAGATOR free massless propagator behaves as
The gluon propagator in the continuum is given by 1
D(a)= ; 9
. i 2
D)=~ [ ¢OTAL0ALO) 0 (2 2 [(2)sin(q,a/2)]
This tensor can be decomposed into a transverse and a lot® reduce errors due to the finite lattice spacing we take as
gitudinal part: our momentum variable the usual
9,97 9.9y o F(a?) . 2 g,
ab _ _ e b 2 [ b — =
D) =| ouv | °D(q?) + 5 80— 0= 5 Sin—5— (10)
q q q
)

To relate the bare lattice propagator to the renormalized
For a covariant gaugE(q?) reduces to a constant and cor- continuum propagatoDg(q;«) one needs the renormaliza-
responds to the gauge fixing paramegerhich in the Lan-  tion constanZs(u,a):
dau gauge is zero. Since we want to make a comparison with

recent result$14] obtained in the Landau gauge, we study a’D(qa)=2Zz(u,a)Dr(q; ). (11
the transverse scalar functi@(q?) which can be extracted
from fo;(q): Imposing a renormalization condition such as
1 1 1 F(g?) 1
2y aa _ -
D(q >—§@ g D#,xq)] 3 g @ Dr(@)lqe=2= 3 (12)
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at a renormalization scale. allows a determination of that the extrapolated value falls well beldw , which is
Z3(u,a). Connection to other continuum renormalization jtself below the global maximuni22]. Furthermore, the

schemes can then be made. properties of the gauge-fixed field are qualitatively different
between the “random” and the “Landau” DMC gauges: the
IIl. GAUGE EIXING PROCEDURE forrr[lig]confines after center projection, while the latter does
not .
A. Motivation Since in the Landau gauge as in the DMC gauge the num-

The gluon propagator is normally considered in the Landber of local maxima is expected to grow exponentially with

dau gaugeg,A,(x)=0 Vx. On the lattice, this condition the lattice volume, we expect a similar situation in the Lan-
becomes dau gauge, leading to large differences between the “ran-

dom” (local maximum and the FMR(global maximunm
+ - . gauges. One might argue that this is not a problem, and that
F(Q)Exz Re TEQ(X)'U,(x)Q(x+pu)]  maximum. the local maximization of Eq(13) implements in the ther-

i (13) modynamic limit a well-defined, bugtochasticgauge condi-
tion. The relationship between that gauge condition and its
perturbative versiod A, (x) =0 is unclear however. There-
IIé)re, one should consider the possible effects of selecting a
[ocal rather than the global maximum of E(L3) with a
great deal of caution. This is the motivation for our study of
the gluon propagator in a well-defined, unambiguous gauge.

The gauge-fixing functionaF has many local maxima. To
specify the gauge uniquely, the gauge condition above refe
to theglobal maximum. This defines thieindamental modu-
lar region (FMR) Landau gauge. In practice, however, the
gauge transformatiof is found by an iterative local maxi-
mization of F, which terminates when angcal maximum
has been reached. A different gauge condition is thus imple-
mented, which one might call treandomLandau gauge, and In [17], Vink and Wiese proposed a simple method to fix
which depends on the details of the maximization procedurehe gauge unambiguously iBU(N). It usesN auxiliary

Itis commonly believed that the effect of choosing a localHiggs fields, which are chosen as tNdowest-lying eigen-
maximum of Eq.(13) rather than the global maximum is vectorsv(" of the covariant Laplacian. Under a local gauge
small, so that the “random” Landau gauge is a good ap-transformation{)(x), these eigenvectors transform covari-
proximation to the FMR Landau gauge. The following argu-antly: v(i)(X)—>Q(X)v(i)(X). Therefore, the gauge can be
ment is often presented to support this view. A given gaugéixed by requiring, at each space-time poin,
configuration is gauge fixedltimes, each time after perform- () (x)v((x),i=1, ... N}, to have some predefined orien-
ing a random gauge transformation; this procedure generatestion in color space. Specifically, each eigenveetd(x)
many gauge copies, each corresponding to the local maxhasN complex color components, so that tReeigenvectors
mum nearest to the random starting point along the gaugfrm a complexN by N matrix M. Referencg17] projects
orbit. It is observed20] that the difference between gluon this matrix onto SU(N) by polar decomposition:M
propagators measured on copies corresponding to the largesty p,w e U(N),P=(M™M)¥2 The required gauge trans-
and the smallest values of E.3) is found to be statistically  formation is ther()(x) = e'*W', wherea = (1/N)arg(dew).
insignificant. A possible problem with this argument how- Here Q(x) rotatesM “parallel” to the identity 1, at each
ever is that the number of gauge copies considered in such space-time point. The gauge is unambiguously defined, ex-
comparisongtypically 30 or lesgis extremely small com- cept for these gauge configurations where some ofNhe
pared to the total number of local extrema of E3): for  |owest eigenvalues are degenerate. Such configurations are
simple entropic reasons, all copies considered miss the glgrenuine Gribov copies; they never occur in practice. This
bal maximum by similar amounts, and no reliable i”forma'approach has been tested ®t(2) andU(1) [23] and it
tion can be extracted about the gluon propagator in the gloyas shown to reduce to the Landau gauge in the continuum
bal maximum configuration. It is therefore possible, and wejimit aside from exceptional configuratioe.g. an instanton
believe quite likely, that the “random” Landau gauge and packgroungl Here, we use a slightly modified procedure

B. SU(3) Laplacian gauge fixing

the FMR Landau gauge are significantly different. which requires only N— 1) eigenvector§2 for SU(3)], as
Further evidence for this situation has recently been profg|iows [24].
vided in another gauge, the direct maximal cen@MC) First, apply a gauge transformatiérf®)(x) which rotates

gauge[21]. Although the functionaFpyc({2) to be maxi- vM(x) to

mized differs from Eq(13), a similar approach of local it-

erative maximization is taken, leading to the “random” lo@(x)|
DMC gauge, with similar problems. In this case, however, it 0

is also possible to converge to a large valfyeof Fpyc by
starting from a Landau gauge copy’Landau” DMC
gauge. This valueF, can then be compared with the values Five real components of the rotated(x) must vanish,
obtained fromn random starting points. One may fit the which specifies five constraints. TherefofEY(x) is not
maximum value among copies,F(n), by a reasonabl&n-  fully specified, but has 8 5=3 degrees of freedom. Any
satzlike a series in I, and extrapolate ta—o. It turns out  satisfactoryQ)(*) can be used.

0
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To completely fix the gauge, we use the second eigenvec- S | |
tor v, already rotated b2V to
4 + i
o
0(22) X Landau gauge
) 5;3 B Laplacian gauge
U3 \D/
- X
Three additional constraints are obtained by requitiffg to w2
be rotated to A
'] - -
o
Vw2 + @) | 0 ' ' l
0 0 1 2 %) 4

A
qga

This fixes the gauge completely and uniquely. FIG. 1. Comparison of the transverse gluon propagator tifes
~Note that the2 second rotation is in &1)(2) subgroup, i, the Landau and Laplacian gauges on &182 lattice at/3
since it Ieavesv(l ) untouched. This indicates how to gener- =6.0.

alize this construction taSU(N): the first rotation fixes

(2N—1) constraints, which leavesNE—1)—(2N—1)  two gauges aB=6.0. As expected the ultraviolet behavior is
=[(N—1)2—1] degrees of freedom, forming a subgroup identical in the two gauges, whereas in the infrared, which is
SU(N—1). The next step reduces the gauge freedom tehe region of interest, significant differences are visible.
SU(N—2), etc. down td&5U(2). It is easily seen that, in this Since we use a different gauge, this should not come as a

recursive procedure, the matii is reduced to upper trian-  gyrprise. We show the usual quantii§D(qg?). The Laplac-

gular form (with real positive d'ﬁgo_”a" elementby the ro-  jan propagator is clearly not as large as the Landau propaga-

tation Q(x). This is why theN'" eigenvector need not be o at low momenta.

computed: it is only transformed by a phase, which is sepa- The difference between the Landau and Laplacian gauges

rately determined by the requirement tHa(x) e SU(N).  can also be seen in the deviation B{q?) from zero.

Our procedure can thus be viewed a@ B decomposition of  \yhereas in the Landau gauge we find that

M. The gauge, which is globally well definddrovided the

N eigenvalues are distingtmay be ill defined on a sub- ghq'D32<1 (14)

manifold of pointsx where our recursive process breaks mr

down. It can be seen that such local gauge defects occur gg expected, in the Laplacian gauggy?) is not small, and

isolated points, where, f@U(3), o[>+ [v$[?=0. The  has a maximum at low momenta. The behavioF¢§?) is

correlation of these points with instantons is studiefid4].  shown in Fig. 2 for 8 and 16x 32 lattices a{3=6.0. Since
The Laplacian gauge so defined has the great virtue of (q?=0) cannot be obtained by our projection, we only

being unambiguous. Hence it is the appropriate tool to adhave one point, at the smallest momentum/22 on the

dress our concern about the effect of local extrema of thearger lattice, to ascertain th&t(q?) really has a maximum
usual Landau gauge. It also has strong similarities with the

Landau gauge: it is smooth, Lorentz symmetric, and gauge- 5
fixes a pure gauge lattice configuratipmauge transformed

from U, (x)=1 Vx,u] back toU=1. Nevertheless, it is a %

different gauge: its perturbative definition is under consider- 4 T

ation [25]; it differs from the Landau gauge most strongly § 4 gt
where the magnitude of the eigenvecthrs-?(x)| becomes 3

small. < | % ig
N
L

b3

IV. RESULTS 2

x 16% x 32 -

Since most of the previous studies were performed in the %
Landau gauge, it is important to compare our Laplacian- 1= ?«XX I
gauge propagator with the Landau-gauge one. For this pur- *m%«
pose, we have taken, for our analysis, lattice configurations 0 ! ! w
available on the Gauge Connection datajas& which had 0 1 2 3 4
already been gauge fixed to the Landau gauge with the usual ag
local over-relaxation metho®8]. These are 200 configura-
tions of a 16x 32 lattice, at3=5.8 and 6.0 each. FIG. 2. F(g?) as a function ofq| in lattice units after applying

The transverse gluon propagator is shown in Fig. 1 for thehe cylindrical cut in momentum.
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In this way we obtain the renormalization factors at All

/ o o o ' values. For3=6.2 andB=6.5 we find 1.04) and 1.076)
6 L i respectively as compared to the valueBat6.0. We also
obtained consistent results by fitting our data in the ultravio-
~S T fz—%—é—:—j}— let regime using the asymptotic one-loop result Ok
L 7 ~Z1g%[1/2 In(@*A?)] %, with dp=13/22 as in the Landau
34 B ¥ X 8=5.8 7 gauge since in this regime the results in the Laplacian and
~ { F=3 Landau gauges are the same. As can be seen from Fig. 3 the
S3T // A p=6.0 i renormalizedD(0) displays reasonable scaling, and appears
§2 7 o B=6.2 i quite volume independent for volumes larger than
| x& . ~1/2 f. We find a value ofD(0)=5.020(16) GeV?2 or
1k H=8.5 i D(0)Y?=445(3) MeV, corresponding to a length scale of
——-aexp(-V/V) + c ~0.5 fm. Since the zero-momentum propagator measures
05 — —L — . the susceptibility of thé\i field, the length associated with it
10 B 10 determines the domain over which the gluon field remains
Vv (fm*) correlated in the Laplacian gauge. If the lattice dimensions

become of the order of this characteristic length, then one
expects finite size effects to become appreciable. This is in-
deed what is observed, as shown in Fig. 3, with an approxi-
mate volume dependence of exp{/Vy) with V the lattice
volume andVy~D(0)2.
and does not keep diverging @5— 0. But since the data are On the lattice, the Lorentz symmetry is only approxi-
systematically higher for the smaller lattice than for themately restored. Lattice artifacts cause some dependence of
larger one, it seems unlikely that increasing the lattice siz&(q) on the orientation of the vectoprather than just on?.
further would bring the infrared data up and remove theTo minimize these discretization effects, we filter our data by
maximum. making a cylindrical cut in momentum along a reference
It is interesting to examine the volume dependence of thgjirectionn=1(1,1,1,1), in the same manner as in Ra#].
zero-momentum  propagatoP(0)=3%,,2,D,5(a*=0).  Namely, we only consider momenta obeying the criterion
We note that in order to determine the transverse part of thFAa|<27T/Ls, whereL, is the number of sites in the spatial

propagator at zero momentuid(0), onemust subtract from directi dAG is th i 0 fo (Ad
D(q?) the quantityF (q%)/q?|42—o, Which we can only obtain  ©!fSCtioN, andag 1s the momentum transverse (aq
as |mh2H0|:(q2)/q2_ =g—g-n n). Using these filtered data which allow a direct

From Fig. 2 it can be seen that to extract the limit of comparison wit14], we examine the various proposals dis-
F(g?)/q? asg?—0 reliably, one needs more data in the in- cussed in the Int.roduct|on for the infrared behaw.or of the
frared. Therefore, with the volumes at our disposal we carPropagator. We find that Gribov type parametrizatipf3]
only examine the zero-momentum lim®(0) of the full  @s well as infrared enhancement of the typé)( * [2,4,5
propagator. In the Landau gauge, Zwanziger has argued thafe excluded29]. The Ansatzof Marenzoniet al. [13],
D(0)=D(0) should vanish in the infinite lattice volume
limit [9]. A recent lattice study ir8U(2) at finite tempera-
ture[20] seems indeed to indicate such a behavior. With the
data on our present volumes the needed subtraction in the
Laplacian gauge cannot be reliably performed, and thus weiith a non-perturbative anomalous dimensigngives a bet-
cannot extracD(0). What we find isthat D(0), thezero-  ter description of the lattice data than the aforementioned
momentum propagator, is finite and volume independent foparametrizations, but, as seen in Fig. 4, underestimates the
large enough volumes. The volume dependence and scalingak of the propagator. On the other hand, Cornkd]
of the renormalized zero-momentum propagator in physicaillows for a dynamically generated gluon mass which van-
units is displayed in Fig. 3 where we collected results fromishes at large momentum in accordance with perturbation
B=5.8, 6.0, 6.2, and 6.5. To obtain the renormalized propatheory. Using a special set of DSE's referred to as a gauge
gator we impose the renormalization condition given in Eqg.invariant “pinch technique,” he obtains the following solu-
(12) where we choose the renormalization point to e tion for the gluon propagator:
=a ! for B=6.0, i.e. x=1.943 GeV. This determines
Z3(m,a5-60~2.312. We then use E@11) to find the ratio 5
of the Z; factors for different3 values at the same physical D(g)=Z
momentumq e.g., for3=5.8 atq=u we have

FIG. 3. The renormalized zero-momentum propaga®gn)
=73,,2.5D%%(q*=0) versus volume in physical units. The
dashed line is a fit to the forra exp(—V/Vy)+c.

D(g®)= (16)

(q2)1+a+M2’

[9%+M?(g?)]in

q’+4amM2(g?)] !
A2
with

Z3(p,ap-59) _af;:s.sD(qaﬁzs.s) e

Zo(p3p-60 a2ﬁ=6.OD(qaﬁ=6.0)

In[(g%+4M?)/A?]
IN[4M?/A?]

=0.974). (19 M(q2)=M[ (17)
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4 T T 4 T
x B=6.0
— — Gribov
3 r X i n N
& — -~ Marenzoni
o ,'\—{ 3 — Cornwall
= ‘ N _
a2 ~2 --- Model A ]
N [: v
<g ,
1 L | _
0 ’ | | 1 —4 L 1 | | |
-1.0 -0. . . 1. 1. .
0 5 4 6 8 0 -05 0.0 ,9 5 0 5 20
& (GeV) In(ga)

) o . FIG. 5. Scaling of the data a88=5.8 and 6.0 on the £& 32
FIG. 4. The gluon propagatdp(q) multiplied by g~ on the |5ice. The solid curve is the best fit to both sets of data.
16°x 32 lattice atB=6.0. The dash-dotted line shows the fit to the
model by Marenzonet al., Eq. (16), the solid line to Cornwall's g5 of gata lying on the best scaling curve. The shifts re-
gg)del’ Eq.(17), and the dashed line to model A of R¢t4], Eq. quired along the horizontal and vertical axes determine the
: ratios of the wave function renormalization constants and of

Cornwall’'s proposal provides a reasonable fit to the date%he lattice spacings. We find

over the whole momentum randwith x?/Npr=2.5). The _ _
quality of this fit can be seen in Fig. 4. For comparison we 3p=6.0/ap-55=0.7120.02, Zﬁ:6'0/2/325'8_1'07i0'?27§
also fitted our data to the form suggested by Leinwedbexl.
[14] where two terms were used, one to describe the ultragith strongly correlated errors. The ratio of lattice spacings
violet behavior of the formDyy~[1(q”+M?)]L(9*M) s in agreement with the value of 0.72(4) obtained from a
and one the infrared of the forz~1/(q*+M?)**“. The  getailed analysis of the static potentjab]. The ratio of the
exact form, referred to as model A, as taken from Re4], 7 factors is within what is expected from perturbation theory
IS and in agreement with the value of 1.04(3) of R@#]. In
other words, scaling is very well satisfied for the Laplacian
gauge, and performing the fits gt=6.0 gives the behavior
of the gluon propagator in the physical regime.
We focus now on the infrared behavior of the transverse
) 1 ) oy 5 —13/22 propagator. Figures 6 and 7 show the inverse propagator as a
L(a%,M)=}5In[(q"+M*)(q"“+M 9] ' function of g2 in the two gauges. Two advantages of the
(18) Laplacian gauge become visible.
First, the orientation of the momentuqmhas less effect
This parametrization, which includes one more parametethan in the Landau gauge: the data points at a given value of
than Cornwall’'s and is purely phenomenological, d20e5 fit the§2 show less scatter, and the cylindrical cut is not as essential
data best over the whole momentum rar@eéth x“/Npr  as in the Landau gauge in the infrared region. At a given
=1.2). ) ) ) lattice spacing, the Laplacian gauge approximates better the
We address the question of scaling by comparing our ret grentz symmetry of the continuum. This reduction of lattice
sults at3=5.8 andB=6.0 on the largest lattice. In the scal- artifacts is understandable since the gauge is fixed by con-
ing regime the renormalized propagaldg(q; 1) is indepen-  sidering the lowest-lying eigenvectors of the Laplacian,
dent of the lattice spacing. Therefore, as in R&#l], we can  which are the least sensitive to UV-cutoff effects. In contrast,
use Eq.(11) to obtain the following expression for the ratio the Landau gauge comes from the iteration of a completely
of unrenormalized lattice propagators at some physical momcal, UV-dominated process. Better rotational symmetry al-
mentum scaley: lows for better accuracy or for the same accuracy on coarser
lattices.
Second, the inverse propagator is closer to a linear func-

tion of g2 in the Laplacian gauge. If it were the propagator
for a free boson, it would be described by a straight line
and where the labels 1,2 refer to the datgBat6.0 andg  since 1D (g% =Z"1(g?+m?). Having curvature means that
=5.8 respectively. The scaling properties of the lattice gluorone has a momentum-dependent effective niaég?). In
propagator can now be investigated using @) by adjust-  particular, the infrared mad$(0) and the pole masd (g?)

ing the ratiosZ,/Z, anda, /a,. In Fig. 5 we show the two such thaf{g?+11(q?)]=0 are different.

AMZa .
(q2+M2)1+a q2+M2

D(q?)=2 L(g%M)

Di(qay)  Zs(p,a1)Dr(g;w)lal 7 a5

- _ ot 19
D2(9a2)  Zy(w,a,)DR(q;pu)/as  Z2 a2 19
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0.25 T T T T/,
4 Landau 2 !;i
0.20 | ___ a°+alq2+azq4
015 | —‘ao+alq2+a2q4+asq° i
o~ — Cornwall
< 0.0 1 -
ID [a)]
0.05 4
0.00 ==
_005 | | | |
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FIG. 6. The inverse gluon propagator at low momentum in the FIG. 8. Time-slice gluon cc_)rrelator, in the Laplacian gauge, at
Landau gauge, a8=6.0 on the 18x 32 lattice. The solid triangles B=A5.8 and 6.0. The dashed lines show Cornwall's model fitted to
and crosses show the data which are kept and discarded by tR(g?) after the cylindrical momentum cut; the solid lines are direct
cylindrical momentum cut respectively. Three extrapolations tofits to the time slice correlators, excluding the first few time-slices.
negativeq? are shown: quadratic and cubic polynomialgyf and

Cornwall’s model. Note the instability of the pale™*(g2)=0 with  Pole) and a Cornwall-type fitwhich does notwill require
respect to the type of extrapolation chosen. extremely accurate data on large lattices. Extracting the pole

is also difficult in the Laplacian gauge but at least one finds
The latter is of special interest, because of its gauge inde2 POle ith all theAnsdzethat we tried. Given the convexity
pendence at least to all orders in perturbation theory. Findian2 the data, a lower bound is provided by a linear fit near
a pole, i.e. a zero of the inverse propagator, requires the =0, Which defines thégauge-dependeninfrared mass.

extrapolation of our data to negativ?é. The less curvature Quadratic and cubic te_rms in the polynom!al extrapolation
in the inverse propagator in the infrared, the more reIiabIerepresent smaII_ corrections of decreasing size. Qng can thus
the extrapolation will be ' make some estimate of the gluon pole mass. A similar study

Three types of extrapolation are displayed in the figures?f a lattice of double size, as was considered in R&d],

drati d cubi I als & 4 . would produce more than 4 times as many points in the same
qua’ ratic and cubic po ynomiais o, and our fit to Corn-_ E]z interval, and should allow for an accurate determination
wall’'s model. The location of the pole—and even its

) ) . oo of the pole mass.
existence—is affected by the choice of extrapolation in the We also measure the correlator of the gluon field aver-

Landau gauge. The coefficierds, a,,a, of the cubic poly- aged over a time slice. Namely, we measure
nomial extrapolation keep increasing, indicating poor stabil-

ity. Essentially, no statement about a pole can be made in

. o P 8 3 [ L3 L3
that gauge. Differentiating between a cubigtihich gives a C(t)=i3£ D l Sis Aa(i,O)) 3 Aa(i,t))
L 8413 pn=1 x M x M
0.25 T T T T (21)
+ Laplacian
020 I --- a +a q*+a q* which is displayed in Fig. 8. At large time separatidnthis
015 | —-a+agtagtag’ | cpr.relator should decay exponentially like expfipolet),
. — Cornwall giving us another approach to extracting the pole mass. We
Ko use this observable to perform a cross-check on this mass
S 0.10 I and as a further study of the systematic errors in its determi-
nation. This correlator is measured on the same configura-
0.05 ] tions asD(g?), so it contains no additional information. But
the same information is given a different weight, so that a fit
0.00 &= to C(t) will give different results than a fit td ~(g?),
0.05 . | . . especially after the cylindrical momentum cut. Therefore, we
02 00 0.2 0.4 0.6 fit Cornwall’'s mode_l directly FoC(t) instead ofD _1(q2).
(?10)2 Remarkably, the difference is rather small, which attests

again to the soundness of the model. The dashed lines in Fig.
FIG. 7. Same as Fig. 6, for the Laplacian gauge. The reduce§ show the original fit of Cornwall'sAnsatzto D~ (g?),
vertical scatter of the data at a given momentum indicates a superiovhich already provides a fair description of the data. The
restoration of rotational symmetry. The reduced curvature as a funcsolid lines represent a direct fit of the same 3-paramiter
tion of g2 improves the stability of the pole with respect to the type Satzto C(t), excluding the first few time slices which other-
of extrapolation. wise completely dominate the fit. The fit started from4
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andt=2 at 8=6.0 and 5.8 respectively, which amounts to V. CONCLUSIONS
discarding similar intervals in physical units. Given the 3

fitted parameters, one can then sode'(q?)=0 numeri- . hich aveids lattice Grib ; q
cally, with D(g?) as per Eq(17). The corresponding pole ian gauge which avoids lattice Gribov copies. We extracte
' e the transverse part of the gluon propagator and verified its

mass varies little from one fit to the other, and remains___,. =" . 7 ;
roughly constant in physical units &t=5.8 and 6.0. Also, a scaling in this gauge. Examining the scaling and volume de

model-independent extraction of the pole mass, by measu jendence of the zero-momentum propagafof0), we
ing the effective massi((t)= —In[C(t + 1)/C(1)]. gives a eached the conclusion that it is a constant beyond a lattice

. : . size of ~0.8 fm. This size is consistent with the character-
consistent value. Taking these results into account, together

with the quadratic and cubic extrapolations displayed in Fig'StiC length scale determined frof(0) itself as the range
7, we estimate the pole mass to lie in the intei&0,783 beyond which the gluon field decorrelates in this gauge.

MeV, where we used X(3=6.0)=1.943 GeV to convert Among the various proposals for the transverse propaga-

. . L= tor which are physically founded, Cornwall’s modgl0]
to p_hy5|ca| umts{26] with ‘7_440_ MeV. The lower boun_d rovides a reasonable fit to the lattice results over the whole
is given by the infrared mass, which corresponds to a line

. We find i isfying that the latti
extrapolation ofD~(q?): the upper bound is provided by " omentum range. We find it satisfying that the lattice data

. . eem to favor a model with a dynamically generated mass.
the largest value obtained when fitting to our data Cornwall’s y y9

) _ By looking at the inverse propagat®(g?) at small
model. A reasonablle central valye IS 64.0 MeV, which COMe momenta, we see that the Laplacian gauge is superior to the
sponds to Cornwall’'s extrapolation in Fig. 7.

We h f q imil ise for the Land Landau gauge in its restoration of Lorentz symmetry on the
€ have periorme a, simriar exerglse or the LandaYitice. Furthermore, it turns out that the inverse propagator

gauge. The fit of Cornwall’'s model ©(g“) or C(t) is quite . . S . .
satisfactory, but the equatidd~1(g%)=0 gives a complex is almost linear irg“ in the Laplacian gauge. This allows for
pole, far from the real axis. Note that R§B0] also finds @ more reliable extrapolation @*<0, as compared to the
oscillatory behavior for the time-slice correlator in 3D Landau gauge. We tested a variety of extrapolafosaze
SU(2) theory fixed to the Landau gauge, reflecting a com-They consistently yield a pole mass-a640+140 MeV.
plex pole. This disagreement with the Laplacian gauge is
puzzl_ing, since one expects _the pole to be gauge invariant. ACKNOWLEDGMENTS
Possible causes include the inadequacy of the Landau gauge
fixing procedure on the lattice or finite-size effects. Larger The 16X 32 lattice configurations were obtained from the
volume studies, currently under way, should elucidate thiggauge connection archiy@7]. We thank A. Cucchieri, S.

We have evaluated the gluon propagator using the Laplac-
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