PHYSICAL REVIEW D, VOLUME 63, 094017

Disentangling running coupling and conformal effects in QCD

S. J. Brodsky, E. Gardi®**G. Grunberd. and J. Rathsmén
Istanford Linear Accelerator Center, Stanford University, Stanford, California 94309
2Centre de Physique Theque de I'Ecole Polytechnique, 91128 Palaiseau Cedex, France
SLaboratoire de Physique Theque, Universitede Paris XI, 91405 Orsay Cedex, France
“TH Division, CERN, CH-1211 Geneva 23, Switzerfand
(Received 10 October 2000; published 6 April 2p01

We investigate the relation between a postulated skeleton expansion and the conformal limit of QCD. We
begin by developing some consequences of an Abelian-like skeleton expansion, which allows one to disen-
tangle running-coupling effects from the remaining skeleton coefficients. The latter are by construction renor-
malon free, and hence hopefully better behaved. We consider a simple ansatz for the expansion, where an
observable is written as a sum of integrals over the running coupling. We show that in this framework one can
set a unique Brodsky-Lepage-Mackendit M) scale-setting procedure as an approximation to the running-
coupling integrals, where the BLM coefficients coincide with the skeleton ones. Alternatively, the running-
coupling integrals can be approximated using the effective charge method. We discuss the limitations in
disentangling running coupling effects in the absence of a diagrammatic construction of the skeleton expan-
sion. Independently of the assumed skeleton structure we show that BLM coefficients coincide with conformal
coefficients defined in the sma, (Banks-Zakglimit where a perturbative infrared fixed point is present. This
interpretation of the BLM coefficients should explain their previously observed simplicity and smallness.
Numerical examples are critically discussed.
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I. INTRODUCTION In quantum electrodynamics the dressed skeleton expan-
sion can replace the standard perturbative expansion. The
The large-order behavior of a perturbative expansion irskeleton diagrams are defined as those Feynman graphs
gauge theories is inevitably dominated by the factorialwhere the three-point vertex and the lepton and photon
growth of renormalon diagranfd—4]. In the case of quan- Ppropagators have no substruct@i]. Thanks to the QED
tum chromodynamicéQCD), the coefficients of perturbative Ward identity, the renormalization of the vertex cancels
expansions in the QCD couplings can increase dramati- against the lepton self-energy, while the effect of dressing
cally even at low orders. This fact, together with the apparenthe photons in the skeleton diagrams by vacuum polarization
freedom in the choice of renormalization scheme and renorinsertions can be computed by integrating over the Gell-
malization scales, limits the predictive power of perturbativeMann—Low effective charge(k?). The perturbative coeffi-
calculations, even in applications involving large momenturncients defined from the skeleton graphs themselves are
transfer wherexs is effectively small. conformal—they correspond to the series in a theory with a
A number of theoretical approaches have been developegkro 8 function. Therefore they are entirely free of running
to reorganize the perturbative expansions in an effort to imeoupling effects such as renormalons. Each term in the
prove the predictability of perturbative QCD. For example,dressed skeleton expansion resums renormalon diagrams to
optimized scale and scheme choices have been proposedll orders in a renormalization scheme invariant way. The
such as the method of effective chardE€H) [5], the prin-  resummation ambiguity, which is associated with scales
ciple of minimal sensitivity(PMS) [6], and the Brodsky- where the coupling becomes strong, can be resolved only at
Lepage-Mackenzi¢BLM) scale-setting prescriptidiY] and  the non-perturbative level.
its generalization§8—20]. More recent developmend] in- In QCD, a skeleton expansion can presumably be con-
clude the resummation of the formally divergent renormalorstructed based on several different dressed Green functions
series and the parametrization of related higher-twist powertsee[22]). A much more interesting possibility, which is yet
suppressed contributions. speculative, is the existence of an Abelian-like skeleton ex-
In general, a factorially divergent renormalon series arisepansion, with only one effective charge function. The con-
when one integrates over the logarithmically running cou-struction of such an expansion is not straightforward due to
pling a¢(k?) in a loop diagram. Such contributions do not the presence of gluon self-interaction diagrams and the es-
occur in conformally invariant theories which have a con-sential difference between vacuum polarization insertions
stant coupling. Of course, in the physical theory, the QCDand charge renormalization. Nevertheless, at the one-loop
coupling does run. Nevertheless, relying on a postulatetevel there is a diagrammatic algorithm, the so-called “pinch
“dressed skeleton expansion,” we shall show that a confortechnique”[23], which allows one to identify in every non-
mal series is directly relevant to physical QCD predictions. Abelian diagram the part which can be absorbed into the
renormalization of the effective gluon propagator. The sum
of all the vacuum-polarization-like parts turns out to be
*Present address. gauge invariant, thus defining a natural candidate for the
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non-Abelian equivalent of the Gell-Mann—Low effective ods, they can only be parametrized. Indeed, a natural param-

charge a<(k?). Moreover, the pinch technique leads to Ward etrization in the form of an infrared finite couplin@9]
identities similar to those of the Abelian theory: after theemerges from the structure of the skeleton integral. This way
vacuum-polarization-like parts have been taken into accounthe skeleton expansion gives a natural framework in which
the remaining vertex correction cancels against the quarkénormalon resummation and the analysis of non-
self-energy. In this way the pinch technique achieves the firsperturbative  power corrections are performed together
step in the construction of an Abelian-like skeleton expan{30.31.

sion. Recently there have been some encouraging develop- AS an alternative to computing a dressed skeleton inte-
ments[24,25 in the application of the pinch technique be- 9ral, one can approximate it by evaluating the coupling at the
yond one loop and its possible relation to the background®LM scale[7], in analogy to the mean-value theor¢fl].
field method. The hope is that these techniques will eventuBY 90ing to higher orders in the perturbative expansion, this
ally provide proof of the existence of the skeleton expansiorPProximation can be systematically improved. Another pos-

as well as an all-order constructive definition for the non-Sibility considered here is_ to approxima_te each dressed skel-
eton term separately using the effective charge approach.

Abelian skeleton structure and the non-Abelian skeleton ef=_ o . . X
i — This approach is tailorefb] to deal with running coupling
fective chargen(k?). o effects and it bypasses the remaining scheme and scale set-
In this paper, we shall postulate that an Abelian-like skel+ing ambiguities in the power series expressions for the BLM
eton expansion can be defined at arbitrary order in QCD. Wg¢gjes. Assuming a simple form of the skeleton expansion,
shall not deal here with the diagrammatic construction of thQunning coupling effects can be disentangled from the re-

skeleton expansion but rather restrict ourselves to the CONS@aining conformal expansion by tracing the dependence
quences which follow from such a structure. To this end Wegf the coefficients. In this case BLM scale settifay the
will introduce a simple ansatz for the skeleton expansiongch alternative can be applied to a generic QCD observ-
where similarly to the Abelian case, a generic observable igple based on knowledge of the first few coefficients. In the
written as a sum of integrals over the running coupling. As ingeneral case disentangling running coupling effects becomes
QED, we can then identify running coupling effects to all more involved, and it eventually requires a diagrammatic
orders, and treat them separately from the conformal part afpnstruction of the skeleton expansion. We emphasize that
the perturbative expansion. A considerable simplification isygth the BLM scale-setting method and the suggested ECH
achieved, for instance, by assuming that the dependence @Rethod remain on the perturbative level and, as opposed to
the number of light quark flavorsy;, originates only in the  the infrared finite coupling approach mentioned above, these
running coupling itself, as in Abelian theory with light-by- methods are not particularly suited to deal with renormalon
light diagrams being excluded. As a consequence, the Coe&mbiguities and the related power corrections.
ficients appearing in the assumed skeleton expansioNare B M scale setting can also be applied to the perturbative
independent. By construction these skeleton coefficients angjation between the effective charges of two physical ob-
free of renormalonsind are therefore expected to be betterseryaples. This results in a specific “commensurate scale
behaved. We will show that they have a simple interpretatioie|ation” [12] between the two quantities. The coefficients
in the presence of a perturbative infrared fixed point, as ocazppearing in such relations are conformal and, as guaranteed
curs in the small3, limit: they are the “conformal” coeffi- by the transitivity property of the renormalization group,
cients in the series relating the fixed-point value of the Ob‘they do not depend on the intermediate scheme used. This
servable under consideration with that of the skeletoRyay conformal relations appear to be relevant for real-world
effective Charge. ThUS, given the a.SSUmption that these CO@@CD predictions even in the absence of a Comp|ete under-
ficients areNy independent, they can be obtained from stanstanding of the underlying skeleton structure. In the case of
dard perturbative coefficients USing the Banks-Zaks expanhe Crewther re|ati0rﬁ32,33,18, which connects the effec-
sion[26-28, where the fixed-point coupling is expanded in tive charges of thee*e~ annihilation cross section to the
powers of By. Bjorken and Gross—Llewellyn-Smith sum rules for deep-
The conformal series can be seen as a temp®td)] for  jnelastic scattering, the conformal relation is simply a geo-
physical QCD predictions, where instead of the fixed cou-metric series. This example highlights the power of charac-
pling one has at each order a weighted average of the skeferizing QCD perturbative expansions in terms of conformal
eton effective chargers(k?) with respect to an observable- coefficients.
(and orderr dependent momentum distribution function. The  This paper is organized as follows: we begin in Sec. Il by
momentum integral corresponding to each skeleton term isecalling the concept of the skeleton expansion in the Abe-
renormalization-scheme invariant. Had the skeleton effectivéian case[21] and stating the main assumptions concerning
charge been known at all scales, this integral could havéhe non-Abelian case. We continue, in Sec. lll, by reviewing
been unambiguously evaluated, thus including both perturbahe standard BLM scale-setting procedure and recalling the
tive and non-perturbative contributions. In practice it can beambiguity of the procedure beyond the next-to-leading order.
evaluated up to power-suppressed ambiguities, which origiwwe then show how this ambiguity is resolved upon assuming
nate in the infrared where the coupling becomes stronga skeleton expansion, provided we work in the appropriate
These infrared renormalon ambiguities can be resolved onlgenormalization scheme, the “skeleton scheme,” and require
by explicitly taking non-perturbative effects into account. a one-to-one correspondence between the terms in the BLM
Since such effects cannot be calculated with present metiseries and the dressed skeletons. We also discuss in this sec-
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tion the limitations of applying the formal BLM procedure in interpreted as the photon momentum distribution function
the absence of a diagrammatic construction of the skeletofl4]. Similarly, R, is given by
expansion.

In Sec. IV we present an alternative to performing an o ("= 2= 2 22 21> dk3 dk3
explicit scale setting, by using the ECH method as a tool to ~ Ri(Q%)= fo a(kpa(ky) ¢1(ki/Q% Ko/ Q%) 7 17 (4)
resum running-coupling effects within the framework of the o
assumed skeleton expansion. Close connections between thgq so on.
two approaches are pointed out. In the Appendix we look at kg, convenience the normalization é in R(Q?) has

the original ECH approach from the point of view of the peen set to 1 such that tR(Q2) in Eq. (2) have an expan-
skeleton expansion, comparing it to the application of the .

. 2\ _o(O2)i+1 .. ..
ECH method to the leading skeleton term. We also calculatﬁg)r?(I?f'(Q()kzlg(z()g i21 R +is - For example, the normaliza
there theB,=0 limit of the skeleton coupling3 function o 0

coefficient,. - dKk?

We then come to the main subject of the paper, the rela- J do(K?1Q?)—=1. (5)
tion between the coefficients which remain after applying 0 k?
BLM scale setting and the conformal limit of QCD. We de- ] ] )
rive (Sec. V) a relation between these BLM coefficients and N QED fermion loops appear either dressing the exchanged
the conformal coefficients defined in the infrared limit in the Photons or in light-by-light type diagrams, where they are
conformal window, where a non-trivial perturbative fixed- attached to four or more photofan even numberBarring
point exists[34—3§. In Sec. VI we show explicitly that the the latter, th_e dependenc_e on.the number of massless fermion
conformal coefficients, calculated using the Banks-Zaks exflavors,N¢, is fully contained in the Gell-Mann—Low effec-
pansion, are the same as the ones in the BLM series. In Sééve Charge. It follows that the skeleton Coefficieﬂitﬁs well
VIl we recall previous observations concerning the smallnes@s the momentum distribution functiors are entirely free
of conformal and Banks-Zaks coefficients, and examine&f N; dependence. Light-by-light type diagrams have to be
whether this apparent convergence can be explained by tfieeated separately, as the starting point of new skeleton struc-

absence of renormalons in such relations. The conclusiorf$/res. o o _
are given in Sec. VIII. The skeleton expansiai) is a renormalization group in-

variant expansion: each term is by itself scheme invariant.

This is in contrast with the standard scale and scheme depen-

dent perturbative expansidf). The renormalons in Ed1)
Consider a Euclidean QED observahlgQ?), which de- can be obtained upon expansion of the dressed skeleton

pends on a single external space-like momen(@ﬁ‘and is terms in Eq.(2) in some scheme. Let us consider first the

normalized as an effective charge. The perturbative exparieading skeletor{3) and examine, for simplicity, its expan-

sion in a generic renormalization scheme is then given by sion in a(Q?). We assume thai(k?) obeys the renormal-

ization group equation

II. RENORMALONS AND THE SKELETON EXPANSION

ar(Q?)=a(p?) +ria(u’)?+rau?)®+---, @1
da(k?)

= —[Boa(k?)?+ B1a(k?) %+ Bra(k?)*+ - - - 1=B(a)
(6)

where B, is negative in QED and positive in QCD. Then
a(k?) can be expanded as

wherea= a/ and u is the renormalization scale. >
: : : : ifl Ink
The perturbative series can be reorganized and written i
the form of a skeleton expansion

ar(Q?)=Rp(Q?) +5:R1(Q?) +5,R(QH) +- -+,  (2)

where the first termR,, corresponds to a single dressed — i — — o 20 23
photon: it is the infinite set of “renormalon diagrams” ob- a(k®)=a(Q?) + Bota(Q?)*+ (Bt + Bot?)a(Q?)
tained by all possible vacuum polarization insertions into a

single photon line. The second termR;, corresponds to a +
double dressed-photon exchange and so on. In QED, vacuum

olarization insertions amount to charge renormalization. . L
?husRo can be written as 9 where t=—In(k%Q?). Inserting this into Eq(3) under the

integration sign we obtain

a@)'+-- (D

— 5
Bat+ 5 B1ot?+ Bt

© 2 _ _ _
Ro(Q2)= fo §(k2)¢0(k2/Q2)1—|§ @  Ro(Q@)=a(Q)+r{"Bea(Q?)?+(rPBs+rVp)a(Q?)?

. o — r<33>/33+§r‘22>ﬁ1ﬂo+r§”ﬂ2 Q%)+ -
wherek? is the virtuality of the exchanged photom(k?) is
the Gell-Mann—Low effective charge representing the full (8)
propagator, andp, is the (observable dependgrfeynman
integrand for a single photon exchange diagram, which isvhere

+
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_ o _ dK2 needs a method to identify skeleton structures and to isolate
ri(')sf [—In(k*/Q?)]' po(k*/Q%)—-. (9)  vacuum-polarization-like insertions which are responsible
0 k for the running of the coupling at any order. The pinch tech-
nigue [23-25 may provide a systematic way to make this
identification. The resulting set of skeleton structures would
surely be larger than in the Abelian theory. It may include,

We note that in the larghl; (large B8o) limit,* the perturba-
tive coefficientsr;=r(" and thu$

w for example, fermion loops attached to an odd number of
2 — 2102 O g al(02)7 + gluons, which vanish in the Abelian limit. Like Abelian
AR(Q) iarges, = 2(Q") izo M1Bea(QO T+ O(1Bo) |- light-by-light type diagrams, these structures should be

(100  treated separately. As opposed to Abelian theory, where
light-by-light type diagrams are distinguished by their char-
At large ordersi>1, both small and large momentum re- acteristic dependence on the charges, in the non-Abelian case
gions become dominant in E€P), giving rise to the charac- these structures may not be separable based only on their
teristic renormalon factorial divergencei('(~i!). As men-  color group structure. We assume that there is a unique
tioned above, this is believed to be the dominant source ofgauge invariantway to identify skeleton structures in QCD,
divergence of the perturbative expansidn. On the other making Eq.(2) relevant. In much of the discussion that fol-
hand, in the skeleton expansi¢®) the renormalons are by lows we shall further make the assumption that the entire
definition resummed and so the remaining coefficiesits dependence 0éz(Q?) on N; is through the running cou-
should be free of this divergence. These coefficients are expling. Thus in our ansatg and ¢; areN; independent, just
pected to increase much slower leading to a better behavéite in the Abelian case with light-by-light diagrams being
expansion. excluded. Of course, the class of diagrams containing fer-
As mentioned in the Introduction, the generalization ofmion loops as part of the skeleton structure should eventually
the Abelian skeleton expansion to QCD is not straightfor-be taken into account.
ward. Diagrammatically, the skeleton expansion in QCD has Another simplifying assumption we made already in the
a simple realization only in the largé; limit where gluon  Abelian case is that our ansd® contains only one skeleton
self-interaction contributions are negligible so that the theoryat each order, whereas in general there will be several skel-
resembles QEB.In the framework of renormalon calculus, etons contributing at each order. The simplest example is
one returns from the larghl; limit to real world QCD by e~e™ scattering with both- and u-channel exchange. Sev-
replacing N¢ with the linear combination ofN; and C,  eral skeletons at the same order also occur in single-scale
=N, which appears in the leading coefficidd0] of the 8  observables considered here, and therefore Bghould be

function: generalized accordingly. We shall return to this point in the
next section.
Bo:}(l_ch_ ENf _ (12) We stress that the coupling constark?) in Eq. (3) is
4\ 3 3 understood to be specificeffective charge, in analogy to the

Gell-Mann-Low effective charge in QED. This “skeleton

This  replacement, usually called “naive non- . L2 . . :
L I effective charge”a(k®) should be defined diagrammatically

Abelianization” [41,14—18, amounts to taking into account : .

a gauge invariant set of diagrams which is responsible forth(e)rder.by order |.n pr—itugbatlon theory' In Fhe framework of

one-loop running of the coupling constant. the pinch techniquea(k®) has been identified at the one-

To go beyond the “naive non-Abelianization” level con- loop level! e.g. it is related to th&1S coupling by
structing an Abelian-like skeleton expansion in QCD, one

A2 2 k? 5 Ca 2\2
a(k?) =ays(u) + |09F—§ +t3 ays(m)

—Bo

Yin QCD, the Abelian correspondence in the lafge limit re- 4+ (12)
quires that the coeﬁicierﬁ of the skeleton coupling function (6)
not containN} " . It has to be a polynomial of ordé\}; in N¢. This ~ Recently, there have been encouraging developni2bi24
would guarantee that in the largé limit B(a) is just the one-loop 1N the application of the pinch technique beyond one loop.
B function. Note that while some schenfesg. the modified mini- ~ This would hopefully lead to a systematic identification of
mal subtraction schemé(S) and static potential effective chafge the “skeleton effective charge™ at higher orders, namely the
have this property, generic effective charddsfined through ob- determination of higher order coefficients;(for i=2) of
servable q_uantitie)gjo nt_)t_. This prope_rty of the skeleton scheme is the 8 functionﬁ(g) —da/d In k2. This 3 function should co-
used making the identification of" in Eq. (8) as the largeN:  jncide with the Gell-Mann—Low function upon taking the
coefficients. . . Abelian limit C,=0 (see Ref[39)).

We comment that the sub-leading terms iNdin Eq. (8) of the Being scheme invariant and free of renormalon diver-

i-2
form 4,8 o Were computed to all Order.s‘ _[r15]_ However, O_ther gence, the skeleton expansi@ seems much favorable over
terms which involve higher order coefficients of tige function

contribute at the same level inNy.
3This can also be understood from tBg—0 limit discussed in .
Ref.[39]. “This means that the corresponding QCD schlés identified.
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the standard perturbative QCD expansidh This advan- where bothr{") and r{® are N; independent. After BLM
tage may become crucial in certain applications, e.g. for thgcale setting, Witrkéo given by Eq.(14), one has
extraction ofag from event shape variabl¢81]. However, '
in the absence of a concrete all-order diagrammatic defini-
tion for the skeleton expansion in QCD, running-coupling
effects cannot be systematically resummed beyond the sing

ar(Q)=a(kip+rVaki?+:-- . (17)

dressed gluon level corresponding to the leading skeleton. |
particular, the momentum distribution functions of the sub
leading skeletons are not known. On the other hand, t
BLM scale-setting procedure, which is well defined at higher,
orders, can be considered as a manifestation of the skeletdd
expansion. As we shall see, it is possible in this frameworl&
to approximate the sub-leading skeleton terms, provided th
correct skeleton scheme is used. Currently, since the skeletctf
effective charge has not been identified, the choice of sche
in the BLM procedure remains an additional essential ingre=

dient.

Ill. BLM SCALE SETTING

The BLM approacH7] is motivated by the skeleton ex-

}he next-to-leading order coefficient. Note that although the

us, technically, the BLM scale-setting procedure amounts,
at leading order, to eliminating th@, dependent part from

eading order BLM scalé& ; of Eq. (14) has aprecisemean-

as the average gluon virtuality, it is just the lowest order
pproximation tok, of Eq. (13). In other words, aiming at
@e evaluation of the leading skeleton tefB), setting the
ale akg g is just the first step. This approximation can be

rT?/stematically improvedlsee Eq.(33) below] in higher or-

ers.

A. Multi-scale BLM and skeleton expansion correspondence

A BLM series[12] can be written, up to arbitrary high
order,

2\ 2 2\2 2\3 2
pansion. The basic idea is that the dressed skeleton integral @r(Q?) =a(kp) +cia(k])?+ coa(k)*+ caa(ks)*+ - - -

(3) can be well approximated bgy=a(u?) + - - - provided
that the renormalization scaje is properly chosen. Indeed,
by the mean value theorefii1], there exists a scalg, such
that

o dk?
Ro(Q?)= fo AU oK1 Q7

2

—30d) JO BRI S =ak)) (13

where the last step follows from the assumed normalization

for ¢; Eq. (5).
A first approximation tdk, is given by theaverage virtu-
ality of the exchanged gluon

w K2 dk? kS dKk?
ké,o=Q2eXp( f g kIR 5 / fo ¢0<k2/Q2>F)

0

=Q?exp(—r{") (14)
wherer(ll) is the next-to-leading coefficient af in the large
Bo limit (9). The scalg14) is called the “leading order BLM
scale.” It can be determined directly from tiNg dependent
part of the next-to-leading coefficient,( in the perturbative

series of the observable in termsaffQ?):

ar(Q)=a(Q?)+r;a(Q%)2+r,a(Q?)°%+--- . (195

Thanks to the lineaN; dependence afy, it can be uniquely
decomposed into a term linear @y, which is related to the
leading skeleton, and a free term

ri=r?+r{Ms,, (16)

(18)

where theki2 are, in general, different scales proportional to
the external scal®? [as in Eq.(14)] andc; areN; indepen-
dent coefficients. The intuition behind this generalization is
that each skeleton term in ER) is approximated by a cor-
responding term in the multi-scale BLM series: each skel-
eton term may have different characteristic momenta. This
one-to-one correspondence with the skeleton expansion re-
quires that the coupling will be the skeleton effective

chargea=a such that

R(Q)=a(k)'" . (19

In this case the coefficients of sub-leading terms in @8)
should coincide with the coefficients of the sub-leading skel-
eton terms, namelg;=s; .

More generally, a BLM series can be formally written in
an arbitrary scheme: then the coupliagn Eq. (18) can be
either defined in a standard scheme M8 or, as suggested
in [12], be another measurable effective charge. However, in
such cases there is no direct correspondence with the skel-
eton expansiori2), and as a result the forthcoming motiva-
tion for a unique scale setting is lost.

Let us recall how the BLM scale-setting procedure is per-
formed beyond the next-to-leading ordé2,8], yielding an
expansion of the form(18). Suppose that the perturbative
expansion ofag(Q?) in terms ofa(Q?) is given by

SWe work now in a generic scheme but in contrast to @ we
start here with the renormalization scale- Q, thereby simplifying
the formulas that follow. Since the scale is tuned in the BLM pro-
cedure, this initial choice is of little significance. The only place
where the arbitrary renormalization scale is left at the end is in the
power series for the scales shifts, Eg3) below.
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ar(Q)=a(Q? +r;a(Q)?+r,a(Q?)3+rza(Q¥)*+ - - -

(20) tio= 515", (29)

N[ =

Based on the fact that are polynomials of orddrin Ny and ) o
that 8, and 8, are linear inN;, we can writer; as in Eq. and the single-scale BLM prescriptid] where t; ¢=to o

(16) and and
e O et g (2 tor= Bl 1 ()2~ 2r P 0. (30

whereri(‘) areN; independent. The reason for t8g depen-
dent term in Eq(21) shall become clear below. Expanding
a(kiz) in terms ofa(Q?) similarly to Eq.(7), the next-to-
next-to-leading order BLM serigd 8) can be written as

Having in mind the original motivation for the BLM pre-
scription, it is interesting to examine the case where the
scheme ofa coincides with the skeleton effective char@e
Then we would like to have a one-to-one correspondence
o @ =a(Q) 61t ol e e oL e and o o,
+(CoH 21181 Bo+ LB+ 1589 a(QD)% (22 sistent with this requirement: the leading teatk?) in the

N ) \ o BLM series(18) represents only the leading skeleton term
Writing the scale shifts;=In(Q%k") as a power series in the R, in Eq. (2), since the scale shift

coupling

t=t o+t 1a(Q%) + 4 A(Q%) 2+ - - - 23 to=ri+[rf = (r{*)?180a(Q?) (31)
wheret; o are assumed to b independent, we get involves only coefficients which are leading in the lagg
) 5 . limit and originate ing, [cf. Eq.(9)]. On the other hand the
ar(Q%)=a(Q") +(cy+1toaBo)a(Q) single-scale procedure violates this requirement, since there

TG+ (2t Cr+1 +t 112 321a(0?)3. ty involves terms which are sub-leading By and do not
[C2H(2tyd01+to1) Bot o oB1H15,080]a(Q7) belongto the leading skeleton terR,. In fact, in order to

(24)  guarantee that the scale shiftwould represent just the lead-

) , ing skeletonR, we are bound to choodg ; proportional to
An order by order comparison of Eq®4) and (20) yields g "anq thys the solutiof29) is uniquely determined.

H — 2 _ 2

the scale shiftso=In(Q /k3) andt, = In(Q?/k5) and the coef- We see that a unique scale-setting procedure at the next-
ficientsc, andc; in terrr213 ofr; andr, and the coefficients of = o_pext-to-leading orderrg) is implied by the requirement
the B function of a(Q®). The comparison at the next-to- that the scale shift, should represent the leading skeleton
leading order gives Ro. In order to continue and apply the BLM prescription at

0 the next order i(3) we have to impose further constraints

c,=r{¥ (25
11 based on the structure of bofty andR;.

and
B. BLM scale setting for the leading skeleton

to 0— rg_l) . (26) . . .
: Let us first examine the structure of the scale shjfby

The comparison at the next-to-next-to-leading order for the?PPIYing the BLM prescription to a hypothetical observable
3, independent piece gives that contains only aR, term of the form(3). Expanding the
I

coupIingE(kZ) under the integration sign in terms afQ?)
c,=r® (27)  we obtain Eq(8). We would like to apply the BLM prescrip-

tion to the latter series, obtaining simpE(k(z)), with tg
EIn(Q2/k§)=t010+toyla(Qz)+ ... . Expandinga(k3) we ob-
tot 2,0 D+ Bor (2= P4 por (. (28 1IN from Ea.(7)

while for the 8, dependent piece it gives

Thanks to the explici3; dependent term introduced in Eq. a(k§)=a(Q?) + Boto,@(Q?) %+ (Botost Bitoo
(21), the equality of the corresponding piece there to that in o

Eq. (24) is satisfied based on the next-to-leading order result +,8§t§'0)a(Q2)3+
(26). To proceed we need to speciy; andt; osuch that Eq.

Botoo+ Bitost 2B5todos

(28) is satisfied. Having two free parameters with just one _ 5 _

constraint there is apparently no unique solution. Two natu- + Boto ot ,BStS,OJr 5,30/51'[3,0 a(Qd)4+-- .

ral possibilities are the so called multi-scale BLM prescrip-

tion [12], (32
toa=Bol 1= (r{")?], Comparing Eq(8) with Eq. (32) we get
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to=r )+ [ (r ()2l @) PO a0 e0D (@

with
+

[ 2r O+ (193] 82

19— f:[—m(ki/Qz)]J

3 _
50 =) aQ)+ . (33
2 2 2
X[~ IN(GIQA T I Q2 I o
Here we recovered the two leading ordergjrof Eq. (31). 2 N

At ordera(Q?)? we obtained an explicit dependence on both 38)

Bo and B;. The combinatiorr$?)— (r{")? appearing at the

next-to-leading order iy has an interpretation as the width The BLM scale-setting procedure can now be applied ac-
of the distribution¢g, assuming the latter is positive definite cording to Eq.(19): R;(Q?) given in Eq.(36) should be
(see[14,17)). In general, E_q(33) can be written in terms of \\ritten asg(ki)z. Expandingg(ki)z in terms ofg(Qz) us-
central moments of the distributiofiy, defined by ing Eq.(7) andt1=t1,o+t1,1r’:1_(Q2)+ ... we have

Mn:< .nQ_2_<|nQ_2> )> :<<.n@)n> a(k)?=a( Q%)+ 211 Boal Q%)+ (2t 180+ 3% o7
¢ [

k2 _
+2t181)a(Qd)+ - - . (39
Comparison with Eq(36) at next-to-leading order implies
for n=2, where M;=(In(Q%), =In(Q%Gy corre- .
(1) 5
Eg(\)/gds ta}”’ in Eq.(9). In terms of the central moments we tl,OZEr(zl)- (40)

(34

— Comparison at next-to-next-to-leading order then yields
to=M1+M,B0a(Q?) P g y

3 — 3 2 _ (22
+ [M3+M1M2],BS+§M2/81]a(Q2)2+--~ 2ty B0+ 7 (182 A5 +15Bi=rB5+r8B, (4D
=M+ Mzﬁog(kgo) which implies thatt, ,, just asty,, is bound to be propor-
' tional to By. Finally we obtain the scale shift fd®:
3 _
* M3'8‘2’+§M2'81]a(kg'0)2+m (39 Loyt @ 3 002l a02
=512 "+ 515" — 703 )% | Boa( Q7). (42

where in the second step we changed the scale Snto

the leading order BLM scalkj , to get simpler expressions Similarly, applying the BLM prescription t&,,

for the coefficients of the, series. At large orders the _ _

momentsM , become sensitive to extremely large and small R.=a(Q?)*+r{Boa(Qd)*+- -, (43
momenta and thus develop renormalon factorial divergence,

similarly to the standard perturbative coefficients in ).  We get

We thus see that in the BLM approach, the scale shift itself is

an asymptotic expansion, affected by renormalons. 1 (1) (44)

C. BLM scale setting for sub-leading skeletons

Next, let us consider aR, term, given by Eq(4). Ex- D. Skeleton decomposition and its limitations

panding the couplinga(k?) anda(k2) under the integral in Let us now return to the case of a generic observéde

terms ofg(Qz) using Eq.(7), we get[cf. the expansion oR and see that with these skeleton-expansion-correspondence
in Eq. (8)] R ' O constraints there is a unique BLM scale-setting procedure.

The basic idea is that, given the existence of a skeleton ex-
Rl(QZ)=§(Q2)2+,80r(21)_(Q2)3+(rgZ),BSvLr(zl)Bl)_(Qz)“ pansion, it is possible to separate the entire series into terms
which originate in specific skeleton terms. This corresponds
+--- (36)  to a specific decomposition of each perturbative coeffigient
similarly to Egs.(16) and(21). Then application of the BLM
where prescription to the separate skeleton terms, namely represent-
ing R, by a(kiz)”l, immediately implies a specific BLM
(1)— ,(1,0) (0,1) .
rs’=déi "+ ¢y scale-setting procedure for the observable. For example,

094017-7



S. J. BRODSKY, E. GARDI, G. GRUNBERG, AND J. RATHSMAN PHYSICAL REVIEW 68 094017

when this procedure is applied up to or@g0?)?, the scale  (33)], ty is determined by ('~ terms which belong t&,
shiftst; for i=0,1,2 are given by Eq€33), (42) and (44),  [see Eq(42)], t, is determined by ~? terms which belong
respectively. to R,, etc.

To demonstrate this argument let us simply add up the It should be stressed thfstrmally the decompositio5),

expanded form of the skeleton terms up to oralg@?)* with ~ and thus also BLM scale setting, can be performed in any
R, given by Eq.(8), R, by Eq.(36) andR, by Eq.(43). For s_c_heme: glven(.'ghe c_oefﬁmen_tsgp to or(jern, all the cqef—
R, we simply have at this ordeR3=5(Q2)4. Altogether we ficientss; _andriJ for.| =<n andj <i are uniquely dgtermmed.
obtain No special properties of the “skeleton effective charge”
were necessary to show that the decomposition is possible.
ar=a+[s;+r{VBola2+[s,+sir o+ rPp2+rVp,ja3  Even the assumption that for this effective charge the
function coefficientsB; are polynomials of order can be
relaxed. For example, the decompositigks) can be for-

mally performed in physical schemes wheg@gare polyno-
mials of orderi + 1. In this case, however, the interpretation
r(22),81,80+ Slf(zl)ﬂl at (45) of ri(‘_) in t_erms of the Iogarithmic_moments of distribution
functions is not straightforward. It is also clear that a one-to-
one correspondence between the BLM prescription and the
Here we identify the notatios; which is the coefficient in  skeleton expansiofiL9) exists only if the coupling is cho-
front of the skeleton ternR; with r{®). We recognize the sen as the skeleton effective chame
form of r, andr, as the decompositions introduced before in  Let us now address several complications that limit the
Egs. (16) and (21) in order to facilitate application of the applicability of the above discussion. First, we recall the as-
BLM prescription. We see that the skeleton expansion strucsumption we made that the entire dependence of the pertur-
ture implies a specific decomposition. Suppose for exampl®ative coefficients oM; is related to the running coupling.
we know r, throughrs in the skeleton scheme. Equation This means that any explidd; dependence which is part of
(45) then defines a unique way to decompose them so thahe skeleton structure is excluded from E45). In reality
each term corresponds specifically to a given term in thehere may be skeletons with fermion loops as part of the
skeleton expansion. The decompositiorrohcludes a poly-  structure, which would have to be identified and treated
nomial in B, up to ordergy: separately.
Having excluded such; dependence, we have seen that
i up to ordera(Q?)* a formal “skeleton decomposition{45)
si+ > s 0Bk (46)  of the perturbative coefficients can be performed algebra-
k=1 ically without further diagrammatic identification of the skel-
eton structure. This is no longer true at oraéf?)°, where
wheresy=1 by the assumed normalization. The other termghe “skeleton decomposition” requires the moments of the
in r; in Eq. (45) depend explicitly on higher coefficients of momentum distribution functions to be identified separately.
the B function g; with 1<j<i—1. Up to ordera(Q®®  Such an identification depends on a diagrammatic under-
these terms depend exclusivelpn the coefficientsr()  standing of the skeleton structure. LookingRat, the coef-
which appeared at previous orders in tBg polynomials ficient of a(Q?)® in Eq. (36) is
(46). Finally, we need to verify that a decomposition of the

1 2)p2, (33 (U7
+| gt sar§BotsirY s+ B+ rVB,

+

N o

form (45) is indeed possible. For a generic observadie B 30+ {0+ 1D+ (21

the coefficientr; is a polynomial of order in N;. Since the 5

B function coefficientss; are also polynomials of maximal + B1Bo| 2P+ = (p20+ ${0?)

order i, the decomposition ofr; according to Eq.(45) 2

amounts to solving+ 1 equations with +1 unknownsr; +B2[¢g-1,0)+ d)(lo,l)]_ (47)

with O<k<i. Thus in general there is a unique solution.

We see that based on the assumed skeleton structure, O\Writing theE(Q2)5 term in Eq.(45), one will find, as before,

can uniguely peffor”_‘ a sk_eleton _de_comp05|t|on and thusthat the terms which depend explicitly on higher coefficients
also BLM scale setting which satisfies a one-to-one corre-

spondence of the forrfL9) with the skeleton terms. By con- ©f the B function 8, with 1<I<3, contain only .morr(jekr)lts
struction in this procedure the scalgis determined exclu- Of the skeleton momentum distribution functions;”
sively by the larges, termsr ) which belong taR, [see Eq. which a_ppeared in the decompositig#p) in the coefficients
of gl**al*1i*k at the previous orders. However, the coef-
ficient of 8,8, will depend on a new linear combination of
SAs we shall see below, this is no longer true beyond this ordermoments, different from the one identified at orcéQ?)*
where the coefficients depend on moments which appeared at precompare the coefficient g8, 8, in Eq. (47) with r(32) in Eq.

vious orders, but cannot be expressed in terms of the lower orddd7)]. Thus, strictly based on the algebraic decomposition of
coefficients themselves. the coefficients at previous orders there is no way to deter-
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mine the coefficient 03,3, at ordera(Q?)°. Additional
information, namely the values @fi'", ¢{*? and¢{>?, is
required. In the Abelian case, where the diagrammatic iden-
tification of the skeleton structure is transparent, it should be 3
straightforward to calculate these moments separately. In 5=
non-Abelian theory this is not yet achievable.
The need to identify the skeleton structure, as a prelimignd
nary stage to writing the decomposition of the coefficients
(and thus also to BLM scale settingnay actually arise at
lower ordersif several skeletons apgza)r/ at the game order S1=(0%+01P)Cr+039Cp=0Cr+ 07"
As mentioned in the previous section, even in the Abelian
case the assumed form of the skeleton expan&pis over-
simplified in this sense and should be generalized to include
several different;R;(Q?) terms at any order. In the non-
Abelian case one should expect the set of skeleton diagrantsere the combinationGg— 3C,) corresponding to the non-
to be larger. planar skeleton r{p) is suppressed in the large, limit.®
The simplest possibility to imagine is that the momentumsSince the two Abelian parts o, namelys} ands!?, are
distribution fUnCtionS(ﬁi are NC independent. It is then natu- Separa’[e]y Ca|cu|ab|e, the Coefﬁcieng, r(21n)p andr(zl‘%g are
ral to expect that at any given order there will be severalniquely determined from,. Thus, in this example the color
skeletons, where each of them is characterized by its OWgroup structure plus the Abelian skeleton decomposition al-
color group structure. For example, let us assume that in thgyy one to determine the non-Abelian skeleton decomposi-
case of the QCD correction to the photon vacuum polarization. n the general case, where more skeleton structures are
tion s;R;(Q?) should be replaced by a sum of three skeletoryossible, this information will not suffice, and the decompo-
terms,sPRP(Q?) +s7PRIP(Q?) +s39RY9(Q?), where the first  sition of the coefficients will require a more complete under-
two terms correspond to double gluon exchafgeich exist  standing of the non-Abelian skeleton expansion.
in Abelian theory—the planar(p) and the non-planam(p) To summarize, we have seen that by tracing the flavor
skeleton diagrams—and the last term corresponds to thgependence of the perturbative coefficients in the skeleton
three gluon vertex skeleton diagragwhich vanishes in the scheme, one can identify the contribution of the different
Abelian limit). Each of these three terms contributes startingskeleton terms. This procedure allows us to “reconstruct”
at ordera?. In this case, the skeleton decomposition of Eq.the skeleton expansion algebraically from the calculated co-
(45) appears to be too naive: each of these skeleton terms hafficients as summarized by E®5). This decomposition
its own momentum flow. In particular, if the BLM series is implies a unique BLM scale setting which has a one-to-one
to have a one-to-one correspondence with the skeleton exorrespondence with the skeleton expansion. We also
pansion, one should write learned that there are several limitations to the algebraic pro-
cedure which can probably be resolved only by explicit dia-
o0 T2 T2 2, NEL2 N2, 3412 2 grammatic identification of the skeleton structures and the
ar(Q) =a(ky) +sjalkip)®+sia(kiny) + si'a(ki ) skeleton effective charge. These limitations include the need
... (48 to
(a) treat separately contributions from skeleton structures

To arrive at such a BLM series one should further decom-WhiCh involve fermion loopdin the Abelian case these are

th fficients in E¢45 foll : just the light-by-light type diagrams .
pose the coeflicients in E¢45) as follows (b) identify separately the different momengs’ of a

_ (1) 4 1= oo (D)4 <npe (1) given momentum distribution function which appear as a
ag=a+[s;try’'Bola+[s;+(Sir;,+s1 50, sum (with anyj andk such thaf +k=n) in the perturbative

1
sr=a| ce- 34

1
oat EO’TD) Ca (50

1
CF_ ECA

1

39, (1) 2)p2.4 v(1) o 123 coefficients ofgfal*'*", and
+s7°r +r +r a’+--- 49 . . I .
123 Pot 12 Bot 1Al (49 (c) identify separately the contributions of different skel-
where eton terms which happen to appear at the same ordar in
P 4PC IV. USING THE ECH METHOD IN THE FRAMEWORK
S1=01br OF THE SKELETON EXPANSION

As we saw in the previous section, the essential ingredient
of the BLM approach, which crucially relies on the skeleton

"Note that the three gluon vertex, which is a fundamental vertex irbxpansion is to disentangle running-coupling effects and
the theory, cannot be considered as just renormalizing the gluon '

propagator and the quark vertex. Part of it must define a new skel-

eton. This is in contrast to other diagrams appearing at this order

which just renormalize the propagators or the quark vertex, and are®in SU(N,) the combination C-—3C,) is sub-leading inN,
therefore not candidates for new skeleton structures. compared taC,=N, and CF=(N§71)/(2NC).
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treat them separately from the remaining expansion. Techniyhere 8, and 85° are the three-loogs function coefficients
qally, this is reallzgd by performing a skeleton decor_npos[—of the skeleton coupling and @, , respectively. Using now
tion. Running coupling effects can then be resummed in vari- .0

ous ways, aiming at the approximation of the skeleton' 1 andr, of Eq. (8) we obtain

integralsR; . First, there is the possibility to perform a full Ro_ & 2 1N21 03 o 3
all-order résummation by evaluating the integrals using some 20—,82+[r(2 "= (r)%185= B2+ M5
regularization in the infrared regiofsee e.g[31]). This, . o Ry -
however, requires the computation of the corresponding moThIS means that for any momentu_m distributig, f,° is
mentum distribution function, which can currently be donesimply a sum of a universal piegg,, which characterizes
only at the level of the leading skeleton term. At the morethe skeleton coupling, and an observable-dependent piece,
modest level, the skeleton decomposition itself, B4p),  namely the width ofp, (see Sec. Il multiplied by B3.

provides some information about the first few moments of Recall that the three-loop function coefficient in the

the momentum distribution functions which is then usedskeleton schemg, is a polynomial of order 2 if8,, namely

(Sec. ll) to perform BLM scale setting. Alternatively, the 5 _ 75 n 2 reee footnote 1 following E
same information can be used to approximate the skeleto’g2 Baot BaibBot Boaho [ 9 =9

R : .
termsR;(Q?) in the ECH method, which is particularly fit to @)]' Thereforeg,” is given by
deal with running coupling effectis] (see alsd42]). We R & = — 2.2 (1121 03
shall see that this method has close relations with the scale By"=Baot BaaBot B22Bot 12— (r17)%1Bg.  (57)

setting procedure, but it also has some advantages over the o . .
Iatter.g P g In the large By limit ,850 is dominated by the last term,

In this section we demonstrate how the ECH method cafl@mely by the width of momentum distributiay. In this
be used to provide resummation of running coupling effect$ase Itis therefore the width which controls the convergence

in the framework of the skeleton expansion. The basic idea i§f the ECH B function, i.e. the accuracy of the calculated
that each skeleton tern®(Q?) in our ansatz(2) is a effective charge. Note that the same parameter controls the

renormalization-group invariant effective charge raised tcaccuracy of the leading order BLM approximatifiv,17.
some power; i.e., one writeR(Q?)=[ag (Q?)]'*! instead Away from the largeB, limit, a small width implies prox-

of Eq. (19). Thus ag (Q%)=[R/(Q?)]*1*D can be simply imity of /3_50 and g, (see the Appendjx Thus only if the
evaluated in the ECH methofb], avoiding any explicit universalB, is not large does a small width imply smallness
scale-setting procedure. In this metha:ﬁll is computed by of ,8?0, i.e. good convergence of the effective charge ap-
inverting the integrated renormalization-group equation,  proach applied tdR,. Similarly at the four-loop level, one

(56)

gets
INQ%A% = f *n_da_ (52) Ro_ 7 3
R Jo Br(a)’ 3= Bat2M3B5+5M,B1 5. (58)
Finally, the observablag(Q?) will be written as[cf. Eqs.  AS usual[5] the effective chargeg is characterized by the
(2) and(18)] scale ratioAf /A® and B function coefficients. The same
aR(QZ):aRO(QZ)+SlaRl(Q2)2+SZaR2(Q2)3+ o holds for higher skeletonl'fzerrns. For example, it follé)wizfrom
(53) Eq. (36) that aRlE(Rl) is characterized byARllA

(1)12 —
2 and Byt=Bo+3[rP—3(ri)?185. Note that

the same combinations appearing in the BLM scale

Consider first the effective charge defined by the Ieadinq?;'\se are

skeleton termag =R, as expanded in Eq@8). From the shift for Ry, Eq. (42).

next—to—leagiing order coefficient in this equation it foIIows' It is also worth noting that the suggested effective charge
that the ratio between the two scale parameters characteriznnrgach yields a result identical to the BLM scale setting
ing ag anda is method applied in the skeleton scheme, in the approximation
- W where theg functions of the effective charges associated
Agol A2=e "1 . (54) with the various skeletong®i are all replaced by the skel-

eton couplingB function, 8. This is equivalent to assuming
This ratio is fully determined by the center of the momentumthat, except the average, all the central moments of the mo-
distribution function pwhich is also the leading order BLM mentum distribution functions vanish identically. Then both
scale shifttyo; cf. Eq. (14)] and is not modified at higher approaches effectively yield a multi-scale series where the
orders. The latter affect just the corresponding E@Ifunc-  scales correspond to the average momentum flowing in each
tion, ,BRO(aRO)EdaRO/In Q? Using the next-to-next-to- skeleton diagrami; o.

To conclude, we have shown that the explicit scale-setting
procedure can be replaced by the ECH method. One advan-
tage is that the latter does not suffer from the scheme and
Ro_ = 5 scale ambiguities still preserisee footnote 5 before Eq.

2 = Bat Bo(ra—r7)—Pary, (55 (20)] in the series for the BLM scales. We stress that our

leading order expansion (afRo in terms ofa and applying
the general relation between effective charffgs we have
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example here heavily relies on the specific ansatz assumed any finite order are just constants wha(Q?)— agp.

for the skeleton expansion. However, contrary to the BLMEquation(60) is simply the perturbative relation between the
scale setting method, the suggested effective charge agixed-point values of the two couplingsr effective charges
proach would apply equally well to more general cases anda.

where e.g. the two couplings in E) are different. Note that in this discussion we ignored the complication
discussed at the end of Sec. lll, concerning the possibility of
V. BLM AND CONFORMAL RELATIONS applying BLM scale setting in the case of several skeletons

_ _contributing at the same ordgsf. Eq. (48)]. In this case the

Let us now consider the general BLM scale-settinggrqument above holds as well, while the conformal coeffi-
method, where. the scheme is not necessarily the one of th8ents will be the sum of all BLM coefficients appearing at
skeleton effective charge, and no correspondence with thg\e corresponding order. For the example considered in Sec.
skeleton expansion is sought for. Then any scale-setting pray; Eq. (49), we would then have1=51:s§’+s’l‘p+sfg.
pedure which yield; an expansion of the fo(m.B) with Ny According to the general argument above, the BLM coef-
mdgpe_ndenci coeff|0|ents. and ;pale shifts which are POWET ficients EQq.(18) should coincide with the conformal coeffi-
series in the coupling23) is legitimate. We saw that under cients in (60). In the next section we calculate conformal

these requirements there is no unique procedure for settingoficients directly and check this statement explicitly in the
the BLM scale beyond the leading ordég ). Nevertheless, & .ot fow orders.

as we now show, the coefficients are uniquely defined. In
fact, thec; have a precise physical interpretation as the

« s " : . VI. CALCULATING CONFORMAL COEFFICIENTS
conformal coefficients” relatingagr anda in a conformal

theory defined by Let us now investigate the relation between the conformal
) 3 coefficientsc; appearing in Eq(60) and the perturbative
B(a)=—Boa—pa*+---=0. (59 coefficientsr; .

For this purpose, it is useful to recall the Banks-Zaks
expansion: solving the equatigt{a) =0 in Eq.(59) for such
N; where B, is small and positive an@, is negative, we
obtain app=— B¢/B1>0. If we now tuneN; towards the

To go from real-world QCD to a situation where such a
conformal theory exists one has to tuNge: whenN; is set
large enough (but still below 4¥N., the point where
asymptotic freedom is loB, is negative whilg3, is posi- it LN from below, 8, and therefore, become vanish-
tive and small.lThen the perturbati)@ef_ungtion has.a zero gt ingly smgll, which jus,tifies the perturbative analy2s,27.
app=—Bo/fB1; i.€., there is a non-trivial infrared fixed point |,"narticular, it justifies neglecting higher orders in tfe
[34-38. The perturbative analysis is justified Bo, and g nction as a first approximation. In order to take into ac-
henceagp is small enough. count the higher orders in th&function, one can construct a

Physically, the exister)ce of an infrared fixed.point in power expansion solution of the equatifta) =0, with the
QCD means that correlation functions a®ale invariantat expansion parameter as the leading order solution:

large distances. This contradicts confinement which requires
a characteristic distance scale. In particular, wBgna-0 the Bo Bo
infrared coupling is vanishingly small. Then it is quite clear 2="73 0 “Big (61)
that a non-perturbative phenomenon such as confinement HBo=0 10
will not persist. The phase of the theory where the infrareq
physics is controlled by a fixed point is called the conformal
window. In this work we are not concerned with the physics
in the conformal window. We shall just use formal expan- Bo=Ba o+ Ba1Bo+ BaoB+ BasfBd. (62)
sions which have a particular meaning in this phase. ’ ' ' '

The BLM coefficientsc; are by definitiorN; independent. We shall assume that the couplirg has the following
Therefore the expansion af according to Eq(18) is valid, Banks-Zaks expansion:
with the samec;’s both in the real world QCD and in the

n the last equality we defined,= B, o+ 81,180 Whereg; ;
areN; independent. Similarly, we defirt for later use,

conformal window. In the conformal window a generic cou- app=ay+v,a3+vaytvgagt - - - (63
pling a(k?) flows in the infrared to a well-defined limit
a(k’?=0)=agp. In particular, Eq(18) becomes wherev; depend on the coefficients ¢@f(a); see e.g[37].
For instance, the first Banks-Zaks coefficient is
aR =appt C1aps’ + Coapp + Caapp + - - - (60)
where we used the fact that tkgs are proportional taQ, v1=h1a Bio (

which follows from their definitionki2=Q2 exp(—t), to-

gether with the observation that the scale stijfis Eq. (23) Suppose that the perturbative expansionag{Q?) in
terms ofa(Q?) is given by

%In [38] this phase is investigated from the point of view of per- o
turbation theory in both QCD and supersymmetric QCD. Owe recall that in the skeleton scherfig;=0.
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aR(QZ) = a(Qz) + rla(Q2)2+ rza(Q2)3+ . (69 Cs= 2r1,1vi_ M Wo—roWitrootlz1trag.
72

Based on the fact that are polynomials of order in N, (72
and thata, is linear inNy, one can uniquely write a decom- Thys the coefficients; of the Banks-Zaks expansidi63)
position of r; into polynomials inay with N-independent  4nq the coefficients; of Eq. (65) are sufficient to determine
coefficients: the conformal coefficients; to any given order.

Clearly, the Banks-Zaks expansiof@S) and(69) and the
conformal expansion of one fixed point in terms of another,
Eq. (60), are closely related. Strictly speaking, both types of

r1=riotri:@o

_ 2

F2=T20t 2180712289 expansions are meaningful only in the conformal window.
However, we saw that the coefficients of E§0) coincide

r3=ragtra@o+raAg’+rzsy’ (66) : : oh i -

37 P30T I31d0m 3240 3,30 with the ones of the BLM serie 8) which is useful in real

world QCD. We recall that the general argument in the pre-
vious section does not depend on the specific BLM scale-
setting prescription used, provided that the scijesre pro-
portional toQ and thec;’s are N; independent. Comparing

and so on. For convenience we expand herirather than
in By. The relations with the “skeleton decomposition” of
r, andr, in Egs. (16) and (21) [or in Eq. (45)] are the

following: explicitly ¢;, ¢, andcs in Eq. (72) with the BLM coeffi-
_(0) _ (0 (1) cients obtained in the previous section, namekyrfo), we
rio=r roo=r5’+ |
1ot 20=12"* Brd1 indeed find that they are equftompare using Eq¥67),
@) (2)..(0) W (68) and (64)]. In particular, the “skeleton decomposition”
ria=—Bidi’ T21=—Budz T1 —BroBiily of Eq. (45), which can be formally performed in any scheme,
) o provides an alternative way toomputeconformal coeffi-
r2=Big. (67)  cients.
Forr; we have, based on E ,
3 ®#9 VIl. EXAMPLES

—(0), (1).(0) (1) . .. .
a0=r3 ' +ryri’Biotri’Bao- (68) The skeleton expansion assumption implies that the skel-

eton(conforma) coefficientss; are free of running coupling
effects. In particular, contrary to the standard perturbative
coefficients in a standard scheme suciVi& the large order
behavior of conformal coefficients is not dictated by renor-
malon factorial increase, and should therefore be softer.

Using Eq.(65) at Q?=0 with Eq. (66) and the Banks-
Zaks expansion foagp, Eq. (63), it is straightforward to
obtain the Banks-Zaks expansion fafg :

FP_ 2 3 4, ) _
R =8 Wiag+ Wodg+ WaBo+ (69 In other words, the effective convergence of the fixed-
with point relation(60) wherea is taken as the skeleton coupling
effective charge is expected to be better than standard per-
Wi=0v1+T1, turbative expansions. As we shall see in Sec. VIIC, this ex-
' pectation is not restricted to the skeleton scheme but applies
Wo=0,+2r @1+ F11+ o0 also to general conformal relations, e.g. between two physi-
' ’ ' cal effective charges. In addition, if we assume that the skel-
Wa=03+2r ot T ,2+ 20 w1 +3M g1+t eton couplings function itself is renormalon free, it follows

(70) that also the Banks-Zaks expansion of a generic physical
quantity ag is renormalon free. This is because the latter
Having the two Banks-Zaks expansions, one can also corassumption implies that the Banks-Zaks expansioa, d£q.
struct the series which relates two effective char@Esand (63), is free of renormalons, and then, by substituting it in
app at the fixed-point. Inverting the series in E@§3) one  the renormalon-free conformal relation between the observ-

obtainsa, as a power series iagp, able ar anda, one recovers the Banks-Zaks expansion of
ar, Which must therefore be renormalon free as well.
ag= app+ U@zt Usaso+ Usaiot - - - (71 S
0= appT UsdppT Uz8pp™ Uzdpp Thus, the general expectation is that all conformal and

) ) o Banks-Zaks relations are free of renormalons and have better
with uy=—v, and Up=v1—v elC. Substituting Eﬂ(n'); convergence properties. Our purpose here is to examine
into Eq. (69) one obtains the “conformal expansion” a”  through available examples in QCD whether this expectation

in terms ofagp according to Eq(60) with is realized. Indeed, as we recall below, it has been noted by
several authorge.g. in[12,33,18,36,3]j that conformal co-
C1=Tl10 efficients and Banks-Zaks coefficients are typically small.
We would like to interpret these observations based on the
Co=r11tT20 assumed skeleton expansion and relate them to the absence
of renormalons. As concrete examples we shall concentrate
C3=—Trpwitra1trap on the following observables:
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(a) The AdlerD function, (c) The non-polarized Bjorken sum rule for neutrino nucleon
, deep-inelastic scattering,
dI1(Q%) 3
D(Q2)=Q2(—25N02 ef 1+ 7Crap| (73 - Cr
dQ f f dXFP(x,Q%) ~F{"(x,Q)]=1~ Z ar,. (76)
0
whereap, is normalized as an effective charge, dh(Q?) is
the electromagnetic vacuum polarization: (d) The static potential,

4772|J d4xe|qX<O|T{JM(X),JV(O)}|O> V(QZ)E_472CF% (77)

=(9*q"—q’g"")I1(Q?). (74)

In all four cases perturbative calculations have been per-
(b) The polarized Bjorken sum rule for electron nucleonformed (Refs.[43—46, respectively up to the next-to-next-
deep-inelastic scattering, to-leading order, in Eq. (1).

For later comparison with conformal relations, we quote

! 9al, 3 ical values of the coefficients in the standard
P(x,02)—g"(x,02)Jdx= 2| 1— >~ Ca, |. some numerical values of the coefficients in the standar
Jo [91(x.Q9) ~01(x. Q7] 6 47 %0 perturbative expansion isys= ays(Q?) for the vacuum po-
(75 larization D function (73),
|
aD=aM—S + dl af/l—s + d2 a::/l—s‘f' e
2.0 18.2 N¢=0
1.6 6.4 N;=3
0.14 -27.1 N;=16
1.06 14.0 N;=0-16 (78)
and for the polarized Bjorken sum ru(@5),
ag,=aws + kg af,,—s + ks af,l—s+-~
4.6 41.4 N;=0
3.5 20.2 N;=3
-0.75 -34.8 N;=16
2.1 21.0 N(=0-16 (79

where in the first three lines in Eq&Z8) and (79) the coef-  conformal coefficients. For the latter, one can choose to ex-
ficients are evaluated at giveMy values, while the last line amine conformal relations between effective chargese
corresponds to an average|of| in the rangeN;=0-16. Sec. VII O or the Banks-Zaks expansion.

We see that the coefficients in a running coupling expan- The Banks-Zaks expansion for the fixed-point value of the
sion in theMS scheme increase fast already at the availabl&acuum polarizatiod function (73) is
next-to-next-to-leading order. This increase has been dis- Ep 5 3
cussed in connection with renormalons, for exampletinA ap =ap+1.228,"+0.23y°+ - -- (80)
priori, it is hard to expect that the large-order behavior of the i .
series will show up already in the first few leading orders Whereas for the Bjorken sum rule it is
We mention, however, that in R¢#7] the Bjorken sum rule

FP_ 2_ 3, ..

series(for Ny=3) was analyzed in the Borel plane based on agl_a0+0'2230 121ay°+ : (81)
the three known coefficients, indicating that the first infrared ) ) )
renormalon ap=1 does show up. Comparing Egs(81) and (80) with the corresponding run-

ning coupling expansions in thElS scheme, namely Egs.

(78) and(79), the difference in magnitude of the coefficients

is quite remarkabl€36,37]. Taking into account the fact that
Let us now compare the magnitude of the coefficients irthe coefficient ofay™ contains, among other terms, G},

the standard expansion, e.g. in E¢&8) and(79), to that of  =3' term, this fast apparent convergence seems rather sur-

A. Banks-Zaks expansion
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prising. From this point of view, the absence of renormalonsone-loop level(12), our information on the coefficients is

may not be considered a sufficient explanation. quite limited: by a direct calculatiofiusing the next-to-
For the non-polarized Bjorken sum rule defined by Egq.leading order coefficient; and either Eq(16) or (72)] we
(82), the Banks-Zaks coefficients are even smaller, can only determine,. For example, for the observables de-
) 5 fined above it is
ap =ao—0.45%,"+0.16,°+ - -, (82
—(UHCp—(1/9C = -—11/12, D,

and exhibit an impressive cancelation of numerical terms —(UHCA—(7/18C: = —23/12, g,
appearing in the running coupling coefficient37]. The g =r0= _
static potential shows a different behavior. In this case the ! ~(14CaA—(11/8Cr = —3112, Fy,
Banks-Zaks expansidrs7,38| —Cp = -3, V.

aP=a,—0.86a,2+10.9%,°+ - - - (83) (86)

L . Note the absence of @g term in the case of the static po-
has a significantly larger next-to-next-to-leading order coef- " . F . g
ficient. Taking into account the numerically large coIortent'al' 'Th|s can be unde_rstood based on the .Abe."a” “r.mt'
2 . . where it is known that this effective charge coincides with
group factorC,“=9, the magnitude of this next-to-next-to- . :
leadi d ficient i it bl the skeleton couplingthere, the Gell-Mann—Low effective
eaAlng{hor err]cog ||C|en 'f’.tql:c' € reha}src])rlz % ks-7Zak charge up to light-by-light type corrections. Therefore the
. _no erp yS|ca_ quantty or.w Ic _e_ anks-£aks €0~ momentum distribution function of the leading skeleton term
efficients are relatively large is the critical exponept 4 s just as function, ¢o(k?) = 8(k?), and in the Abelian
[27,36-38 limit there are strictly no l{;-independentsub-leading skel-
1d eton terms.
y=— @ (84) The higher-order coefficients, for i=2, depend on yet
Bo da a=app unknown characteristics of the skeleton coupling scheme. In
particular, as we discuss in th_e Appendix,depends on the

where skeletong function coefficient3,. However, as can be seen
R in Eq. (A6), there, the dependence on this coefficient cancels
y=ap+ 4.75aoz—8.896103+ s (85 in the difference ofs, between any two observables, which
is therefore calculable.
Since this quantity does not depend@#, there is no direct Without a diagrammatic identification of the skeleton
comparison between a running coupling expansion and thétructure, one cannot isolate skeletons with fermion loops
Banks-Zaks expansion. attached to three gluons, which may appear at the order con-
To conclude, we have seen that the Banks-Zaks coeffisidered. Therefore we shall just treat the entite depen-
cients for physical quantities typically have smaller coeffi-dence (excluding Abelian light-by-light diagramsas if it
cients compared to the standard running coupling expansiogppears due to the running coupling, according to @8)

In some cases, their convergence is surprisingly good, evepheres, is Ny independent. For the observables considered
taking into account the absence of running-coupling effectsgphove we then find

o_3

B. Conformal relations in the skeleton scheme a1
32 _82 - 8

3

CeCat Zc:F2=2.833
Examining the Banks-Zaks expansion we found that the
coefficients are significantly smaller than standard running-
coupling coefficients. The same conclusion would follow
from examining direct conformal relations between observ-
ables. The coefficients of such relatiojsee Sec. VII Care
not only small, but also exhibit a remarkable simplidity2]. +
Both the smallness and the simplicity of these coefficients
seem a natural consequence of the conformal limit. The

. ) . . 21 47
smallness, in particular, is naturally attributed to the absence +| =+ =3~ 3505 C,:Z
of running-coupling effects. 2 2

The first step in trying to substantiate this statement in the _
e =7.045

framework of the postulated skeleton expansion is to con-
sider the conformal relations in the skeleton scheme. It is

43 85 115

F, 43 85 115
12+6§3 655

2

s, t—s0= Cp2

75 95
— 3475 §+ 755 CeCa

; 1 43 1 25 23
natural to expect that conformal relations between observ- 3\2/—552 — P —— — 7 Cp°— _CFCA+_Cl2:
ables and the skeleton coupling will be small, thus explain- 4 24 64 16 32
ing the above observations. —19.66. 87)

To this end, let us consider now the conformal relation in

the skeleton schem@0) as defined by the pinch technique.  This gives some estimate of the sizeffor these ob-
Since the skeleton couplirg has been identified only at the servables. Thes, coefficients turn out to be larger than the
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Banks-Zaks coefficients quoted abdas well as the confor- andT, are polynomials inN;.

mal coefficients in the relation between observabl&sey If ap has a perturbative fixed poiaf”, then it is conve-
can even be comparable in size to the next-to-next-to-leadingient[37] to write the right-hand sidéRHS) of Eq. (88) in
order coefficients in th&1S scheme. Thus the assumed formterms ofaD Here B(a5)=0 and so the RHS vanishes at
of the skeleton expansion does not provide a satisfactorg,= a P corresponding to the infrared limit. Therefoa%

explanation for the observed smaliness of conformal coeffiy|sq freezes perturbatively, leading to the original conformal
cients. We stress again that we mistreated her®lthdepen-  ~rowther relation

dence which is associated with the skeleton structure, namely

fermion loops attached to three gluons. Eventually, this will afP

have some impact on the magnitude of tih dependent afP=_— 2 (90)
skeleton coefficientss,, which we cannot evaluate at o1+ %CFaEP

present.

TakingN.=3 we haveCr=3 and then the conformal coef-
, , ficients are jusbneto any order in perturbation theory,
C. Direct relations between observables
As we saw above knowledge about the skeleton coeffi- aD —aFP+(aFP)2+(aFP)3 . (97)
cients is very limited beyond next-to-leading order. How-
ever, there is a way to consider systematically conformaBeing a geometrical series this conformal relation provides a
relations avoiding the use of the skeleton scheme. Havingice example of a perturbative relation free of renormalon
renormalon-free conformal expansio®) for two QCD ob-  divergence. In addition, it exemplifies the simplicity of the
servables in terms of the skeleton effective Chggene can conformal limit: here the conformal coefficients do not con-
eliminate the latter to obtain direct conformal relation be- tain any non-AbeliarC, terms.
tween the two observables. The existence of a skeleton ex- As noted in[9] (see alsd33]) it is possible to write for
pansion(2) for the two observables implies that this confor- two generic observables andB, at two arbitrary scale®Qa
mal relation is free of renormalons. andQg, the following decomposition of the perturbative se-
Conformal coefficients of this type can be computed ei-ries relating the two:
ther from the Banks-Zaks expansign2) or in the frame-
work of the BLM method, as the coefficients in a commen- apn=Cap(ag) +B(ag)Tas(ag). (92)
surate scale relatiopl2]. The latter can be obtained by
applying the BLM method directly to the perturbative rela- Here Cap is the “conformal part” of the series, i.e.
tion between two observable effective char@awd so it does ) 3
not require identification of the skeleton couplinglowever, Cag(ap)=apt+ciag+Cragt:-- (93
it should be noted that whereas the one-to-one correspon-
dence between the BLM series and the skeleton expansm)’r‘“iherec are the conformal coefficients appearing in the ex-
specifies a unique scale-setting procedure when the skelet®@nsion ofa” in terms ofag”, andTxg(ag) is a perturbative
scheme in used, the scale-setting procedure in direct relatiosgries of the form89). In other words thenon-conformal
between observables remains ambiguous. As explained part of the relation between the two observables is factorized
Secs. Il and IV, the conformal coefficients themselves ard33] asB(ag) Tag(ag). Taking the limit3—0 then gives the
uniquely determined, independently of the particular way theconformal relation. In particular, one can write such a fac-
scales are set. torized relation between an observable effective charge and
In addition to being numerically small, conformal coeffi- the skeleton coupling. Then the conformal coefficientin
cients in the direct relations between observables turn of t&q. (93) are the skeleton coefficienss. Explicitly, this can
be simpler{12], in terms of color group factors and numeri- be shown based on the skeleton decomposition of the series
cal ¢, terms. This simplicity is naturally attributed to the (45):
conformal limit.

There is one example where a direditorder conformal aR=[§+ 5152+82§3+ 5354+ cee]
relation is known—this is the Crewther relation relating the — — =
vacuum polarization D-function effective charag, defined +[Boa”+ pra’+pra+- - -]

by Eq. (73), with the polarized Bjorken sum-rule effective
chargeagl, defined by Eq.75). The Crewther relation is

[32,33,18

D s PP pya

3 _
+| sorf+ s go+r§Be+ 518, |2+

3
ag,—apt ZCFaglaDz - B(a)T(a) (88)
(94)
whereT(a) is a power series in the coupling Finally, we also quote the conformal relations between
the vacuum polarizatio® function and the non-polarized
T(a)=Ty+T,a+Tza%+: - (89)  Bjorken sum rulg(76),
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aEP: aET"' 1.67(8.?;)24' 1'57(a"§?)3+ - (95) VIIl. CONCLUSIONS

The fast growth of perturbative coefficients and the re-
lated renormalization scale and scheme ambiguities of per-
FP_ _FP FP2_ FP\3 turbative expansions have greatly limited the predictive
ap =ay +2.08a))’~7.1a))°+--- . (%9 power of QCD. In many cases, this divergent behavior is
Taking into account theC,'=3' contribution toc;, these ~Predominantly due to running-coupling effects. The exis-
expansions all seem well behaved. tence of an Abelian-like skeleton expansion in QCD would
make it possible to disentangle in a unique way such effects,
separating them from the conformal part of the perturbative
) o ) o expansion of a generic physical quantity. The effect of the
__Finally, it is interesting to return to the expansion in the \,nning coupling could then be treated systematically to all
MS scheme and examine the corresponding conformal relasrgers in perturbation theory in a renormalization-scheme
tions. Such relations turn out to have large coefficients. FO[ariant manner by renormalon-type integrals. The normal-
example, ization of these skeleton integrals is controlled by conformal
97) coefficients that are hopefully better behaved, making the
truncated skeleton expansion a better approximation to the
and physical observable compared to the standard perturbative
expansion of the same order.
agP:a%—0.917(a;—2)2—22.3q;;\;—2)3+-«- (98) Resummation of running coupling effects has in many
! cases a significant role in phenomenol¢dy. Direct resum-
have large next-to-next-to-leading order coefficients, in strik/nation is currently restricted to the level of a single dressed
ing contrast with the conformal relatiof91) betweena’ ?'UO”] \/t\(herefthe tAbbe“t?n l?r:guf l!mltthcafn be L;S‘adi(-ﬁhf
FP " ormulation of perturbation theory in the form of a skeleton
andggl. Note that these large conformal .cF)efﬁm.ents do rmtexpansion has?mplications whicﬁ/go beyond the perturbative
provide an explanation of the large coefficients in EG®)  |oye| In particular, it provides a natural framework to deal
and(79). The former are by assumption independenNef  ,4ether with the resummation and the related power correc-
as opposed to the latter. For smayj (€.9.N;=16) the nega-  yjons. The renormalon integral contains essential information
tive sign(and eventually also the magnitydef the full co-

) ; on the type of power corrections one should expect for a
efficient can presumably be attributed to the conformal partgiven observable. Moreover, it can be used to combine
However, for larger values of3y, relevant to real world

X , [30,31] such power corrections with the perturbative expan-
QCD, the non-conformal part clearly dominates making thesjon avoiding double counting or dependence on the particu-
full next-to-next-to-leading order coefficients positive. lar prescription used to regularize infrared renormalons.
These large conformal coefficients in Eq87) and(98)  These aspects were discussed in detail3] for the ex-
are due to an intrinsic property of tHdS coupling, since ample of the average thrust.
they appear already at the level of the Banks-Zaks expansion |n this paper we have concentrated on the conformal part
[37,38: of the perturbative expansion, based on a postulated ansatz
for the skeleton expansion. We have shown that the
(N¢-independent coefficients of this expansion and of the
P _ related BLM series have a precise interpretation when a per-
Note thatags has, by far, a larger next-to-next-to-leading rpative infrared fixed point is present: they are the confor-
order Banks-Zaks coefficient compared to any known physima| coefficients in the series relating the fixed point value of
cal effective charge. the observable under consideration with that of the skeleton
We stress that the large next-to-next-to-leading order coeffective charge. The perturbative infrared fixed point ap-
efficients in Eqs(97), (98) and(99) are not associated with pearing in multi-flavor QCD allows one to calculate these
renormalons. ThéMS B function, being defined through an conformal coefficients through the Banks-Zaks expansion.
ultraviolet regularization procedure, should not be sensitivale stress that the identification of the skeleton coefficients
to the infrared. Therefore infrared renormalons are not exwith the ones of the conformal relations defined in the small
pected. It is more difficult to draw any firm conclusion con- g, limit strongly relies on the particular ansatz we have
cerning the absence of ultraviolet renormalons. Since thergaken, namely that the entif; dependence originates in the
seems to be no reason to assume a skeleton structure or ayining coupling itself, leaving the conformal coefficiehts
other representation in the form of an integral over a runningndependent. On the other hand, the identification of the
coupling, we suspect that ultraviolet renormalons do not exBLM coefficients with those of the conformal relations of the
ist there as well. ~__ small B, limit does not rely on any additional assumption,
To conclude, the case of conformal relations in M8  and it holds independently of the particular way BLM scale
scheme teaches us not to associate automatically any largetting is performed.
coefficient in QCD with running-coupling effects. Indeed, in  The existence of an underlying skeleton structure implies
field theory there are other sources of large coefficients, sucthat BLM (conforma) coefficients do not diverge factorially
as multiplicity of diagrams. due to renormalons. Of course, there can be other effects

as well as the static potentiél7),

D. Expansions in theMS scheme

alP=al—0.083a2)2—23.22a7)%+ - .-

ape=ao+ 1.136@2+23.265@,°+ - . (99)
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which could make these coefficients diverge such as combiion), can be used as a template for real-world QCD predic-
natorial factors related to the multiplicity of diagrams. Sincetions, even if the underlying skeleton structure is not
in QCD this type of divergence is much softer than that ofcompletely understood. Still, since the conformal relation be-
renormalons, we expect the BLM and possibly also theween the fixed-point value of a generic observable and that
Banks-Zaks expansions to be “better behaved.” This expecOf the skeleton effective charge is renormalon free, it fol-
tation is supported to some extent by previous observationWs, upon eliminating the skeleton effective charge, that the
concerning the smallness of the first few known BLM coef-coefficients in commensurate scale relations between observ-
ficients[12] and the Banks-Zaks coefficied@6-34. Onthe  ables are also renormalon free. When such a conformal tem-
other hand, the absence of renormalons does not a|Wa);gate is used for real-world QCD calculations, the effect of

seem to be a sufficient explanation of the observed differencil® NON-zergs function is to modify the values of the scales

2 : .
between conformal and non-conformal coefficients. At thek of the effective charge "’}t each order of the expansion. We
tress, however, that having no more correspondence with

same time, large coefficients which are not associated witl . L )
) ) . . the skeleton expansion, the motivation for a particular scale-
running-coupling effects do appear in QCD, e.g. in confor-_ .
= setting procedure is lost.

mal relations with theMS coupling. o _ . The BLM procedure cannot replace an eventual diagram-
_ The uniqueness of the skeleton coupling in QED, which ismatic formulation of the skeleton expansion. We saw that the
identified as the Gell-Mann—Low effective charge, is an esscaje-setting prescription depends on the ansatz for the skel-
sential ingredient of the dressed skeleton expansion. Itis stibton expansion, and any unknown concerning the form of the
an open question whether an Abelian-like skeleton expansioptter would have some impact on the former. We have con-
exists in QCD and what the constraints are which wouldsidered several ways in which the simple ansatz we intro-
determine the skeleton coupling uniquely. The pinch techduced, Eq(2), may be generalized. This includes in particu-
niqgue may provide the answg23-25 once it is systemati- lar the possibility that several skeleton diagrams will appear
cally carried out to higher orders. We recall that the skeletorat the same order and that certain skeleton diagrams will
coupling is not constrained from the considerations raised iwontain some fermion loops as part of their structure, making
this paper: the only requirement following from the lafde  the corresponding conformal coefficierits dependent. In
limit is that 8; in this scheme does not contain Wh'!term.  addition, we have seen that even in the case of a simple form
Since the decomposition of the coefficield$) can be per- Of the_ _skeleton expansion, the skeleton det_:omposif[ion of the
formed in any scheme yielding the moment® to arbitrary ~ Coefficients cannot be performed up to arbitrarily high order
high order, the corresponding functiogs can be formally ~just based on thél; dependence, but rather requires some
constructed, up to the limitations discussed in Sec. 11l D. [fddditional knowledge based on an explicit diagrammatic for-
thus seems that one can formally associate a “skeleton expulation. One should also be aware of the possibility that an
pansion” to any given coupling. The absence of renormaloné\Pelian-like skeleton expansion with a single effective
in the conformal coefficients in a specific scheme impliescharge might fail to exist in QCD. The non-Abelian skeleton
that there are other schemes which share the same proper§¢Pansion may then be based on several dressed Green func-
it is straightforward to see from the definition of the skeletontions, namely several different effective charges. Even in this
termsR; that anN;-independent re-scaling of the argument More complicated case the most important properties of the
of the coupling leaves the conformal coefficients unchangedSkeleton expansion assumed here may hold. This includes
More generally, any “renormalon-free” transformation of the. possibility to associate runnlng-c_oupllng effect; to .the
the skeleton coupling would leave the “skeleton coeffi-Various skeleton terms in a renormalization-group invariant
cients” free of renormalons. It is certainly interesting to find Way and the interpretation of the skeleton coefficients as con-
further constraints on the identity of the skeleton effectiveformal coefficients when a perturbative infrared fixed point
charge in QCD. IS present.

The BLM method provides a pragmatic way to deal with
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physical schemes yielding a commensurate scale relation.

This way conformal relations, which have a natural, maxi- A priori, the skeleton expansion approach, which relies on
mally convergent, form(like the conformal Crewther rela- the assumption of a universal skeleton coupling, seems an-
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TABLE 1. Comparison of effective chargg function coeffi-  universal and close to the three-loop skeleton coupjihg

;ients (',g trze(ll?)rzgqeo approximation given by the width oo,  fynction coefficientB,. If this holds for arbitraryg,, then
23~ = (ry7)".

B2 B2s o4 oL BY B2i=PB2j (A3)
0 2.625 2.389 1.500 0 fori=0,1,2. The violation of the equalities in Eq#2) and

(A3) is, of course, due to sub-leading terms in the skeleton
expansiorR; andR,. This can be seen explicitly by substi-
tagonist to the original effective charge appro#hwhich  tutingr; of Eq. (45) in the general relation

treats all effective charges independently and in a symmetric

manner. In Sec. IV we saw how the ECH method can bg BR= B+ Bo(ro—12)— Biry (A4)
used in the framework of the skeleton expansion to approxi-

mate separately each ske!eton teRm Here we revisit the _ to obtain the “skeleton decomposition” q;ge:

original ECH approach which attempts to evaluate the entire

observable directly, and examine it from the point of view of R_ 2 (1) o (1) p2

the assumed skeleton expansion. B2= B2t (S2=S)Botsu(rs =217 o

We b_egln by comparing the original ECI—_| approach to the +[r(22)—(r(11’)2]38—slﬂl. (A5)
application of the ECH method for the leading skeleton term
Rqy. The first difference is, of course, in the ECH scale pa-
rameter. To facilitate the comparison, suppose that we sta
with a perturbative expansiofl) of the observableg in R = — )
terms ofa(Q?), with the corresponding coefficients. In B2=1B20= Brosil t1B21= BrsS1t(S2=51)1Bo
the original ECH approach this implies a scale ratio of +[E +(rd—2rD) 2 (2) (1\27 23

= : . - s11Bo+[rs”—(ri)%1Bo-
AZ/A?=e"1'Po, This can be compared with E¢54). The 2z bomre e ' °
difference between the two is due to th component in
the next-to-leading coefficient;, the component which is
not associated with the leading-skeleton. In practice, in man termining. th lizat f th b-leadi kelet
cases in QCD the running-coupling component dominate etermining the nI?rtmhalza lon o ? su t-heal ng I'S .ete on
the next-to-leading coefficient. In such cases the two scale éms_ &) are sma 'R en even away from the large limi
are close. B3 will be close tof,°.

Next, also thep function of the ECH methodBx(ag) In order to check Eq(A3) explicitly for a given observ-
=dag/In Q? is different(beyond the universal two-loop or- able, one needs to calculate tjgefunction coefficients of
den from that of Ry. At the three-loop level the latter is both the observable effective chargs; and the skeleton
given in Eq.(56) whereas the former is effective charges,; . For the latter we currently know only

B, o (see belowand so the examination of EGA3) for 3,
R_ pR . oR R p2.110(2)_ v(1)\27 03 0\S ,
BZ IBZ,O+ ﬁ2,1ﬁ0+B2,2180+[r2 (rl ) ]ﬁO! (Al) andBZ,Z Caant yet be aCCOmp|iShed.

where we exhibited the fact that the term leadingginis the terlgtisgrjinugéoEvé(eAg?nvyhsisht?sv%(leir(;efroarl erle;gﬁ]rigré f?le-c

H Ro R H H ’ ¢! 1 -
s_ar.ne ',2’8_2 and ’82_' As noted |r_1 Sec. 1V, |n_ th_e Ia_rgﬁo tive charge which admits a skeleton expansion. The latter
limit B8,° is proportional to the width of the distributiog, yields

namely tof r§2)— (r{Y)2]. This remains correct also for th
function of the full effective chargeg since adding sub- E =pR+B A7
2,0 1,051 (A7)
leading skeleton terms would not modify the Iead'(ﬁgﬂg) 20
term. For the four examples considered in Sec. VII, this paysing this relation for various effective charges, e.g. the

rameter is given in Table I. vacuum polarization D functiof¥3) or the Bjorken sum rule

It is natural now to consider the possibility thBp is a  (75), in the skeleton coupling schent&2) defined through
good approximation to the observatdg. In the effective  the pinch technique, we obtain

charge approach at the next-to-next-to-leading order, this can
be realized if,8§° is a good approximation th?. In the

large B, limit the two are equal. Beyond the largg limit
one can ask whether

Finally, decomposing, and 3, in terms of3,, we obtair*

(AB)

learly, if for a given observable the skeleton coefficients

The scheme of the skeleton coupling can be parametrized at the
three-loop ordef5] by the next-to-leading order coefficiers;(and
R R, = — = — r{Y) and by B,, i.e. B, for i=0,1,2. EquationA6) then shows

Baot B21Bot B22B0=B2= P20t B21B80t B2,280, explicitly that the effective chargg function coefficient3y deter-
(A2) mines uniquely the remaining coefficients of the “skeleton decom-
position” (45), namely,s,, r$" andr$? . This reflects the obser-
namely Whethel8§0+ ,331,80+,32R,2,33 for a generic observ- vation in Sec. Ill that, formally, the “skeleton decomposition” can
able which admits a skeleton expansion, is approximatelye performed in any scheme.
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TABLE II. Comparison of effective charg@ function coeffi-
cients.

the contribution of the sub-leading skeletBq [throughs;

in Eq. (A6)] are of the same order of magnitude. The fluc-
tuations between different observables are moderate only for
B

In [37] it has been observed thﬂi; for the observables
considered abovéhe static potential exclude@xhibit very
close numerical proximity, especially fo¢;=0-7. The ex-
tent to which universality of the sort examined here &®8)
holds is not enough to explain this finding [&7].

The proximity of ,852 for the various effective charges
implies that applying multi-scale BLM scale setting for one
observable in terms of another, the second scale shift
would be close to the leading skeleton scale dpift In this
case the single scale setting proced{®8¢l8| could give
similar results. The same holds in the skeleton scheme, if
B2 is close to,BEZ. This can be deduced from E(A6)
which gives,

Finally we check to what extent the suggested universality o
of the effective chargg function coefficientA3) holds for B = Bao=s1(r$P—2r)=2s,(t; ¢~ to0),
the four effective charges examined in Sec. VI, namely the '
effective charges related to the vacuum polarization D funcwhere in the last step we used the leading order results for
tion (73) and the polarized, Eq75), and non-polarized, Eq. the scale shifts in Eq926) and (29). In this respect it is
(76), Bjorken sum rules, as well as the static potential. Thenteresting to note that applying the multi-scale BLM pre-
known coefficients are listed in Table II. scription in theMS scheme, one in general obtains large

Although the coefficientgh; for these observables have values for thet; o scale shift since8, MS=3.385 is not

some common treng.g. for a giveri the signs are the same, ¢jose tof3, , of the physical effective charges For example,
with the exception ofgy; for i=1) it turns out that the \hen applying the BLM prescription @y (ags) one obtains
fluctuations in their magnitude are rather large. In particulary ' —0.70%Q and ki0=0.366x107°Q. This can be con-

in case Ofﬁz Ofor which we know the value of the universal trasted for |nstance with the BLM scales fa)lS(aV) kOO

Bai

—37.54
5.366
11.740

B, B3 B!
—23.607

—16.032
8.210

B
0 -—=17.477
1 ?
2 ?

—30.294
—11.282
8.057

—34.753
—6.903
8.783

—A (44C2—88C,Cr—301C2) (A8)

BZ 0~ 512
and, forN.=3,

— 26845

182,0: —17.477.

1536 (A9)

(A10)

piece characterizing the skeleton couplﬁ}go the latter and

=1.6280 andk, o=2.487Q.
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