
PHYSICAL REVIEW D, VOLUME 63, 094017
Disentangling running coupling and conformal effects in QCD
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We investigate the relation between a postulated skeleton expansion and the conformal limit of QCD. We
begin by developing some consequences of an Abelian-like skeleton expansion, which allows one to disen-
tangle running-coupling effects from the remaining skeleton coefficients. The latter are by construction renor-
malon free, and hence hopefully better behaved. We consider a simple ansatz for the expansion, where an
observable is written as a sum of integrals over the running coupling. We show that in this framework one can
set a unique Brodsky-Lepage-Mackenzie~BLM ! scale-setting procedure as an approximation to the running-
coupling integrals, where the BLM coefficients coincide with the skeleton ones. Alternatively, the running-
coupling integrals can be approximated using the effective charge method. We discuss the limitations in
disentangling running coupling effects in the absence of a diagrammatic construction of the skeleton expan-
sion. Independently of the assumed skeleton structure we show that BLM coefficients coincide with conformal
coefficients defined in the smallb0 ~Banks-Zaks! limit where a perturbative infrared fixed point is present. This
interpretation of the BLM coefficients should explain their previously observed simplicity and smallness.
Numerical examples are critically discussed.
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I. INTRODUCTION

The large-order behavior of a perturbative expansion
gauge theories is inevitably dominated by the facto
growth of renormalon diagrams@1–4#. In the case of quan
tum chromodynamics~QCD!, the coefficients of perturbative
expansions in the QCD couplingas can increase dramati
cally even at low orders. This fact, together with the appar
freedom in the choice of renormalization scheme and ren
malization scales, limits the predictive power of perturbat
calculations, even in applications involving large moment
transfer whereas is effectively small.

A number of theoretical approaches have been develo
to reorganize the perturbative expansions in an effort to
prove the predictability of perturbative QCD. For examp
optimized scale and scheme choices have been propo
such as the method of effective charges~ECH! @5#, the prin-
ciple of minimal sensitivity~PMS! @6#, and the Brodsky-
Lepage-Mackenzie~BLM ! scale-setting prescription@7# and
its generalizations@8–20#. More recent developments@4# in-
clude the resummation of the formally divergent renorma
series and the parametrization of related higher-twist pow
suppressed contributions.

In general, a factorially divergent renormalon series ari
when one integrates over the logarithmically running co
pling as(k

2) in a loop diagram. Such contributions do n
occur in conformally invariant theories which have a co
stant coupling. Of course, in the physical theory, the QC
coupling does run. Nevertheless, relying on a postula
‘‘dressed skeleton expansion,’’ we shall show that a conf
mal series is directly relevant to physical QCD prediction

*Present address.
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In quantum electrodynamics the dressed skeleton exp
sion can replace the standard perturbative expansion.
skeleton diagrams are defined as those Feynman gr
where the three-point vertex and the lepton and pho
propagators have no substructure@21#. Thanks to the QED
Ward identity, the renormalization of the vertex cance
against the lepton self-energy, while the effect of dress
the photons in the skeleton diagrams by vacuum polariza
insertions can be computed by integrating over the G
Mann–Low effective chargeā(k2). The perturbative coeffi-
cients defined from the skeleton graphs themselves
conformal—they correspond to the series in a theory wit
zerob function. Therefore they are entirely free of runnin
coupling effects such as renormalons. Each term in
dressed skeleton expansion resums renormalon diagram
all orders in a renormalization scheme invariant way. T
resummation ambiguity, which is associated with sca
where the coupling becomes strong, can be resolved on
the non-perturbative level.

In QCD, a skeleton expansion can presumably be c
structed based on several different dressed Green func
~see@22#!. A much more interesting possibility, which is ye
speculative, is the existence of an Abelian-like skeleton
pansion, with only one effective charge function. The co
struction of such an expansion is not straightforward due
the presence of gluon self-interaction diagrams and the
sential difference between vacuum polarization insertio
and charge renormalization. Nevertheless, at the one-
level there is a diagrammatic algorithm, the so-called ‘‘pin
technique’’@23#, which allows one to identify in every non
Abelian diagram the part which can be absorbed into
renormalization of the effective gluon propagator. The s
of all the vacuum-polarization-like parts turns out to
gauge invariant, thus defining a natural candidate for
©2001 The American Physical Society17-1
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non-Abelian equivalent of the Gell-Mann–Low effectiv

charge,ās(k
2). Moreover, the pinch technique leads to Wa

identities similar to those of the Abelian theory: after t
vacuum-polarization-like parts have been taken into acco
the remaining vertex correction cancels against the qu
self-energy. In this way the pinch technique achieves the
step in the construction of an Abelian-like skeleton exp
sion. Recently there have been some encouraging deve
ments@24,25# in the application of the pinch technique b
yond one loop and its possible relation to the backgrou
field method. The hope is that these techniques will even
ally provide proof of the existence of the skeleton expans
as well as an all-order constructive definition for the no
Abelian skeleton structure and the non-Abelian skeleton

fective chargeās(k
2).

In this paper, we shall postulate that an Abelian-like sk
eton expansion can be defined at arbitrary order in QCD.
shall not deal here with the diagrammatic construction of
skeleton expansion but rather restrict ourselves to the co
quences which follow from such a structure. To this end
will introduce a simple ansatz for the skeleton expansi
where similarly to the Abelian case, a generic observabl
written as a sum of integrals over the running coupling. As
QED, we can then identify running coupling effects to
orders, and treat them separately from the conformal pa
the perturbative expansion. A considerable simplification
achieved, for instance, by assuming that the dependenc
the number of light quark flavors,Nf , originates only in the
running coupling itself, as in Abelian theory with light-by
light diagrams being excluded. As a consequence, the c
ficients appearing in the assumed skeleton expansion arNf
independent. By construction these skeleton coefficients
free of renormalonsand are therefore expected to be bet
behaved. We will show that they have a simple interpretat
in the presence of a perturbative infrared fixed point, as
curs in the smallb0 limit: they are the ‘‘conformal’’ coeffi-
cients in the series relating the fixed-point value of the
servable under consideration with that of the skele
effective charge. Thus, given the assumption that these c
ficients areNf independent, they can be obtained from sta
dard perturbative coefficients using the Banks-Zaks exp
sion @26–28#, where the fixed-point coupling is expanded
powers ofb0.

The conformal series can be seen as a template@9,10# for
physical QCD predictions, where instead of the fixed co
pling one has at each order a weighted average of the s
eton effective chargeās(k

2) with respect to an observable
~and order-! dependent momentum distribution function. T
momentum integral corresponding to each skeleton term
renormalization-scheme invariant. Had the skeleton effec
charge been known at all scales, this integral could h
been unambiguously evaluated, thus including both pertu
tive and non-perturbative contributions. In practice it can
evaluated up to power-suppressed ambiguities, which o
nate in the infrared where the coupling becomes stro
These infrared renormalon ambiguities can be resolved o
by explicitly taking non-perturbative effects into accoun
Since such effects cannot be calculated with present m
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ods, they can only be parametrized. Indeed, a natural par
etrization in the form of an infrared finite coupling@29#
emerges from the structure of the skeleton integral. This w
the skeleton expansion gives a natural framework in wh
renormalon resummation and the analysis of no
perturbative power corrections are performed toget
@30,31#.

As an alternative to computing a dressed skeleton in
gral, one can approximate it by evaluating the coupling at
BLM scale @7#, in analogy to the mean-value theorem@11#.
By going to higher orders in the perturbative expansion, t
approximation can be systematically improved. Another p
sibility considered here is to approximate each dressed s
eton term separately using the effective charge appro
This approach is tailored@5# to deal with running coupling
effects and it bypasses the remaining scheme and scale
ting ambiguities in the power series expressions for the B
scales. Assuming a simple form of the skeleton expans
running coupling effects can be disentangled from the
maining conformal expansion by tracing theNf dependence
of the coefficients. In this case BLM scale setting~or the
ECH alternative! can be applied to a generic QCD obser
able based on knowledge of the first few coefficients. In
general case disentangling running coupling effects beco
more involved, and it eventually requires a diagramma
construction of the skeleton expansion. We emphasize
both the BLM scale-setting method and the suggested E
method remain on the perturbative level and, as oppose
the infrared finite coupling approach mentioned above, th
methods are not particularly suited to deal with renorma
ambiguities and the related power corrections.

BLM scale setting can also be applied to the perturbat
relation between the effective charges of two physical
servables. This results in a specific ‘‘commensurate sc
relation’’ @12# between the two quantities. The coefficien
appearing in such relations are conformal and, as guaran
by the transitivity property of the renormalization grou
they do not depend on the intermediate scheme used.
way conformal relations appear to be relevant for real-wo
QCD predictions even in the absence of a complete un
standing of the underlying skeleton structure. In the case
the Crewther relation@32,33,18#, which connects the effec
tive charges of thee1e2 annihilation cross section to th
Bjorken and Gross–Llewellyn-Smith sum rules for dee
inelastic scattering, the conformal relation is simply a ge
metric series. This example highlights the power of char
terizing QCD perturbative expansions in terms of conform
coefficients.

This paper is organized as follows: we begin in Sec. II
recalling the concept of the skeleton expansion in the A
lian case@21# and stating the main assumptions concern
the non-Abelian case. We continue, in Sec. III, by reviewi
the standard BLM scale-setting procedure and recalling
ambiguity of the procedure beyond the next-to-leading ord
We then show how this ambiguity is resolved upon assum
a skeleton expansion, provided we work in the appropri
renormalization scheme, the ‘‘skeleton scheme,’’ and requ
a one-to-one correspondence between the terms in the B
series and the dressed skeletons. We also discuss in this
7-2
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DISENTANGLING RUNNING COUPLING AND . . . PHYSICAL REVIEW D63 094017
tion the limitations of applying the formal BLM procedure
the absence of a diagrammatic construction of the skele
expansion.

In Sec. IV we present an alternative to performing
explicit scale setting, by using the ECH method as a too
resum running-coupling effects within the framework of t
assumed skeleton expansion. Close connections betwee
two approaches are pointed out. In the Appendix we look
the original ECH approach from the point of view of th
skeleton expansion, comparing it to the application of
ECH method to the leading skeleton term. We also calcu
there theb050 limit of the skeleton couplingb function
coefficientb̄2.

We then come to the main subject of the paper, the r
tion between the coefficients which remain after apply
BLM scale setting and the conformal limit of QCD. We d
rive ~Sec. V! a relation between these BLM coefficients a
the conformal coefficients defined in the infrared limit in t
conformal window, where a non-trivial perturbative fixe
point exists@34–38#. In Sec. VI we show explicitly that the
conformal coefficients, calculated using the Banks-Zaks
pansion, are the same as the ones in the BLM series. In
VII we recall previous observations concerning the smalln
of conformal and Banks-Zaks coefficients, and exam
whether this apparent convergence can be explained by
absence of renormalons in such relations. The conclus
are given in Sec. VIII.

II. RENORMALONS AND THE SKELETON EXPANSION

Consider a Euclidean QED observableaR(Q2), which de-
pends on a single external space-like momentumQ2 and is
normalized as an effective charge. The perturbative exp
sion in a generic renormalization scheme is then given b

aR~Q2!5a~m2!1r 1a~m2!21r 2a~m2!31•••, ~1!

wherea5a/p andm is the renormalization scale.
The perturbative series can be reorganized and writte

the form of a skeleton expansion

aR~Q2!5R0~Q2!1s1R1~Q2!1s2R2~Q2!1•••, ~2!

where the first term,R0, corresponds to a single dress
photon: it is the infinite set of ‘‘renormalon diagrams’’ ob
tained by all possible vacuum polarization insertions into
single photon line. The second term,s1R1, corresponds to a
double dressed-photon exchange and so on. In QED, vac
polarization insertions amount to charge renormalizati
ThusR0 can be written as

R0~Q2![E
0

`

ā~k2!f0~k2/Q2!
dk2

k2
~3!

wherek2 is the virtuality of the exchanged photon,ā(k2) is
the Gell-Mann–Low effective charge representing the f
propagator, andf0 is the ~observable dependent! Feynman
integrand for a single photon exchange diagram, which
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interpreted as the photon momentum distribution funct
@14#. Similarly, R1 is given by

R1~Q2![E
0

`

ā~k1
2!ā~k2

2!f1~k1
2/Q2,k2

2/Q2!
dk1

2

k1
2

dk2
2

k2
2 ~4!

and so on.
For convenience the normalization off i in Ri(Q

2) has
been set to 1 such that theRi(Q

2) in Eq. ~2! have an expan-
sion Ri(Q

2)5ā(Q2) i 111••• . For example, the normaliza
tion of f0(k2/Q2) in R0 is

E
0

`

f0~k2/Q2!
dk2

k2
51. ~5!

In QED fermion loops appear either dressing the exchan
photons or in light-by-light type diagrams, where they a
attached to four or more photons~an even number!. Barring
the latter, the dependence on the number of massless fer
flavors,Nf , is fully contained in the Gell-Mann–Low effec
tive charge. It follows that the skeleton coefficientssi as well
as the momentum distribution functionsf i are entirely free
of Nf dependence. Light-by-light type diagrams have to
treated separately, as the starting point of new skeleton st
tures.

The skeleton expansion~2! is a renormalization group in
variant expansion: each term is by itself scheme invaria
This is in contrast with the standard scale and scheme de
dent perturbative expansion~1!. The renormalons in Eq.~1!
can be obtained upon expansion of the dressed skel
terms in Eq.~2! in some scheme. Let us consider first t
leading skeleton~3! and examine, for simplicity, its expan
sion in ā(Q2). We assume thatā(k2) obeys the renormal-
ization group equation

dā~k2!

d ln k2
52@b0ā~k2!21b1ā~k2!31b̄2ā~k2!41•••#[b̄~ ā!

~6!

where b0 is negative in QED and positive in QCD. The
ā(k2) can be expanded as

ā~k2!5ā~Q2!1b0tā~Q2!21~b1t1b0
2t2!ā~Q2!3

1S b̄2t1
5

2
b1b0t21b0

3t3D ā~Q2!41••• ~7!

where t[2 ln(k2/Q2). Inserting this into Eq.~3! under the
integration sign we obtain

R0~Q2!5ā~Q2!1r 1
(1)b0ā~Q2!21~r 2

(2)b0
21r 1

(1)b1!ā~Q2!3

1S r 3
(3)b0

31
5

2
r 2

(2)b1b01r 1
(1)b̄2D ā~Q2!41•••

~8!

where
7-3
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r i
( i )[E

0

`

@2 ln~k2/Q2!# if0~k2/Q2!
dk2

k2
. ~9!

We note that in the largeNf ~largeb0) limit,1 the perturba-
tive coefficientsr i5r i

( i ) and thus2

aR~Q2!u largeb0
5ā~Q2!F(

i 50

`

r i
( i )@b0ā~Q2!# i1O~1/b0!G .

~10!

At large ordersi @1, both small and large momentum r
gions become dominant in Eq.~9!, giving rise to the charac
teristic renormalon factorial divergence (r i

( i ); i !). As men-
tioned above, this is believed to be the dominant source
divergence of the perturbative expansion~1!. On the other
hand, in the skeleton expansion~2! the renormalons are b
definition resummed and so the remaining coefficientssi
should be free of this divergence. These coefficients are
pected to increase much slower leading to a better beha
expansion.

As mentioned in the Introduction, the generalization
the Abelian skeleton expansion to QCD is not straightf
ward. Diagrammatically, the skeleton expansion in QCD
a simple realization only in the largeNf limit where gluon
self-interaction contributions are negligible so that the the
resembles QED.3 In the framework of renormalon calculus
one returns from the largeNf limit to real world QCD by
replacing Nf with the linear combination ofNf and CA
5Nc which appears in the leading coefficient@40# of the b
function:

b05
1

4 S 11

3
CA2

2

3
Nf D . ~11!

This replacement, usually called ‘‘naive non
Abelianization’’ @41,14–16#, amounts to taking into accoun
a gauge invariant set of diagrams which is responsible for
one-loop running of the coupling constant.

To go beyond the ‘‘naive non-Abelianization’’ level con
structing an Abelian-like skeleton expansion in QCD, o

1In QCD, the Abelian correspondence in the largeNf limit re-

quires that the coefficientb̄ i of the skeleton couplingb function~6!
not containNf

i 11 . It has to be a polynomial of orderNf
i in Nf . This

would guarantee that in the largeNf limit b̄(ā) is just the one-loop
b function. Note that while some schemes@e.g. the modified mini-
mal subtraction scheme (MS) and static potential effective charge#
have this property, generic effective charges~defined through ob-
servable quantities! do not. This property of the skeleton scheme
used making the identification ofr i

( i ) in Eq. ~8! as the largeNf

coefficients.
2We comment that the sub-leading terms in 1/Nf in Eq. ~8! of the

form b1b0
i 22 were computed to all orders in@15#. However, other

terms which involve higher order coefficients of theb function
contribute at the same level in 1/Nf .

3This can also be understood from theCA→0 limit discussed in
Ref. @39#.
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needs a method to identify skeleton structures and to iso
vacuum-polarization-like insertions which are responsi
for the running of the coupling at any order. The pinch tec
nique @23–25# may provide a systematic way to make th
identification. The resulting set of skeleton structures wo
surely be larger than in the Abelian theory. It may includ
for example, fermion loops attached to an odd number
gluons, which vanish in the Abelian limit. Like Abelia
light-by-light type diagrams, these structures should
treated separately. As opposed to Abelian theory, wh
light-by-light type diagrams are distinguished by their ch
acteristic dependence on the charges, in the non-Abelian
these structures may not be separable based only on
color group structure. We assume that there is a uni
~gauge invariant! way to identify skeleton structures in QCD
making Eq.~2! relevant. In much of the discussion that fo
lows we shall further make the assumption that the en
dependence ofaR(Q2) on Nf is through the running cou
pling. Thus in our ansatzsi andf i areNf independent, just
like in the Abelian case with light-by-light diagrams bein
excluded. Of course, the class of diagrams containing
mion loops as part of the skeleton structure should eventu
be taken into account.

Another simplifying assumption we made already in t
Abelian case is that our ansatz~2! contains only one skeleton
at each order, whereas in general there will be several s
etons contributing at each order. The simplest example
e2e2 scattering with botht- and u-channel exchange. Sev
eral skeletons at the same order also occur in single-s
observables considered here, and therefore Eq.~2! should be
generalized accordingly. We shall return to this point in t
next section.

We stress that the coupling constantā(k2) in Eq. ~3! is
understood to be aspecificeffective charge, in analogy to th
Gell-Mann–Low effective charge in QED. This ‘‘skeleto
effective charge’’ā(k2) should be defined diagrammatical
order by order in perturbation theory. In the framework
the pinch technique,ā(k2) has been identified at the one
loop level,4 e.g. it is related to theMS coupling by

ā~k2!5aMS~m2!1F2b0S log
k2

m2 2
5

3D1
CA

3 GaMS~m2!2

1••• . ~12!

Recently, there have been encouraging developments@25,24#
in the application of the pinch technique beyond one lo
This would hopefully lead to a systematic identification
the ‘‘skeleton effective charge’’ at higher orders, namely t
determination of higher order coefficients (b̄ i for i>2) of
theb function b̄(ā)5dā/d ln k2. This b function should co-
incide with the Gell-Mann–Low function upon taking th
Abelian limit CA50 ~see Ref.@39#!.

Being scheme invariant and free of renormalon div
gence, the skeleton expansion~2! seems much favorable ove

4This means that the corresponding QCD scaleL̄ is identified.
7-4
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the standard perturbative QCD expansion~1!. This advan-
tage may become crucial in certain applications, e.g. for
extraction ofas from event shape variables@31#. However,
in the absence of a concrete all-order diagrammatic de
tion for the skeleton expansion in QCD, running-coupli
effects cannot be systematically resummed beyond the si
dressed gluon level corresponding to the leading skeleton
particular, the momentum distribution functions of the su
leading skeletons are not known. On the other hand,
BLM scale-setting procedure, which is well defined at high
orders, can be considered as a manifestation of the ske
expansion. As we shall see, it is possible in this framew
to approximate the sub-leading skeleton terms, provided
correct skeleton scheme is used. Currently, since the ske
effective charge has not been identified, the choice of sch
in the BLM procedure remains an additional essential ing
dient.

III. BLM SCALE SETTING

The BLM approach@7# is motivated by the skeleton ex
pansion. The basic idea is that the dressed skeleton inte
~3! can be well approximated byR0.ā(m2)1••• provided
that the renormalization scalem is properly chosen. Indeed
by the mean value theorem@11#, there exists a scalek0 such
that

R0~Q2!5E
0

`

ā~k2!f0~k2/Q2!
dk2

k2

5ā~k0
2!E

0

`

f0~k2/Q2!
dk2

k2
5ā~k0

2! ~13!

where the last step follows from the assumed normaliza
for f i Eq. ~5!.

A first approximation tok0 is given by theaverage virtu-
ality of the exchanged gluon:

k0,0
2 5Q2 expS E

0

`

ln
k2

Q2
f0~k2/Q2!

dk2

k2 YE
0

`

f0~k2/Q2!
dk2

k2 D
5Q2 exp~2r 1

(1)! ~14!

wherer 1
(1) is the next-to-leading coefficient ofaR in the large

b0 limit ~9!. The scale~14! is called the ‘‘leading order BLM
scale.’’ It can be determined directly from theNf dependent
part of the next-to-leading coefficient (r 1) in the perturbative
series of the observable in terms ofā(Q2):

aR~Q2!5ā~Q2!1r 1ā~Q2!21r 2ā~Q2!31••• . ~15!

Thanks to the linearNf dependence ofr 1, it can be uniquely
decomposed into a term linear inb0, which is related to the
leading skeleton, and a free term

r 15r 1
(0)1r 1

(1)b0 , ~16!
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where bothr 1
(1) and r 1

(0) are Nf independent. After BLM
scale setting, withk0,0

2 given by Eq.~14!, one has

aR~Q2!5ā~k0,0
2 !1r 1

(0)ā~k0,0
2 !21••• . ~17!

Thus, technically, the BLM scale-setting procedure amou
at leading order, to eliminating theb0 dependent part from
the next-to-leading order coefficient. Note that although
leading order BLM scalek0,0 of Eq. ~14! has aprecisemean-
ing as the average gluon virtuality, it is just the lowest ord
approximation tok0 of Eq. ~13!. In other words, aiming at
the evaluation of the leading skeleton term~3!, setting the
scale ask0,0 is just the first step. This approximation can b
systematically improved@see Eq.~33! below# in higher or-
ders.

A. Multi-scale BLM and skeleton expansion correspondence

A BLM series @12# can be written, up to arbitrary high
order,

aR~Q2!5a~k0
2!1c1a~k1

2!21c2a~k2
2!31c3a~k3

2!41•••

~18!

where theki
2 are, in general, different scales proportional

the external scaleQ2 @as in Eq.~14!# andci areNf indepen-
dent coefficients. The intuition behind this generalization
that each skeleton term in Eq.~2! is approximated by a cor
responding term in the multi-scale BLM series: each sk
eton term may have different characteristic momenta. T
one-to-one correspondence with the skeleton expansion
quires that the couplinga will be the skeleton effective
chargea5ā such that

Ri~Q2![ā~ki
2! i 11. ~19!

In this case the coefficients of sub-leading terms in Eq.~18!
should coincide with the coefficients of the sub-leading sk
eton terms, namelyci5si .

More generally, a BLM series can be formally written
an arbitrary scheme: then the couplinga in Eq. ~18! can be
either defined in a standard scheme likeMS or, as suggested
in @12#, be another measurable effective charge. However
such cases there is no direct correspondence with the s
eton expansion~2!, and as a result the forthcoming motiva
tion for a unique scale setting is lost.

Let us recall how the BLM scale-setting procedure is p
formed beyond the next-to-leading order@12,8#, yielding an
expansion of the form~18!. Suppose that the perturbativ
expansion ofaR(Q2) in terms ofa(Q2) is given by5

5We work now in a generic scheme but in contrast to Eq.~1! we
start here with the renormalization scalem5Q, thereby simplifying
the formulas that follow. Since the scale is tuned in the BLM p
cedure, this initial choice is of little significance. The only pla
where the arbitrary renormalization scale is left at the end is in
power series for the scales shifts, Eq.~23! below.
7-5
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aR~Q2!5a~Q2!1r 1a~Q2!21r 2a~Q2!31r 3a~Q2!41••• .
~20!

Based on the fact thatr i are polynomials of orderi in Nf and
that b0 and b1 are linear inNf , we can writer 1 as in Eq.
~16! and

r 25r 2
(0)1r 2

(1)r 1
(0)b01r 2

(2)b0
21r 1

(1)b1 ~21!

wherer i
( j ) areNf independent. The reason for theb1 depen-

dent term in Eq.~21! shall become clear below. Expandin
a(ki

2) in terms of a(Q2) similarly to Eq. ~7!, the next-to-
next-to-leading order BLM series~18! can be written as

aR~Q2!5a~Q2!1~c11t0b0!a~Q2!2

1~c212t1c1b01t0b11t0
2b0

2!a~Q2!3. ~22!

Writing the scale shiftst i[ ln(Q2/ki
2) as a power series in th

coupling

t i[t i ,01t i ,1a~Q2!1t i ,2a~Q2!21••• ~23!

wheret i ,0 are assumed to beNf independent, we get

aR~Q2!5a~Q2!1~c11t0,0b0!a~Q2!2

1@c21~2t1,0c11t0,1!b01t0,0b11t0,0
2 b0

2#a~Q2!3.

~24!

An order by order comparison of Eqs.~24! and ~20! yields
the scale shiftst05 ln(Q2/k0

2) and t15 ln(Q2/k1
2) and the coef-

ficientsc1 andc2 in terms ofr 1 andr 2 and the coefficients o
the b function of a(Q2). The comparison at the next-to
leading order gives

c15r 1
(0) ~25!

and

t0,05r 1
(1) . ~26!

The comparison at the next-to-next-to-leading order for
b i independent piece gives

c25r 2
(0) ~27!

while for theb0 dependent piece it gives

t0,112t1,0r 1
(0)1b0~r 1

(1)!25r 2
(1)r 1

(0)1b0r 2
(2) . ~28!

Thanks to the explicitb1 dependent term introduced in Eq
~21!, the equality of the corresponding piece there to tha
Eq. ~24! is satisfied based on the next-to-leading order re
~26!. To proceed we need to specifyt0,1 andt1,0 such that Eq.
~28! is satisfied. Having two free parameters with just o
constraint there is apparently no unique solution. Two na
ral possibilities are the so called multi-scale BLM prescr
tion @12#,

t0,15b0@r 2
(2)2~r 1

(1)!2#,
09401
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t1,05
1

2
r 2

(1) , ~29!

and the single-scale BLM prescription@8# where t1,0[t0,0
and

t0,15b0@r 2
(2)2~r 1

(1)!2#22r 1
(1)r 1

(0)1r 2
(1)r 1

(0) . ~30!

Having in mind the original motivation for the BLM pre
scription, it is interesting to examine the case where
scheme ofa coincides with the skeleton effective chargeā.
Then we would like to have a one-to-one corresponde
~19! between the terms in the BLM series~18! and those of
the skeleton expansion~2!. The multi-scale procedure is con
sistent with this requirement: the leading termā(k0

2) in the
BLM series ~18! represents only the leading skeleton te
R0 in Eq. ~2!, since the scale shift

t05r 1
(1)1@r 2

(2)2~r 1
(1)!2#b0ā~Q2! ~31!

involves only coefficients which are leading in the largeb0
limit and originate inf0 @cf. Eq. ~9!#. On the other hand the
single-scale procedure violates this requirement, since th
t0 involves terms which are sub-leading inb0 and do not
belong to the leading skeleton termR0. In fact, in order to
guarantee that the scale shiftt0 would represent just the lead
ing skeletonR0 we are bound to chooset0,1 proportional to
b0 and thus the solution~29! is uniquely determined.

We see that a unique scale-setting procedure at the n
to-next-to-leading order (r 2) is implied by the requiremen
that the scale shiftt0 should represent the leading skelet
R0. In order to continue and apply the BLM prescription
the next order (r 3) we have to impose further constrain
based on the structure of bothR0 andR1.

B. BLM scale setting for the leading skeleton

Let us first examine the structure of the scale shiftt0 by
applying the BLM prescription to a hypothetical observab
that contains only anR0 term of the form~3!. Expanding the
coupling ā(k2) under the integration sign in terms ofa(Q2)
we obtain Eq.~8!. We would like to apply the BLM prescrip-
tion to the latter series, obtaining simplyā(k0

2), with t0

[ ln(Q2/k0
2)5t0,01t0,1ā(Q2)1••• . Expandingā(k0

2) we ob-
tain, from Eq.~7!,

ā~k0
2!5ā~Q2!1b0t0,0ā~Q2!21~b0t0,11b1t0,0

1b0
2t0,0

2 !ā~Q2!31S b0t0,21b1t0,112b0
2t0,0t0,1

1b̄2t0,01b0
3t0,0

3 1
5

2
b0b1t0,0

2 D ā~Q2!41••• .

~32!

Comparing Eq.~8! with Eq. ~32! we get
7-6
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t05r 1
(1)1@r 2

(2)2~r 1
(1)!2#b0ā~Q2!

1H @r 3
(3)22r 1

(1)r 2
(2)1~r 1

(1)!3#b0
2

1
3

2
@r 2

(2)2~r 1
(1)!2#b1J ā~Q2!21••• . ~33!

Here we recovered the two leading orders int0 of Eq. ~31!.
At order ā(Q2)2 we obtained an explicit dependence on bo
b0 and b1. The combinationr 2

(2)2(r 1
(1))2 appearing at the

next-to-leading order int0 has an interpretation as the wid
of the distributionf0, assuming the latter is positive defini
~see@14,17#!. In general, Eq.~33! can be written in terms o
central moments of the distributionf0, defined by

Mn5K S ln
Q2

k2
2K ln

Q2

k2 L
f0

D nL
f0

5K S ln
k0,0

2

k2 D nL
f0

~34!

for n>2, where M15^ ln (Q2/k2)&f0
5ln (Q2/k0,0

2 ) corre-

sponds tor 1
(1) in Eq. ~9!. In terms of the central moments w

have

t05M11M2b0ā~Q2!

1H @M31M1M2#b0
21

3

2
M2b1J ā~Q2!21•••

5M11M2b0ā~k0,0
2 !

1H M3b0
21

3

2
M2b1J ā~k0,0

2 !21••• ~35!

where in the second step we changed the scale fromQ2 to
the leading order BLM scalek0,0

2 to get simpler expression
for the coefficients of thet0 series. At large ordersn the
momentsMn become sensitive to extremely large and sm
momenta and thus develop renormalon factorial divergen
similarly to the standard perturbative coefficients in Eq.~9!.
We thus see that in the BLM approach, the scale shift itse
an asymptotic expansion, affected by renormalons.

C. BLM scale setting for sub-leading skeletons

Next, let us consider anR1 term, given by Eq.~4!. Ex-
panding the couplingsā(k1

2) and ā(k2
2) under the integral in

terms ofā(Q2) using Eq.~7!, we get@cf. the expansion ofR0
in Eq. ~8!#

R1~Q2!5ā~Q2!21b0r 2
(1)ā~Q2!31~r 3

(2)b0
21r 2

(1)b1!ā~Q2!4

1••• ~36!

where

r 2
(1)[f1

(1,0)1f1
(0,1)
09401
ll
e,

is

r 3
(2)[f1

(2,0)1f1
(1,1)1f1

(0,2) ~37!

with

f1
( j ,k)[E

0

`

@2 ln~k1
2/Q2!# j

3@2 ln~k2
2/Q2!#kf1~k1

2/Q2,k2
2/Q2!

dk1
2

k1
2

dk2
2

k2
2 .

~38!

The BLM scale-setting procedure can now be applied
cording to Eq.~19!: R1(Q2) given in Eq. ~36! should be
written asā(k1

2)2. Expandingā(k1
2)2 in terms ofā(Q2) us-

ing Eq. ~7! and t15t1,01t1,1ā(Q2)1••• we have

ā~k1
2!25ā~Q2!212t1,0b0ā~Q2!31~2t1,1b013t1,0

2 b0
2

12t1,0b1!ā~Q2!41••• . ~39!

Comparison with Eq.~36! at next-to-leading order implies

t1,05
1

2
r 2

(1) . ~40!

Comparison at next-to-next-to-leading order then yields

2t1,1b01
3

4
~r 2

(1)!2b0
21r 2

(1)b15r 3
(2)b0

21r 2
(1)b1 ~41!

which implies thatt1,1, just ast0,1, is bound to be propor-
tional to b0. Finally we obtain the scale shift forR1:

t15
1

2
r 2

(1)1
1

2 F r 3
(2)2

3

4
~r 2

(1)!2Gb0ā~Q2!. ~42!

Similarly, applying the BLM prescription toR2,

R25ā~Q2!31r 3
(1)b0ā~Q2!41•••, ~43!

we get

t25
1

3
r 3

(1) . ~44!

D. Skeleton decomposition and its limitations

Let us now return to the case of a generic observable~20!
and see that with these skeleton-expansion-correspond
constraints there is a unique BLM scale-setting procedu
The basic idea is that, given the existence of a skeleton
pansion, it is possible to separate the entire series into te
which originate in specific skeleton terms. This correspon
to a specific decomposition of each perturbative coefficienr i
similarly to Eqs.~16! and~21!. Then application of the BLM
prescription to the separate skeleton terms, namely repres
ing Ri by ā(ki

2) i 11, immediately implies a specific BLM
scale-setting procedure for the observable. For exam
7-7
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when this procedure is applied up to orderā(Q2)4, the scale
shifts t i for i 50,1,2 are given by Eqs.~33!, ~42! and ~44!,
respectively.

To demonstrate this argument let us simply add up
expanded form of the skeleton terms up to orderā(Q2)4 with
R0 given by Eq.~8!, R1 by Eq. ~36! andR2 by Eq. ~43!. For
R3 we simply have at this orderR35ā(Q2)4. Altogether we
obtain

aR5ā1@s11r 1
(1)b0#ā21@s21s1r 2

(1)b01r 2
(2)b0

21r 1
(1)b1#ā3

1Fs31s2r 3
(1)b01s1r 3

(2)b0
21r 3

(3)b0
31r 1

(1)b̄2

1
5

2
r 2

(2)b1b01s1r 2
(1)b1G ā4. ~45!

Here we identify the notationsi which is the coefficient in
front of the skeleton termRi with r i

(0) . We recognize the
form of r 1 andr 2 as the decompositions introduced before
Eqs. ~16! and ~21! in order to facilitate application of the
BLM prescription. We see that the skeleton expansion str
ture implies a specific decomposition. Suppose for exam
we know r 1 through r 3 in the skeleton scheme. Equatio
~45! then defines a unique way to decompose them so
each term corresponds specifically to a given term in
skeleton expansion. The decomposition ofr i includes a poly-
nomial in b0 up to orderb0

i :

si1 (
k51

i

si 2kr i
(k)b0

k ~46!

wheres051 by the assumed normalization. The other ter
in r i in Eq. ~45! depend explicitly on higher coefficients o
the b function b̄ j with 1< j < i 21. Up to orderā(Q2)4

these terms depend exclusively6 on the coefficientsr j
(k)

which appeared at previous orders in theb0 polynomials
~46!. Finally, we need to verify that a decomposition of t
form ~45! is indeed possible. For a generic observableaR ,
the coefficientr i is a polynomial of orderi in Nf . Since the
b function coefficientsb̄ i are also polynomials of maxima
order i, the decomposition ofr i according to Eq.~45!
amounts to solvingi 11 equations withi 11 unknowns:r i

(k)

with 0<k, i . Thus in general there is a unique solution.
We see that based on the assumed skeleton structure

can uniquely perform a ‘‘skeleton decomposition’’ and th
also BLM scale setting which satisfies a one-to-one co
spondence of the form~19! with the skeleton terms. By con
struction in this procedure the scalet0 is determined exclu-
sively by the largeb0 termsr i

( i ) which belong toR0 @see Eq.

6As we shall see below, this is no longer true beyond this ord
where the coefficients depend on moments which appeared at
vious orders, but cannot be expressed in terms of the lower o
coefficients themselves.
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~33!#, t1 is determined byr i
( i 21) terms which belong toR1

@see Eq.~42!#, t2 is determined byr i
( i 22) terms which belong

to R2, etc.
It should be stressed thatformally the decomposition~45!,

and thus also BLM scale setting, can be performed in a
scheme: given the coefficientsr i up to ordern, all the coef-
ficientssi andr i

( j ) for i<n and j < i are uniquely determined
No special properties of the ‘‘skeleton effective charg
were necessary to show that the decomposition is poss
Even the assumption that for this effective charge theb

function coefficientsb̄ i are polynomials of orderi can be
relaxed. For example, the decomposition~45! can be for-
mally performed in physical schemes whereb̄ i are polyno-
mials of orderi 11. In this case, however, the interpretatio
of r i

( j ) in terms of the logarithmic moments of distributio
functions is not straightforward. It is also clear that a one-
one correspondence between the BLM prescription and
skeleton expansion~19! exists only if the couplinga is cho-
sen as the skeleton effective chargeā.

Let us now address several complications that limit
applicability of the above discussion. First, we recall the
sumption we made that the entire dependence of the pe
bative coefficients onNf is related to the running coupling
This means that any explicitNf dependence which is part o
the skeleton structure is excluded from Eq.~45!. In reality
there may be skeletons with fermion loops as part of
structure, which would have to be identified and trea
separately.

Having excluded suchNf dependence, we have seen th
up to orderā(Q2)4 a formal ‘‘skeleton decomposition’’~45!
of the perturbative coefficients can be performed algeb
ically without further diagrammatic identification of the ske
eton structure. This is no longer true at orderā(Q2)5, where
the ‘‘skeleton decomposition’’ requires the moments of t
momentum distribution functions to be identified separate
Such an identification depends on a diagrammatic und
standing of the skeleton structure. Looking atR1, the coef-
ficient of ā(Q2)5 in Eq. ~36! is

b0
3@f1

(3,0)1f1
(0,3)1f1

(1,2)1f1
(2,1)#

1b1b0F2f1
(1,1)1

5

2
~f1

(2,0)1f1
(0,2)!G

1b2@f1
(1,0)1f1

(0,1)#. ~47!

Writing the ā(Q2)5 term in Eq.~45!, one will find, as before,
that the terms which depend explicitly on higher coefficie
of the b function b̄ l , with 1< l<3, contain only moments
of the skeleton momentum distribution functionsf i

( j ,k)

which appeared in the decomposition~45! in the coefficients
of b0

j 1kā11 i 1 j 1k at the previous orders. However, the coe
ficient of b1b0 will depend on a new linear combination o
moments, different from the one identified at orderā(Q2)4

@compare the coefficient ofb1b0 in Eq. ~47! with r 3
(2) in Eq.

~37!#. Thus, strictly based on the algebraic decomposition
the coefficients at previous orders there is no way to de

r,
re-
er
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mine the coefficient ofb1b0 at order ā(Q2)5. Additional
information, namely the values off1

(1,1) , f1
(2,0) andf1

(0,2) , is
required. In the Abelian case, where the diagrammatic id
tification of the skeleton structure is transparent, it should
straightforward to calculate these moments separately
non-Abelian theory this is not yet achievable.

The need to identify the skeleton structure, as a preli
nary stage to writing the decomposition of the coefficie
~and thus also to BLM scale setting!, may actually arise a
lower ordersif several skeletons appear at the same ord.
As mentioned in the previous section, even in the Abel
case the assumed form of the skeleton expansion~2! is over-
simplified in this sense and should be generalized to incl
several differentsiRi(Q

2) terms at any orderi. In the non-
Abelian case one should expect the set of skeleton diagr
to be larger.

The simplest possibility to imagine is that the momentu
distribution functionsf i areNc independent. It is then natu
ral to expect that at any given order there will be seve
skeletons, where each of them is characterized by its o
color group structure. For example, let us assume that in
case of the QCD correction to the photon vacuum polar
tion s1R1(Q2) should be replaced by a sum of three skele
terms,s1

pR1
p(Q2)1s1

npR1
np(Q2)1s1

3gR1
3g(Q2), where the first

two terms correspond to double gluon exchange~which exist
in Abelian theory!—the planar~p! and the non-planar (np)
skeleton diagrams—and the last term corresponds to
three gluon vertex skeleton diagram7 ~which vanishes in the
Abelian limit!. Each of these three terms contributes start
at orderā2. In this case, the skeleton decomposition of E
~45! appears to be too naive: each of these skeleton terms
its own momentum flow. In particular, if the BLM series
to have a one-to-one correspondence with the skeleton
pansion, one should write

aR~Q2!5ā~k0
2!1s1

pā~k1,p
2 !21s1

npā~k1,np
2 !21s1

3gā~k1,3g
2 !2

1••• . ~48!

To arrive at such a BLM series one should further deco
pose the coefficients in Eq.~45! as follows:

aR5ā1@s11r 1
(1)b0#ā21@s21~s1

pr 2,p
(1)1s1

npr 2,np
(1)

1s1
3gr 2,3g

(1) !b01r 2
(2)b0

21r 1
(1)b1#ā31••• ~49!

where

s1
p[s1

pCF

7Note that the three gluon vertex, which is a fundamental verte
the theory, cannot be considered as just renormalizing the g
propagator and the quark vertex. Part of it must define a new s
eton. This is in contrast to other diagrams appearing at this o
which just renormalize the propagators or the quark vertex, and
therefore not candidates for new skeleton structures.
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s1
np[s1

npS CF2
1

2
CAD

s1
3g[S sA1

1

2
s1

npDCA ~50!

and

s15~s1
p1s1

np!CF1s1
3gCA5s1

pCF1s1
npS CF2

1

2
CAD

1S sA1
1

2
s1

npDCA . ~51!

Here the combination (CF2 1
2 CA) corresponding to the non

planar skeleton (np) is suppressed in the largeNc limit.8

Since the two Abelian parts ofs1, namelys1
p and s1

np , are
separately calculable, the coefficientsr 2,p

(1) , r 2,np
(1) andr 2,3g

(1) are
uniquely determined fromr 2. Thus, in this example the colo
group structure plus the Abelian skeleton decomposition
low one to determine the non-Abelian skeleton decompo
tion. In the general case, where more skeleton structures
possible, this information will not suffice, and the decomp
sition of the coefficients will require a more complete und
standing of the non-Abelian skeleton expansion.

To summarize, we have seen that by tracing the fla
dependence of the perturbative coefficients in the skele
scheme, one can identify the contribution of the differe
skeleton terms. This procedure allows us to ‘‘reconstruc
the skeleton expansion algebraically from the calculated
efficients as summarized by Eq.~45!. This decomposition
implies a unique BLM scale setting which has a one-to-o
correspondence with the skeleton expansion. We a
learned that there are several limitations to the algebraic
cedure which can probably be resolved only by explicit d
grammatic identification of the skeleton structures and
skeleton effective charge. These limitations include the n
to

~a! treat separately contributions from skeleton structu
which involve fermion loops~in the Abelian case these ar
just the light-by-light type diagrams!,

~b! identify separately the different momentsf i
( j ,k) of a

given momentum distribution function which appear as
sum~with any j andk such thatj 1k5n) in the perturbative
coefficients ofb0

nā11 i 1n, and
~c! identify separately the contributions of different ske

eton terms which happen to appear at the same order inā.

IV. USING THE ECH METHOD IN THE FRAMEWORK
OF THE SKELETON EXPANSION

As we saw in the previous section, the essential ingred
of the BLM approach, which crucially relies on the skelet
expansion, is to disentangle running-coupling effects an
n
l-

er
re8In SU(Nc) the combination (CF2

1
2 CA) is sub-leading inNc

compared toCA5Nc andCF5(Nc
221)/(2Nc).
7-9
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treat them separately from the remaining expansion. Tec
cally, this is realized by performing a skeleton decompo
tion. Running coupling effects can then be resummed in v
ous ways, aiming at the approximation of the skele
integralsRi . First, there is the possibility to perform a fu
all-order resummation by evaluating the integrals using so
regularization in the infrared region~see e.g.@31#!. This,
however, requires the computation of the corresponding
mentum distribution function, which can currently be do
only at the level of the leading skeleton term. At the mo
modest level, the skeleton decomposition itself, Eq.~45!,
provides some information about the first few moments
the momentum distribution functions which is then us
~Sec. III! to perform BLM scale setting. Alternatively, th
same information can be used to approximate the skel
termsRi(Q

2) in the ECH method, which is particularly fit to
deal with running coupling effects@5# ~see also@42#!. We
shall see that this method has close relations with the s
setting procedure, but it also has some advantages ove
latter.

In this section we demonstrate how the ECH method
be used to provide resummation of running coupling effe
in the framework of the skeleton expansion. The basic ide
that each skeleton termRi(Q

2) in our ansatz~2! is a
renormalization-group invariant effective charge raised
some power; i.e., one writesRi(Q

2)[@aRi
(Q2)# i 11 instead

of Eq. ~19!. Thus aRi
(Q2)[@Ri(Q

2)#1/(i 11) can be simply
evaluated in the ECH method@5#, avoiding any explicit
scale-setting procedure. In this methodaRi

is computed by
inverting the integrated renormalization-group equation,

ln Q2/LRi

2 5E
0

aRi da

bRi
~a!

. ~52!

Finally, the observableaR(Q2) will be written as@cf. Eqs.
~2! and ~18!#

aR~Q2!5aR0
~Q2!1s1aR1

~Q2!21s2aR2
~Q2!31••• .

~53!

Consider first the effective charge defined by the lead
skeleton termaR0

[R0 as expanded in Eq.~8!. From the
next-to-leading order coefficient in this equation it follow
that the ratio between the two scale parameters charact
ing aR0

and ā is

LR0

2 /L̄25e2r 1
(1)

. ~54!

This ratio is fully determined by the center of the momentu
distribution function pwhich is also the leading order BL
scale shiftt0,0; cf. Eq. ~14!# and is not modified at highe
orders. The latter affect just the corresponding ECHb func-
tion, bR0

(aR0
)[daR0

/ ln Q2. Using the next-to-next-to-

leading order expansion ofaR0
in terms of ā and applying

the general relation between effective charges@5#, we have

b2
R05b̄21b0~r 22r 1

2!2b1r 1 , ~55!
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whereb̄2 andb2
R0 are the three-loopb function coefficients

of the skeleton coupling and ofaR0
, respectively. Using now

r 1 and r 2 of Eq. ~8! we obtain

b2
R05b̄21@r 2

(2)2~r 1
(1)!2#b0

35b̄21M2b0
3 . ~56!

This means that for any momentum distributionf0 , b2
R0 is

simply a sum of a universal pieceb̄2, which characterizes
the skeleton coupling, and an observable-dependent p
namely the width off0 ~see Sec. III! multiplied by b0

3.
Recall that the three-loopb function coefficient in the

skeleton schemeb̄2 is a polynomial of order 2 inb0, namely
b̄25b̄2,01b̄2,1b01b̄2,2b0

2 @see footnote 1 following Eq.
~9!#. Thereforeb2

R0 is given by

b2
R05b̄2,01b̄2,1b01b̄2,2b0

21@r 2
(2)2~r 1

(1)!2#b0
3 . ~57!

In the largeb0 limit b2
R0 is dominated by the last term

namely by the width of momentum distributionf0. In this
case it is therefore the width which controls the converge
of the ECHb function, i.e. the accuracy of the calculate
effective charge. Note that the same parameter controls
accuracy of the leading order BLM approximation@14,17#.
Away from the largeb0 limit, a small width implies prox-
imity of b2

R0 and b̄2 ~see the Appendix!. Thus only if the

universalb̄2 is not large does a small width imply smallne
of b2

R0, i.e. good convergence of the effective charge a
proach applied toR0. Similarly at the four-loop level, one
gets

b3
R05b̄312M3b0

415M2b1b0
3 . ~58!

As usual@5# the effective chargeaR0
is characterized by the

scale ratioLR0

2 /L̄2 and b function coefficients. The sam

holds for higher skeleton terms. For example, it follows fro
Eq. ~36! that aR1

[(R1)1/2 is characterized byLR1

2 /L̄2

5e2r 2
(1)/2

and b2
R15b̄21 1

2 @r 3
(2)2 3

4 (r 2
(1))2#b0

3. Note that
these are the same combinations appearing in the BLM s
shift for R1, Eq. ~42!.

It is also worth noting that the suggested effective cha
approach yields a result identical to the BLM scale sett
method applied in the skeleton scheme, in the approxima
where theb functions of the effective charges associat
with the various skeletonsbRj are all replaced by the skel
eton couplingb function, b̄. This is equivalent to assumin
that, except the average, all the central moments of the
mentum distribution functions vanish identically. Then bo
approaches effectively yield a multi-scale series where
scales correspond to the average momentum flowing in e
skeleton diagram,ki ,0 .

To conclude, we have shown that the explicit scale-sett
procedure can be replaced by the ECH method. One ad
tage is that the latter does not suffer from the scheme
scale ambiguities still present@see footnote 5 before Eq
~20!# in the series for the BLM scales. We stress that o
7-10
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example here heavily relies on the specific ansatz assu
for the skeleton expansion. However, contrary to the BL
scale setting method, the suggested effective charge
proach would apply equally well to more general cas
where e.g. the two couplings in Eq.~4! are different.

V. BLM AND CONFORMAL RELATIONS

Let us now consider the general BLM scale-setti
method, where the scheme is not necessarily the one o
skeleton effective charge, and no correspondence with
skeleton expansion is sought for. Then any scale-setting
cedure which yields an expansion of the form~18! with Nf
independentci coefficients and scale shifts which are pow
series in the coupling~23! is legitimate. We saw that unde
these requirements there is no unique procedure for se
the BLM scale beyond the leading order (k0,0). Nevertheless,
as we now show, the coefficientsci are uniquely defined. In
fact, the ci have a precise physical interpretation as
‘‘conformal coefficients’’ relatingaR and a in a conformal
theory defined by

b~a!52b0a22b1a31•••50. ~59!

To go from real-world QCD to a situation where such
conformal theory exists one has to tuneNf : whenNf is set
large enough ~but still below 11

2 Nc , the point where
asymptotic freedom is lost! b1 is negative whileb0 is posi-
tive and small. Then the perturbativeb function has a zero a
aFP.2b0 /b1; i.e., there is a non-trivial infrared fixed poin
@34–38#. The perturbative analysis is justified ifb0, and
henceaFP is small enough.

Physically, the existence of an infrared fixed point
QCD means that correlation functions arescale invariantat
large distances. This contradicts confinement which requ
a characteristic distance scale. In particular, whenb0→0 the
infrared coupling is vanishingly small. Then it is quite cle
that a non-perturbative phenomenon such as confinem
will not persist. The phase of the theory where the infra
physics is controlled by a fixed point is called the conform
window. In this work we are not concerned with the phys
in the conformal window.9 We shall just use formal expan
sions which have a particular meaning in this phase.

The BLM coefficientsci are by definitionNf independent.
Therefore the expansion ofaR according to Eq.~18! is valid,
with the sameci ’s both in the real world QCD and in th
conformal window. In the conformal window a generic co
pling a(k2) flows in the infrared to a well-defined limi
a(k250)[aFP. In particular, Eq.~18! becomes

aR
FP5aFP1c1aFP

21c2aFP
31c3aFP

41••• ~60!

where we used the fact that theki ’s are proportional toQ,
which follows from their definitionki

25Q2 exp(2ti), to-
gether with the observation that the scale shiftst i in Eq. ~23!

9In @38# this phase is investigated from the point of view of pe
turbation theory in both QCD and supersymmetric QCD.
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at any finite order are just constants whena(Q2)→aFP.
Equation~60! is simply the perturbative relation between th
fixed-point values of the two couplings~or effective charges!
aR anda.

Note that in this discussion we ignored the complicati
discussed at the end of Sec. III, concerning the possibility
applying BLM scale setting in the case of several skelet
contributing at the same order@cf. Eq. ~48!#. In this case the
argument above holds as well, while the conformal coe
cients will be the sum of all BLM coefficients appearing
the corresponding order. For the example considered in
III, Eq. ~49!, we would then havec15s15s1

p1s1
np1s1

3g .
According to the general argument above, the BLM co

ficients Eq.~18! should coincide with the conformal coeffi
cients in ~60!. In the next section we calculate conform
coefficients directly and check this statement explicitly in t
first few orders.

VI. CALCULATING CONFORMAL COEFFICIENTS

Let us now investigate the relation between the conform
coefficientsci appearing in Eq.~60! and the perturbative
coefficientsr i .

For this purpose, it is useful to recall the Banks-Za
expansion: solving the equationb(a)50 in Eq.~59! for such
Nf whereb0 is small and positive andb1 is negative, we
obtain aFP.2b0 /b1.0. If we now tuneNf towards the
limit 11

2 Nc from below,b0 and thereforeaFP become vanish-
ingly small, which justifies the perturbative analysis@26,27#.
In particular, it justifies neglecting higher orders in theb
function as a first approximation. In order to take into a
count the higher orders in theb function, one can construct
power expansion solution of the equationb(a)50, with the
expansion parameter as the leading order solution:

a0[2
b0

b1ub050
5

b0

2b1,0
. ~61!

In the last equality we definedb1[b1,01b1,1b0 whereb i , j
areNf independent. Similarly, we define,10 for later use,

b2[b2,01b2,1b01b2,2b0
21b2,3b0

3 . ~62!

We shall assume that the couplinga has the following
Banks-Zaks expansion:

aFP5a01v1a0
21v2a0

31v3a0
41••• ~63!

wherev i depend on the coefficients ofb(a); see e.g.@37#.
For instance, the first Banks-Zaks coefficient is

v15b1,12
b2,0

b1,0
. ~64!

Suppose that the perturbative expansion ofaR(Q2) in
terms ofa(Q2) is given by

10We recall that in the skeleton schemeb̄2,350.
7-11
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aR~Q2!5a~Q2!1r 1a~Q2!21r 2a~Q2!31••• . ~65!

Based on the fact thatr i are polynomials of orderi in Nf ,
and thata0 is linear inNf , one can uniquely write a decom
position of r i into polynomials ina0 with Nf-independent
coefficients:

r 15r 1,01r 1,1a0

r 25r 2,01r 2,1a01r 2,2a0
2

r 35r 3,01r 3,1a01r 3,2a0
21r 3,3a0

3 ~66!

and so on. For convenience we expand here ina0 rather than
in b0. The relations with the ‘‘skeleton decomposition’’ o
r 1 and r 2 in Eqs. ~16! and ~21! @or in Eq. ~45!# are the
following:

r 1,05r 1
(0) r 2,05r 2

(0)1b1,0r 1
(1)

r 1,152b1,0r 1
(1) r 2,152b1,0r 2

(1)r 1
(0)2b1,0b1,1r 1

(1)

r 2,25b1,0
2 r 2

(2) . ~67!

For r 3 we have, based on Eq.~45!,

r 3,05r 3
(0)1r 2

(1)r 1
(0)b1,01r 1

(1)b2,0. ~68!

Using Eq. ~65! at Q250 with Eq. ~66! and the Banks-
Zaks expansion foraFP, Eq. ~63!, it is straightforward to
obtain the Banks-Zaks expansion foraR

FP:

aR
FP5a01w1a0

21w2a0
31w3a0

41••• ~69!

with

w15v11r 1,0

w25v212r 1,0v11r 1,11r 2,0

w35v312r 1,0v21r 1,0v1
212r 1,1v113r 2,0v11r 2,11r 3,0.

~70!

Having the two Banks-Zaks expansions, one can also c
struct the series which relates two effective chargesaR

FP and
aFP at the fixed-point. Inverting the series in Eq.~63! one
obtainsa0 as a power series inaFP,

a05aFP1u1aFP
2 1u2aFP

3 1u3aFP
4 1••• ~71!

with u152v1 and u25v1
22v2 etc. Substituting Eq.~71!

into Eq. ~69! one obtains the ‘‘conformal expansion’’ ofaR
FP

in terms ofaFP according to Eq.~60! with

c15r 1,0

c25r 1,11r 2,0

c352r 1,1v11r 2,11r 3,0
09401
n-

c452r 1,1v1
22r 1,1v22r 2,1v11r 2,21r 3,11r 4,0.

~72!

Thus the coefficientsv i of the Banks-Zaks expansion~63!
and the coefficientsr i of Eq. ~65! are sufficient to determine
the conformal coefficientsci to any given order.

Clearly, the Banks-Zaks expansions~63! and~69! and the
conformal expansion of one fixed point in terms of anoth
Eq. ~60!, are closely related. Strictly speaking, both types
expansions are meaningful only in the conformal windo
However, we saw that the coefficients of Eq.~60! coincide
with the ones of the BLM series~18! which is useful in real
world QCD. We recall that the general argument in the p
vious section does not depend on the specific BLM sca
setting prescription used, provided that the scaleski are pro-
portional toQ and theci ’s are Nf independent. Comparing
explicitly c1 , c2 and c3 in Eq. ~72! with the BLM coeffi-
cients obtained in the previous section, namelyci5r i

(0) , we
indeed find that they are equal@compare using Eqs.~67!,
~68! and ~64!#. In particular, the ‘‘skeleton decomposition
of Eq. ~45!, which can be formally performed in any schem
provides an alternative way tocomputeconformal coeffi-
cients.

VII. EXAMPLES

The skeleton expansion assumption implies that the s
eton~conformal! coefficientssi are free of running coupling
effects. In particular, contrary to the standard perturbat
coefficients in a standard scheme such asMS, the large order
behavior of conformal coefficients is not dictated by ren
malon factorial increase, and should therefore be softer.

In other words, the effective convergence of the fixe
point relation~60! wherea is taken as the skeleton couplin
effective chargeā is expected to be better than standard p
turbative expansions. As we shall see in Sec. VII C, this
pectation is not restricted to the skeleton scheme but app
also to general conformal relations, e.g. between two ph
cal effective charges. In addition, if we assume that the s
eton couplingb function itself is renormalon free, it follows
that also the Banks-Zaks expansion of a generic phys
quantity aR is renormalon free. This is because the lat
assumption implies that the Banks-Zaks expansion ofā, Eq.
~63!, is free of renormalons, and then, by substituting it
the renormalon-free conformal relation between the obse
able aR and ā, one recovers the Banks-Zaks expansion
aR , which must therefore be renormalon free as well.

Thus, the general expectation is that all conformal a
Banks-Zaks relations are free of renormalons and have b
convergence properties. Our purpose here is to exam
through available examples in QCD whether this expecta
is realized. Indeed, as we recall below, it has been noted
several authors~e.g. in @12,33,18,36,37#! that conformal co-
efficients and Banks-Zaks coefficients are typically sm
We would like to interpret these observations based on
assumed skeleton expansion and relate them to the abs
of renormalons. As concrete examples we shall concent
on the following observables:
7-12
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~a! The AdlerD function,

D~Q2!5Q2
dP~Q2!

dQ2
[Nc(

f
ef

2F11
3

4
CFaDG ~73!

whereaD is normalized as an effective charge, andP(Q2) is
the electromagnetic vacuum polarization:

4p2i E d4xeiq•x^0uT$ j m~x!, j n~0!%u0&

5~qmqn2q2gmn!P~Q2!. ~74!

~b! The polarized Bjorken sum rule for electron nucle
deep-inelastic scattering,

E
0

1

@g1
p~x,Q2!2g1

n~x,Q2!#dx[
gA

6 F12
3

4
CFag1G .

~75!
an
b
di

th
rs

on
e

i
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~c! The non-polarized Bjorken sum rule for neutrino nucle
deep-inelastic scattering,

E
0

1

dx@F1
n̄p~x,Q2!2F1

nn~x,Q2!#[12
CF

2
aF1

. ~76!

~d! The static potential,

V~Q2![24p2CF

aV

Q2
. ~77!

In all four cases perturbative calculations have been p
formed ~Refs.@43–46#, respectively! up to the next-to-next-
to-leading orderr 2 in Eq. ~1!.

For later comparison with conformal relations, we quo
some numerical values of the coefficients in the stand
perturbative expansion inaMS[aMS(Q2) for the vacuum po-
larizationD function ~73!,
aD5aMS 1 d1 aMS
2

1 d2 aMS
3

1•••

2.0 18.2 Nf50

1.6 6.4 Nf53

0.14 227.1 Nf516

1.06 14.0 Nf50 –16 ~78!

and for the polarized Bjorken sum rule~75!,

ag1
5aMS 1 k1 aMS

2
1 k2 aMS

3
1•••

4.6 41.4 Nf50

3.5 20.2 Nf53

20.75 234.8 Nf516

2.1 21.0 Nf50 –16 ~79!
ex-

the

-
.
ts
t

sur-
where in the first three lines in Eqs.~78! and ~79! the coef-
ficients are evaluated at givenNf values, while the last line
corresponds to an average ofur i u in the rangeNf50 –16.

We see that the coefficients in a running coupling exp
sion in theMS scheme increase fast already at the availa
next-to-next-to-leading order. This increase has been
cussed in connection with renormalons, for example in@4#. A
priori , it is hard to expect that the large-order behavior of
series will show up already in the first few leading orde
We mention, however, that in Ref.@47# the Bjorken sum rule
series~for Nf53) was analyzed in the Borel plane based
the three known coefficients, indicating that the first infrar
renormalon atp51 does show up.

A. Banks-Zaks expansion

Let us now compare the magnitude of the coefficients
the standard expansion, e.g. in Eqs.~78! and ~79!, to that of
-
le
s-

e
.

d

n

conformal coefficients. For the latter, one can choose to
amine conformal relations between effective charges~see
Sec. VII C! or the Banks-Zaks expansion.

The Banks-Zaks expansion for the fixed-point value of
vacuum polarizationD function ~73! is

aD
FP5a011.22a0

210.23a0
31••• ~80!

whereas for the Bjorken sum rule it is

ag1

FP5a010.22a0
221.21a0

31••• . ~81!

Comparing Eqs.~81! and ~80! with the corresponding run
ning coupling expansions in theMS scheme, namely Eqs
~78! and~79!, the difference in magnitude of the coefficien
is quite remarkable@36,37#. Taking into account the fact tha
the coefficient ofa0

i 11 contains, among other terms, aCA
i

53i term, this fast apparent convergence seems rather
7-13
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prising. From this point of view, the absence of renormalo
may not be considered a sufficient explanation.

For the non-polarized Bjorken sum rule defined by E
~82!, the Banks-Zaks coefficients are even smaller,

aF1

FP5a020.45a0
210.16a0

31••• , ~82!

and exhibit an impressive cancelation of numerical ter
appearing in the running coupling coefficients@37#. The
static potential shows a different behavior. In this case
Banks-Zaks expansion@37,38#

aV
FP5a020.86a0

2110.99a0
31••• ~83!

has a significantly larger next-to-next-to-leading order co
ficient. Taking into account the numerically large col
group factorCA

259, the magnitude of this next-to-next-to
leading order coefficient is quite reasonable.

Another physical quantity for which the Banks-Zaks c
efficients are relatively large is the critical exponentĝ
@27,36–38#:

ĝ5
1

b0

db~a!

da U
a5aFP

~84!

where

ĝ5a014.75a0
228.89a0

31••• . ~85!

Since this quantity does not depend onQ2, there is no direct
comparison between a running coupling expansion and
Banks-Zaks expansion.

To conclude, we have seen that the Banks-Zaks co
cients for physical quantities typically have smaller coe
cients compared to the standard running coupling expans
In some cases, their convergence is surprisingly good, e
taking into account the absence of running-coupling effe

B. Conformal relations in the skeleton scheme

Examining the Banks-Zaks expansion we found that
coefficients are significantly smaller than standard runni
coupling coefficients. The same conclusion would follo
from examining direct conformal relations between obse
ables. The coefficients of such relations~see Sec. VII C! are
not only small, but also exhibit a remarkable simplicity@12#.
Both the smallness and the simplicity of these coefficie
seem a natural consequence of the conformal limit. T
smallness, in particular, is naturally attributed to the abse
of running-coupling effects.

The first step in trying to substantiate this statement in
framework of the postulated skeleton expansion is to c
sider the conformal relations in the skeleton scheme. I
natural to expect that conformal relations between obs
ables and the skeleton coupling will be small, thus expla
ing the above observations.

To this end, let us consider now the conformal relation
the skeleton scheme~60! as defined by the pinch techniqu
Since the skeleton couplingā has been identified only at th
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one-loop level~12!, our information on the coefficientssi is
quite limited: by a direct calculation@using the next-to-
leading order coefficientr 1 and either Eq.~16! or ~72!# we
can only determines1. For example, for the observables d
fined above it is

s15r 1
(0)55

2~1/4!CA2~1/8!CF 5 211/12, D,

2~1/4!CA2~7/8!CF 5 223/12, g1 ,

2~1/4!CA2~11/8!CF 5 231/12, F1 ,

2CA 5 23, V.

~86!

Note the absence of aCF term in the case of the static po
tential. This can be understood based on the Abelian lim
where it is known that this effective charge coincides w
the skeleton coupling~there, the Gell-Mann–Low effective
charge! up to light-by-light type corrections. Therefore th
momentum distribution function of the leading skeleton te
f0 is just ad function, f0(k2)5d(k2), and in the Abelian
limit there are strictly no (Nf-independent! sub-leading skel-
eton terms.

The higher-order coefficientssi , for i>2, depend on yet
unknown characteristics of the skeleton coupling scheme
particular, as we discuss in the Appendix,s2 depends on the
skeletonb function coefficientb̄2. However, as can be see
in Eq. ~A6!, there, the dependence on this coefficient canc
in the difference ofs2 between any two observables, whic
is therefore calculable.

Without a diagrammatic identification of the skeleto
structure, one cannot isolate skeletons with fermion loo
attached to three gluons, which may appear at the order
sidered. Therefore we shall just treat the entireNf depen-
dence ~excluding Abelian light-by-light diagrams! as if it
appears due to the running coupling, according to Eq.~45!
wheres2 is Nf independent. For the observables conside
above we then find

s2
g12s2

D5
3

8
CFCA1

3

4
CF

252.833

s2
F12s2

D5F43

12
1

85

6
z32

115

6
z5GCA

2

1F234z32
75

8
1

95

2
z5GCFCA

1F21

2
1

47

2
z3235z5GCF

2

57.045

s2
V2s2

D5F1

4
p21

43

24
2

1

64
p4GCA

22
25

16
CFCA1

23

32
CF

2

519.66. ~87!

This gives some estimate of the size ofs2 for these ob-
servables. Thes2 coefficients turn out to be larger than th
7-14
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Banks-Zaks coefficients quoted above~as well as the confor-
mal coefficients in the relation between observables!. They
can even be comparable in size to the next-to-next-to-lea
order coefficients in theMS scheme. Thus the assumed for
of the skeleton expansion does not provide a satisfac
explanation for the observed smallness of conformal coe
cients. We stress again that we mistreated here theNf depen-
dence which is associated with the skeleton structure, nam
fermion loops attached to three gluons. Eventually, this w
have some impact on the magnitude of the (Nf dependent!
skeleton coefficientss2, which we cannot evaluate a
present.

C. Direct relations between observables

As we saw above knowledge about the skeleton coe
cients is very limited beyond next-to-leading order. Ho
ever, there is a way to consider systematically conform
relations avoiding the use of the skeleton scheme. Hav
renormalon-free conformal expansions~60! for two QCD ob-
servables in terms of the skeleton effective chargeā, one can
eliminate the latter to obtain adirect conformal relation be-
tween the two observables. The existence of a skeleton
pansion~2! for the two observables implies that this confo
mal relation is free of renormalons.

Conformal coefficients of this type can be computed
ther from the Banks-Zaks expansion~72! or in the frame-
work of the BLM method, as the coefficients in a comme
surate scale relation@12#. The latter can be obtained b
applying the BLM method directly to the perturbative rel
tion between two observable effective charges~and so it does
not require identification of the skeleton coupling!. However,
it should be noted that whereas the one-to-one corres
dence between the BLM series and the skeleton expan
specifies a unique scale-setting procedure when the ske
scheme in used, the scale-setting procedure in direct rela
between observables remains ambiguous. As explaine
Secs. III and IV, the conformal coefficients themselves
uniquely determined, independently of the particular way
scales are set.

In addition to being numerically small, conformal coef
cients in the direct relations between observables turn o
be simpler@12#, in terms of color group factors and numer
cal zn terms. This simplicity is naturally attributed to th
conformal limit.

There is one example where a directall-order conformal
relation is known—this is the Crewther relation relating t
vacuum polarization D-function effective chargeaD , defined
by Eq. ~73!, with the polarized Bjorken sum-rule effectiv
chargeag1

, defined by Eq.~75!. The Crewther relation is
@32,33,18#

ag1
2aD1

3

4
CFag1

aD52b~a!T~a! ~88!

whereT(a) is a power series in the coupling

T~a!5T11T2a1T3a21••• ~89!
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andTi are polynomials inNf .
If aD has a perturbative fixed pointaD

FP, then it is conve-
nient @37# to write the right-hand side~RHS! of Eq. ~88! in
terms ofaD . Here b(aD

FP)50 and so the RHS vanishes
aD5aD

FP corresponding to the infrared limit. Thereforeag1

also freezes perturbatively, leading to the original conform
Crewther relation

ag1

FP5
aD

FP

11 3
4 CFaD

FP
. ~90!

Taking Nc53 we haveCF5 4
3 and then the conformal coef

ficients are justone to any order in perturbation theory,

aD
FP5ag1

FP1~ag1

FP!21~ag1

FP!31••• . ~91!

Being a geometrical series this conformal relation provide
nice example of a perturbative relation free of renorma
divergence. In addition, it exemplifies the simplicity of th
conformal limit: here the conformal coefficients do not co
tain any non-AbelianCA terms.

As noted in@9# ~see also@33#! it is possible to write for
two generic observablesA andB, at two arbitrary scalesQA
andQB , the following decomposition of the perturbative s
ries relating the two:

aA5CAB~aB!1b~aB!TAB~aB!. ~92!

HereCAB is the ‘‘conformal part’’ of the series, i.e.

CAB~aB!5aB1c1aB
21c2aB

31••• ~93!

whereci are the conformal coefficients appearing in the e
pansion ofaA

FP in terms ofaB
FP, andTAB(aB) is a perturbative

series of the form~89!. In other words thenon-conformal
part of the relation between the two observables is factori
@33# asb(aB)TAB(aB). Taking the limitb→0 then gives the
conformal relation. In particular, one can write such a fa
torized relation between an observable effective charge
the skeleton coupling. Then the conformal coefficientsci in
Eq. ~93! are the skeleton coefficientssi . Explicitly, this can
be shown based on the skeleton decomposition of the se
~45!:

aR5@ ā1s1ā21s2ā31s3ā41•••#

1@b0ā21b1ā31b̄2ā41•••#

3F r 1
(1)1~s1r 2

(1)1r 2
(2)b0!ā

1S s2r 3
(1)1s1r 3

(2)b01r 3
(3)b0

21
3

2
r 2

(2)b1D ā21•••G .
~94!

Finally, we also quote the conformal relations betwe
the vacuum polarizationD function and the non-polarized
Bjorken sum rule~76!,
7-15
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aD
FP5aF1

FP11.67~aF1

FP!211.57~aF1

FP!31•••, ~95!

as well as the static potential~77!,

aD
FP5aV

FP12.08~aV
FP!227.16~aV

FP!31••• . ~96!

Taking into account theCA
i53i contribution toci , these

expansions all seem well behaved.

D. Expansions in theMS scheme

Finally, it is interesting to return to the expansion in t
MS scheme and examine the corresponding conformal r
tions. Such relations turn out to have large coefficients.
example,

aD
FP5aMS

FP
20.083~aMS

FP
!2223.22~aMS

FP
!31••• ~97!

and

ag1

FP5aMS
FP

20.917~aMS
FP

!2222.39~aMS
FP

!31••• ~98!

have large next-to-next-to-leading order coefficients, in st
ing contrast with the conformal relation~91! betweenaD

FP

andag1

FP. Note that these large conformal coefficients do n

provide an explanation of the large coefficients in Eqs.~78!
and~79!. The former are by assumption independent ofNf ,
as opposed to the latter. For smallb0 ~e.g.Nf516) the nega-
tive sign ~and eventually also the magnitude! of the full co-
efficient can presumably be attributed to the conformal p
However, for larger values ofb0, relevant to real world
QCD, the non-conformal part clearly dominates making
full next-to-next-to-leading order coefficients positive.

These large conformal coefficients in Eqs.~97! and ~98!
are due to an intrinsic property of theMS coupling, since
they appear already at the level of the Banks-Zaks expan
@37,38#:

aMS
FP

5a011.1366a0
2123.2656a0

31••• . ~99!

Note thataMS
FP has, by far, a larger next-to-next-to-leadin

order Banks-Zaks coefficient compared to any known ph
cal effective charge.

We stress that the large next-to-next-to-leading order
efficients in Eqs.~97!, ~98! and ~99! are not associated with
renormalons. TheMS b function, being defined through a
ultraviolet regularization procedure, should not be sensi
to the infrared. Therefore infrared renormalons are not
pected. It is more difficult to draw any firm conclusion co
cerning the absence of ultraviolet renormalons. Since th
seems to be no reason to assume a skeleton structure o
other representation in the form of an integral over a runn
coupling, we suspect that ultraviolet renormalons do not
ist there as well.

To conclude, the case of conformal relations in theMS
scheme teaches us not to associate automatically any
coefficient in QCD with running-coupling effects. Indeed,
field theory there are other sources of large coefficients, s
as multiplicity of diagrams.
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VIII. CONCLUSIONS

The fast growth of perturbative coefficients and the
lated renormalization scale and scheme ambiguities of
turbative expansions have greatly limited the predict
power of QCD. In many cases, this divergent behavior
predominantly due to running-coupling effects. The ex
tence of an Abelian-like skeleton expansion in QCD wou
make it possible to disentangle in a unique way such effe
separating them from the conformal part of the perturbat
expansion of a generic physical quantity. The effect of
running coupling could then be treated systematically to
orders in perturbation theory in a renormalization-sche
invariant manner by renormalon-type integrals. The norm
ization of these skeleton integrals is controlled by conform
coefficients that are hopefully better behaved, making
truncated skeleton expansion a better approximation to
physical observable compared to the standard perturba
expansion of the same order.

Resummation of running coupling effects has in ma
cases a significant role in phenomenology@4#. Direct resum-
mation is currently restricted to the level of a single dress
gluon, where the Abelian largeNf limit can be used. The
formulation of perturbation theory in the form of a skeleto
expansion has implications which go beyond the perturba
level. In particular, it provides a natural framework to de
together with the resummation and the related power cor
tions. The renormalon integral contains essential informat
on the type of power corrections one should expect fo
given observable. Moreover, it can be used to comb
@30,31# such power corrections with the perturbative expa
sion avoiding double counting or dependence on the part
lar prescription used to regularize infrared renormalo
These aspects were discussed in detail in@31# for the ex-
ample of the average thrust.

In this paper we have concentrated on the conformal p
of the perturbative expansion, based on a postulated an
for the skeleton expansion. We have shown that
(Nf-independent! coefficients of this expansion and of th
related BLM series have a precise interpretation when a
turbative infrared fixed point is present: they are the conf
mal coefficients in the series relating the fixed point value
the observable under consideration with that of the skele
effective charge. The perturbative infrared fixed point a
pearing in multi-flavor QCD allows one to calculate the
conformal coefficients through the Banks-Zaks expansi
We stress that the identification of the skeleton coefficie
with the ones of the conformal relations defined in the sm
b0 limit strongly relies on the particular ansatz we ha
taken, namely that the entireNf dependence originates in th
running coupling itself, leaving the conformal coefficientsNf
independent. On the other hand, the identification of
BLM coefficients with those of the conformal relations of th
small b0 limit does not rely on any additional assumptio
and it holds independently of the particular way BLM sca
setting is performed.

The existence of an underlying skeleton structure imp
that BLM ~conformal! coefficients do not diverge factorially
due to renormalons. Of course, there can be other eff
7-16
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which could make these coefficients diverge such as com
natorial factors related to the multiplicity of diagrams. Sin
in QCD this type of divergence is much softer than that
renormalons, we expect the BLM and possibly also
Banks-Zaks expansions to be ‘‘better behaved.’’ This exp
tation is supported to some extent by previous observat
concerning the smallness of the first few known BLM co
ficients@12# and the Banks-Zaks coefficients@36–38#. On the
other hand, the absence of renormalons does not alw
seem to be a sufficient explanation of the observed differe
between conformal and non-conformal coefficients. At
same time, large coefficients which are not associated w
running-coupling effects do appear in QCD, e.g. in conf
mal relations with theMS coupling.

The uniqueness of the skeleton coupling in QED, which
identified as the Gell-Mann–Low effective charge, is an
sential ingredient of the dressed skeleton expansion. It is
an open question whether an Abelian-like skeleton expan
exists in QCD and what the constraints are which wo
determine the skeleton coupling uniquely. The pinch te
nique may provide the answer@23–25# once it is systemati-
cally carried out to higher orders. We recall that the skele
coupling is not constrained from the considerations raise
this paper: the only requirement following from the largeNf

limit is that b̄ i in this scheme does not contain anNf
i 11 term.

Since the decomposition of the coefficients~45! can be per-
formed in any scheme yielding the momentsr i

( j ) to arbitrary
high order, the corresponding functionsf i can be formally
constructed, up to the limitations discussed in Sec. III D
thus seems that one can formally associate a ‘‘skeleton
pansion’’ to any given coupling. The absence of renormal
in the conformal coefficients in a specific scheme impl
that there are other schemes which share the same prop
it is straightforward to see from the definition of the skelet
termsRi that anNf-independent re-scaling of the argume
of the coupling leaves the conformal coefficients unchang
More generally, any ‘‘renormalon-free’’ transformation o
the skeleton coupling would leave the ‘‘skeleton coe
cients’’ free of renormalons. It is certainly interesting to fin
further constraints on the identity of the skeleton effect
charge in QCD.

The BLM method provides a pragmatic way to deal w
running-coupling effects beyond the single dressed gl
level. By decomposing the perturbative coefficients in
specific way implied by the skeleton expansion the contri
tions from the different skeleton integrals as well as the c
formal coefficients can be identified. The BLM scales a
then set such that there is a one-to-one correspondenc
tween the terms in the BLM series and the skeletons, p
vided that BLM scale setting is performed in the skelet
scheme. As an alternative to the BLM scale setting proced
we saw that the skeleton integrals can also be approxim
by applying the method of effective charges to the sepa
skeleton terms.

In practice, BLM scale setting can also be applied
physical schemes yielding a commensurate scale rela
This way conformal relations, which have a natural, ma
mally convergent, form~like the conformal Crewther rela
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tion!, can be used as a template for real-world QCD pred
tions, even if the underlying skeleton structure is n
completely understood. Still, since the conformal relation
tween the fixed-point value of a generic observable and
of the skeleton effective charge is renormalon free, it f
lows, upon eliminating the skeleton effective charge, that
coefficients in commensurate scale relations between obs
ables are also renormalon free. When such a conformal t
plate is used for real-world QCD calculations, the effect
the non-zerob function is to modify the values of the scale
k2 of the effective charge at each order of the expansion.
stress, however, that having no more correspondence
the skeleton expansion, the motivation for a particular sca
setting procedure is lost.

The BLM procedure cannot replace an eventual diagra
matic formulation of the skeleton expansion. We saw that
scale-setting prescription depends on the ansatz for the s
eton expansion, and any unknown concerning the form of
latter would have some impact on the former. We have c
sidered several ways in which the simple ansatz we in
duced, Eq.~2!, may be generalized. This includes in partic
lar the possibility that several skeleton diagrams will app
at the same order and that certain skeleton diagrams
contain some fermion loops as part of their structure, mak
the corresponding conformal coefficientsNf dependent. In
addition, we have seen that even in the case of a simple f
of the skeleton expansion, the skeleton decomposition of
coefficients cannot be performed up to arbitrarily high ord
just based on theNf dependence, but rather requires som
additional knowledge based on an explicit diagrammatic f
mulation. One should also be aware of the possibility that
Abelian-like skeleton expansion with a single effecti
charge might fail to exist in QCD. The non-Abelian skelet
expansion may then be based on several dressed Green
tions, namely several different effective charges. Even in
more complicated case the most important properties of
skeleton expansion assumed here may hold. This inclu
the possibility to associate running-coupling effects to
various skeleton terms in a renormalization-group invari
way and the interpretation of the skeleton coefficients as c
formal coefficients when a perturbative infrared fixed po
is present.
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APPENDIX: THE SKELETON EXPANSION AND THE
EFFECTIVE CHARGE APPROACH

A priori, the skeleton expansion approach, which relies
the assumption of a universal skeleton coupling, seems
7-17
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tagonist to the original effective charge approach@5# which
treats all effective charges independently and in a symme
manner. In Sec. IV we saw how the ECH method can
used in the framework of the skeleton expansion to appr
mate separately each skeleton termRi . Here we revisit the
original ECH approach which attempts to evaluate the en
observable directly, and examine it from the point of view
the assumed skeleton expansion.

We begin by comparing the original ECH approach to
application of the ECH method for the leading skeleton te
R0. The first difference is, of course, in the ECH scale p
rameter. To facilitate the comparison, suppose that we s
with a perturbative expansion~1! of the observableaR in
terms of ā(Q2), with the corresponding coefficientsr i . In
the original ECH approach this implies a scale ratio
LR

2/L̄25e2r 1 /b0. This can be compared with Eq.~54!. The
difference between the two is due to ther 1

(0) component in
the next-to-leading coefficientr 1, the component which is
not associated with the leading-skeleton. In practice, in m
cases in QCD the running-coupling component domina
the next-to-leading coefficient. In such cases the two sc
are close.

Next, also theb function of the ECH method,bR(aR)
[daR / ln Q2, is different~beyond the universal two-loop or
der! from that of R0. At the three-loop level the latter i
given in Eq.~56! whereas the former is

b2
R5b2,0

R 1b2,1
R b01b2,2

R b0
21@r 2

(2)2~r 1
(1)!2#b0

3 , ~A1!

where we exhibited the fact that the term leading inb0 is the
same inb2

R0 and b2
R . As noted in Sec. IV, in the largeb0

limit b2
R0 is proportional to the width of the distributionf0,

namely to@r 2
(2)2(r 1

(1))2#. This remains correct also for theb
function of the full effective chargeaR since adding sub-
leading skeleton terms would not modify the leadingO(b0

3)
term. For the four examples considered in Sec. VII, this
rameter is given in Table I.

It is natural now to consider the possibility thatR0 is a
good approximation to the observableaR . In the effective
charge approach at the next-to-next-to-leading order, this
be realized ifb2

R0 is a good approximation tob2
R . In the

largeb0 limit the two are equal. Beyond the largeb0 limit
one can ask whether

b2,0
R 1b2,1

R b01b2,2
R b0

2.b̄2[b̄2,01b̄2,1b01b̄2,2b0
2 ,

~A2!

namely whetherb2,0
R 1b2,1

R b01b2,2
R b0

2 for a generic observ-
able which admits a skeleton expansion, is approxima

TABLE I. Comparison of effective chargeb function coeffi-
cients in the largeb0 approximation given by the width off0 ,
b2,35r 2

(2)2(r 1
(1))2.

b̄2,3 b2,3
D b2,3

g1 b2,3
F1 b2,3

V

0 2.625 2.389 1.500 0
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universal and close to the three-loop skeleton couplingb

function coefficientb̄2. If this holds for arbitraryb0, then

b2,i
R .b̄2,i ~A3!

for i 50,1,2. The violation of the equalities in Eqs.~A2! and
~A3! is, of course, due to sub-leading terms in the skele
expansionR1 andR2. This can be seen explicitly by subst
tuting r i of Eq. ~45! in the general relation

b2
R5b̄21b0~r 22r 1

2!2b1r 1 ~A4!

to obtain the ‘‘skeleton decomposition’’ ofb2
R :

b2
R5b̄21~s22s1

2!b01s1~r 2
(1)22r 1

(1)!b0
2

1@r 2
(2)2~r 1

(1)!2#b0
32s1b1 . ~A5!

Finally, decomposingb̄2 andb1 in terms ofb0, we obtain11

b2
R5@b̄2,02b1,0s1#1@b̄2,12b1,1s11~s22s1

2!#b0

1@b̄2,21~r 2
(1)22r 1

(1)!s1#b0
21@r 2

(2)2~r 1
(1)!2#b0

3 .

~A6!

Clearly, if for a given observable the skeleton coefficien
determining the normalization of the sub-leading skele
terms (si) are small, then even away from the largeb0 limit
b2

R will be close tob2
R0.

In order to check Eq.~A3! explicitly for a given observ-
able, one needs to calculate theb function coefficients of
both the observable effective chargeb2,i

R and the skeleton

effective chargeb̄2,i . For the latter we currently know only
b̄2,0 ~see below! and so the examination of Eq.~A3! for b̄2,1

and b̄2,2 cannot yet be accomplished.
To obtain b̄2,0 we can use the general result@48# or, al-

ternatively, use Eq.~A6!, which is valid for a generic effec-
tive charge which admits a skeleton expansion. The la
yields

b̄2,05b2,0
R 1b1,0s1 . ~A7!

Using this relation for various effective charges, e.g. t
vacuum polarization D function~73! or the Bjorken sum rule
~75!, in the skeleton coupling scheme~12! defined through
the pinch technique, we obtain

11The scheme of the skeleton coupling can be parametrized a
three-loop order@5# by the next-to-leading order coefficient (s1 and

r 1
(1)) and by b̄2, i.e. b̄2,i for i 50,1,2. Equation~A6! then shows

explicitly that the effective chargeb function coefficientb2
R deter-

mines uniquely the remaining coefficients of the ‘‘skeleton deco
position’’ ~45!, namely,s2 , r 2

(1) and r 2
(2) . This reflects the obser

vation in Sec. III that, formally, the ‘‘skeleton decomposition’’ ca
be performed in any scheme.
7-18
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b̄2,05
CA

512
~44CF

2288CACF2301CA
2 ! ~A8!

and, forNc53,

b̄2,052
26845

1536
.217.477. ~A9!

Finally we check to what extent the suggested universa
of the effective chargeb function coefficients~A3! holds for
the four effective charges examined in Sec. VI, namely
effective charges related to the vacuum polarization D fu
tion ~73! and the polarized, Eq.~75!, and non-polarized, Eq
~76!, Bjorken sum rules, as well as the static potential. T
known coefficients are listed in Table II.

Although the coefficientsb2,i
R for these observables hav

some common trend~e.g. for a giveni the signs are the same
with the exception ofb2,i

V for i 51) it turns out that the
fluctuations in their magnitude are rather large. In particu
in case ofb2,0

R for which we know the value of the universa

piece characterizing the skeleton couplingb̄2,0, the latter and

TABLE II. Comparison of effective chargeb function coeffi-
cients.

i b̄2,i b2,i
D b2,i

g1 b2,i
F1 b2,i

V

0 217.477 223.607 230.294 234.753 237.54
1 ? 216.032 211.282 26.903 5.366
2 ? 8.210 8.057 8.783 11.740
e
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the contribution of the sub-leading skeletonR1 @throughs1
in Eq. ~A6!# are of the same order of magnitude. The flu
tuations between different observables are moderate only
b2,2

R .
In @37# it has been observed thatb2

R for the observables
considered above~the static potential excluded! exhibit very
close numerical proximity, especially forNf50 –7. The ex-
tent to which universality of the sort examined here Eq.~A3!
holds is not enough to explain this finding of@37#.

The proximity of b2,2
R for the various effective charge

implies that applying multi-scale BLM scale setting for on
observable in terms of another, the second scale shiftt1,0
would be close to the leading skeleton scale shiftt0,0. In this
case the single scale setting procedure@8,18# could give
similar results. The same holds in the skeleton scheme
b̄2,2 is close tob2,2

R . This can be deduced from Eq.~A6!
which gives,

b2,2
R 2b̄2,25s1~r 2

(1)22r 1
(1)!52s1~ t1,02t0,0!, ~A10!

where in the last step we used the leading order results
the scale shifts in Eqs.~26! and ~29!. In this respect it is
interesting to note that applying the multi-scale BLM pr
scription in theMS scheme, one in general obtains lar
values for thet1,0 scale shift sinceb

2,2
MS53.385 is not

close tob2,2 of the physical effective charges. For examp
when applying the BLM prescription toaD(aMS) one obtains
k0,050.707Q and k1,050.36631026Q. This can be con-
trasted, for instance, with the BLM scales foraD(aV): k0,0
51.628Q andk1,052.487Q.
-
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