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Deconfinement transition and string tensions in SU„4… Yang-Mills theory
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We present results from numerical lattice calculations of SU~4! Yang-Mills theory. This work has two goals:
to determine the order of the finite temperature deconfinement transition on anNt56 lattice and to study the
string tensions between static charges in the irreducible representations of SU~4!. Motivated by the argument
of Pisarski and Tytgat that a second-order SU~`! deconfinement transition would explain some features of the
SU~3! and QCD transitions, we confirm older results on a coarser,Nt54, lattice. We see a clear two-phase
coexistence signal in the order parameter, characteristic of a first-order transition, at 8/g2510.79 on a 6
3203 lattice, on which we also compute a latent heat ofDe'0.6eSB. Computing Polyakov loop correlation
functions, we calculate the string tension at finite temperature in the confined phase between fundamental
chargess1 , between diquark chargess2 , and between adjoint chargess4 . We find that 1,s2 /s1,2, and
our result for the adjoint string tensions4 is consistent with string breaking.

DOI: 10.1103/PhysRevD.63.094502 PACS number~s!: 11.15.Ha, 12.38.Gc
rc
na
ta

al

a
g
on
d
e

e
t t
e
. I
m
tu

a
th
th
u
In
io

e,
lu

e
as

ian

the
finite
ty
r for

ed

wn

m
ns

-
e-
are
-

o-
of

from
at
o-

te

d on
I. INTRODUCTION

It is well established that the dynamics of the strong fo
is described by non-Abelian gauge theory with an inter
SU~3! symmetry and matter in the fundamental represen
tion. Although the full theory of QCD contains dynamic
quarks, the study of SU~3! pure Yang-Mills theory@1# pro-
vides useful physical information. For example, in the v
lence or quenched approximation where gauge field confi
rations are generated without including the fermi
determinant in the partition function, the computed light ha
ron spectrum differs from the experimentally measured sp
trum at the 10% level@2#. This is convenient since Mont
Carlo calculations require enormous computational effor
include dynamical quark effects, so many studies are don
the quenched approximation in the interest of practicality
the present paper we are interested in the phase diagra
QCD in the temperature-quark-mass plane, and so the s
of pure Yang-Mills theory covers themq5` line.

The confinement-deconfinement transition of QCD
high temperature (T'100– 300 MeV) has been studied wi
and without dynamical quarks and depends strongly on
number of light quark flavors and their masses. Pure ga
theory is recovered in the limit of infinite quark masses.
this limit the order parameter of the deconfinement transit
is the Polyakov loop@3#

L~xW !5
1

Nc
Tr)

t51

Nt

U0~xW ,t !. ~1!

In the confined phasêL&xW50, but in the deconfined phas
the Polyakov loop acquires a nonzero expectation va
spontaneously breaking the global Z(Nc) center symmetry.
Since a Z~3! symmetry admits a cubic term in the effectiv
potential, it drives a first-order transition; such is not the c
for Nc.3 @4#.
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For Nf flavors of massless quarks, the QCD Lagrang
has a global SU(Nf)L ^ SU(Nf)R chiral symmetry. At zero
temperature this symmetry is spontaneously broken and
pions are the massless Goldstone bosons, but at some
temperatureTx the chiral symmetry is restored. Universali
arguments suggest that the transition should be first orde
Nf>3 @5#, while a second-order transition forNf52 is not
ruled out @6# ~in fact a second-order transition is support
by lattice studies@7#!. In nature the strange quark massms is
roughly 25 times larger than the average of up and do
quark massesmu,d5(mu1md)/2. According to lattice calcu-
lations, the order of this ‘‘211’’ flavor phase transition de-
pends on the strange mass. Asms is increased frommu,d ,
the first-order phase transition weakens into a crossover@8#.
In Fig. 1 we reproduce the ‘‘Columbia’’ phase diagra
which shows the order of the transition for different regio
in (mu,d ,ms) plane.

Recently Pisarski and Tytgat@11# argued that the Colum
bia diagram is hard to understand in light of intuitive larg
Nc arguments. They point out that since anomaly effects
suppressed by 1/Nc , the contribution of chiral symmetry res
toration to the free energy isO(Nc) while the change in the
free energy due to deconfinement isO(Nc

2). So in the large-
Nc limit a first-order deconfinement transition should be r
bust for any quark mass. Thus, if the first-order transition
SU~3! is a general feature of SU(Nc), it is hard to understand
why it disappears as the quark masses increase away
zero. One resolution of this conflict, they propose, is th
Nc53 is special due to the cubic term in the effective p
tential and that the general SU(Nc) deconfinement transition
is second order.

Yang-Mills theory with Nc colors, SU(Nc) pure-gauge
theory, has been a topic of exploration for lattice Mon
Carlo studies since the first days of the field@13#. A first-
order phase transition in the average energy was observe
©2001 The American Physical Society02-1
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MATTHEW WINGATE AND SHIGEMI OHTA PHYSICAL REVIEW D 63 094502
symmetric lattices with volumes between 34 and 64 for Nc
52 – 5 @12–16#. References@17–19# demonstrated this tran
sition is the consequence of a lattice-induced critical l
separating the strong- and weak-coupling regimes. Spe
cally, they added to the usual fundamental single-plaqu
action

Sf52
b

6 (
x

(
m,n:m,n

Re Trf Pmn~x! ~2!

the adjoint action

SA52
bA

6 (
x

(
m,n:m,n

Re TrA Pmn~x!, ~3!

where Pmn(x) is the plaquette Un
†(x)Um

† (x1 n̂)Un(x
1m̂)Um(x) and Trf and TrA are traces in the fundament
and adjoint representations, respectively;m andn are space-
time ~or space-temperature! indices. Figure 2 shows the re
sulting phase diagram for this mixed action for SU~3! and
SU~4!. A first-order transition line separates the strong- a
weak-coupling regimes of the fundamental couplingb. For
Nc<3 this line ends in a critical point before crossing t
bA50 axis, but does cross this axis forNc.3. Also dis-
played is theb'0 transition line corresponding to the tra
sition in SO(Nc

221) gauge theory.
This lattice-induced~4D! bulk transition, while interest-

ing, can obscure the physical~3D! finite-temperature transi
tion of interest here. If the two transitions are nearby in p
rameter space, the first-order nature of the bulk transi
would have a nontrivial effect on the confinemen
deconfinement transition. The bulk transition was found
occur near b510.2 ~with bA50) @17#. Past finite-

FIG. 1. Columbia diagram@8#, showing the nature of the (2
11)-flavor finite-temperature transition for different values ofmu,d

andms . Regions labeled I have a first-order transition, while reg
II has only a crossover. Formu5md50 there is a tricritical point
~square! above which the chiral transition is second order, deno
by asterisks. The pure glue limit is indicated by the octagon
~`,`!. The question mark indicates the physical (mu,d ,ms) accord-
ing to calculations with staggered fermions@9#. ~Reference@10#
suggests that the physical point lies lower, in the region I, wh
Wilson fermions are used.!
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temperature studies of SU~4! @20–23# addressed this issue t
varying degrees. For example, Ref.@22# studied the decon-
finement transition along the linebA52b/2, hoping to
avoid crossing the bulk transition line. Reference@23# found
evidence on small volumes and'1000 Monte Carlo evolu-
tion sweeps for deconfinement transitions for bothNt54 and
Nt55 aroundb510.5 andb510.6~with bA50). All these
studies concluded that the SU~4! deconfinement transition
was first order. However, given the alluring explanation
the Columbia diagram, we felt the time was ripe to revi
finite-temperature SU~4! numerically.

Another topic which we address in this work is the te
sion of confining strings which carrykP$1, . . . ,Nc% units of
flux. Only for Nc.3 can one find different strings with un
equal tensions. With these finite-temperature calculatio
we find the ratio of diquark (sk52) to fundamental (sk51)
string tensions to be in the range 1,sk52 /sk51,2. As
pointed out in Ref.@24#, these types of computations ma
test dualities between gauge theories and string theo
String tensions can be computed on the lattice, in bro
supersymmetric gauge theory and in M-theory versions
QCD and supersymmetric QCD. Our result fors2 /s1 indi-
cates that in SU~4! Yang-Mills flux tubes attract each othe
as expected from supersymmetric~SUSY! Yang-Mills and
M theories@24# and proved in standard Yang-Mills theor
@25#.

In the next section we describe some details of our ca
lations. Section III gives the results for the deconfinem
transition, and Sec. IV shows our calculation of the stri
tensions. Finally, we summarize our results in Sec. V.

II. COMPUTATION

Our calculations of SU~4! Yang-Mills theory do not differ
significantly from standard SU~3! calculations. We use the
fundamental single-plaquette action, Eq.~2!, with b
52Nc /g258/g2. Our production code is a minimally modi
fied version of theMILC code@26#. Our algorithm for evolv-
ing the gauge fields is a mixed overrelaxation–heat-bath p
cedure: in one Monte Carlo ‘‘sweep’’ we perform te

d
t

n

FIG. 2. Phase diagram of fundamental-adjoint lattice act
showing the lattice-induced bulk transition. The transition li
crosses the fundamental axis forNc.3.
2-2
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DECONFINEMENT TRANSITION AND STRING . . . PHYSICAL REVIEW D63 094502
microcanonical over-relaxation steps followed by o
Kennedy-Pendleton@27# heat-bath step. Each sweep w
compute the average plaquette and fundamental Polya
loop. We generate at least 1000 Monte Carlo sweeps at
b, with 10 000 to 20 000 sweeps aroundbc . An independent
METROPOLIS code was written from scratch for SU~4! to
check thisMILC-derived SU~4! code.

For those values of the couplingb where we want to
calculate the string tension, we compute correlation fu
tions of Polyakov loops in the irreducible representations
SU~4!:

Ci~r !5^Li~xW !Li* ~xW1rW !&xW , ~4!

wherei 54, 6, 10, and15 and the trace in Eq.~1! is i dimen-
sional. As is well known, the diquark6 and 10 representa-
tions are obtained by antisymmetrizing and symmetriz
two fundamental4 representations and the adjoint15 by in-
serting SU~4! Gell-Mann matrices. We use the Paris
Petronzio-Rapuano multihit variance reduction method@28#
to reduce noise. Polyakov loop correlation functions
computed every tenth Monte Carlo sweep. We investig
autocorrelations by including only everynth configuration,
wheren51, 5, and 10. We have a total of 2800 measu
ments for the calculations on a 63103 lattice and 1900 mea
surements for the calculations on a 83123 lattice.

FIG. 3. Magnitude of the Polyakov loop vsb on a 4383 lattice.

FIG. 4. Plaquette vsb on 4383 lattice. The normalization is
such that̂ Uplaq&5Nc in the free theory.
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III. DECONFINEMENT TRANSITION

In order to make contact with previous finite-temperatu
SU~4! calculations, we compute thermodynamic observab
on a 4383 lattice for values ofb58/g2 between 10.0 and
10.6. We find a rapid change in̂uLu& betweenb510.45 and
b510.5~see Fig. 3!, in agreement with Refs.@20, 23#. Since
the plaquette is also increasing in that region~Fig. 4!, one
might worry that the bulk transition is affecting the deco
finement transition. Therefore, we do not pursue confirm
the order of the deconfinement transition withNt54, and
instead focus onNt56 where the bulk and deconfineme
transitions should be further separated.

In our 63123 calculations, we find that the jump in̂uLu&
is betweenb510.75 andb510.80~Fig. 5!. This move inb
of the critical point is consistent with the conjecture that t
deconfinement is a thermodynamic phenomenon. On
other hand, the increase in the plaquette is over the samb
~10.2–10.6! region as forNt54 ~see Fig. 6!, as is expected
for a bulk transition. And withNt56 the bulk and finite-
temperature phase transitions are clearly separated.

The six plots shown in Fig. 7 show the real and imagina
parts of the Polyakov loop for the last 2000 sweeps of c
culations at the corresponding couplings. One can see

FIG. 5. Magnitude of the fundamental Polyakov loop vsb on a
63123 lattice.

FIG. 6. Plaquette vsb on a 63123 lattice. The normalization is
such that̂ Uplaq&5Nc in the free theory.
2-3
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FIG. 7. Plots at six values ofb showing the
phase and magnitude of the average fundame
Polyakov loop on consecutive 63123 configura-
tions. Each cross corresponds to the value ofL4

computed on a single configuration.
-
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spontaneous breaking of the Z~4! symmetry as the decon
finement transition is crossed.

One quantitative estimation of the critical couplingbc
comes from the deconfinement fraction@29#. Let us define
fP@0,p/4# as the angle between arg(L4) and the neares
Z~4! symmetry axis. Given another angleuP@0,p/4#, one
counts the number of configurations wheref<u, Nin , ver-
sus the number of configurations wheref.u, Nout. In the
confined, Z~4!-symmetric phase, on average,

Nin

Nin1Nout
5

u

~p/4!
. ~5!

The deconfinement fraction is the excess number of confi
rations which havef<u:

f ~u![
p/4

~p/4!2u F Nin

Nin1Nout
2

u

~p/4!G , ~6!

where the factor outside the brackets normalizes the tot
deconfinedf (u) to 1. @Note that due to statistical fluctua
tions, f (u) can be slightly negative in the confine
09450
u-

ly

phase.# The critical coupling is defined to be the value ofb
for which f (u)51/2. In Fig. 8 we plot the deconfinemen
fraction withu515° and 25° for the 63123 lattice. We find
bc510.7860.01, where the uncertainty is estimated
varying u between 15° and 30°.

FIG. 8. Deconfinement fraction~defined in text! vs b for the 6
3123 lattice.
2-4
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DECONFINEMENT TRANSITION AND STRING . . . PHYSICAL REVIEW D63 094502
In order to determine the order of the phase transition,
increased the spatial volume to 163 and 203. With the larger
volumes, the critical coupling increases slightly tobc
510.79 as is expected~sec Fig. 9!. The histograms of Polya
kov loop magnitudeu^L4&u obtained from the larger two lat
tice volumes near their respective critical points show t
peaks, in clear contrast to the 123 volume. See Fig. 10. This
suggests a first-order phase transition.

Indeed, Polyakov loop evolution in simulation time,
Fig. 11, signals the coexistence of the confined and dec
fined phases at this temperature,b510.79. The magnitude
stays with its low~confined! or high ~deconfined! value for a
relatively long period, but occasionally jumps very quick
from one to the other value. And when the magnitude is lo
the argument takes random arbitrary values, while it is fix
to the neighborhood of one of the four allowed Z~4! values
when the magnitude is high.

By combining these histogram and evolution obser
tions, we conclude that the finite-temperature deconfin
phase transition of SU~4! Yang-Mills system is of first order
It is thus desirable to compute the latent heat through c
binations of the energy densitye and the pressurep @30#.
Specifically, we compute

a4~e23p!526Nca
]g22

]a
~ P̄t1 P̄s!, ~7!

FIG. 9. Deconfinement fraction vsb for the 63163 lattice.

FIG. 10. Histogram ofuL4u at bc510.78, 10.79, 10.79 on vol
umes of 123,163,203, respectively.
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a4~e1p!5
8Nc

g2 C~g2!~ P̄t2 P̄s!. ~8!

The average space-space and space-time~or space-
temperature! plaquettes are normalized such that ifg250,
P̄t5 P̄s51:

P̄t5
1

3V

1

Nc
(

x
(

i
Re Trf P0i~x!, ~9!

P̄s5
1

3V

1

Nc
(

x
(

i , j : i , j
Re Trf Pi j ~x!, ~10!

whereV is the 4D volume andi and j are spatial indices. In
bare lattice perturbation theory, theb function and Karsch
coefficient are given, respectively, by@31#

a
]g22

]a
522

11Nc

3~16p2!
1O~g2! ~11!

and

C~g2!512F4NcS Nc
221

32Nc
2 0.58684420.005306D

1
11Nc

6~16p2!Gg2. ~12!

FIG. 11. Monte Carlo evolution of the magnitude~top! and the
argument ~bottom! of the fundamental Polyakov loop forb
510.79 on the 63203 volume. We take arg(L4)P@23p/4,5p/4# for
clarity.
2-5
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MATTHEW WINGATE AND SHIGEMI OHTA PHYSICAL REVIEW D 63 094502
It is possible, and advisable, to use mean-field-improved
turbation theory or a nonperturbative calculation of the
quantities for an accurate calculation of the energy and p
sure@32#; however, for the purpose of establishing a nonz
latent heat, bare perturbation theory suffices.

The quantitiese23p ande1p are plotted as functions o
b on the 163 lattice and shown in Figs. 12 and 13, respe
tively. The fancy crosses in the latter figure correspond
separating the configurations atbc510.79 into hot and cold
phases. Note thate23p plotted in Fig. 12 contains a diver
gent vacuum contribution which may be subtracted afte
zero-temperature simulation is performed; however, suc
subtraction is not necessary in order to compute the la
heat from a discontinuity ine23p at the critical coupling
bc . The separation of phases atbc was made on the basis o
whetheruL4u was greater or lesser than some valuer. Based
on the histograms in Fig. 10, we variedr from 0.08 to 0.14.
Table I lists the values forD(e23p) andD(e1p) obtained
for different r on both the 163 and 203 volumes. The varia-
tion as a function ofr is within the statistical errors.

Thus we observe a latent heat which is many stand

FIG. 12. Energy density minus 3 times the pressure vsb for the
63163 lattice. A divergent vacuum contribution remains to be su
tracted.

FIG. 13. Energy density plus pressure vsb for the 63163 lat-
tice. Squares correspond to averaging over the whole data se
fancy crosses at the critical beta correspond to separating into
and cold phases as described in the text.
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deviations greater than zero. We also see thatD(e23p)
ÞD(e1p), which implies a discontinuous change in pre
sure across the transition. If, for example, we take the
3203 data withr 50.10, we find~with statistical errors only!

De55.7~3!Tc
4, ~13!

Dp520.45~13!Tc
4. ~14!

A nonzero Dp was also seen in early studies of SU~3!
@33,34# and disappeared when going from the perturbat
estimates for Eqs.~11! and ~12! to nonperturbative calcula
tions @32#.

A thorough calculation of the latent heat in the SU~4!
deconfinement transition requires a full study of the latt
spacing dependence as well as nonperturbative determin
of the b function and Karsch coefficient. However, even t
exploratory study here makes clear that the latent hea
nonzero and further establishes the first-order nature of
phase transition.

We can compare the latent heat for SU~4! to that for
SU~3! by normalizing by the energy density for an ide
gluon gas. If we take the latent heat to beDe/Tc56.061.5
and divide by the Stefan-Boltzmann energy density,

eSB~T!5
~Nc

221!p2

15
T4, ~15!

we find

De

eSB~Tc!
50.6060.15. ~16!

Our result should be compared against theNt56 SU~3! la-
tent heat obtained using a perturbativeb function: De/eSB
50.454(11)@35#. A state-of-the-art SU~3! calculation, which
used an improved action and a nonperturbativeb function,
gave De/eSB50.266(17) @35#. Further work is required to
see if the effect of going from a perturbative to nonperturb
tive b function is as dramatic for SU~4! as for SU~3!.

-

the
ot

TABLE I. Discontinuities ine23p and e1p at b510.79 for
various values ofr ~described in the text!. The lattice spacing has
been set through the critical temperature:a(bc)5(NtTc)

21.

V r D(e23p)/Tc
4 D(e1p)/Tc

4

63103 0.08 7.5~4! 4.8~8!

0.10 7.6~4! 5.4~8!

0.12 7.6~4! 5.3~8!

0.14 7.6~4! 5.7~8!

63203 0.08 6.7~3! 4.9~4!

0.10 7.0~3! 5.2~4!

0.12 7.0~3! 5.3~4!

0.14 7.1~3! 5.4~4!
2-6
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DECONFINEMENT TRANSITION AND STRING . . . PHYSICAL REVIEW D63 094502
IV. STRING TENSIONS

We use two different lattices, 63163 and 83123, for
studying string tensions. For the former, we choose the c
pling values ofb510.65 and 10.70, safely away from bo
the bulk and deconfining phase transitions, and in the c
fining phase~see Fig. 7!. Polyakov loop correlations@see Eq.
~4!# for the fundamental~4, k51, top! and antisymmetric
diquark~6, k52, bottom! representations are shown in Fig
14 and 15. A clear difference in the rates of exponen
decay is observed betweenC4 and C6 . Using a correlated

FIG. 14. Polyakov loop correlation function in4 ~top! and 6
~bottom! representations on a 63163 lattice atb510.65. The sym-
bols are the data points and the solid lines are fits in the rang
<r<12.

FIG. 15. Polyakov loop correlation function in4 ~top! and 6
~bottom! representations on a 63163 lattice atb510.70. The sym-
bols are the data points and the solid lines are fits in the rang
<r<11.
09450
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jack-knifed fit to the form@36#

ak

r
exp@2Vk~r !Nt#1

ak

Ns2r
exp@2Vk~Ns2r !Nt#, ~17!

with Nt56, Ns516, and

Vk~r !5skr 2
pr

3Nt
2 , ~18!

we obtain the string tensionss1 and s2 , and their ratio,
tabulated in Table II. The analysis of the correlation fun
tions is done using every measurement, every fifth meas
ment, and every tenth measurement in order to estimate
relations between successive measurements~each separated
by ten Monte Carlo steps: see Sec. II!. The increase in the
statistical error with the number of skipped configuration
Nskip, indicates a significant autocorrelation. Unfortunate
it appears that several hundred configurations are neces
in order to obtain a precise fit, so we cannot drop too ma
of the measurements. However, we can infer from our d
that

s2

s1
.1, ~19!

by roughly two standard deviations. Note that boths1 and
s2 decrease asb→bc ~i.e., asT increases!. Since the lattice
spacing decreases asT increases, the fit range forb510.70
does not include ther 54 andr 512 data~see the captions o
Figs. 14 and 15!. Our numerical accuracy is good enough
conclude there are two different strings, one between
fundamental charges carrying one unit of flux and anoth
stronger, between the diquark charges carrying two units
flux. It is not yet good enough, however, to distingui
among various predictions for this ratio summarized
Strassler@24#. However, this establishes numerically the e
pectation fors1Þs2 in SU~4! Yang-Mills theory, just as
Ref. @37# showeds15s2 in SU~3! Yang-Mills theory.

A string model@38# predicts that

Tc

As1~T50!
'A 3

p~d22!
50.69, ~20!

4

5

TABLE II. String tensions~in lattice units! between static fun-
damental (k51) and diquark (k52) charges, and their ratio, usin
every (Nskip11)th configuration in the analysis. The quoted unc
tainties are statistical.

b Nskip s1 s2 s2 /s1

0 0.098~2! 0.138~14! 1.45~15!

10.65 4 0.092~4! 0.137~30! 1.67~36!

9 0.101~7! 0.164~56! 1.77~67!

0 0.076~2! 0.118~13! 1.59~13!

10.70 4 0.080~4! 0.154~40! 1.91~49!

9 0.084~6! 0.163~53! 2.03~68!
2-7
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MATTHEW WINGATE AND SHIGEMI OHTA PHYSICAL REVIEW D 63 094502
which is quite close for SU~3! @7#. We have not computed
the zero-temperature string tension, but only the string t
sion roughly nearTc , to find

Tc

As1~T'Tc!
50.60. ~21!

The extent which the lattice scale changes betweenb
510.70 andbc510.79 is the main uncertainty above. O
course, a zero-temperature study is necessary before on
assess the agreement with Eq.~20!.

On this lattice of 63163, which is the coarser and large
of the two, no signal was obtained for either the symme
diquark~10! or adjoint~15! representations. In contrast, wit
the finer lattice spacing~at b510.85) on the smaller 8
3123 lattice, flattening of the adjoint correlation is observ
~see Fig. 16!. This suggests the breaking of confining stri
for the adjoint representation at a rather short distance
three lattice spacings. It gives us confidence that the corr
tions on the 63163 lattice should be dominated by the no
perturbative strings for ranges longer than at least three
tice units. Notice also that while string breaking is
expected behavior for the adjoint representations in gen

FIG. 16. Polyakov loop correlation function in4 ~top!, 6
~middle!, and15 ~bottom! representations on a 12338 lattice atb
510.85
ion
-

S.
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@39#, such an absence of string is yet to be observed in SU~3!
Yang-Mills theory which employs much finer and larger la
tices than the present work.

V. CONCLUSIONS

We have revisited the confinement-deconfinement tra
tion of SU~4! Yang-Mills theory through Monte Carlo lattice
calculations. One problem with the earlier results is that
deconfinement transition withNt54 is very close in cou-
pling constant space to a known bulk transition, so that
finite-temperature nature or its order is not clear. We ha
shown that by decreasing the lattice spacing by 2/3, the
confinement transition moves upward in the coupling a
proves itself as a finite-temperature transition, and it
comes well separated from the bulk transition which does
move. Nevertheless, we observe a clear signal for coex
ence of confined and deconfined phases at this decon
ment transition. Therefore, we confirm that the deconfi
ment transition of SU~4! Yang-Mills theory is first order.
Additionally, a first calculation of the latent heat of th
SU~4! deconfinement transition has been presented here,
ing De'6Tc or De/eSB'0.6. Using improved techniques
the SU~3! latent heat isDe/eSB50.266(17)@35#, and it will
be interesting to see how the latent heat depends onNc .

Our calculations of the string tensions are a first study
lattice SU~4! and should be improved to meet the curre
state of the art which exists for SU~3!. Even so, we observe
a ratio for4 and6 dimensional string tensions which is be
tween 1 and 2. It also appears that the adjoint string break
a short distance. We hope this work shows that it is intere
ing and feasible to study ratios of string tensions forNc.3
lattice simulations.
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