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We present results from numerical lattice calculations of4¥ang-Mills theory. This work has two goals:
to determine the order of the finite temperature deconfinement transition Np=a lattice and to study the
string tensions between static charges in the irreducible representationg4)f Bldtivated by the argument
of Pisarski and Tytgat that a second-order(&)Jdeconfinement transition would explain some features of the
SU(3) and QCD transitions, we confirm older results on a coalser4, lattice. We see a clear two-phase
coexistence signal in the order parameter, characteristic of a first-order transitiom?at18/79 on a 6
X 20° lattice, on which we also compute a latent heat\af~0.6e55. Computing Polyakov loop correlation
functions, we calculate the string tension at finite temperature in the confined phase between fundamental
chargeso;, between diquark charges,, and between adjoint charges. We find that X o,/0,<2, and
our result for the adjoint string tensian, is consistent with string breaking.
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I. INTRODUCTION For N; flavors of massless quarks, the QCD Lagrangian
has a global SU{;), ® SU(N¢)r chiral symmetry. At zero
It is well established that the dynamics of the strong forcetemperature this symmetry is spontaneously broken and the
is described by non-Abelian gauge theory with an internabjons are the massless Goldstone bosons, but at some finite
SU(3) symmetry and matter in the fundamental representatemperaturel, the chiral symmetry is restored. Universality
tion. Although the full theory of QCD contains dynamical arguments suggest that the transition should be first order for
quarks, the study of S@) pure Yang-Mills theory{1] pro-  N;=>3 [5], while a second-order transition fo¢;=2 is not
vides useful physical information. For example, in the va-rjeq out[6] (in fact a second-order transition is supported
lence or quenched approximation where gauge field conﬂguby lattice studie§7]). In nature the strange quark maggis

rations are generated without including the fermion :
. . " X . roughly 25 times larger than the average of up and down
determinant in the partition function, the computed light had- gny g g P

X ; quark massem, 4= (m,+my)/2. According to lattice calcu-
ron spectrum differs from the experimentally measured Speﬁétions the ordér of this “2 17 flavor phase transition de-
trum at the 10% level2]. This is convenient since Monte ' P

Carlo calculations require enormous computational effort tooend_s on the sirange Mass. g IS mcregsed fromm,,q,
include dynamical quark effects, so many studies are done if€ first-order phase transition weakens into a cross@jer
the quenched approximation in the interest of practicality. In" Fig. 1 we reproduce the “Columbia” phase diagram
the present paper we are interested in the phase diagram whlch shows the order of the transition for different regions
QCD in the temperature-quark-mass plane, and so the studf (My,q.Ms) plane.
of pure Yang-Mills theory covers the,= line. Recently Pisarski and Tytght1] argued that the Colum-
The confinement-deconfinement transition of QCD atbia diagram is hard to understand in light of intuitive large-
high temperature T~ 100—300 MeV) has been studied with N, arguments. They point out that since anomaly effects are
and without dynamical quarks and depends strongly on theuppressed by I, the contribution of chiral symmetry res-
number of light quark flavors and their masses. Pure gaugmration to the free energy ®©(N.) while the change in the
theory is recovered in the limit of infinite quark masses. Infree energy due to deconfinemenQ$N?). So in the large-
this limit the order parameter of the deconfinement transitiorN,, limit a first-order deconfinement transition should be ro-
is the Polyakov loog3] bust for any quark mass. Thus, if the first-order transition of
SU(3) is a general feature of SBI(), it is hard to understand
why it disappears as the quark masses increase away from
zero. One resolution of this conflict, they propose, is that
N.=3 is special due to the cubic term in the effective po-
In the confined phasé.);=0, but in the deconfined phase, tential and that the general SN) deconfinement transition
the Polyakov loop acquires a nonzero expectation valuds second order.
spontaneously breaking the globalNg) center symmetry. Yang-Mills theory with N, colors, SU{.) pure-gauge
Since a 43) symmetry admits a cubic term in the effective theory, has been a topic of exploration for lattice Monte
potential, it drives a first-order transition; such is not the case€Carlo studies since the first days of the fi¢lB]. A first-
for N.>3 [4]. order phase transition in the average energy was observed on

Ni
L(X)= N—Trtﬂl Ug(X,1). (1)
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FIG. 1. Columbia diagrani8], showing the nature of the (2 FIG. 2. Phase diagram of fundamental-adjoint lattice action

+1)-flavor finite-temperature transition for different valuesmfy ~ showing the lattice-induced bulk transition. The transition line
andms. Regions labeled | have a first-order transition, while regioncrosses the fundamental axis fdg> 3.

Il has only a crossover. Fan,=my=0 there is a tricritical point

(squarg above which the chiral transition is second order, denotedemperature studies of $4) [20—23 addressed this issue to
by asterisks. The pure glue limit is indicated by the octagon at/arying degrees. For example, RE22] studied the decon-
(,%0). The question mark indicates the physical,(3,ms) accord-  finement transition along the ling,=—B/2, hoping to
ing to calculations with staggered fermiof@]. (Reference[10]  4y0id crossing the bulk transition line. Referefi28] found
su_ggests thgt the physical point lies lower, in the region I, Wher\evidence on small volumes anrdl000 Monte Carlo evolu-
Wilson fermions are useg. tion sweeps for deconfinement transitions for btk 4 and

. . . N,=5 aroundB8=10.5 andB=10.6 (with B,=0). All these
symmetric lattices with volumes betweefl and €' fo_r Ne studies concluded that the $1) deconfinement transition
=2-5[12-18. Reference$17-19 demonstrated this tran- was first order. However, given the alluring explanation for

sition is the consequence of a lattice-induced critical IineIhe Columbia diagram, we felt the time was ripe to revisit
separating the strong- and weak-coupling regimes. SpeCifhnite-temperature Su),numerically

cally, they added to the usual fundamental single-plaquette Another topic which we address in this work is the ten-

action sion of confining strings which cartye {1, . .. N¢} units of
flux. Only for N.>3 can one find different strings with un-
E E Re T P,,(X) 2 equal tensions. With these finite-temperature calculations,
X pviusv we find the ratio of diquark €,—,) to fundamental ¢ 1)
string tensions to be in the range<bry_,/o-1<2. As
pointed out in Ref[24], these types of computations may
test dualities between gauge theories and string theories.

Sf:_

o™

the adjoint action

SA=—'8—2 > ReTp P.(X), (3)  String tensions can be computed on the lattice, in broken

A

6 X pim<v supersymmetric gauge theory and in M-theory versions of
) . N R QCD and supersymmetric QCD. Our result tog/ o4 indi-
where P, (x) is the plaquette U,(x)U, (x+»)U,(X  cates that in SW) Yang-Mills flux tubes attract each other
+a)U,(x) and Tk and Ti, are traces in the fundamental as expected from supersymmett8USY) Yang-Mills and
and adjoint representations, respectivelyand v are space- M theories[24] and proved in standard Yang-Mills theory
time (or space-temperaturéndices. Figure 2 shows the re- [25).

sulting phase diagram for this mixed action for @Jand In the next section we describe some details of our calcu-
SU(4). A first-order transition line separates the strong- andations. Section Il gives the results for the deconfinement
weak-coupling regimes of the fundamental coupljfgFor  transition, and Sec. IV shows our calculation of the string
Nc=3 this line ends in a critical point before crossing thetensions. Finally, we summarize our results in Sec. V.
Ba=0 axis, but does cross this axis fol,>3. Also dis-
played is theB~0 transition line corresponding to the tran-
sition in SON2—1) gauge theory.

This lattice-induced4D) bulk transition, while interest- Our calculations of SUY}) Yang-Mills theory do not differ
ing, can obscure the physicé8D) finite-temperature transi- significantly from standard S@3) calculations. We use the
tion of interest here. If the two transitions are nearby in pafundamental single-plaquette action, E2), with g
rameter space, the first-order nature of the bulk transition=2N./g?=8/g2. Our production code is a minimally modi-
would have a nontrivial effect on the confinement-fied version of theviLc code[26]. Our algorithm for evolv-
deconfinement transition. The bulk transition was found tang the gauge fields is a mixed overrelaxation—heat-bath pro-
occur near f=10.2 (with B,=0) [17]. Past finite- cedure: in one Monte Carlo “sweep” we perform ten

Il. COMPUTATION
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FIG. 3. Magnitude of the Polyakov loop y&on a 4x 8° lattice. FIG. 5. Magnitude of the fundamental Polyakov loop@/sn a

. . . 6x 12 lattice.
microcanonical over-relaxation steps followed by one

Kennedy-Pendletorj27] heat-bath step. Each sweep we
compute the average plaquette and fundamental Polyakov
loop. We generate at least 1000 Monte Carlo sweeps at each In order to make contact with previous finite-temperature
B, with 10 000 to 20 000 sweeps aroufid. An independent SU(4) calculations, we compute thermodynamic observables
METROPOLIS code was written from scratch for $4) to  on a 4x 82 lattice for values of3=8/g? between 10.0 and
check thismiLc-derived SW4) code. 10.6. We find a rapid change {fL|) betweeng=10.45 and

For those values of the coupling where we want to  3=10.5(see Fig. 3, in agreement with Ref$20, 23. Since
calculate the string tension, we compute correlation funcihe plaquette is also increasing in that regiig. 4), one
tions of Polyakov loops in the irreducible representations oimight worry that the bulk transition is affecting the decon-
SU@): finement transition. Therefore, we do not pursue confirming

ko the order of the deconfinement transition with=4, and
Ci(r)=(Li(XL{ (X+ 1)z, (4)  instead focus om,=6 where the bulk and deconfinement

transitions should be further separated.

In our 6x 122 calculations, we find that the jump L)
is between3=10.75 andB=10.80(Fig. 5. This move inB
%f the critical point is consistent with the conjecture that the
deconfinement is a thermodynamic phenomenon. On the

serting .SLM) Ge”'Mam .matri.ces. We use the Parisi- other hand, the increase in the plaquette is over the game
Petronzio-Rapuano multihit variance reduction meth2| (10.2—10.6 region as foN,=4 (see Fig. 6, as is expected
L . t— ]

to reduce noise. Polyakov loop correlation fun(_:tions_ %or a bulk transition. And withN;=6 the bulk and finite-
computed every tenth Monte Carlo sweep. We InVeSt'gat‘f’emperature phase transitions are clearly separated.

autocorrelations by including only eventh configuration, : I ) .
wheren=1, 5. and 10. We have a total of 2800 measure- The six plots shown in Fig. 7 show the real and imaginary

. ) parts of the Polyakov loop for the last 2000 sweeps of cal-
ments for the calculations on 2610’ lattice a_nd 1900 mea- culations at the corresponding couplings. One can see the
surements for the calculations on x 82° lattice.

IIl. DECONFINEMENT TRANSITION

wherei =4, 6, 10 and15 and the trace in Eq1) is i dimen-
sional. As is well known, the diquar& and 10 representa-
tions are obtained by antisymmetrizing and symmetrizin
two fundamentald representations and the adjoilt by in-

22 . ; ; ; ; . . . . . . . m 24 _I T | T T T T I T T T T T T T T | T T T § | T I_
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FIG. 4. Plaquette v$8 on 4x 83 lattice. The normalization is FIG. 6. Plaquette v on a 6x 12° lattice. The normalization is
such thatU .9 =N in the free theory. such that{U .9 =N, in the free theory.
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FIG. 7. Plots at six values g8 showing the
phase and magnitude of the average fundamental
Polyakov loop on consecutivex612® configura-
tions. Each cross corresponds to the valué of
computed on a single configuration.

spontaneous breaking of thg4Z symmetry as the decon- phasel The critical coupling is defined to be the value®f
finement transition is crossed. for which f(8)=1/2. In Fig. 8 we plot the deconfinement

One quantitative estimation of the critical coupling} fraction with #=15° and 25° for the & 12° lattice. We find
comes from the deconfinement fractip29]. Let us define B8.=10.78+0.01, where the uncertainty is estimated by
¢ e[0,7/4] as the angle between akg) and the nearest varying # between 15° and 30°.

Z(4) symmetry axis. Given another angte=[0,7/4], one
counts the number of configurations whebes 6, N;,, ver-

sus the number of configurations whepe> 6, Ny In the
confined, 44)-symmetric phase, on average,
N; 0
— = . B =
NintNoy  (7/4) ?_% 0.5

The deconfinement fraction is the excess number of configu:
rations which havep= 6:

f 0)= ’77/4 Nin 0 6 0

( )_(77/4)f0 Nipt+Noue (7/4)]’ ®

where the factor outside the brackets normalizes the totally

I T T T T | T T T T | T T T T I T T T T |
— *—
0 -
. X 15° N i
+ 25° .
i % i
- + -
L -t _
i NS i
. ; |
— X + ¥ + ; + ¥ X ]
I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1 |
10.2 10.4 10.8 10.8 11

B

deconfinedf(#) to 1. [Note that due to statistical fluctua- FIG. 8. Deconfinement fractioftefined in textvs 3 for the 6
tions, f(#) can be slightly negative in the confined x128 lattice.
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FIG. 9. Deconfinement fraction \8 for the 6x 16° lattice.

In order to determine the order of the phase transition, we
increased the spatial volume to*18nd 2G. With the larger
volumes, the critical coupling increases slightly 8.
=10.79 as is expectadec Fig. 9. The histograms of Polya-
kov loop magnitudé(L,)| obtained from the larger two lat- -
tice volumes near their respective critical points show two Y R B R BRI R R
peaks, in cIe_ar contrast to the31\2:)!qme. See Fig. 10. This 0 5000 10000 15000 20000
suggests a first-order phase transition. MC time

Indeed, Polyakov loop evolution in simulation time, in
Fig. 11, signals the coexistence of the confined and decon- FIG. 11. Monte Carlo evolution of the magnitu@ep) and the
fined phases at this temperatu@s 10.79. The magnitude argument (bottom) of the fundamental Polyakov loop fop
stays with its low(confined or high (deconfinedlvalue for a = 10.79 on the & 20° volume. We take argg) <[—3/4,5m/4] for
relatively long period, but occasionally jumps very quickly clarty-
from one to the other value. And when the magnitude is low,
the argument takes random arbitrary values, while it is fixed B
to the neighborhood of one of the four allowe{4yvalues a'(etp)= g° C(g )(Pt 5)' (8)
when the magnitude is high.

By combining these histogram and evolution observa-The average space-space and space-tilbe space-
tions, we conclude that the finite-temperature deconflnlngemperatur)a plaquettes are normalized such thatgﬁ‘ 0,
phase transition of S(4) Yang-Mills system is of first order. P,=P.=1:
It is thus desirable to compute the latent heat through com-
binations of the energy density and the pressure [30].

1
Specifically, we compute 20 *2 > ReTr Py(x), 9)
30 N 5
s a9
a’(e—3p)=-— 6Nca (Pt+P ), (7 1
——2 > ReTrP;(x), (10)
O~O5_ T T T T T T | T T T T T ] Q N X IJI<J f Il
0.04 o \ E where() is the 4D volume and andj are spatial indices. In
Tor | ] bare lattice perturbation theory, th#function and Karsch
C . coefficient are given, respectively, p$1]

0.03 - A
- : : 97 _ LN +0(g? 11

0.02_— — a Jda - 3(16 ) (g ) ( )

0.01 7‘ 4 and

0 g ] -
Cc
0 C(gd)=1- {4NC(32N20.586844— 0.00530%
It ¢
. 11N,

FIG. 10. Histogram ofL,| at 8.,=10.78, 10.79, 10.79 on vol- + |2 (12)

umes of 12,16% 20°, respectively. 6(167)
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5.02 . . T TABLE |. Discontinuities ine—3p and e+ p at §=10.79 for
N ] various values of (described in the text The lattice spacing has
501 ® N been set through the critical temperatuaés.) = (N, T,) .
5 1 Q r A(e—3p)/T! A(e+p)/T
& 5fF @ -
T - 1 6x10° 0.08 7.54) 4.88)
;‘i 199 B 0.10 7.64) 5.4(8)
e =77 ] 0.12 7.64) 5.3(8)
N ] 0.14 7.64) 5.7(8)
4981 .
- . 6x20° 0.08 6.73) 4.94)
49’? C 1 1 1 Il ‘ Il 1 | 1 1 | 1 I_ 010 7Q3) 52(4)
10.74 10.76 10.78 10.8 0.12 7.03) 5.34)
g 0.14 7.13) 5.4(4)

FIG. 12. Energy density minus 3 times the pressurg Yer the

6x 16° lattice. A divergent vacuum contribution remains to be sub-deviations greater than zero. We also see thé&— 3p)
tracted. #A(e+p), which implies a discontinuous change in pres-

. . . o sure across the transition. If, for example, we take the 6
Itis possible, and advisable, to use mean-field-improved pers 5 ara withr =0.10, we find(with statistical errors only
turbation theory or a nonperturbative calculation of these

guantities for an accurate calculation of the energy and pres-
sure[32]; however, for the purpose of establishing a nonzero
latent heat, bare perturbation theory suffices.

The quantitiess—3p ande+ p are plotted as functions of Ap=—0.45 13)-|-‘C1_ (14)
B on the 16 lattice and shown in Figs. 12 and 13, respec-
tively. The fancy crosses in the latter figure correspond t
separating the configurations @8¢=10.79 into hot and cold
phases. Note that— 3p plotted in Fig. 12 contains a diver-
gent vacuum contribution which may be subtracted after
zero-temperature simulation is performed; however, such
subtraction is not necessary in order to compute the Iaten&e
heat from a discontinuity ire—3p at the critical coupling
B.. The separation of phases@ was made on the basis of
whether|L,| was greater or lesser than some valuBased
on the histograms in Fig. 10, we variedrom 0.08 to 0.14.
Table | lists the values foA (e—3p) andA(e+ p) obtained
for differentr on both the 16 and 28 volumes. The varia-
tion as a function of is within the statistical errors.

Thus we observe a latent heat which is many standar

Ae=5.7(3)T¢, (13

% nonzero Ap was also seen in early studies of YU
[33,34] and disappeared when going from the perturbative
estimates for Eqs(11) and (12) to nonperturbative calcula-
Egons [32].

A thorough calculation of the latent heat in the @U
confinement transition requires a full study of the lattice
spacing dependence as well as nonperturbative determination
of the B function and Karsch coefficient. However, even the
exploratory study here makes clear that the latent heat is
nonzero and further establishes the first-order nature of the
phase transition.

We can compare the latent heat for @Uto that for
U(3) by normalizing by the energy density for an ideal
luon gas. If we take the latent heat to he/T,=6.0+1.5

and divide by the Stefan-Boltzmann energy density,

0.006 L T T T T T T T T i
E ] (NG D)7
0.004 |- : % . esg(T)= CTT4, (15
2 - ] _
T 0002 _ we find
o - 7 I ]
L . Ae
0 % - =0.60+0.15. 16
r ] €sp(Te) (18

B Our result should be compared against fe=6 SU(3) la-
10.74 10.76 10.78 10.8 tent heat obtained using a perturbatigefunction: A e/ esg
A =0.454(11)[35]. A state-of-the-art S(B) calculation, which
FIG. 13. Energy density plus pressure gdor the 6x 16° lat- ~ used an improved action and a nonperturbagv&inction,
tice. Squares correspond to averaging over the whole data set: tiggve A e/ esg=0.266(17)[35]. Further work is required to
fancy crosses at the critical beta correspond to separating into heee if the effect of going from a perturbative to nonperturba-
and cold phases as described in the text. tive B function is as dramatic for S4) as for SU3).
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[T il — — | — T3 TABLE Il. String tensions(in lattice unitg between static fun-
g 3 damental k=1) and diquark k=2) charges, and their ratio, using
B ] every (Ngipt+ 1)th configuration in the analysis. The quoted uncer-
107° — tainties are statistical.
6| 1 B Nsiip o op) oyloy
107 o 5
B ] 0 0.0982) 0.13814) 1.4515)
107 [ B 10.65 4 0.09%) 0.13730) 1.6736)
9 0.1017) 0.16456) 1.7767)
10-8 i : 0 0.0762) 0.11813 1.5913)
% g 10.70 4 0.08(%) 0.15440) 1.91(49)
C ] 9 0.0846) 0.16353) 2.0369)
107° —
y - | | | ] jack-knifed fit to the form[36]
10_ Il 1 1 1 1 1 | | Il Il
0 5 10 15 a, a
r —exi = V(NN + ——exi —Vi(Ns— 1N, (17)
S

FIG. 14. Polyakov loop correlation function i (top) and 6
(bottom) representations on ax616° lattice at3=10.65. The sym-  with N;=6, Ng=16, and
bols are the data points and the solid lines are fits in the range 4
=r=<12. s
Vk(r):Ukr_3_N2v (18)

IV. STRING TENSIONS ‘

We use two different lattices. 616° and 8x12%. for  We obtain the string tensions; and o, and their ratio,
studying string tensions. For the former, we choose the co@bulated in Table Il. The analysis of the correlation func-
pling values of3=10.65 and 10.70, safely away from both tions is done using every measurement, every fifth measure-

the bulk and deconfining phase transitions, and in the con?€nt, and every tenth measurement in order to estimate cor-
fining phasesee Fig. 7. Polyakov loop correlationgsee Eq. relations between successive measurem@ash separated

(4)] for the fundamental4, k=1, top and antisymmetric PY ten Monte Carlo steps: see Seq. The increase in the
diquark (6, k=2, botton) representations are shown in Figs. statistical error with the number of skipped configurations,

14 and 15. A clear difference in the rates of exponentiaf\lskip’ indicates a significant autocorr.elatio.n. Unfortunately,
decay is observed betwe@) and Cs. Using a correlated it appears that several hundred configurations are necessary
6 " in order to obtain a precise fit, so we cannot drop too many

of the measurements. However, we can infer from our data

107 e T that
i ] o,
107° R i~ U_1> 1, (19
- 1 by roughly two standard deviations. Note that beth and
107 o 3 o, decrease ag— 3. (i.e., asT increasep Since the lattice
a ] spacing decreases &sncreases, the fit range fg@=10.70
L ] does not include the=4 andr =12 data(see the captions of
1077 = — Figs. 14 and 1p Our numerical accuracy is good enough to
B ] conclude there are two different strings, one between the
C ] fundamental charges carrying one unit of flux and another,
1078 _ stronger, between the diquark charges carrying two units of
S 3 flux. It is not yet good enough, however, to distinguish
3 among various predictions for this ratio summarized by
ol v by o Strass_let[24]. However, this establishe_s numericall_y the ex-
0 5 10 15 pectation foro# o5, in SU4) Yang-Mills theory, just as

r Ref. [37] showedo = o, in SU(3) Yang-Mills theory.

A string model[38] predicts that
FIG. 15. Polyakov loop correlation function i (top) and 6

(bottom) representations on ax616° lattice at3=10.70. The sym-

bols are the data points and the solid lines are fits in the range 5 Te ~1/ 3 =0.69, (20)
<r<11. Vo (T=0) m(d—2)

094502-7




MATTHEW WINGATE AND SHIGEMI OHTA PHYSICAL REVIEW D 63 094502

0.0001 : - - - - [39], such an absence of string is yet to be observed i(B5U
Yang-Mills theory which employs much finer and larger lat-
1x10°5 | 1 tices than the present work.
o[ R V. CONCLUSIONS
= . s " We have revisited the confinement-deconfinement transi-
o7 L o tion of SU4) Yang-Mills theory through Monte Carlo lattice

calculations. One problem with the earlier results is that the
1x10°8 [ : : 1 deconfinement transition with;=4 is very close in cou-
% E g 3 % 3 pling constant space to a known bulk transition, so that its
i P finite-temperature nature or its order is not clear. We have
T s 1 shown that by decreasing the lattice spacing by 2/3, the de-
1 confinement transition moves upward in the coupling and
1x10-10 : ‘ proves itself as a finite-temperature transition, and it be-
0 2 4 6 8 1012 comes well separated from the bulk transition which does not
FIG. 16. Polyakov loop correlation function id (top, 6  Move. Nevertheless, we observe a clear signal for coexist-
(middle), and 15 (bottom representations on a 428 lattice atg ~ €nce of confined and deconfined phases at this deconfine-
-10.85 ment transition. Therefore, we confirm that the deconfine-
ment transition of SWW) Yang-Mills theory is first order.
which is quite close for S(8) [7]. We have not computed Additionally, a first calcul_a_tion of the latent heat of the_
the zero-temperature string tension, but only the string ten%lé(i) de(é(_)rnﬂg;erze?t trang'go'bgﬁ]z bi?ne;rc[))\sgzegsﬁn?c?&z’s giv-
H : e~ c €/ egg=~V.0. y
sion roughly neaff, to find the SUB) latent heat ish e/ eqg=0.266(17)[35], and it wil
be interesting to see how the latent heat dependdan
— = =0.60. (21 Our calculations of the string tensions are a first study in
Vo (T=~T,) lattice SU4) and should be improved to meet the current
state of the art which exists for $8). Even so, we observe
The extent which the lattice scale changes betwgkn 3 ratio for4 and6 dimensional string tensions which is be-
=10.70 andB.=10.79 is the main uncertainty above. Of tween 1 and 2. It also appears that the adjoint string breaks at
course, a zero-temperature study is necessary before one caghort distance. We hope this work shows that it is interest-
assess the agreement with E20). ing and feasible to study ratios of string tensions Ngr>3
On this lattice of 6< 16%, which is the coarser and larger lattice simulations.
of the two, no signal was obtained for either the symmetric
diquark(10) or adjoint(15) representations. In contrast, with ACKNOWLEDGMENTS
the finer lattice spacindat $=10.85) on the smaller 8 e are indebted to the MILC Collaboratij@6] whose
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for the adjoint representation at a rather short distance dPentium Ill processors in the BNL Computing Facility. We
three lattice spacings. It gives us confidence that the correlacknowledge helpful conversations with M. Creutz, R. Pisar-
tions on the 6< 16° lattice should be dominated by the non- ski, and M. Strassler. Thanks also to RIKEN, Brookhaven
perturbative strings for ranges longer than at least three laNational Laboratory, and the U.S. Department of Energy for
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expected behavior for the adjoint representations in generalork.
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