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In the framework of a noncompact lattice regularization of non-Abelian gauge theories, we look, in the
SU(2) case, for the scaling window through the analysis of the ratio of two masses of hadronic states. In the
two-dimensional parameter space of the theory we find the region where the ratio is constant and equal to the
one in the Wilson regularization. In the scaling region we calculate the lattice spacing, finding it at least 20%
larger than in the Wilson case; therefore, the simulated physical volume is larger.
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I. INTRODUCTION Palumbo regularizatiof2], and we will determine in a non-
perturbative way the scaling region and the lattice spacing in
Lattice regularization is the most effective method, if notPhysical units. This regularization has already been studied
the only one, to study the behavior of quantum field theoriesnd used in the past both in the Lagrandian5] and Hamil-

outside the limits of application of perturbative expansionsionian[6] formulations. Numerical resul{$] obtained in the

; ; . lagrangian formulation show a discrepancy with respect to
One of the paradigms of this approach, namely the Wilso he perturbative expansidd], while there is a full agree-

regulanza‘uoq OT gauge theorigd], has -been vy|dely used ment between the latter and the calculations in the Hamil-
from the beginning, and for a large period of time has beefgnian framework6]; a reanalysis of this slightly controver-
thought, apart from a few exploratory studies of alternativesgjg| sjtuation is an additionalminor) motivation for the
essentially as the only way, especially for non-Abelian theopresent work.

ries. The Wilson regularization implies the use of gauge Besides being an alternative to Wilson regularization,
group elements as dynamicdink) variables, instead of Palumbo regularization is interesting because of its relation
fields in the algebra of the gauge group as in the continuumwith the tadpole improvement technique used to obtain im-
Therefore, it is called compact regularization because th&rovement of compact lattice actio(eee, for example, Ref.
links take values in a compact space, the manifold of thé 7, and references thergims will be shown in the follow-

gauge group. In the continuum limit one expects that thdn9: in this regularization, because of the use of noncompact

gauge fields will pass through an effective decompactificaf'elds as dynamic variables, the tadpoles are resummed from

4 . . . : the very beginning in some auxiliary fields which decouple
tion restoring the properties of the continuum physics. In- the continuum limit.

stead, 'the naive discrgtization of gauge theories u;ing the |4 the present study, in some sense an exploratory one, we
usua_\l field representation _of th_e continuum formulation, reyi|| use SU(2) as a gauge group mainly for the significant
placing derivatives with finite differences and a flat measuresimplification we get in the numerical procedure with respect
for the gauge fields, leads to a theory where gauge invarianag the (more interesting SU(3) case; but there are n@
is explicitly broken at finite lattice spacing. priori obstructions in repeating the whole procedure we will
The possible spurious effects of compactification havelepict in the following using the noncompact regularization
been investigated in the past, leading to the conclusion thavith SU(N) as gauge group8]. Moreover, in theSU(2)
the main features of non-Abelian gauge theories, e.g., corsase there are, as said before, other results in the literature
finement and spontaneous breaking of chiral symmetry, dgseful for comparison.
not depend on the compactification of dynamical variables. We will proceed as follows: after the introduction of the
Nevertheless, one can wonder if there are alternatives to thi§ore important features of the Palumbo regularization, we
approach, which are the possible advantages of a formulatioffill explain our scheme for identifying the scaling region
of a gauge theory on the lattice where the dynamical vari!Sing a ratio of two hadron masses. The next step will be the
ables stay noncompact from the beginning. definition of the scheme useq in the numenlcal simulations.
Some schemes of noncompact regularization of latticd N€ results will be presented in the last section of the paper,

gauge theories have been proposed in the last ten years; Wgether with a comparison with other analytical as well as
will concentrate our attention on a particular one thenumerlcal results obtained in the same framework in the

past.

* . . - . . Il. THE PALUMBO NONCOMPACT REGULARIZATION
On leave from Laboratori Nazionali di Frascati, INFN. Email

address: giuseppe.dicarlo@Ings.infn.it The noncompact regularization we used is fully explained
"Email address: roberto.scimia@Inf.infn.it in Refs.[3,4], but in order to keep the paper self-contained
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we recall here its main features. The exact gauge invariance

at finite lattice spacing is obtained by using a covariant de- Lo(X)=Bc2 t2(x), Bc>0. (8)
rivative D,(x) which, under a gauge transformation .
geSU(N), transforms according to the equation If in the continuum limit

D, (x)=g(x)D,(\)g' (x+au), (1) Be=(a%)?™®, &>0, 9

whereD is an element of5L(M,C), M is the dimension of WwhereX is a parameter with the dimension of a mass, the
the matrix representation, aradis the lattice spacing. The auxiliary field has a mass of the orderaf®?31*"2 As in
covariant derivative can then be written as a function of aRef.[4] we confine ourselves to the case 2.

field in the Lie algebraof SU(N) plus some auxiliary fields The Wilson regularization can be obtained by eliminating
(see als8]), whose transformation equations can be workecdhe auxiliary field by imposing the constraint

out straightforwardly. In the case of tisJ(2) gauge group,

the covariant derivative in the fundamental representation t,=0. (10

depends on only one auxiliary fiel _ . . .
P y y # This condition produces a compactification of the covariant

derivative which becomes

D,(x)= 1+iA,, )

1
a Wu

11
A,=A0T,, (3

where U ,eSU(2) can be identified with the Wilson link
variable. The imposition of the constraiitO) is equivalent

to taking the limit 8.—. This can be made explicit by
introducing a polar representation for the covariant deriva-

where | is the (2x2) identity matrix and theT, are the
generators of the gauge group

[Ta, Tol=ies,Te, {Ta,Tol= 1561_ (4  tive[4]; we notice that the Jacobian for the change of vari-
ab 2 b
ables provides the Haar measure for the link variables
U ,(x).

The strength tensor is defined in analogy to the continuum, "We stress that the coupling. is not an irrelevant one
and the same holds for the Yang-Mills Lagrangian density: pecause it is necessary to render the lattice theory as a regu-
- . larization of the Yang-Mills gauge theory.
Fu(X)=—i[D,(X)D,(x+au) =D, (X)D,(x+av)], In Ref.[4], the properties of the regularization were stud-
) ied using a perturbative approach and adopting a polar rep-
resentation for the covariant derivative. We checked that the
results obtained in numerical simulations do not depersd
they must bgon the parametrization used for the covariant
derivative. It is worth noticing that the use of a Cartesian
The lattice theory is defined with a flat measure for the fieldgparametrization for the covariant derivative makes evident
in D,(x), as in the continuum. one advantage of this noncompact regularization, with re-
This is a regularization of the Yang-Mills theory if, in the Spect to the compact ones. The number of vertices in pertur-
continuum limit, the auxiliary fieldw, is decoupled. This bative calculations stays finite independently from the order
can be achieved at the quantum level by introducing a poconsidered.
tential which gives a divergent mass to this field. The poten- Some irrelevant terms were introduced in the action to

tial is constructed using the gauge invariant quarttjty make the perturbative analysis of the regularization easier.
They are constructed from the gauge-invariant quanjty

1 and cancel some contributions originated fradkp,, in Eq.
t,(X)] =Dﬂ(x)DL(x)— | (6) which depend only on the fielt,, so that the auxiliary

a field does not propagate at tree level. By an appropriate

choice of the couplings of the irrelevant terms the lattice

umm=§giﬂﬁAmﬂJm. (6)

1 2 theory can be defined in t f only t t
|t 2,0 % . y ined in terms of only two parametgrs,
= 4Aﬂ(x)+WM(x) aW" I; with

(7)
- 3
therefore, the basic noncompact Lagrangian is obtained by Y°=2| Bet ZB ' (12
adding toLy ), the potential
The conditionB.>0 corresponds to
IAs shown in Ref[3] it transforms like a continuum gauge field, y> §B (13)
except for lattice artifacts that vanish in the continuum limit. 27
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To render possible a comparison with the previous perturbafunctions of the lattice spacing can be determined from equa-
tive (see, also, Refl6]) and numerical5] calculations we tions analogous to Eq16). We stress thay is not an irrel-
used the same Lagrangian of REf], explicitly evant coupling(in the common meaning of the teymas
explained above. In Ref4], the authors define the quantity
Anc, Which in the sequel we call a nhoncompact scale pa-

1 1
= - Pvi _ 2, .2 2
L=Lywt gha 2 (V= Vit 27 ; b rameter, using the expression

V>0

(14) ,
b3 1 b,
where Agca?=| 1+ —gz) exp{ —————lIn(bog? {,
bg bog? bg
1 R (18
V. f(x)=Z[f(x+aw)—f(x)]. (15 o . . .
a which is exactly the same function obtained in the case of
Wilson regularization, except for the fact théf, is a func-
Ill. NONPERTURBATIVE DETERMINATION OF THE tion of g2=2N/B andy. Such a function can be evaluated in
SCALING PROPERTIES OF THE REGULARIZATION perturbation theory, solving the evolution equations for the

) _ two coupling constants. Actually, in Ref4], the authors
The goal of our work is to answer the question: What jpi5ined

about the convergence to continuum in this regularization?

In this form the question is misleading, because removing c

the regularization has different meanings depending on the ANC:AWexp{ — ?] (19
context considered. In fact, in the one-coupling-constant lat- g~y

tice regularizations of Yang-Mills theory, like Wilson’s, the

evolution of the bare coupling?=2N/g is obtained from
the equation

12
dg(a )
a g(a) B(9)=byg¥(a) + bg%(a) + O(g7), (16) c= i X 0.88323. (20

where Ay is the scale parameter for Wilson regularization
and

In the limit of vanishing lattice spacing we hawe—0,
where Eq.(19) would then implyA yc—0, i.e., an inconsis-
tency of the regularization if not for an appropriate evolution
of y. On general grounds, given E@.9) for Ay as a func-

wherebg,b; are the universal one and two loop coefficients
of the beta function expansion. InSU(N) pure gauge lat-
tice theory they are

11 N 34/ N \2 Itjon qf Fhe bare couplri]ngs, to havieyc# 0 in the continuum
bo= 3 162" b,= 3 (16772> 17 imit it is necessary that
lim g?y?=k#0. (22)
In perturbative calculations, to take the continuum limit a—0
means to evaluate the limit faa— 0 of the renormalized ) )
quantities calculated. Actually, in Ref.[4], the authors obtained to one loop order
In a numerical simulation the situation is very different

because the calculated quantities are not in analytical form; V1 22)

moreover, the lattice spacing is always finite. Therefore, to
take the continuum limit in this case means to determine a
region, in the parameters space of the lattice theory useavherevy, is an arbitrary constant ang, is be determined by
where the resultgat finite lattice spacingare as close as a higher loop calculation. Then in the linat—0,

possible to theifexperimentaglcontinuum limit. Usually this

region is characterized by a value as large as possible of the im Aye=Aw- (23
correlation length of the system. There it is also possible to a—0

study the asymptotic scaling of the calculated quantities, i.e. . . . .
in which measure they follow the perturbative scaling equa-SUCh results me.an.tha_t in pertgrbatlve calculatlon_s with
tions. It is important to notice here that the size of the scalingi_sal_um_bo regularization it is possible to get the continuum
violations depends on the quantity considered. As is wellMit with a scale parameter equal to the Wilson one.

known, the ratio of two quantities with the same physical In numerical simulations the situation is different, as ex-
dimension(for example, two massgés constantif not for plained above. On general grounds we expect that there will

scaling violations in a scaling region that is usually larger €XiSt @ scaling region in the plang@(l/y)” and that, because
than the asymptotic scaling window. In presence of irrel-of the finite lattice spacing, the properties of convergence to

evant couplings, the scaling of the physical quantities should
not depend on their values.

In Palumbo noncompact regularization there are two cou- ?We use as a natural variableylbecause the Wilson limit can be
pling constants, as explained before, whose evolution aiglentified with the 14=0 line.

7=E+72,
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the continuum of the regularization vary in this region. Formoreover, one of ougminor) scopes is to compare with the
example, we could have, in scaling conditions, differentanalytical calculations in Ref4] that were carried out for
physical values for the lattice spaciritherefore, different the pure gauge theory.

physical volumeps as a function of the value of the bare

parametersB,1/y. One possible strategy to determine the IV. DETAILS ON THE NUMERICAL APPROACH

scaling properties of the regularizatiowhich we followed . . . .
goes t%r%ugph the following gteps. The ratio of two quantities As follows _from the previous c_onS|derat|ons, the action
with the same physical dimension has to be calculated as fgr .SU(Z) IaFtlce gauge theory using the Palumbo _regular-
function of the bare parameters of the regularization, e.g., offation contains two parameterg @ndy); the role ofy is to
aregular grid in the 8,1/y) plane. These values can be fitted assure th_e decou_pllng Of. the aUX|I|a_ry field in the continuum
so as to obtain a surface continuously varying in tel(y) limit. Notice that, in practice, the action can assume different

plane. The scaling region for the noncompact regularizatioﬁpedﬁc. form; dependipg on which class of irrelevant terms
is therefore the region in thes(1/y) plane where the ratio we decide to include; different choices of the set of irrelevant

considered agrees with the same quantity evaluated in wiferms can lead to an action easier to use in numerical or

son lattice theory, which corresponds to the=0 line. The arjalytical calculations, or to an ac;tion more complgx, but
comparison with Wilson regularizatiofor with any other Wc'jtg a bfrt]t_er_ approgc?_to tthed ccr)]ntmuutm “m'li' V\{ﬁ '2?1”” In?;
regularization for which perturbative relations are available? " ress EIS 'iiue' utinstead choose to work wi € latlice
to determine the asymptotic scaling regias mandatory ac:/(\)/nlr:] a.( )I" ity checked that the t
only in the case of a nonphysical theory, like in p&¥(2) € have explicitly checked that the term

gauge theory. In fact, in th&U(3) case we can fix the

physical value of the ratio by using experimental data, there- Eﬁaz 2 (V,t,— VVtM)Z (24)
fore, in a fully independent way from perturbative calcula- 8 v>p
tions.

In summary, the only two necessary ingredients are thés actually irrelevant, in the sense that the results for the
ratio calculated using the noncompact regularization and thBadron masses do not depend in a sensible way on its inclu-
perturbative scaling equations for Wilson regularization toSion or exclusion in the action.
determine the physical value of the ratio, which is the value The action(14) can usefully be thought of as an action for
it assumes in the asymptotic scaling region for Wilson regu@ gauge field living in the G(2) group; therefore, we de-
larization. We stress that this technique was well known incided to use a Cartesian representation that includes both the
principle (see, for example, Ref9]) and has been used in physical fields and the auxiliary one. Other choices are pos-
the past, although in a different form, in RgZ0]. We chose sible; in particular, we recall the polar representation used in
to use the ratio of two particle masses due to the followingRef. [4]. Starting from the actior{14) we have written a
considerations. Other pure gluonic observables, like th@eneric Metropolis-Overrelaxation code; the overrelaxation
plaquette, have significant perturbative contributions whicHpart of the procedure applies only to tB&J(2) part of the
may obscure the nonperturbative features of the regulariz§5L(2) fields, i.e., it amounts to a microcanonical rotation in
tion. As for the glueball masses, usually smearing techniqueie SU(2) subgroup leaving untouched the determinant of
are used to obtain clearer signals, but this implies the introthe GL(2) matrix. CPU time and memory requirement for the
duction of additional parameters besides the two peculiar t§omputation is essentially the same needed for a correspond-
the Palumbo regularization. As for the string tension, in thishg Monte Carlo with the Wilson regularization.
preliminary work, we preferred to use ratios of quantities Looking at the actiori14), it can be easily understood that
with the same physical dimensions to avoid spurious effectghe parametey is bound to be larger than a minimum value
Lastly we notice that the particle masses have a well-definebEd. (13)], as discussed in Reff4].
physical meaning and depend in a fundamental way on the The other limit, i.e.,y—c, reproduces the Wilson regu-
nonperturbative properties of the theory. larization in the sense that the determinant of(8lgauge

It is a crucial condition for the above-depicted scheme tdfields is constrained to be one and we recover the usual com-
be valid, since the only dimensionful quantity of the theory ispactSU(2) gauge action.
the renormalization group scaling parameter; this is true if In order to have a better readability of the results, in par-
we work in the chiral limit. Otherwise, we would have an- ticular, in the region of largey where the Wilson results
other dimensionful quantitythe quark mags As is well  have to be recovered, we decided to work diqaasi) regu-
known, it is extremely difficul{fand numerically very expen- lar grid in the 8,1/y parameter spacgn this space the ¥
sive) to perform simulations or to measure masses directly ir=0 line is the Wilson theory We have chosen to work with
the chiral limit; to stay within the limits of this work, we 2.0<B<2.7 and 0.6¢1/y=<0.2, using 12 values g8 and 20
have chosen to evaluate the mass spectrum at four finitealues of 1#; we have also included in our analysis the
quark mass values and then extrapolate to the chiral limit. Toesults obtained for the Wilson regularizatigihe 1/=0
have better control on this extrapolation we have usedine in the following.

Kogut-Susskind fermions, where chiral limits can be easily As said before, we are interested mainly in the masses of
defined and reached, with good accuracy, by means of #he (lighter) hadron states; iI8U(2) gauge theory we have
linear extrapolation in the bare quark mass. The same corfeur states made from two quarks, namely a scatgy, @
siderations led us to work in the quenched approximationpseudoscalarif), a vector p), and a pseudovectorAf).
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Moreover, due to the use of Kogut-Susskind fermions, we R
can have a signal in the correlation function both from
nonoscillating and oscillating channels; we will refer to them
as+ and — states, respectively.

We would like to stress here that we had 240 different
simulations to carry out in order to complete our program;
faced with our limited computing resources, and taking into
account the exploratory character of this work, we confined
ourselves to small lattices, namely 2612 one.

The actual scheme we have followed is that for every
point in the B8,1/y grid we have thermalized a starting con-
figuration, then measured the hadron propagator for one of
the four values of the quark masgnamely m, 1/y
=0.15, 0.20, 0.25, and 0.30) on a configuration separated
by 150 circles of combined MetropotiOverrelaxation
sweeps from the previous one used to measure the observ
ables, for a total of 180 hadron propagators per mass value.

We notice that we have estimated the integrated autocor-
relation time in a representative point inside the scaling win-
dow, finding a value around 40; therefore, we used an en-, . .
semble of well-decorrelated configurations. theless, we hftve repeated the whole analysis also using the

From the averaged propagators we have extracted tH82SS of ther™ particle, finding similar results.

mass of hadron statesn( andm") fitting with the follow- The mass ratidR has been obtained on a grid of points in
ing function: B and 1/ and then a regular surface has been reconstructed

using a bipolynomial spline fitting procedure. We postpone a
_ —m* 4 o (N— A)m™* discussion on the errors to the end of this section.
P(r)=Ale e ) In Fig. 1 we report the fitting surfade(8,1/y). Looking
+B(—1)(e"™ +e (Ne=nm) (25) at the figure we can recognize some important features; first
' of all, the existence of afalmos} flat region(valley) that

At the end we obtain, for eagh, 1/y point, the mass of seven ©riginates from the /=0 line (Wilson result$, and propa-
hadron statesfor the pseudoscalar channel the oscillating9ates towards larger values gffor increasing 1j. The flat
state is not observableeach one evaluated at four values of '€9ion in the Wilson limit coincides with the usual scaling
the quark mass. region forSU(2) pure gauge lattice theory for the§ater-

Among these seven masses we notice a well-defined paffediate lattice sizeq11]. , ,
tern. The pion mass is affected by the smallest statistical /& have checked that, in this region, the good asymptotic
error (well below 1%), but, this particle being a Goldstone SC@ling can be obtained only in a narrow interval ngar
boson, it vanishes in the chiral limit, and then cannot be used 2-3- Therefore, we tentatively identify the valley as the
for the determination of the scaling window. The other three3¢@ling window(although not the asymptotic scaling region
particles, namelyo*, A, and o*, have small statistical for the_ noncompact rggularlzatmn. Ir_1 ord_er to make this ob-
errors(around or less thah%); finally, the other three states servation more precise, we report in Fig. 2 the curves of
are worst defined being affected by large statistical errors?onStanR n _the planeg, 1/ & . .
and then useless for our purposes. Including in the analysis the data of the single particle

Restricting ourselves to the three non-Goldstone states
with small errors, a linear extrapolation to the chirahg(
—0) limit gives us the dataset for the analysis explained in
the following section.

Aside from the determination of the hadron propagators,
we have used the configuration generated to also measurt
local observables as the plaquette and its specific heat.

The simulations have been fully performed on small sys- 1/7 0.10 L
tems such as Unix workstations and Linux PCs at L.N.F.,
L.N.G.S., and the University of Perugia.

FIG. 1. R(B,1/y) fitting surface.

0.20

0.15

1.09

1.10
111
112 —

0.05
V. RESULTS

Let us proceed to show our results. As said in the previous 0.00
section, we have evaluated the ratio of the masseég odind
p*. The motivation for this choice comes from the observa-
tion that the errors for these two masses are smaller; never- FIG. 2. Lines of constarR in the 3,1/y plane.
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FIG. 3. R(B,1/y) for =2.35 andB=2.60 vs 14; the horizon-
tal lines limit the scaling region.

masses in the scaling region, we can make our statemelthere the numerical coefficients result from a one loop cal-

more definitive. Looking at Fig. 2, we can identify two dif- culation. _ _
ferent zones where a more detailed analysis allows us to €oming back to Figs. 4 and 5 we can see, superimposed
clarify the properties of the region we proposed as the scal© the data in the scaling regions, a fit Wlt.h the exponential of
ing region. If we define the scaling region as limited from the@ Second order polynomial. Notice that in tfe=2.35 case
R=1.09 level, we can say that 11£0.12 and 0.1&1/y  We have notincluded the Wilson point in the fitted data; the
<0.17 are the scaling regions for, respectivedys 2.35 and Wilson result is in good agreement with the extr_apo_latlon
B=2.60. Consider the line8=2.35 and3=2.60. In the first from 1/y>0 data; in the other case we expect this kind of
case, the Wilson point (%= 0) is inside the scaling region, €xtrapolation to be meaningless. Fgr2.35 we can try a
whereas in the second case only a segment<d/y direct comparison with the perturbative results, keeping in
<1/y, is. In Fig. 3, we can see the behaviorRffrom the mind that we are working on a small lattice and, in any case,
fitting surface along these two lines. we have not performed a detailed estimation of systematic
In Figs. 4 and 5 we report the results for thé mass in effects largely outside the scope of this work. Following Ref.
two cases g=2.35 for Fig. 4 and3=2.60 for Fig. 5. In [4], we expect the coefficient of the linear term iny1b be
these figures we have reported the raw data for the mass. 280 and that of the quadratic one to be 5.56. From our fit we
We are allowed, now, to compare our numerical result€t for the former a value compatible with zero (83.8)
with the perturbative analysis in Ref4]; following this ~ and for the latter Z2. We do not claim an agreement with
analysis we expect that the lattice spacing, and then the lafh® perturbative formula, but in any case we have, at this

tice mass inside the scaling region, follows a behavior like '€Vel, no trace of the large discrepancies found in f&f.
Finally, in Fig. 5, we note that the decreasing trend for

decreasing 3/, which can be clearly seen in the scaling re-
gion, ceases in correspondence of the lower limit of the scal-
ing region itself. We have checked that this behavior is
present also in the data for the other particles and valugs of

FIG. 5. Mass of thep* particle for 3=2.60 vs 14.

1272
a(ﬁ,y)ocexp{ BT) 0.2208;%], (26)

T T T T
1.6 —

8=2.35

mp+.i_ {HH

0.00 0.05 0.10 0.15

1/

FIG. 4. Mass of the* particle for3=2.35 vs 1.

where, as in the case @f=2.6, the Wilson limit lies outside
the scaling window. Again, the behavior of the mass, and
hence the lattice spacing, is well reproduced by an exponen-
tial of a polynomial in 14.

Fortified by these results, we can now proceed to a final
check on our scaling window; we expect that the scaling
window contains the value of the parameters in which the
specific heat has a maximum, signaling a large correlation
length. In Fig. 6, we can see the constRrines as in Fig. 2
(continuous lines with the superimposed position, in the
(B,1ly) plane, of the peaks of the plaquette specific heat
(dashed ling In this figure, four lines of constant plaquette
(dotted line$ are also reported. We can see a substantial
correspondence between the fluxes in the parameter space as
identified by different operators. This scenario is the one
expected for an honest theory in the scaling regime. We
therefore are confident to have correctly identified the scal-
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' ' ' ' ' ' in Refs.[4,6] and do not show any sign of the large devia-

tions claimed in Ref[5]; we remind, however, that these
deviations have been obtained using a different approach and
looking at different operators.

We believe that a complete knowledge of the entire scal-
ing region, as well as the corresponding gain in terms of
lattice spacing, is out of the scope of this work; it is more
interesting to address this point in a more realistic simula-
tion, using larger lattices in thB8U(3) case. In the present
paper, we have devoted our attention more to the develop-
ment of a scheme for addressing the problem, than to give
definitive and quantitative answers to questions about the
(improving) potentiality of this regularization.

0.20

0.15

0.05

0.00

Errors

FIG. 6. Lines of constarR (continuous ling constant plaquette The main ingredient of our analysis is the raRo This
.(dc:;ted Illnle), alnd position of the peak of specific hedashed line  ,anity is obtained, starting from the raw propagators, by
in the 8,1/y plane. means of a complex procedure amounting essentially to three

. . L levels of fitting: fitting the correlator to extract the mass,
ing window for noncompact regularization. We stress that btiing the masses to extract the chiral limit, and eventually,

using thig scheme, we can leave a}sidg any perturbative cgke final fit of R(B,1/y) to get a smooth surface. It is ex-
culation in the noncompact regularization. tremely hard to trace the propagation of statistical errors
Any point inside the scaling window is a good one for .,y the raw data to the final surface. Nevertheless, it is

approximating the behavior of continuum theory, but actual,anqatory to have at least a rough idea of the effects of the
results can be different. In particular, the value of the latticegitistical fluctuations on our procedure.

spacing, and then the lattice volume, varies from point t0 14 this end we have chosen to proceed in this way: we
point. As we have seen before for the noncompact formulap e divided our statistical ensemble of 180 independent

tion, this value can be larger than that obtained using th‘?neasures of the correlatéfor eachg, 1/y, and quark mass

Wilson formulation. In order to make this assertion lessiy 4 jindependent subsets of 90; we have then repeated the
qualitative, we present in Fig. 7 the behavior of the lattice,

. 4 f | h ¢ whole proceduréfrom the fitting to Eq.(25) to the construc-
spacing, as extracted from the’ mass, along the center of i, of the smooth surface fdr] for the two sets indepen-
the valley. We can clearly see that the lattice spacing b

| dl h d f he Wil €dently. We have then computed the root mean sqane)
comes larger and larger the more we depart from the WilSoR¢ o qeyiation between the two surfaces on a regular grid of

case 14=0; vv_ith the lattice size L_Jsed in this v_vork, we can (100) pointsP; , placed in the core of thed(1/y) region
access to regions where the _Iatt!ce spacing 1 around 200% avoid edge effects. From this procedure we find a rms of
larger than the Wilson regularization. This improvement can o4 which we assume to approximate the error on Ehe

be made larger if we move towards largérand 1k, but g t206- e have checked the independence of this evalua-

W'th a narrO\I/Everls:;:allzg \{allehy and nei’slrer to _the 'BStab'!'t3|/tion on the number of pointB; used to compute the average
regime[see Eq(13)]. Again these results are in substantial o¢ ¢ geviation. This result helped us to establish the crite-

agreement with the prediction of the perturbative calculatior}ion (R=1.09) used to define the scaling regi@ee Fig. 3
and made us more confident on the robustness of the emerg-

] ing scenario.
1.15 —
i 1 VI. CONCLUSIONS
{10l B We have studied the approach to the continuurS 0f2)
L . lattice gauge theory within a noncompact regularization
a i 1 scheme with two dimensionless parameters. We have deter-
L i mined the scaling window using a nonperturbative approach,
1.05 — — defined through the use of the ratio of the masses of two
i | hadronic states. We have found a clear scaling window that,
L - stemming from one of the Wilson regularizations, moves to-
r R wards largerB and 1A.
Loor e Inside this region, we have determined the lattice spacing,
0.00 0.05 0.10 0.15 finding it increasing with increasing distance from the Wil-

1/ son line(in the parameter spageand in a way compatible
with the expectations based on perturbative analytical calcu-
FIG. 7. Ratio of noncompact and Wilson lattice spacing along dations without the large discrepancies observed in RHf.
curve lying on the bottom of the scaling valley. Our determination of the scaling region is corroborated by

094501-7



GIUSEPPE DI CARLO AND ROBERTO SCIMIA PHYSICAL REVIEW B3 094501

the observation of the behavior of other quantities, i.e., thef interest to study the effects of unquenching on the advan-
specific heat, linked to the correlation length. tages for the physical volume in the scaling region in

All this work has been carried out in small lattices; there-Palumbo regularization.
fore we cannot give a more sound quantitative estimation of
the effects observed. In any case, the use of this noncompact
regularization leads to clear advantages in terms of simulated
physical volumes.

This analysis needs to be improved with the use of larger We thank F. Palumbo and S. Caracciolo for invaluable
lattices and other observables more suitable for the accuratiscussions and suggestions during every stage of this work.
determination of the lattice spacing, possibly for the physi-We thank M. P. Lombardo for providing us the program for
cally interesting case dbU(3) theory[8]. It would also be Dirac matrix inversion and propagator calculation.
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