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Transverse momentum dependence in gluon distribution and fragmentation functions
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We investigate the twist two gluon distribution functions for spin-1/2 hadrons, emphasizing the intrinsic
transverse momentum of the gluons. These functions are relevant in leading order in the inverse hard scale in
scattering processes such as inclusive leptoproduction or Drell-Yan scattering, or more generally in hard
processes in which at least two hadrons are involved. They show up in azimuthal asymmetries. For future
estimates of such observables, we discuss specific bounds on these functions.
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[. INTRODUCTION and gluon-quark correlators using the QCD equations of mo-
tion. We will discard all correlators that contribute at order
Gluon distribution and fragmentation functions are funda-1/Q? or higher in the cross section®, being the hard scale.

mental quantities in the study of deep inelastic scattering The paper is organized as follows. In the next section we
processes. In fact, together with their quark and antiquaritart from the gauge invariant gluon-gluon correlation func-

analogues, these process-independent quantities describe @ and derive all twist two and three gluon distributions
soft parts of the scattering or, in other words, the deep struc@"d we make an analysis of the link operator. We show that
ture of the hadrons. The partonidistribution and fragmen- the link appears naturally when a certain class of diagrams is
tation) functions cannot yet be calculated from first prin- sSummed leading to a specific path. In Sec. Ill we introduce a
ciples because we lack the nonperturbative treatment of thaPecific helicity basis for nucleons and give the spin repre-

strong interactions. However, valuable information on theséentation of the twist two part of the gluon-gluon correlator,

functions can be obtained via lattice calculations or theoretwhich can be used to derive the natural interpretation of the
ical models. lower twist functions as gluon densities in the framework of

As soon as more than one hadron is involved in a hardhe parton model. In Sec. IV the formalism is extended to the

scattering process, it is essential to take into account th@luon fragmentation functions, after which we discuss some
transverse momentum of the partons. For instance, transverBgunds. We end up with some conclusions and suggestions
momentum dependent quark distribution and fragmentatiofor future investigations that can use the formalism devel-
functions show up explicitly in several semi-inclusive crossoped in this paper.

sections, in particular in azimuthal asymmetries. In the cal-

culation of QCD corrections for these cross sections, the in- Il. GLUON CORRELATION FUNCTIONS

clusion of transverse momentum dependent gluon distribu- i ,

tions and fragmentation functions will be necessary. This is N order to connect gluons in a hard scattering process to
our motivation to study in this paper the transverse moment@drons appearing in the initial or final state, we will use
tum dependent gluon functions. We will follow the corre- (light-cong correlation function$4—7]. Our starting point is
sponding treatment for quarks developed by Mulders andh€ correlation function

Tangerman[1,2], following earlier work by Ralston and

4
Soper[S]. Y(k:P.S: :f d § iK-£p gl AR AV P
In a diagrammatic expansion of the hadronic tensor in S(kP.Sin) (277)4e (P.SIAMO)A"(£)[P.S),
powers of the strong coupling, one finds an infinite number 1)

of gluon correlators, which are essentially matrix elements of

non-local products of gluons field@nd sometimes quark diagrammatically represented in Fig. 1. The vec®randS
fields) between hadronic states. The simplest of these matrigre respectively the momentum and the spin of the hadron,
elements are the ones that contain only two gluon fields. Igvhile k stands for the momentum of the gluon. Additional

the A* =0 gauge, they completely define the twist two func-
|p
gauge invariant object, which turns out to be a non-trivial

tions through the appropriate choice of Lorentz indices and T
p
matter. o
More complicated correlators, namely with three gluon ' "(p;P.S)

projections. One has to make sure that the starting point is a

fields, must also be studied. Some of these correlators will P P
precisely provide the link operator needed to define gauge

invariant functions, and others will reduce to gluon-gluon FIG. 1. The gluon correlator.
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dependence can come for instance from fixing the gauge ugotential byF ,,=d,A,—d,A,—ig[A,,A,]. The link op-
ing a vectorn. A summation over color indices is under- eratori/ will be studied in detail in one of the next sections.
stood. If, as done in this paper we use the notafigi(¢)
=A%(£)T?, where theT® are the generators of tHeU(3) A. The Lorentz structure of the gluon correlator
color group, this summation is actually an appropriate trac-
ing.

A corresponding gauge invariant object is the quantity

The Lorentz structure of the gluon correlator is limited by
constraints following from Hermiticity and parity conserva-
tion. These are

1Vipo( |-
rrieR.s [P (1GP,S) = T4 (GP, ), @)

di¢
- J e {(P, SIFA(0)U(0,6)FP(£)|P,S),

(2m)*
(2) To— (10 i ; H ; v;po
where k= (k”,—k'). A possible parametrization df#"*?
where Fw(g)EFj‘w(g)Ta is the field tensor, related to the compatible with these constraints is

r#reo(k;P,S)=T,,. ,(k;P,—S), (4)

/Lv;po(

X4+ iXs

X X X
TEP9(K; P, S) =X, e#"“Pel” o+ M_Zzp[MgV][PpU] + M_gzk[ﬂgv}[pka] + Tp[#gﬂ[ﬂkﬂ] + 24

'\_/I—IZXSk[MgV][PpU]

Xe 2X5 Xg Xq X0 Xy
2 plrriplegel — —_ L cuvpo(y,. _CenvPlogp]l 4 i 2 uvSlopp] 1i _ =Y cpvklogp] 4 i == _uvS[o|p]
+M4P k" PPk ME (kS)~I—|Me SP~I—|M6 P+|Ms SP-HMG k

X X X X
+i M—ljewploppl(k- S)+i M—f’e’”k[‘fkp](k S)+i M—l;e”VP["k”](k- S)+i M—fewk[apﬂ(k. S)

—iX

XlLIXNGMVpsk[ppU] n XlG—NGPUPSk[,upV] n Mewksk[ppol L XsmXae ePokSluprl
M3 M3 3
K20t X1 _pplogol 4 2207 1X21 pokpplugil . X227 1X28 ke toge  X2271%X28 oy fugy
3 M3 3 3

Xa41X 35 X24—1X 25

v e Prlrpal(k. )+ s e?TkPRlLPY(K- S). (5
The amplitudesX; as well as the original correlator B. Twist expansion

vipor k . . -2 . . . . . -

r#»ro(k;P,S) have dimensions/ <. With the chosen pa- | eading and non-leading contributions to the hadronic

rametrization, i.e. the appropriate introduction of factors 1 okensor are easier to identify if one uses a suitable parametri-
i for symmetric and antisymmetric tensors, Hermiticity in zation of the hadron momentum and spin vectors in terms of
Eq. (3) implies that one finds real amplitud®s. The parity  two light-like directions,n, and n_ (such thatn,-n_
constraint in Eq(4) requires that even numbers eftensors  =1), and two transverse directions. They are chosen such
are combined only with vectotsandP, while odd numbers that the hadrons have no transverse momentum, what means
of e-tensors are combined with the axial vec®besides thatP can be written in terms of the light-like vectors. The
vectorsk,P. SinceS parametrizes the nucleon density ma- momentum of the gluon and the spin vector of the hadron

trix, it can only appear linearly. must include a transverse component:
Time reversal invariance, when applicable, imposes a M2
third condition, P=P*n,+-—+n_, 7
2P
FMV;p(T(Eﬁg):FMV:pU*(k;PyS)v (6) k2+ k‘2|'
k=xP*n,+ n_+ky, (8)
T 2xP* !

which implies X* = — X; for the amplitudesXs, X;, Xig,
Xig: X0, Xop @andX,,. For this reason, such amplitudes are
called T odd. They thus vanish when time-reversal can be
used as a constraint.

+

M
S:SLVI"I+—SLFH_+ST. 9
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The quantityx represents the fraction of the light-cone mo-

PHYSICAL REVIEW B3 094021

n
mentum in thet direction carried by the parton. The param- FE(X,kT) = ; P_ —j e?S,_AG,_(x,k%)
eter S, and the two component vect&; are such thaSE M
+S%= 1. The quantityS, is referred to as the helicity. Hav- kT{'k‘}
ing definedl then. vectors one has transverse tensgfs L T SLAH,_(X K2 2|, (14)
and ef” defined as 2M

gf"=g*"—nfn’ —nin%, (10) « P kst

- -
efV=€N"N-Hr=¢g THY, (11 s,
k-
—i€l v AG1(x,k3)

The expansion in lightlike vectors shows its usefulness only i i
when the correlation functions are used in a calculation of a T K ke ST Lo
hard scattering process in which a hard timelike or spacelike 2M2 —w AHT (k)

vector appears setting the hard scale. An example is the mo-
mentum transfer squared?= —Q? in deep inelastic lepto-
production. For the soft part in the process, described with
the correlation functions it implies that after all calculations
are finished, th@™* is of the same order of magnitude as the
hard scattering scal®. Simple power counting tells us that
the most important contributions fromi“#”:*” are the ones

g+ eiﬂi o

* AM

AH1(x,k?)

(15

— k_$AHL K2
2M2 T(X' T) !
with the largest possible number ef indices. Due to the
antisymmetric character of the field tensor, these are obvi-
ouslyI' *"*I (referred to as twist twp followed by’ ™"~ where the expressions of the functions in terms of the ampli-
andI'"'* (referred to as twist thréewherei,j,I, ... indi-  tudesX; can be found in the Appendix. The factors in this
cate transverse indices. parametrization are chosen in order tatan be interpreted
For deep inelastic scattering processes we always need tle the gluon momentum densj], which will become clear
soft parts integrated over the momentum comporient  when we discuss sum rules at the end of this section and in
Starting with the twist two part, we define the next section. Actually also the use of the combination
AH}=AH;—AH:®,  where AH:(M=(k2/2M?)"AH:
(with similar definitions for other functionsis done because
it is nicer for interpreting the functions.
When we use the soft parts in calculations upx/Q)
we needI' """~ and I'"'*| again integrated ovedk™,

MF”(x,kT)Ef dk T T:%i(k;P,S)

:f d¢”d%; which we refer to as twist three contributions:
(2m)®
Xeik'§<P,S|F+i(O)F+j(§)|PaS>|§+=O' Mri—(x k )EJ dk—l"+i§+—(k.P S) (16)
(12 T S
This quantity depends on the momentum fractioand the il _ T
transverse momenturk; besides the(suppresseddepen- MI™ (k)= | dk" TP (k;P,S). (17

dence on the target momentum and spin, and is conveniently

expressed in terms of transverse tensors and vectors. Con-

cerning the dependence on the hadron spin, we furthermofhey are again parametrized in terms of a number of func-
separate the unpolarize@), longitudinally polarized(L)  tions. We obtain for the various hadron polarizations,

and transverse polarizéd) situations. This leads to

i— xkr o
N x Pt o (Xva): G s(x,K3), (18
FI(])(kaT)ZEV —giG(x,k9)
kekh KL i
+ IVE) +ol— Ve HY(x,K8) |, (13 U (X,ky) = |sL v AG SL(X,K3), (19
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, multiplied by S, , which acquires a subscrifit and those
ieiT'AGéT(XJé) appearing in a transversely polarized spin 1/2 target being
multiplied by the transverse spin of the hadron, which ac-
€ ! ky-Sp } quire a subscripT. If there is an uncontracted component of
+i— —AG%T(x,k$) the transverse momentum of the gluon multiplying the func-
M M tion or if needed to avoid double names, we add a superscript
. 1. Finally, twist three functions are given an additional sub-
i€57 AGgr(x,k2) script “3.” _ _

In the next step we perform the integration over the trans-
verse momentum of the gluon to arrive at the distribution
functions which depend only anand are important in deep
inelastic inclusive measurements. We define

. X
T (X’kT):E

X
2

rakna | kF
VERRRPIVE

+i 6%—“8?

AG§T(x,k$)l,

(20) ) .
F”(x)zf d2k: T (x,ky)
and
y x — gk} =fd£eik'§<P SIFT(0)FH(&)|P,S)| ¢ -0
L (k) =5 —y—H3 (x.K), (21) 2 ’ =0
(24)
, K .
FE;I(erT):EiSLEEIJ'_TAHéL(Xvk'ZI')! and similarly forl'"~(x) andT"'*'(x).
2 M (22 We find (combining the polarizations
x P* N N
x[ . T'i(x)==—[-giG(x)—S.iel!AG(x)], 25
F%lyl(x,k'r):i |€I'[J'SITAHéT(X,k-|2—) ( ) 2 M [ gT ( ) S|_ ET ( )] ( )
K K- i X g
+ie¥MTTTSTAH§T(x,k-2r) I (x)= 51" AGgr(x), (26)
X1 i 2 riiv'(x)li IS AH (%) (27)
=5 |i€lSaH(x, k) 2! eTorafar(),
B k%zle k% where G(x):dekTG(x,k% and similarly for AGs; and
—i€lSr, — g?'—z AHgzr, while AG(x)=[d?k;AG,(x,k?). The functions
M 2M AG;r andAH3t are in essence the functiofy andH, of
Ref.[6].
X AHZ7(x,k3) |. (23
C. Sum rules

Again the functions expressed in terms of the amplitudes are Local hadronic matrix elements are obtained from the
given in the Appendix. While the functions for twist two are gluon correlation functions after integration ow”, e.g.

real functions, those for twist three are arranged in terms of

complex functions in such a way that tiieeven functions MZFiiEMf dk Tl (x)=(P,SF*#(0)F **(0)|P,S).
correspond to the real parts and thedd functions corre-
spond to the imaginary parts. For twist two, the functions (28)

Gr, AH{, AHT, andAH+ are T-odd. . L .
Let us make a short remark on the names of the functionsThe trace of this quantity is precisely the gluon part of the

which follow for the indices in part the notations of quark Igﬂergy Toment?rtr;] teTsor. d_Ufl_rll)g t.thé parame;_trlgatlon of
distributions as introduced i8] (and extended ifl,2]). The (x) in terms of the gluon distributio(x) one finds
distributions are represented Wy, H, AG or AH. The 1

namesG and AG are reserved for functions that do not in- MZI‘iiZZ(er)ZJ dxxG(x)=(P,S/6*"|P,S). (29
volve uncontracted momentum indices. These do not flip the 0

gluon helicity, and represent unpolarizé@d) and polarized

(AG) gluons, respectively. The functiortd and AH flip To derive this last relation we used the fact that the integral
gluon helicity in unpolarized or polarized targets respec-overdx has a support betweenl and+1 and the symme-
tively, as we will discuss in detail below. We distinguish try relation G(—x) = — G(x), which follows from the com-
between the longitudinally polarized spin 1/2 target beingmutation relations for gluonic fields. The number
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A, ¥ vi a. v v yi
k ; gi X ky é FIG. 2. Some contributions to
— the fictitious highly virtual
T( it (kE;P,S) )__) ?C ‘) fermion-nucleon cross section.
P g P P ! P
(@ (b)
1 different points, that is§” =%~ and —«, respectively. In
€g= Jo dx xG&(x) (30 A*=0 gauge, the difference, however, is precisaly(é™
=)+ AL (£ =—), a quantity remaining to be fixed to

thus is identified with the fraction of light-cone momentum fully fix the light-cone gaug¢11,12.
carried by the gluons, € e;<1.
Ill. THE TWIST TWO FUNCTIONS AS DENSITIES

D. Gauge invariance - iths'!
auge invarianc The fact that we in the gaugd®™ =0 are left withS',

Of course the object appearing in the diagrammatic exmatrix element bilinear in the gluonic fields, suggests that it
pansion,S’(k;P,S), is not gauge invariant. We solved half might be possible to find a probabilistic interpretation for
of the problem by starting witlh'#**“. In particular, in the  some distribution functions. This has been discussed in detail

=0 gauge one haB"'=4" Al and thus in several papers, expanding the transverse gluon fields in
- 2] modes. We follow here a slightly different route that allows
Ik P,S)=— (k") (k;P,S). 31 us to draw conclusions on the newly introduced leading twist

. transverse momentum dependent functions of the previous
In a general gauge, however, one also needs to consider ma-

trix elements of the fornfA'A*Al), (A'A*A"AJ), etc. Two section.

The basic idea is the observation tham'
simple leading contributions are shown in a fictitious highly _ (2M/xP*)Tl is a two by two matrix in the two transverse
virtual fermion-nucleon scattering process in Fig. 2. These_ Y

will contribute at the same order in an expansion in the in- polarizations that for any diagonal element igpmsitive-
deflnlte density. Generalizing also to a matrix in the hadron

verse hard scale. They will assure that in a general gauge one. o ace, one has

also finds other terms such 88" ,Al] terms inF*', and pin sp

more importantly a gauge link operator. To be precise in a dé= . .

fictitious calculation as in Fig. 2 one finds that the field FAA,(x)=f2—e""§(P,A|F+'(0)F+J(§)|P,A’>|§+:§T:0

Al(&) appearing in the correlator in E€L) is to be replaced .

by . .
=2 (Po[FT(0)[P,A)* (P |FTI(0)|P,A")
£ - "
= d 71/{ oc' F+I y 32
L 7 W= mF) (32 X 8(P; —(1-x)P™), (34)
wheren"=¢"=0, andyr = & and In principle it does not matter for our considerations if we
use the matrix foreal) linear polarizations or for the circu-
U, £)=Pex —igfgds”Aﬂ(S) ’ (33) lar polarizations of t_he gluons. For interp_retational_ purposes,
o the latter however is more common. Using the circular po-
larizations

where the path runs along the minus direction from the point
£ =0 to ¢ with £* =0 andér fixed, analogous to the path 1
for quark correlator§9]. In thek; integrated correlators both |+)= IT(|X> *ily)), (35
links run alongé;=0 and a straight link between the light- 2
like separated points in tH& *'(0)F *1(£)) correlator in Eq.
(24) remains. For the non-integrated correlator in EtR)
the links do not close, but with the physical assumption that 1
hadronic matrix elements of the typ€ATL(0)AL(7~ M**= 5(M M2 —ImM12
=w)AL(£7)) vanish this does not pose a problem. Further-
more when considering weighteldi-integrated cross sec- 1
tions as was for instance done for quark field correlators in M*~=—-(M"1-M??)+i ReM*?
Ref.[10], one anyway reduces the matrix elements to light- 2
like separations.

We note that in different processes, e.g. lepton-hadron M-+
scattering or Drell-Yan scattering the paths will run from

we obtain the matrix elements

=——(|v|11 M??)—i ReM1?,

094021-5
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1
M™7=Z(MM+ M%)+ Im M*2,

Explicitly we find from the parametrization in Eq&l3)—(15) the matrix elementéin gluon polarization spage

|kl 2 il

M*T=G+S.AG — ST—(smqﬁGT cos¢AGT)+ST—(cos¢GT+S|n¢AGT) (36)
M+—:—k—2e—2'¢Hi—is k—$e—2i¢AHl—i(s%+isz)ﬁe—3i¢MAHi—ie—'¢ﬂAH (St—iS9) (37)
2M2 “om?2 - BVE M T i
lvr+=—k—$e+2‘¢Hi+ist—$e+2i¢AHi+i(s$—isz) ks *3'¢| T'AHl +'¢|k| H(St+is?), (39
2M?2 2M?2 - T 4m?2 2M T
TT=G-SAG, - STu(squGTJrcos¢AGT)+STu(cos¢GT singpAGy). (39

In order to make the nucleon spin explicit we use the connection

Ti(x,kr;P,S)= 2 para(IT (X kr;P,S), (40)
AN

wherep(S) is the spin density matrix for a spin 1/2 particle characterized by the spin vBet¢g, ,S;), in its rest frame
given by

1
p(S)=3(1+S 0). (41)

Using the explicit form of the density matrix we can write E40) as

izt i ij L i ij St ij ij ISt ij
r =§(F+++F,,)+7(F++—F,,)+ ri_+rv )+ — (F _=Iri,). (42
We shall now apply this to the matrM'!, where we include als®-odd functions. We then obtain a4 matrix in the gluon
® nucleon spin spaci gluon;nucleoh basis|+;+), [+;—), |—;+) and|—;—)],
e ip ) k e73|
G+AG, |T| [AG—iG;] —e Z[H*M+ian1)] | T|M AHE®
k.|el ¢ krle ¢ i
| T' [AGr+iGy] G-AG, ! T'M AHp —e_z"ﬁ[Hi(l)—iAHt(l)]
. . ks|e'® k
— 2 HLM—jAHL D] i| T|\|/| AH; G—AG, | T| [AGT+|GT]
kr|e®'? i : kr|e'¢
| '|v| AHF® — eI H D AH ] _| T| = [AG—iGq] G+AG,

(43

The matrix representation is also convenient to find the physical meaning of the distributions. Well kn@which
measures the number of gluons with momentunk4{) in a hadron. The functionAG, (AGy) represents the difference of

the numbers of gluons with opposite circular polarizations in a longitudin@ldnsversely polarized nucleon. The off-
diagonal functiorH* also is a difference of densities, but in this case of linearly polarized gluons in an unpolarized hadron.
Using the circular polarizationsi* flips the polarization.

094021-6
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IV. GLUON FRAGMENTATION FUNCTIONS

The procedure to analyze the gluon fragmentation functions is very similar to what has been done for the distributions in
the previous sections.

Using as parametrization of the vectors

MZ
Ph=P,n_ +2Ph v (44)
Py z(k?+K3)
k= —-n_+ ———n, +kr, 4
- e T (45)
_g Dh M 46
Sh_ShLM_hnf ShLﬁnJr Sh, (46)

for a gluon with momentunk fragmenting into a hadron with momentupy and spinS;,, we consider the soft patsee Fig.
3)

S (k;Pp,Sy) = 2 f e {0|A"(&)[Ph, Sy X)(Ph, Sy XIA%(0)[0), (47)

or the appropriate gauge-invariant object

Teveo (i Py, Sy) = E f e SO[FP7(£)|Ph, Sn i X)(Pn . Sy X|U(£,00F#*(0)[0). (48)

For the description of fragmentation in leading order in the inverse hard scale, we need this correlation function integrated over
one light-cone direction, with the above choice Ry, being the momenturk™,

th”(z,kT>=fdk*r*i;*%k;Ph,sh), (49

which, separating the polarizations, is parametrized as

P, LK

ryzkﬂ=N& giG(z,ki?) + T+g'T TzHlukﬂﬁ (50)
L h h

Pl el

[l (k)= | TedSuAGUz k')~ — 5 SnARL(Z k) |, (51)
L h
- krS keliy i}

L P HeThTA ET J .

Mz k) =gt o —Gr(zki®) +ief S TAGHzK) M? T2k
L h
kT{'%} Sh‘l'{'k]} 2

. k2
AH(z,k; )— AHi(zk )

], (52

4My,

where the argument of the fragmentation functiddss — zk; is the transverse momentum of the hadron with respect to the

gluon. The factors are chosen such tfidtz d2k+zé(z,k}2)=(z)h is the fraction of momentum of the struck gluon taken by
the hadronh, for which we haveX (z),=1. While for distribution functionsT-odd functions might appear via special
mechanisms dealing with initial state interactions or gluonic poles, this is not the case for fragmentation fya8tibfis

094021-7
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where time-reversal symmetry cannot be used as a constraint because of the explicit appearance of [&y;3atiesthe
definition. Thus one expects nonvanishing fragmentation functidi(z, k;%), AH{ (z,ki%), AHT(z,ki%) and AH(z,k:?).
V. BOUNDS ON THE DISTRIBUTION AND FRAGMENTATION FUNCTIONS

As discussed before, we can organize the distribution functions in a matrix representation in the ghumteon spin
space. For distribution functions one hasnitting the T-odd function$ a matrix

kr|e ¢ .
G+AG, Ikrle 7 T||v| AGy —e 2Htd 0
ke|e'® A
| T|\|/| AGT G_AGL 0 _e*ZIqﬁHL(l)
2 M
;FF(erT): |k | —ig ’ (53)
_ e
—ZPHt () 0 G-AG, - TM AGy
0 _ e2idpL(D) |kT|e
e AGt G+AG,
|
Requiring any diagonal element to be positive gives using |AG (z k’2)|sé(z k!2) (57)
the diagonal elements the trivial bound e T
2 2
|AGL(X k)| =G(x,ki?). (54 |aGY? +|G<1>|2<|4T| (G+AG)(G-AG )<i62
Using all possible X2 submatrices, positivity leads to (58)
bounds
AR ARTDP2<(G+AG ) (G—AG)<G?,
o, kil I3 59
|AGY <51 \/(G+AG )(G-AG)=5,G, (59
N kil 4 A
IAH#“)ls%(GMGL), (60)
IH- W< (G+AG,)(G—AG,)<G. (56)
|kl
These bounds can still be sharpened by using the eigenvalues |AH(1)|<—(G AGy). (62)

of the full 4X4 matrix in analogy to what was done for
quark distributions in Ref.15].

For fragmentation functions the matrif( P, )I"a(z ky)
contains the various fragmentation functions, now including we have given a full classification of the gluon distribu-
the T-odd functions. It thus is the same as the matrix in Edtions and fragmentation functions relevant in hard scattering
(43), but with hat functions depending anand k;. The  processes in leading order in the inverse hard scale including
constraints become transverse momentum dependence. Some results for sublead-

ing (twist threg correlation functions have been given also.

L . o B The incI.usion of transverse momentum dependence is

/;‘ ; ~.\ needed in processes involving at least two hadrons. Ex-

a® amples of such processes are 1-particle inclusive leptopro-

4 uv(k Ph’sh) ) duction or Drell-Yan scattering. In these processes one can

become sensitive to transverse momentum dependence, in

g 5 g particular when one considers azimuthal dependence in the
4 v

VI. CONCLUSIONS

final statg1,2,10,16. We note that in electroweak processes,

the gluon correlation functions do not enter at tree level but

only at higher order inxg. This also implies their relevance
FIG. 3. The gluon correlator. in the study of evolution of the transverse momentum depen-

094021-8
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N
4
O
O
O

FIG. 4. Gluon distribution and
fragmentation functions contribut-
ing to the single spin asymmetry
in p'p— X scattering cross sec-
tion.

dent flavor-singlet quark distribution and fragmentationdistribution functions Diagram 4b) will lead to a sing,,
functions. Also in related processes, exg-production in  — ) asymmetry proportional tpG1(x1) X F(x,) X D3(2)
hadron-hadron scattering the relevance of gluon distributiofyolving a T-odd gluon distribution function, the unpolar-
functions has been emphasized and investigg§dSince  jzed quark distribution functiori? and fragmentation func-
we have discussed both _d_lstr|but|on and fr_agme_ntatlon funcgyp D2. Diagram 4c) gives a similar asymmetry as(ls)
tions we have also cla_ssmed t_Freodd functpns, Important v¥ith the unpolarized gluon distribution functi@gaand gluon
in the latter case. In single spin asymmetries at least one ? X LA
the functions describing the soft physics i3-@dd function. ragmentation functiort.
In order to illustrate the importance of also considering
gluons, we consider the contributions to pion production in
pp' scattering in which one of the protons is polariéd—
21]. In this process a large single spin asymmetry is found. This work is supported by the Foundation for Fundamen-
We note that gluon correlation functions can play an impor+tal Research on MattéFOM), the National Organization for
tant role here. This is another way of looking to the approactScientific ResearctNWO) and the Junta Nacional de Inves-
in Refs.[18—21]. Since in this case several mechanisms argigaco Cientfica (JNICT, PRAXIS XXI).
considered in these papers, we need betidd andT-even
distribution and fragmentation functions. In Fig. 4 three con-
tributions are shown of gluon correlation functions produc- APPENDIX: GLUON DISTRIBUTIONS
ing an asymmetry. Actually kinematics requires one of the _ : . .
three partons to be off-shell, which means that we need the -€ading and subleading gluon correlations are distin-
asymptotic transverse momentum dependence of the Sogyushed via the Lqrentz |nd|ces_. It is therefore convenient to
parts, i.e. the evolution of the soft parts. Nevertheless th&€Write the covariant expression in E¢b) in terms of
structure of the gluonic soft parts is sufficient to indicate that."+ "~ ’kT'S_T)' We start with the correlatl_on_functhns
diagram 4a) will produce a sing,.+¢g asymmetry(being V.V'th Fhe. mammal(that is two ngmper of plus [nd|ces. Dis-
equivalent to the Collins asymmetry in leptoproduction tnguishing unpolarizedo), longitudinally polarizedL) and
This asymmetry is proportional tof ha(x;) X H(x,)] transversely polarize(l) situations(spin 1/2,

xhi(z) involving the transverse momentum dependent

gluon distribution functiorH*, the transverse spin distribu- [rwtv=plmtvyplmtrprimsy, (A1)
tion h? and the Collins functiorhi (we use here the hat-

notation for the fragmentation function in order to avoid con-one has, with thedimensionlessinvariants o =2k- P/M?
fusion between fragmentation functions and gluonand 7=k*M?2, the result

ACKNOWLEDGMENTS
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P+ 2kiky P klEn
(XatxXg)+| 2

e

+\2
rowtr= ( ) 97 (XX Xy) +X(Xg+XX3) ]+ | 2 )XG

M

P* k “n”] o o 2
BRI, iXs+n“n” | 2X;+[(Xo+xX,) +X(X4+XX3)]+2 5 X (Xg+xX3)+ 5 X Xel, (A2)
‘ . 2 .
FIM’HZ'SL(V) E¢V|(X8+XX10)+(X9+XX11)+ E_X)[(X12+XX14)+X(X15+XX13)]
k-2|- o P2 kT{#kV} o
= — | X1gF Xogt E_X)Xzs +S ) = (X1t Xg2) = ( X>X24}
~pt leny o o o 2
+|SLVT X0t 5 X (Xq5+XX13) = 57X (X191 Xa3) = (X1 +XXp3) — 57X Xos
p* GI;-T{MHZ} o o 2
+S MM | X (X187 X2) = (X XXp0) — 57X Xoa, (A3)
+ut+v P sz Sr v k-zr
Cetmr= ™M M €7’ = (Xqot XXqg) = X(X15+XXq3) + (Xq7+ X Xq9) + (Xp1+ X X53) + szs
p+\2 EkT{Mkv}k S kT{Msfll_} ST{Mkv}
(V) Mz M 2at T (Xaot XXg9) + — 17— Xyt X Xsg)
[m 7]
PT n- kr-Sr
+|V M M _(X15+XX13)+X19+ 2 )X25 +€ST (X +XX11)
k{M V}
g k12— P+ T kT Sr v
- E—X)(X17+XX19)—WX19]+V{ |5 X Xeat €N }2 X | (Xqg+ XXg0)
en—kTST{:U«k_’I’_} en-kisSrlenvt /&
—Txlg —T(E—X>X18. (A4)

We need the soft parts integrated over the momentum comp@&neriypon integration ovedk™ we find that the functions
appearing in the decomposition of the quankty™ in Eq. (12) can be expressed in the amplitudes of &) For this we use

MZ
MT (x,kr:P,S)= J' dk T 5tk P,S)= J' [dodr]T T Fi(k;P,S), (A5)
where we have introduced the shorthand notation

K2
[dodT]EdadT&( T_XU+X2+M_T2 (AB)

to indicate integration over andr. The results for the twist two distributions in terms of the amplitudeare the following:

2

G(x kz)zf [dod7]| [(Xo+XXg) +X(Xg+xX3)]+ ix
KT 2 4 4 3 om2’ 6

XGr(x,k3)= J [dod7][(Xq6F XX1g) = (Xo0+XX20) ],

094021-10
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xHi(x,k$)=J [dod7]Xg,

XAGL(x,k$)= — f [dod7]|(Xg+ xXlo)+(X9+xX11)+(g—x)[(X12+xX14)+x(X15+ XX13) ]

é

M2

g
X19+ X23+ ( E - X) X25}

E
(X12+XX14) +X( X151+ XX13) = (X171 XX1g) = (X1 +XXa3) — szs ,

XAGT(x,k$)=f [dod7]

(Xt Xop) +

L 2 o
xAHL(x,kT)z—zf[dadT] E—x)XM},
xAH#(x,k$)=2f [dod7r]X,,

ki
(X16FXX1g) + (Xt XX0) — mxm :

xAHT(x,k$)=2f [dod7]

From Eg.(A2) we can also obtain the relation between the functions in the first quamﬂ/,‘, relevant at twist three. We
find that all functions have a real pdwhich is T-even and an imaginary pafwhich is T-odd):

(X4 XXg) + Xs!,

Re(xeg(x,lé)):J [dod7] =X

IG5 0= [ [dodrl[ -],

(o

o o 2
> X) (X5 XXq3) = (E _X) (X9t Xa3) = (Xo1+XX3) — ( > _X) Xzs},

Re(xAGY, (x,k2))= f [dodr] Xyt

[ g g 2
|m(xAG§L(x,k$))=J [dod7] (E—x>(X18+X22)+(X20+xX22)+ E—x) Xo4!,

2

o kT o
5 X (X17+XX19)+W — (X15+XX13) = X190+ 57X Xos

Re(xAG3T(x,k$))=f [dod7]|(Xg+XXqp) +

) o k2 o
Im(XAGsT(X,kT)): [dUdT] __ E_X (X16+XX18)_W X18+ E_

X24}

[ g
Re(ergT(x,ki))=J [dod7] —(Xl5+xX13)+X19+(§—x)X25}

|m(xAG§T(x,k$))=f [dodr] x18—<%—x)x24}

094021-11



P. J. MULDERS AND J. RODRIGUES PHYSICAL REVIEW B3 094021

We now turn our attention to the different set of indices, namiglyl ¢), and the corresponding correlaiot "' " (k; P, S).
We again decompose according to the spin of the hadron and find

e Pl |
rg'H:V‘ M [(X4+XxX3)—iXs](,

| 2
pute_ Pl ke T x| (Xyat XXg9) — (Xagt XXa9)— | = =% | (Xygt Xo9)— | = —x]| X
L M L TM 2 14 13 17 19 2 19 23 2 25

kI o oz 2
+S €l = [ (X16FXX1g) — ( X)(X18+X22)_(§_X) Xz4},

P le ky- Sr g T k- Sr o
F¥'|+:V ie ‘I!MT = (Xyq+XXp3) + Xozt 5 X[ X5 +E¥M M X22+(§—X X4
Cial g k% ol k%
+1 €T (X8+XX10) + E —X (X21+ XX23) - WXZ:; + €T E —X (X20+ XXZZ) + WXZZ . (A7)

Upon integration ovedk™, we find that the functions appearing in

MT (x kT)sf dk T (k; P S)=M—2f [dod7]T ! (k;P,S) (A8B)
’ YT opt v

can be expressed in the amplitudes as follows:

Re(xH3 (x,k2))= f[dadr][x4+xx3]
IM(XHS (x,k2)) = J[d(rdT][ Xe],
g o o 2
Re(xAH3, (x,k§))= J[dUdT] X11+(E_X)(X14+XX13)_(X17+XX19)_(§_X>(X19+x23)_(§_x) xzs},

[ 2
Im(XAHéL(X,k-Zr)):f [d(TdT] (X16+XX18)+(g_x)(xlg"‘Xzz)"‘(g_X) X24},

g
7 X Xos|s

Re(XAH 4 (x,k?))= J[dUdT] — (Xyat XXq9) + Xoa+

2

IM(XAHL;(x,k2)) = f[dadq'] xzz—(f—x)xzé,},

|

g
5 X Xoal 1 - (A9)

k2
)(le+ XXp3) + m[ (X141 XX13) = Xp3t

Re(xAH3T(x,k$))=f [dodT][(Xg-i—XXlo)-i-

2

Im(xAHgT(xk )= f[dadr][ ( )(X20+XX22)—

The integrated functions in terms of the amplitudes are given by

094021-12
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XG(x)=M 27TJ {dod7}

XAG(x)=—M wa {dodr}{ (Xg+XXq0) +(Xg+XXq9) +

o

- (XO'_ X2_ 7') X19+ X23+

X
(Xot XXa) FX(Xg+XXg) + (X0 —XP=7) 5

2 _X) X25

PHYSICAL REVIEW B3 094021

o
57 X) [(Xq2H XX14) +X( X157+ XX13) ]

|

Re(XAG37(x))=M wa {do-dr}r (Xg+XxXq9) + ( g —x) (X174 XX19)

1 2
+ E(XO’-X =)

o 1
IM(XAG37(X))= Mzwf {dadr}‘ - (E—x) (X16t+XX1g9) — E(xa—xz— 7)

Re(xAH31(x))=M 27Tf {dod7}

1 2
+ E(XO'—X -7)

T 1
IM(XAH37(x))= Mz'n'f {dUdT}l - (E_X> (Xoot XXop) — E(X(T—Xz— 7)

with the convention

{dod7}=dod78(xo—x>— 7).

g
— (Xy5+XX13) = X19+ ( 5 _X) Xzs} ] )

e

Xigt+

(o
(Xg+XxX0) + ( 5 —X) (X1 XX23)

g
— ( X4+ XXq3) = Xo3+ ( > _X) Xzs} ] ,

Xoot+

o]

(A10)
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