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Numerical study of the scaling properties ofSU„2… lattice gauge theory in Palumbo
noncompact regularization

Giuseppe Di Carlo*
Laboratori Nazionali del Gran Sasso—INFN, I-67010 Assergi (L’Aquila), Italy

Roberto Scimia†

Dipartimento di Fisica and INFN — Sezione di Perugia, Universita` degli Studi di Perugia, Via A. Pascoli I-06100 Perugia, Italy
~Received 18 September 2000; published 4 April 2001!

In the framework of a noncompact lattice regularization of non-Abelian gauge theories, we look, in the
SU(2) case, for the scaling window through the analysis of the ratio of two masses of hadronic states. In the
two-dimensional parameter space of the theory we find the region where the ratio is constant and equal to the
one in the Wilson regularization. In the scaling region we calculate the lattice spacing, finding it at least 20%
larger than in the Wilson case; therefore, the simulated physical volume is larger.
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I. INTRODUCTION

Lattice regularization is the most effective method, if n
the only one, to study the behavior of quantum field theor
outside the limits of application of perturbative expansio
One of the paradigms of this approach, namely the Wils
regularization of gauge theories@1#, has been widely used
from the beginning, and for a large period of time has be
thought, apart from a few exploratory studies of alternativ
essentially as the only way, especially for non-Abelian th
ries. The Wilson regularization implies the use of gau
group elements as dynamical~link! variables, instead o
fields in the algebra of the gauge group as in the continu
Therefore, it is called compact regularization because
links take values in a compact space, the manifold of
gauge group. In the continuum limit one expects that
gauge fields will pass through an effective decompactifi
tion restoring the properties of the continuum physics.
stead, the naive discretization of gauge theories using
usual field representation of the continuum formulation,
placing derivatives with finite differences and a flat meas
for the gauge fields, leads to a theory where gauge invaria
is explicitly broken at finite lattice spacing.

The possible spurious effects of compactification ha
been investigated in the past, leading to the conclusion
the main features of non-Abelian gauge theories, e.g., c
finement and spontaneous breaking of chiral symmetry,
not depend on the compactification of dynamical variab
Nevertheless, one can wonder if there are alternatives to
approach, which are the possible advantages of a formula
of a gauge theory on the lattice where the dynamical v
ables stay noncompact from the beginning.

Some schemes of noncompact regularization of lat
gauge theories have been proposed in the last ten years
will concentrate our attention on a particular one, t
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Palumbo regularization@2#, and we will determine in a non
perturbative way the scaling region and the lattice spacin
physical units. This regularization has already been stud
and used in the past both in the Lagrangian@3–5# and Hamil-
tonian@6# formulations. Numerical results@5# obtained in the
Lagrangian formulation show a discrepancy with respec
the perturbative expansion@4#, while there is a full agree-
ment between the latter and the calculations in the Ham
tonian framework@6#; a reanalysis of this slightly controver
sial situation is an additional~minor! motivation for the
present work.

Besides being an alternative to Wilson regularizatio
Palumbo regularization is interesting because of its rela
with the tadpole improvement technique used to obtain
provement of compact lattice actions~see, for example, Ref
@7#, and references therein!. As will be shown in the follow-
ing, in this regularization, because of the use of noncomp
fields as dynamic variables, the tadpoles are resummed f
the very beginning in some auxiliary fields which decoup
in the continuum limit.

In the present study, in some sense an exploratory one
will use SU(2) as a gauge group mainly for the significa
simplification we get in the numerical procedure with resp
to the ~more interesting! SU(3) case; but there are noa
priori obstructions in repeating the whole procedure we w
depict in the following using the noncompact regularizati
with SU(N) as gauge group@8#. Moreover, in theSU(2)
case there are, as said before, other results in the litera
useful for comparison.

We will proceed as follows: after the introduction of th
more important features of the Palumbo regularization,
will explain our scheme for identifying the scaling regio
using a ratio of two hadron masses. The next step will be
definition of the scheme used in the numerical simulatio
The results will be presented in the last section of the pa
together with a comparison with other analytical as well
numerical results obtained in the same framework in
past.

II. THE PALUMBO NONCOMPACT REGULARIZATION

The noncompact regularization we used is fully explain
in Refs. @3,4#, but in order to keep the paper self-contain
©2001 The American Physical Society01-1
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GIUSEPPE DI CARLO AND ROBERTO SCIMIA PHYSICAL REVIEW D63 094501
we recall here its main features. The exact gauge invaria
at finite lattice spacing is obtained by using a covariant
rivative Dm(x) which, under a gauge transformatio
geSU(N), transforms according to the equation

Dm8 ~x!5g~x!Dm~x!g†~x1am̂ !, ~1!

whereD is an element ofGL(M ,C), M is the dimension of
the matrix representation, anda is the lattice spacing. The
covariant derivative can then be written as a function o
field in the Lie algebra1 of SU(N) plus some auxiliary fields
~see also@8#!, whose transformation equations can be work
out straightforwardly. In the case of theSU(2) gauge group,
the covariant derivative in the fundamental representa
depends on only one auxiliary fieldWm

Dm~x!5S 1

a
2WmD I 1 iAm , ~2!

Am5Am
a Ta , ~3!

where I is the (232) identity matrix and theTa are the
generators of the gauge group

@Ta ,Tb#5 i«ab
c Tc , $Ta ,Tb%5

1

2
db

a . ~4!

The strength tensor is defined in analogy to the continu
and the same holds for the Yang-Mills Lagrangian densi

Fmn~x!52 i @Dm~x!Dn~x1am̂ !2Dn~x!Dm~x1an̂ !#,
~5!

LY M~x!5
b

4 (
n.m

Tr Fmn~x!F mn
† ~x!. ~6!

The lattice theory is defined with a flat measure for the fie
in Dm(x), as in the continuum.

This is a regularization of the Yang-Mills theory if, in th
continuum limit, the auxiliary fieldWm is decoupled. This
can be achieved at the quantum level by introducing a
tential which gives a divergent mass to this field. The pot
tial is constructed using the gauge invariant quantitytm

tm~x!I 5Dm~x!D m
† ~x!2

1

a2
I

5F1

4
A m

2 ~x!1Wm
2 ~x!2

2

a
WmG I ;

~7!

therefore, the basic noncompact Lagrangian is obtained
adding toLY M the potential

1As shown in Ref.@3# it transforms like a continuum gauge field
except for lattice artifacts that vanish in the continuum limit.
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Lc~x!5bc(
m

tm
2 ~x!, bc.0. ~8!

If in the continuum limit

bc.~aS!22«, «.0, ~9!

whereS is a parameter with the dimension of a mass,
auxiliary field has a mass of the order ofa2«/2S12«/2. As in
Ref. @4# we confine ourselves to the case«52.

The Wilson regularization can be obtained by eliminati
the auxiliary field by imposing the constraint

tm50. ~10!

This condition produces a compactification of the covari
derivative which becomes

Dm5
1

a
Um , ~11!

where UmeSU(2) can be identified with the Wilson link
variable. The imposition of the constraint~10! is equivalent
to taking the limit bc→`. This can be made explicit by
introducing a polar representation for the covariant deri
tive @4#; we notice that the Jacobian for the change of va
ables provides the Haar measure for the link variab
Um(x).

We stress that the couplingbc is not an irrelevant one
because it is necessary to render the lattice theory as a r
larization of the Yang-Mills gauge theory.

In Ref. @4#, the properties of the regularization were stu
ied using a perturbative approach and adopting a polar
resentation for the covariant derivative. We checked that
results obtained in numerical simulations do not depend~as
they must be! on the parametrization used for the covaria
derivative. It is worth noticing that the use of a Cartesi
parametrization for the covariant derivative makes evid
one advantage of this noncompact regularization, with
spect to the compact ones. The number of vertices in per
bative calculations stays finite independently from the or
considered.

Some irrelevant terms were introduced in the action
make the perturbative analysis of the regularization eas
They are constructed from the gauge-invariant quantitytm ,
and cancel some contributions originated fromLY M in Eq.
~6! which depend only on the fieldtm , so that the auxiliary
field does not propagate at tree level. By an appropr
choice of the couplings of the irrelevant terms the latt
theory can be defined in terms of only two parameters,b,g,
with

g252S bc1
3

4
b D . ~12!

The conditionbc.0 corresponds to

g.A3

2
b. ~13!
1-2



rb

a
on
in
th
la
e

ts

i

nt
rm

, t
e
se

f t
t

i.e
ua
in
e
a

r
el
u

ou
a

ua-

y
pa-

of

in
he

on

on

er

ith
um

x-
will

to

e

NUMERICAL STUDY OF THE SCALING PROPERTIES . . . PHYSICAL REVIEW D 63 094501
To render possible a comparison with the previous pertu
tive ~see, also, Ref.@6#! and numerical@5# calculations we
used the same Lagrangian of Ref.@4#, explicitly

L5LY M1
1

8
ba2 (

n.m
~¹mtn2¹ntm!21

1

2
g2(

m
tm
2 ,

~14!

where

¹m f ~x!5
1

a
@ f ~x1am̂ !2 f ~x!#. ~15!

III. NONPERTURBATIVE DETERMINATION OF THE
SCALING PROPERTIES OF THE REGULARIZATION

The goal of our work is to answer the question: Wh
about the convergence to continuum in this regularizati
In this form the question is misleading, because remov
the regularization has different meanings depending on
context considered. In fact, in the one-coupling-constant
tice regularizations of Yang-Mills theory, like Wilson’s, th
evolution of the bare couplingg252N/b is obtained from
the equation

a
dg~a!

da
52b~g!5b0g3~a!1b1g5~a!1O~g7!, ~16!

whereb0 ,b1 are the universal one and two loop coefficien
of the beta function expansion. In aSU(N) pure gauge lat-
tice theory they are

b05
11

3

N

16p2
; b15

34

3 S N

16p2D 2

. ~17!

In perturbative calculations, to take the continuum lim
means to evaluate the limit fora→0 of the renormalized
quantities calculated.

In a numerical simulation the situation is very differe
because the calculated quantities are not in analytical fo
moreover, the lattice spacing is always finite. Therefore
take the continuum limit in this case means to determin
region, in the parameters space of the lattice theory u
where the results~at finite lattice spacing! are as close as
possible to their~experimental! continuum limit. Usually this
region is characterized by a value as large as possible o
correlation length of the system. There it is also possible
study the asymptotic scaling of the calculated quantities,
in which measure they follow the perturbative scaling eq
tions. It is important to notice here that the size of the scal
violations depends on the quantity considered. As is w
known, the ratio of two quantities with the same physic
dimension~for example, two masses! is constant~if not for
scaling violations! in a scaling region that is usually large
than the asymptotic scaling window. In presence of irr
evant couplings, the scaling of the physical quantities sho
not depend on their values.

In Palumbo noncompact regularization there are two c
pling constants, as explained before, whose evolution
09450
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functions of the lattice spacing can be determined from eq
tions analogous to Eq.~16!. We stress thatg is not an irrel-
evant coupling~in the common meaning of the term!, as
explained above. In Ref.@4#, the authors define the quantit
LNC , which in the sequel we call a noncompact scale
rameter, using the expression

LNC
2 a25S 11

b1
2

b0
3

g2D expH 2
1

b0g2
2

b1

b0
2

ln~b0g2!J ,

~18!

which is exactly the same function obtained in the case
Wilson regularization, except for the fact thatLNC is a func-
tion of g252N/b andg. Such a function can be evaluated
perturbation theory, solving the evolution equations for t
two coupling constants. Actually, in Ref.@4#, the authors
obtained

LNC5LW expH 2
c

g2g2J , ~19!

whereLW is the scale parameter for Wilson regularizati
and

c5
12

11
p230.88323. ~20!

In the limit of vanishing lattice spacing we haveg→0,
where Eq.~19! would then implyLNC→0, i.e., an inconsis-
tency of the regularization if not for an appropriate evoluti
of g. On general grounds, given Eq.~19! for LNC as a func-
tion of the bare couplings, to haveLNCÞ0 in the continuum
limit it is necessary that

lim
a→0

g2g25kÞ0. ~21!

Actually, in Ref. @4#, the authors obtained to one loop ord

g5
g1

g2
1g2 , ~22!

whereg1 is an arbitrary constant andg2 is be determined by
a higher loop calculation. Then in the limita→0,

lim
a→0

LNC5LW . ~23!

Such results mean that in perturbative calculations w
Palumbo regularization it is possible to get the continu
limit with a scale parameter equal to the Wilson one.

In numerical simulations the situation is different, as e
plained above. On general grounds we expect that there
exist a scaling region in the plane (b,1/g)2 and that, because
of the finite lattice spacing, the properties of convergence

2We use as a natural variable 1/g because the Wilson limit can b
identified with the 1/g50 line.
1-3
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GIUSEPPE DI CARLO AND ROBERTO SCIMIA PHYSICAL REVIEW D63 094501
the continuum of the regularization vary in this region. F
example, we could have, in scaling conditions, differe
physical values for the lattice spacing~therefore, different
physical volumes! as a function of the value of the bar
parametersb,1/g. One possible strategy to determine t
scaling properties of the regularization~which we followed!
goes through the following steps. The ratio of two quantit
with the same physical dimension has to be calculated
function of the bare parameters of the regularization, e.g.
a regular grid in the (b,1/g) plane. These values can be fitte
so as to obtain a surface continuously varying in the (b,1/g)
plane. The scaling region for the noncompact regulariza
is therefore the region in the (b,1/g) plane where the ratio
considered agrees with the same quantity evaluated in
son lattice theory, which corresponds to the 1/g50 line. The
comparison with Wilson regularization~or with any other
regularization for which perturbative relations are availa
to determine the asymptotic scaling region! is mandatory
only in the case of a nonphysical theory, like in pureSU(2)
gauge theory. In fact, in theSU(3) case we can fix the
physical value of the ratio by using experimental data, the
fore, in a fully independent way from perturbative calcu
tions.

In summary, the only two necessary ingredients are
ratio calculated using the noncompact regularization and
perturbative scaling equations for Wilson regularization
determine the physical value of the ratio, which is the va
it assumes in the asymptotic scaling region for Wilson re
larization. We stress that this technique was well known
principle ~see, for example, Ref.@9#! and has been used i
the past, although in a different form, in Ref.@10#. We chose
to use the ratio of two particle masses due to the follow
considerations. Other pure gluonic observables, like
plaquette, have significant perturbative contributions wh
may obscure the nonperturbative features of the regular
tion. As for the glueball masses, usually smearing techniq
are used to obtain clearer signals, but this implies the in
duction of additional parameters besides the two peculia
the Palumbo regularization. As for the string tension, in t
preliminary work, we preferred to use ratios of quantiti
with the same physical dimensions to avoid spurious effe
Lastly we notice that the particle masses have a well-defi
physical meaning and depend in a fundamental way on
nonperturbative properties of the theory.

It is a crucial condition for the above-depicted scheme
be valid, since the only dimensionful quantity of the theory
the renormalization group scaling parameter; this is true
we work in the chiral limit. Otherwise, we would have a
other dimensionful quantity~the quark mass!. As is well
known, it is extremely difficult~and numerically very expen
sive! to perform simulations or to measure masses directl
the chiral limit; to stay within the limits of this work, we
have chosen to evaluate the mass spectrum at four fi
quark mass values and then extrapolate to the chiral limit
have better control on this extrapolation we have u
Kogut-Susskind fermions, where chiral limits can be eas
defined and reached, with good accuracy, by means
linear extrapolation in the bare quark mass. The same c
siderations led us to work in the quenched approximati
09450
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moreover, one of our~minor! scopes is to compare with th
analytical calculations in Ref.@4# that were carried out for
the pure gauge theory.

IV. DETAILS ON THE NUMERICAL APPROACH

As follows from the previous considerations, the acti
for SU(2) lattice gauge theory using the Palumbo regul
ization contains two parameters (b andg); the role ofg is to
assure the decoupling of the auxiliary field in the continuu
limit. Notice that, in practice, the action can assume differ
specific forms depending on which class of irrelevant ter
we decide to include; different choices of the set of irrelev
terms can lead to an action easier to use in numerica
analytical calculations, or to an action more complex, b
with a better approach to the continuum limit. We will n
address this issue, but instead choose to work with the la
action in Eq.~14!.

We have explicitly checked that the term

1

8
ba2 (

n.m
~¹mtn2¹ntm!2 ~24!

is actually irrelevant, in the sense that the results for
hadron masses do not depend in a sensible way on its in
sion or exclusion in the action.

The action~14! can usefully be thought of as an action f
a gauge field living in the GL~2! group; therefore, we de
cided to use a Cartesian representation that includes both
physical fields and the auxiliary one. Other choices are p
sible; in particular, we recall the polar representation used
Ref. @4#. Starting from the action~14! we have written a
generic Metropolis1Overrelaxation code; the overrelaxatio
part of the procedure applies only to theSU(2) part of the
GL~2! fields, i.e., it amounts to a microcanonical rotation
the SU(2) subgroup leaving untouched the determinant
the GL~2! matrix. CPU time and memory requirement for th
computation is essentially the same needed for a corresp
ing Monte Carlo with the Wilson regularization.

Looking at the action~14!, it can be easily understood tha
the parameterg is bound to be larger than a minimum valu
@Eq. ~13!#, as discussed in Ref.@4#.

The other limit, i.e.,g→`, reproduces the Wilson regu
larization in the sense that the determinant of GL~2! gauge
fields is constrained to be one and we recover the usual c
pactSU(2) gauge action.

In order to have a better readability of the results, in p
ticular, in the region of largeg where the Wilson results
have to be recovered, we decided to work on a~quasi-! regu-
lar grid in theb,1/g parameter space~in this space the 1/g
50 line is the Wilson theory!. We have chosen to work with
2.0<b<2.7 and 0.0,1/g<0.2, using 12 values ofb and 20
values of 1/g; we have also included in our analysis th
results obtained for the Wilson regularization~the 1/g50
line in the following!.

As said before, we are interested mainly in the masse
the ~lighter! hadron states; inSU(2) gauge theory we have
four states made from two quarks, namely a scalar (s), a
pseudoscalar (p), a vector (r), and a pseudovector (A1).
1-4
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NUMERICAL STUDY OF THE SCALING PROPERTIES . . . PHYSICAL REVIEW D 63 094501
Moreover, due to the use of Kogut-Susskind fermions,
can have a signal in the correlation function both fro
nonoscillating and oscillating channels; we will refer to the
as1 and2 states, respectively.

We would like to stress here that we had 240 differe
simulations to carry out in order to complete our progra
faced with our limited computing resources, and taking in
account the exploratory character of this work, we confin
ourselves to small lattices, namely a 63312 one.

The actual scheme we have followed is that for ev
point in theb,1/g grid we have thermalized a starting co
figuration, then measured the hadron propagator for on
the four values of the quark mass~namely mq
50.15, 0.20, 0.25, and 0.30) on a configuration separa
by 150 circles of combined Metropolis1Overrelaxation
sweeps from the previous one used to measure the ob
ables, for a total of 180 hadron propagators per mass va

We notice that we have estimated the integrated auto
relation time in a representative point inside the scaling w
dow, finding a value around 40; therefore, we used an
semble of well-decorrelated configurations.

From the averaged propagators we have extracted
mass of hadron states (m1 andm2) fitting with the follow-
ing function:

P~t!5A~e2tm1
1e2(Nt2t)m1

!

1B~21!t~e2tm2
1e2(Nt2t)m2

!. ~25!

At the end we obtain, for eachb,1/g point, the mass of seve
hadron states~for the pseudoscalar channel the oscillati
state is not observable!, each one evaluated at four values
the quark mass.

Among these seven masses we notice a well-defined
tern. The pion mass is affected by the smallest statist
error ~well below 1%), but, this particle being a Goldston
boson, it vanishes in the chiral limit, and then cannot be u
for the determination of the scaling window. The other thr
particles, namelyr1, A1

2 , and s1, have small statistica
errors~around or less than1%); finally, the other three state
are worst defined being affected by large statistical err
and then useless for our purposes.

Restricting ourselves to the three non-Goldstone st
with small errors, a linear extrapolation to the chiral (mq
→0) limit gives us the dataset for the analysis explained
the following section.

Aside from the determination of the hadron propagato
we have used the configuration generated to also mea
local observables as the plaquette and its specific heat.

The simulations have been fully performed on small s
tems such as Unix workstations and Linux PCs at L.N
L.N.G.S., and the University of Perugia.

V. RESULTS

Let us proceed to show our results. As said in the previ
section, we have evaluated the ratio of the masses ofA1

2 and
r1. The motivation for this choice comes from the observ
tion that the errors for these two masses are smaller; ne
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theless, we have repeated the whole analysis also using
mass of thes1 particle, finding similar results.

The mass ratioR has been obtained on a grid of points
b and 1/g and then a regular surface has been reconstru
using a bipolynomial spline fitting procedure. We postpon
discussion on the errors to the end of this section.

In Fig. 1 we report the fitting surfaceR(b,1/g). Looking
at the figure we can recognize some important features;
of all, the existence of an~almost! flat region ~valley! that
originates from the 1/g50 line ~Wilson results!, and propa-
gates towards larger values ofb for increasing 1/g. The flat
region in the Wilson limit coincides with the usual scalin
region forSU(2) pure gauge lattice theory for these~inter-
mediate! lattice sizes@11#.

We have checked that, in this region, the good asympt
scaling can be obtained only in a narrow interval nearb
52.3. Therefore, we tentatively identify the valley as t
scaling window~although not the asymptotic scaling regio!
for the noncompact regularization. In order to make this o
servation more precise, we report in Fig. 2 the curves
constantR in the planeb,1/g.

Including in the analysis the data of the single partic

FIG. 1. R(b,1/g) fitting surface.

FIG. 2. Lines of constantR in the b,1/g plane.
1-5
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GIUSEPPE DI CARLO AND ROBERTO SCIMIA PHYSICAL REVIEW D63 094501
masses in the scaling region, we can make our statem
more definitive. Looking at Fig. 2, we can identify two di
ferent zones where a more detailed analysis allows u
clarify the properties of the region we proposed as the s
ing region. If we define the scaling region as limited from t
R51.09 level, we can say that 1/g,0.12 and 0.10,1/g
,0.17 are the scaling regions for, respectively,b52.35 and
b52.60. Consider the linesb52.35 andb52.60. In the first
case, the Wilson point (1/g50) is inside the scaling region
whereas in the second case only a segment 1/g1,1/g
,1/g2 is. In Fig. 3, we can see the behavior ofR ~from the
fitting surface! along these two lines.

In Figs. 4 and 5 we report the results for ther1 mass in
two cases (b52.35 for Fig. 4 andb52.60 for Fig. 5!. In
these figures we have reported the raw data for the mas

We are allowed, now, to compare our numerical resu
with the perturbative analysis in Ref.@4#; following this
analysis we expect that the lattice spacing, and then the
tice mass inside the scaling region, follows a behavior lik

a~b,g!}expH 2
12p2

11
0.2208

b

g2J , ~26!

FIG. 3. R(b,1/g) for b52.35 andb52.60 vs 1/g; the horizon-
tal lines limit the scaling region.

FIG. 4. Mass of ther1 particle forb52.35 vs 1/g.
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where the numerical coefficients result from a one loop c
culation.

Coming back to Figs. 4 and 5 we can see, superimpo
to the data in the scaling regions, a fit with the exponentia
a second order polynomial. Notice that in theb52.35 case
we have not included the Wilson point in the fitted data; t
Wilson result is in good agreement with the extrapolati
from 1/g.0 data; in the other case we expect this kind
extrapolation to be meaningless. Forb52.35 we can try a
direct comparison with the perturbative results, keeping
mind that we are working on a small lattice and, in any ca
we have not performed a detailed estimation of system
effects largely outside the scope of this work. Following R
@4#, we expect the coefficient of the linear term in 1/g to be
zero and that of the quadratic one to be 5.56. From our fit
get for the former a value compatible with zero (0.360.8)
and for the latter 762. We do not claim an agreement wit
the perturbative formula, but in any case we have, at
level, no trace of the large discrepancies found in Ref.@5#.

Finally, in Fig. 5, we note that the decreasing trend
decreasing 1/g, which can be clearly seen in the scaling r
gion, ceases in correspondence of the lower limit of the s
ing region itself. We have checked that this behavior
present also in the data for the other particles and valuesb
where, as in the case ofb52.6, the Wilson limit lies outside
the scaling window. Again, the behavior of the mass, a
hence the lattice spacing, is well reproduced by an expon
tial of a polynomial in 1/g.

Fortified by these results, we can now proceed to a fi
check on our scaling window; we expect that the scal
window contains the value of the parameters in which
specific heat has a maximum, signaling a large correla
length. In Fig. 6, we can see the constantR lines as in Fig. 2
~continuous lines! with the superimposed position, in th
(b,1/g) plane, of the peaks of the plaquette specific h
~dashed line!. In this figure, four lines of constant plaquet
~dotted lines! are also reported. We can see a substan
correspondence between the fluxes in the parameter spa
identified by different operators. This scenario is the o
expected for an honest theory in the scaling regime.
therefore are confident to have correctly identified the sc

FIG. 5. Mass of ther1 particle forb52.60 vs 1/g.
1-6
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ing window for noncompact regularization. We stress that
using this scheme, we can leave aside any perturbative
culation in the noncompact regularization.

Any point inside the scaling window is a good one f
approximating the behavior of continuum theory, but act
results can be different. In particular, the value of the latt
spacing, and then the lattice volume, varies from point
point. As we have seen before for the noncompact formu
tion, this value can be larger than that obtained using
Wilson formulation. In order to make this assertion le
qualitative, we present in Fig. 7 the behavior of the latt
spacing, as extracted from ther1 mass, along the center o
the valley. We can clearly see that the lattice spacing
comes larger and larger the more we depart from the Wil
case 1/g50; with the lattice size used in this work, we ca
access to regions where the lattice spacing is around 2
larger than the Wilson regularization. This improvement c
be made larger if we move towards largerb and 1/g, but
with a narrower scaling valley and nearer to the instabi
regime@see Eq.~13!#. Again these results are in substant
agreement with the prediction of the perturbative calculat

FIG. 6. Lines of constantR ~continuous line!, constant plaquette
~dotted line!, and position of the peak of specific heat~dashed line!
in the b,1/g plane.

FIG. 7. Ratio of noncompact and Wilson lattice spacing alon
curve lying on the bottom of the scaling valley.
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in Refs. @4,6# and do not show any sign of the large devi
tions claimed in Ref.@5#; we remind, however, that thes
deviations have been obtained using a different approach
looking at different operators.

We believe that a complete knowledge of the entire sc
ing region, as well as the corresponding gain in terms
lattice spacing, is out of the scope of this work; it is mo
interesting to address this point in a more realistic simu
tion, using larger lattices in theSU(3) case. In the presen
paper, we have devoted our attention more to the deve
ment of a scheme for addressing the problem, than to g
definitive and quantitative answers to questions about
~improving! potentiality of this regularization.

Errors

The main ingredient of our analysis is the ratioR. This
quantity is obtained, starting from the raw propagators,
means of a complex procedure amounting essentially to th
levels of fitting: fitting the correlator to extract the mas
fitting the masses to extract the chiral limit, and eventua
the final fit of R(b,1/g) to get a smooth surface. It is ex
tremely hard to trace the propagation of statistical err
from the raw data to the final surface. Nevertheless, it
mandatory to have at least a rough idea of the effects of
statistical fluctuations on our procedure.

To this end we have chosen to proceed in this way:
have divided our statistical ensemble of 180 independ
measures of the correlator~for eachb, 1/g, and quark mass!
in two independent subsets of 90; we have then repeated
whole procedure@from the fitting to Eq.~25! to the construc-
tion of the smooth surface forR] for the two sets indepen
dently. We have then computed the root mean square~rms!
of the deviation between the two surfaces on a regular grid
O(100) pointsPi , placed in the core of the (b,1/g) region
to avoid edge effects. From this procedure we find a rms
1% which we assume to approximate the error on theR
surface; we have checked the independence of this eva
tion on the number of pointsPi used to compute the averag
of the deviation. This result helped us to establish the cr
rion (R<1.09) used to define the scaling region~see Fig. 3!
and made us more confident on the robustness of the em
ing scenario.

VI. CONCLUSIONS

We have studied the approach to the continuum ofSU(2)
lattice gauge theory within a noncompact regularizat
scheme with two dimensionless parameters. We have de
mined the scaling window using a nonperturbative approa
defined through the use of the ratio of the masses of
hadronic states. We have found a clear scaling window t
stemming from one of the Wilson regularizations, moves
wards largerb and 1/g.

Inside this region, we have determined the lattice spac
finding it increasing with increasing distance from the W
son line ~in the parameter space!, and in a way compatible
with the expectations based on perturbative analytical ca
lations without the large discrepancies observed in Ref.@5#.
Our determination of the scaling region is corroborated

a
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the observation of the behavior of other quantities, i.e.,
specific heat, linked to the correlation length.

All this work has been carried out in small lattices; the
fore we cannot give a more sound quantitative estimation
the effects observed. In any case, the use of this noncom
regularization leads to clear advantages in terms of simul
physical volumes.

This analysis needs to be improved with the use of lar
lattices and other observables more suitable for the accu
determination of the lattice spacing, possibly for the phy
cally interesting case ofSU(3) theory@8#. It would also be
B
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of interest to study the effects of unquenching on the adv
tages for the physical volume in the scaling region
Palumbo regularization.
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