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Effective string theory of vortices and Regge trajectories
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Starting from a field theory containing classical vortex solutions, we obtain an effective string theory of
these vortices as a path integral over the two transverse degrees of freedom of the string. We carry out a
semiclassical expansion of this effective theory, and use it to obtain corrections to Regge trajectories due to
string fluctuations.

DOI: 10.1103/PhysRevD.63.094013 PACS nuni®erl2.40.Nn, 11.27d

I. INTRODUCTION world sheet(the Nambu-Goto actign
Forster [9] took into consideration the curvature of the

The goal of this paper is to derive an effective stringworld sheet. He showed that in the strong coupling limit,
theory of vortices beginning with a field theory containing with the ratio of vector and scalar masses held fixed, the
classical vortex solutions. The Abelian Higgs model is aneffects of curvature were unimportant, and the classical ac-
example of such a theory. Nielsen and Olesghshowed tion for the vortex reduced to the Nambu-Goto action. This
that this model has classical magnetic vortex solutionslimit can be regarded as the long distance limit, since only
These vortices are tubes of magnetic flux with constant enzero mass excitations are left in the theory. Equivalently,
ergy per unit length. since the flux tube radius vanishes in this limit, all physical

The motivation for this work came from the dual Super_distances, measured in units of the flux tube radius, are be-
conductor picture of confinemefig—4]. In this picture, a coming_ large. All degrees of freedom except the transverse
dual Meissner effect confines electric color flig(flux) to  OScillations of the vortex are frozen out.
narrow tubes connecting quark-antiquark pairs. Calculations G€rvais and Sakitd10] first considered the quantum
with explicit models of this type5] have been compared €ory of the vortices of the Abelian Higgs model in the
both with experimental data and with Monte Carlo simula-S8Me long distance limit. They used the results S to

tions of QCD[6]. To a good approximation, aside from a def_lne collective coordinates for_ the vortlces,_ by means of
. : . which they constructed an effective vortex action. They also
color factor, the dual Abelian Higgs model, coupling dual

tentials t lar Hi field . tic ch obtained a formal expression for the Feynman path integral
potentials 1o a scalar Higgs Nield carrying magnetic Charg€y¢ e apelian Higgs model as an integration over vortex
can be used to describe the results of these calculation

X 0NSheets. However, they were not able to write this expression
However, these calculations neglect the effect of fluctuationgg 4, integral over the physical degrees of freedom of the

in the shape of the flux tube on tlg interactions. We show vortices.
in this paper that taking account of those fluctuations leads to Luscher, Symanzik, and Wei$21] considered the lead-
an effective string theory of long distance QCD. ing semiclassical corrections to the classical Nambu-Goto
Well before the introduction of the idea of dual supercon-action due to transverse string fluctuations, and showed how
ductivity, string modelg7] had been used to understand theto regulate the resulting divergences. They showed that for a
origin of Regge trajectories, and they have continued to bstring of lengthR with fixed ends, the leading semiclassical
used to describe other features of hadron physics, such as thentribution to the heavy quark potential is7/12R. In a
spectrum of hybrid mesons. In the dual superconductor picsecond paper, ischer[12] showed that this result was un-
ture, a string arises because the dual potentials couple toadfected by the addition of other terms to the effective string
quark-antiquark pair via a Dirac string whose ends are action.
source and sink of electric color flux. The effect of the string  Polchinski and Stromingdrl3] discussed the relation of
is to create a flux tubéor Abrikosov-Nielsen-Olesen vortex the Abelian Higgs model to fundamental string theory, re-
[8,1]) connecting the quark-antiquark pair. As the pairgarding the theory of ANO vortices as an effective string
moves, this flux tube sweeps out a space time surface atmeory. They explained how existing string quantization
which the dual Higgs field must vanish. This condition de-methods were inappropriate for quantizing the vortices. To
termines the location of the QCD string in the dual supercompensate for the anomali¢é4] in these quantization
conductor picture. methods, they introduced an additional term, the “Polchinski
The effort to obtain an effective string theory for Strominger term,” into the effective vortex action.
Abrikosov-Nielsen-OleseitANO) vortices has a long his- Akhmedov, Chernodub, Polikarpov, and Zubkd¥5]
tory, independent of any connection to QCD. Nanfl2l  studied the quantum theory of ANO vortices in the London
attached quarks to the ends of superconducting vortices, arinit. In particular, they studied the transformation from field
found an expression for the classical action of the resultinglegrees of freedom to vortex degrees of freedom. They
ANO vortex in the singular London limit of infinite Higgs showed that the Jacobian of this transformation contained the
boson mass. He introduced a cutoff to render this actiorfPolchinski Strominger term” as a factor. Although they,
finite, and showed that it was proportional to the area of thesimilar to Gervais and Sakita, did not obtain a complete ex-
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pression for the path integral, this paper provided an impor- x t=t

tant stimulus to our own work. ! >
In the current paper, we simplify and extend work done in

an earlier papefl6]. We begin with the path integral repre-

sentation of a field theory having vortex solutions. It is an

effective field theory describing phenomena at distances

greater than the flux tube radius. We end up with an effective

string theory of vortices in a form suitable for explicit calcu-

lations. r
We apply this theory to calculate the enefgyand angu-

lar momentum] of the fluctuations of a string bounded by

the curve generated by the worldlines of a quark-antiquark

pair separated by a fixed distance and rotating with fixed

angular velocity. This gives the contribution of string fluc- ¥4 <

tuations to the Regge trajectodfE?), which we compare

with the experimentap and w trajectories.

X2

FIG. 1. The loopl".
Il. OUTLINE _ _ .
=€?/47). The world lines of the quark and antiquark trajec-
In Sec. Ill, we rewrite the path integral over field configu- tories form the closed loof’ (see Fig. 1 The moving
rations of the Abelian Higgs model containing vortices as amyuark-antiquark pair couples to the dual potenti@jsvia a

This introduces a Jacobian due to the change from field vari-

ables to string variablesurfaceg This Jacobian is the key line L connecting thequaw. As the pallr moves, the _“”e
to determining the action of the effective string theory, and>"€€Ps out a world sheet (¢) parametrized by coordinates
to defining the integral over all surfaces. We next use thé » @=1.2. The field¢ vanishes on this world sheet
formalism described in Sec. Il to obtain an effective theory ~
of ANO vortices. In Sec. IV, we show how the Jacobian d(x*)=0, atxk=x*(£). (3.9)
divides into a field part and a string part. The two parts of theT
Jacobian play different roles in the effective theory. In Sec.
V, we define an expression for the action of the effective 1 X %P
string theory. All the dependence on the Abelian Higgs G35 = _ef d2§_€abewaﬁ_ — S xF=XM(£)].
model is contained in the string action. We also obtain an . 2 IE® 9EP
expression for the path integral over vortices. In Sec. VI, we (3.2
show how to express the integral over surfaces as an integr. . . . . .
over the two physical degrees of freedom of the vortex, an(j1lne act|o~nS of _a field configuration which has a vortex on
obtain the final form of the effective string theory. the sheek”(¢) is
In the remaining sections we compute the leading semi- 4
classical contribution to Regge trajectories due to the fluc- S= _J d*x
tuations of the string. We obtain an expression for the con- 3
tribution of string fluctuations to the effective action in Sec. N
VII, and in Secs. VIl and IX describe how to regularize this ——(|¢|?— ¢g)2
expression, making use of the results osther, Symanzik, 4
and Weisz[11]. In Sec. X we calculate the contribution of
string fluctuations to the effective action for a straight, rotat-
ing string,.and i_n Sec. Xl obtain the resulting corrections to G,,=3,C,—,C,+ G,Sw (3.4)
Regge trajectories.

he corresponding Dirac string tens@fw is given by

1 1
- 2(G.)%=51(9,~igC,) ¢|?

) (3.3

where the field strengtls ,, is given by

The Higgs mechanism gives the vector particeal gluon

lll. THE TRANSFORMATION FROM FIELDS a massMy=g¢o and the scalar particle a masds
TO STRINGS =2\ ¢g, Where gy is the vacuum expectation value of the

Higgs field. We have introduced the color factprin Eq.

In this section we consider the Abelian Higgs model(3.4) because we are interested in usas a model for long
coupled via a Dirac string to a moving quark-antiquark pair.distance QCD. We consid&to be an effective action de-
We transform the path integral over field configurations con-scribing distances greater than the flux tube radius
taining vortices to an integral over the surfasésdetermin- The long distanceqa interaction is determined by the
ing the location of the vortices. Wilson loopW[T'],

We denote thédual) potentials byC, and the complex
(monopolg Higgs field by ¢. The dual coupling constant is B . (ST h.Cl+
g=2m/e, wheree is the Yang-Mills coupling constanta W[F]_f De* DYDCHe! (4 ClT5er), 39
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where Sgr is a gauge fixing term. The functional integrals
are cut off at the momentum scaleal/The action(3.3)
describes a field theory having classical vortex solutions. The
functional integral(3.5 goes over all field configurations
containing a vortex bounded Qy.

Previous calculationgs] of W[I'] were carried out in the
classical approximatiofcorresponding to a flat vortex sheet ;?E)

%X*), and showed that the Landau-Ginzburg parameter

is approximately equal t. This corresponds to a supercon- FIG. 2. World sheets and normal vectors.
ductor on the border between type | and type Il. In this

situation, both particles have the same milss My=Mg, IV. FACTORIZATION OF THE JACOBIAN
the string tension iST:émﬁé, and the flux tube radius is

— 2IM To evaluateW[I'] we divide J[ ¢] into two parts. The
a= . . . Jacobian][ ¢] in Eq. (3.8) is evaluated for field configura-

To take into account the fluctuations of these vortices, we, . . . ~
tions ¢ which vanish on a particular surfac. We make

| r he classical imation. We _ ~ - o
must evaluat&V[I"] beyond the classical approximation. We this explicit by writing Eq.(3.6) as

carry out the functional integratiai.5) in two stepsil) We
fix the location of a vortex sheat*, and integrate only over

field configurations for whichs(x*) vanishes ox*. (2) We ~p—1 ~ ~ ~
integrate over all possible vortex sheets. To implement this b X1 "= | Dy*s{Reg[y“(n)]}olim gLy* ()]},

procedure, we introduce into the functional inted@b) the 4.
factor one, written in the form

5 5 _ wherey* is some other string worldsheet, distinct froe.
1=J[¢]j Dx*S{Red[ x*(&) ]} o{Im d[x* (€)1} The evaluation of the Jacobian is the essential new ingredient
(3.6) in deriving W[T'].
The & functions in Eq.(4.1) select surfaceg*(7) which
The integrationDx* is over the four functions*(£). The lie in a neighborhood of the surfasé(¢) of the zeros ofp.

functionsx*(¢) are a particular parametrization of the world \We separatey#(7) into components lying on the surface
sheefx*. x*(£) and components lying along vectmrg(g) normal to

The expression(3.6) implies that the string world sheet x*(¢) at the point¢:
X*, determined by thé functions, is the surface of the zeros
of the field ¢. The factorJ[ ¢] is a Jacobian, and is defined ~ ~ A A
by Eq.(3.6). Inserting Eq.(3.6) into Eq. (3.5 puts the Wil- y“(r)=x*&(n)]+y[E(n) I, [&(7)]. (4.2
son loop in the form
The pointx“[£(7)] is the point on the surface*(¢) lying
W[T']= f D¢* DPDCHe! 19l Seh ] ¢ ] closest toy*(7), and the magnitude of"[£(7)] is the dis-
tance fromy*(7) to x“[ £(7)] (see Fig. 2
We evaluate the Jacobidd.1) by making the change of
variables

X f Dx*8{Red[x*(£)1}8{Im [ x*(£)1}.
3.7

We then reverse the order of the field integration and the
string integration over surface&(¢),

Y1) —[E(),YR(€)] 4.3

defined by Eq(4.2). Although theé functions in Eq.(4.1)

~ ~ force yA to vanish, the integrations ovgf* give a contribu-
— * € €
W[F]_f DXMJ' D¢* DHDCHI[ p15{ReP[x"(£) ]} tion to the Jacobian. Furthermore, this contribution depends
- (SCl on the field variableb in a neighborhood of the surface. The
X 8{Im ¢ x(&)]ye! (14 Cl+Ser), (3.8 integration over the reparametrizatio&iér) of the surface

_ X*(£), on the other hand, depends upon the surface, but not
In Eq. (3.7), the & functions fixx* to lie on the surface of the on the fields. The change of variabl@s3) leads to a factor-
zeros of a given fieldp, while in Eq.(3.8), they restrict the ization of the Jacobian into a field contribution, and into a
field ¢ to vanish on a given surface*. The integral ovekp contribution depending only on the intrinsic properties of the
in Eq. (3.9 is therefore restricted to functiors which van-  world sheeix*(&).
ish onX*, in contrast to the integral ovep in Eq. (3.7), in We now exhibit the factorization of the Jacobian. Under

which ¢ can be any function. the transformatior{4.3), the integral ovey* becomes
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- 1 gx* gx’ 1
Dy*=Det, Eﬂvaﬁieaba—ga agb EEABnQng Dyﬁpg
=D \/ 1 abé{;(M é{;(]} 21 AB,AB\2 D AD
=Det, 5| € &—g‘&gb 5(6 N,Ng) y| D&
=Det [~ 0(é)|¢- ¢ DYLDE, (4.4

where—g is the square root of the determinant of the in-

duced metric
IXH IXM

“oe op “9

Jab

evaluated on the world shegt. Appendix A gives a sum-

mary of our notation, and of the relations used to obtain Eq.

(4.4).
The functional determinant in E@4.4) is the product of
its argument evaluated at all pointson the sheet, in the

same way that the integration ovBy* is a product of inte-
grals at all pointsr. Making the change of coordinatés.2),
(4.3 in the Jacobiari4.1) gives

I xH] 1= f DEDY? Det[ - gl S(Rep{X*[&(7)]

+YNEDINALE(D D SIM S{XH[E(7)]
+YLEDINELED . (4.6)
Equation(4.6) has the form

Ipx] 1= f Dé(m)Det[V—gld {o X[ &1},

(4.7)
where
J P XM E(T)] = f Dy} S(Rep{x [ &(7)]
+YNEDINATEDT)
X 8(Im p{xM[&(7)]
+YNEDINALEDTY) (4.9

contains all the dependence @nSinceJ, is independent of
the parametrizatiog(7), the Jacobian factors into two parts

I X1 =[x 1, [b X172, (4.9

where

351~ | Devetf =gl (4.10

The string part); of the Jacobian arises from the parametri-
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Eq. (3.9). This allows us to define the action of the effective
string theory. In the following section, we will usk to fix
the reparametrization degrees of freedom.

V. THE STRING ACTION

Inserting the factorized fornt4.9) of J[ ¢] into the ex-
pression(3.8) for W[I'] gives the Wilson Loop the form

W[Il]= f DxJ[x]e'Sef, (5.1

where the actiorb. of the effective string theory is given by

oiSerlX*()] — f D¢* DHDCHI, [ p]5{Red[x“(£)]}

x &{Im p[x*(£)]}e! (55, (5.2
The string action5.2) was obtained previously by Gervais
and Sakitg10]. The novel feature of our result is the string
integration measure of the Wilson l0dp.1).

The string action depends upon the field partof the
Jacobian

J[pxr] 1= f Dy} s[Red(X*+yin,a)]

X S[Im p(x*+yn )] (5.3
The 6 functions forcey’j to be zero, so we can expand their
arguments in a power seriesy"rj\,
P(y*)=p(x*) +yinad,p(x*)+0(y?). (5.4
The zeroth order term in E@5.4) vanishes because is the

surface of the zeros ab. The integration(5.3) overy* gives
the result

I, [ . x#]" =Det; [ *Bnin(d,Red)(3,Im @) |xu_zul.
(5.5

The Jacobiad, is a Faddeev-Popov determinant, which we
discuss in Appendix B.

Equation(5.2) gives the actiorSe«(x*) of the effective
string theory as an integral over field configurations which

have a vortex fixed at“. Since the vortex theor(8.5) is an
effective long distance theory, the path integfals) for
W[T'], written in terms of the fields of the Abelian Higgs
model, is cutoff at a scald which is on the order of the
massM of the dual gluon. Furthermore, the integraticnl)
over x* includes all the long distance fluctuations of the
theory. Therefore, the path integrés.2) contains neither
short distance nor long distance fluctuations, and is deter-
mined by minimizing the field actioS[§M,¢,CM] for a fixed
position of the vortex sheet

zation degrees of freedom. In the next section, we show that

J, is the Faddeev-Popov determinant for théunctions in

Serl X1 =S[X*, 685 CESY,  golstxr)=0. (5.6
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The fields¢2sSand Cc'assare the solutions of the classical the string thicknesa. Therefore, for a superconductor on the
equations of motlon subject to the boundary conditionl-Il border, VE@{R) is, to a good approximation, equal to
H(x*)=0. the Cornell potential18]

The actionS,+ depends both on the distanBebetween
the quarks, and the radius of curvatlg of the vortex sheet
bounded byl". In the long distance limit, when the length of
the stringR and its radiusR, are large compared to the
thickness of the flux tube, the string action5.6) becomes In other words, for a flat sheet,
the Nambu-Goto actiofyg,

SNG:_O'J d2§\/__’ (57)

wherec is the classical string tension, determined from theof the classical action for a superconductor on the type I-Il
solution of the Nielsen-Olesen equations for a straight, infiy) . qar.
nitely long string.

It is convenient to separate the acti@6) into its pertur-

bative and nonperturbative parts

4 o
VERs{R) ~ — 3 E +oR. (5.13

S"(R)~Sye- (5.14

Thus, for short straight strings the Nambu-Goto action re-
mains a good approximation to the nonperturbative part

Next, consider the nonperturbative contribution to the
classical action for a long bent stringlhe Maxwell action
has the valud€5.9) independent of the shape of the vorfex.
The leading correction to the Nambu-Goto action when the

YH — Qv class ~class _ cMaxwellry NP,
Serl X] = S[x*, pTO5CLH =S [xF1+SMx], string is bent is the curvature term

(5.8
where SM®ell js the action obtained by setting=g=0 in J 2 A2
S =— d°éV—g(K5p)7, 5.1
Eq. (3.3. The value of SM@¥el depends only upon the cunvature= ~ B | A7V 9(R ) 619
boundaryl’, and is the usual electromagnetic interaction be-
tween charged patrticles wherelCAb is the extrinsic curvature.
4 €2 KA =nA m
Maxwellr 777 — / / N’ d,0pX". (5.16
gMaxwel P = 3% fﬁ dx* fﬁ dx'#D,,(x*—x"#), ab™ " 'n%a%

(5.9  The magmtude ofCh, is of the order of Ry, so that

Scurvature (a /RV)SNG-
The calculation of the “rigidity” 8 determining the size
of Scuvaureh@s been considered by a number of authbes,
but the value of8 for a superconductor on the I-Il border
was never calculated. We conjecture that the valu@ o
small, because de Vega and Schapod4@i@] have shown
that the components of the stress tensor perpendicular to the
axis of a straight Nielsen-Olesen flux tube vanish for a su-
perconductor on the border between type | and type Il. In
other words, there are no “bonds” perpendicular to the field
lines of a straight flux tube of infinite extent. When the flux
tube is bent slightly, there are no perpendicular bonds to be
stretched or compressed, and the change in the energy is just
Velasy R) = y/Coulom Ry 4 NP(R) . (5.10 the string tension multi_plie_d by the change in length. That i;,
the curvature term, which in a sense represents the attraction
For smallR, or repulsion between neighboring parts of the string, should
vanish. A more formal argument can be made by regarding
4 aq the borderline superconductor as the long distance limit of a
VC'aSiR)—>VC°u'°mb(R)=—§E, (5.1 theory where the forces between vortices become weak.
R=0 Polyakov[21] has shown, using renormalization group meth-
ods, thatgB also vanishes in this limit.
Similar Heuristic arguments give a reason for the above
VNP(R) oR. (5.12 mentioned result that the Nambu-Goto action is a good ap-
Rosoo proximation for short, straight strings on the I-1l border. The
bending of the field lines as the quark-antiquark separation
Recent numerical studi¢&7] of the classical equations of becomes smaller causes no additional changes in the energy.
motion for a flat sheet have shown that for a superconductor We therefore take the action of the effective string theory
on the I-lIl border, the long distance behavi.12 of to be equal to the sum of the Maxwell acti@®9) and the
VNP(R) persists to small values &, even to values less than Nambu-Goto actior5.7):

whereD,,, is the photon propagator.

To calculate the Wilson looW[I'] from the effective
string theory(5.1), we must also examin&; at smaller
values ofR andRy, on the order of the string thickness
We first consider the dependenceSaf on R for a flat string,
where Ry—®. In this case, the curv€ is a rectangle of
length T in the time direction, and widtlR in the space
direction. In the largerl limit, the actionS.; reduces to the
product ofT and the potentia¥*®{R) previously used to fit
the energy levels of heavy quark systems.

Evaluation of Eq(5.8) for a flat sheet gives a correspond-
ing decomposition of/“{R),

while Eq. (5.7) gives the largeR behavior
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~ The four degrees of freedom it(¢) are replaced by two
_ cMaxwell 2 [
Ser X#] = SHe [F]—UJ d*%v=9. (519 phisical degrees of freedofit(g),f2(¢) and two reparam-

W Eq(5.17) for the full ¢ string lenathg and etrization degrees of freedof{¢).

e use Eq or the full range of string lengthR an : . ~ . :

radii of curvatureR,, greater than the inverse of the mags We can write t?e mtegzral oved‘Sg) in Eq. (6.1) in terms
of the dual gluon, which is the cutoff of the effective string Of integrals overf(¢), f5(¢), and&(¢),

theory(5.1).

. ~ L - 1 ox* gx” ox“ ax/”
Equation(5.17) for S x*] is the generalization of Eq. Dx*=Del €,,455 €°— DFLDF2DE.
(5.13 to a general sheet. The first ter8Y>¥ell T'] is just a KIE2 7 gg2 5gb ot o2
boundary term, independent of the fluctuating string, and we (6.5

take takeS.4= Sy for the calculations carried out in the rest
of this paper. In the next section we show how to carry outNoting that the derivative ok* with respect toé(¢) is

-
the integration ovex* in Eq. (E:.l).by separatmg the degrees e [aoxe aft ax“ 952 axh
of freedom of the world sheet* into two physical degrees | I ) , (6.6)
of freedom and two reparametrization degrees of freedom. gge | oft 9&® <9f2 ag*  9g? y:
This treatment makes no use of E§.17), and is applicable
to any effective string theory of vortices. we can write
- [ 1., X Xt Xy
VI. EFFECTIVE THEORY OF TRANSVERSE STRING Dx*=Det Gwaﬁ_e Dleszg
FLUCTUATIONS i 27 9z ggb ot (9,:2
We next show how to evaluate the integral ox&t¢) in - B
- 8X ax, ~
Eg. (5.1), =Def T,,\/—9°—> pe &fg DFIDI?DE,
~ ~ ; L =¢
W[ ]= f Dx#J|[x#]e'Sef, (6.2) (6.7
- where
The integration over*(¢£) is the product of an integral over
string world sheets and an integral over reparametrizations of - 1 P gx® gxB
the coordinates of the string. The Jacobiaris the inverse U =5 €ap 77— "2 T (6.8
g big wur— o Cuvap \/__g 9E8 &b

of the integration(4.10 over reparametrization degrees of
freedom. In this section, we fix the parametrization of the;

is the antisymmetric tensor normal to the world sheet and
string, and show thal; cancels the integration over reparam-

etrizations. IXE axH
Any surfacex” has only two physical degrees of freedom. g§b=—a —E (6.9
The other two degrees of freedom represent the invariance of 9&" 9¢

the surface under coordinate reparametrizations. We fix the
coordinate reparametrization symmetry by choosing a palJ
ticular “representation’x of the surface, which depends on the metricg,y, of X*(£),
two functionsfl(¢&),f2(&),

s the induced metric okf(&). The metricghy, is related to

J&° gE 6.1
X5(&)=x4111(8),1(é),£]. (6.2 Gan= 2 ;g0 9a- -

A particular example of a representatigfj is obtained by The induced metrig,, of the original world sheek*(¢)
expanding in transverse fluctuatloné about a fixed sheet §yes not appear in E¢6.7) because the determinant is inde-
XM pendent of. Only the induced metrig®,, of the world sheet

aruA = . 6.2 Xp(€) enters into the determinant.
=Xp[X[(£).£]= X () +XL(E)MA(). (6.3 With the parametrization(6.4) of x*, the path integral

6.1) takes the form
The vectorsn“ are orthogonal to the surfaoq‘,‘ In this 6.1

example,f! andf2 are the transverse coordinates. o
Any physical surface can be expressed in termggoby W[F]zf DnglszDer{ tHr— Del[ ﬁ ]J”e'seff
a suitable choice of! andf2. In particular, the world sheet aft
X*(&) appearing in the integrdb.1) can be written in terms 6.19
of a reparametrizatio§(¢) of the representatior?, The actionS is parametrization independent, so it is inde-
- ~ - pendent of(¢). The same is true fa) . FurthermoreTW is
X&) =xE{ (6], F2[E(6)],E(8)}. (6.4 parametrization independent, so that the product
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the pathI” fixed by the prescribed trajectory of the quarks,

~ OXb Ixp . :
DfIDf? De\{ t””—’i —’2’ (6.12  and the fluctuations of the string are cutoff at the momentum
af~ of scaleM of the inverse string radius. As explained in Sec. V,

o ~ ] ] we take the actios,; of the effective string theory to be the
is independent of(£). Therefore, this product, along with ~ Nambu-Goto action

ande'Seft, can be brought outside tffeintegral in Eq.(6.11).

The path integral then takes the form Ser= _‘Tf dzg\/—_, 7.1
I'l= | Df'Df2Det T+ X Pp iSeft and Eq.(6.14 becomes
W[T']= eft F? Jje q.(6.
IXE axy
~ = 1 2 Fuv 2P 77| o—iofd?e/=g
xj:DgDet[ Tgp]. 6.13 W[T] fo (&)Df (g)Det{t T alee .
(7.2

The remaining integral over reparametrizatignis equal . . i ur i
to Jﬂ’l, defined by Eq(4.10, and is canceled by the explicit we exp.and Eq(lZ) n sma!l fluctuationst Of XpL 1", ¢]
factor of Jj appearing in Eq(6.13. This means we do not around a fled sheet;(£), subject to the condition that the
need to evaluatd, and can avoid the complications inher- boundary ofx; lies on the curvd’,
ent in evaluating the integral over reparametrizations of the

string coordinates. The anomalies produced in string theory , . .= — (OXy 1. i ﬁzxff 3
by evaluating this integral are not present, so we do not havé(f;(f ’5)_X5(§)+f F . + Ef f afiafi| O(f),
a Polchinski-Strominger term in the theory. Equati6ril3 fl=0 fi=0 7.3

gives the final result for the Wilson loop
where ?g(g)sxg(f‘=o,§) is the position of the string

¥ v
W[F]zf DIDi2Dell T Vﬁﬁ_p eiSe (6,14  Wworldsheet wherf!=f?=0. Expandingy/—g to quadratic
K7 oft of2 order in smallf! and f2, we obtain
as an integration over two functioh'(£) and f2(¢), the . 1 OxE oxp
physical degrees of freedom of the string. W[F]=J Df'(¢)De Et’“’e” -
The path integra(6.14) is invariant under reparametriza- ot of fi=0

tions of the string, and describes a two-dimensional field

theory with two degrees of freedom, the two transverse os- ; f 20
S 4 ; ' . Xexp —i d -

cillations of a two-dimensional sheet. The integrat{6riL4) p[ 7 EV9

goes over the normal fluctuations of the string world sheet.

The components of! and f? along the sheet are nonphysi- OxXH 9 [ oxt )
cal. The determinant in Eq6.14) is a normalization factor X lJrge‘b—Z1 5 —'IJ f!
for f1 and f2. This can be seen by applying the identity IE 96"\ I 14y
t,,= €"Bn,an,g to the determinant 1 |
+=fiG I, (7.9
el T axty ax; 5 AB( axg)( &xg) 2 Y
eft,,— —|=Def €| na— || ng— ||
K fL of2 KA aEL | TR gp2 N
whereg,p, is
(6.15 ap L
The factors ofnﬂA(ﬂxﬁ/afi) determine the amount of the 5 :ﬂ% (7.5
fluctuationf' which is in a direction normal to the sheet. ap €2 9EP '

Equation(6.14) is the string representation of any field
theory containing classical vortex solutions. The expressiofthe metric of the fixed world shegg, and
(5.2) for Sg had been obtained previously by Gervais and
Sakita[ 10]; we are unaware of any previous derivation of the o, 1 ?\J—g
string representationi6.14 for the path integral. We now Gjj :\/:ﬁ
show how it provides a method for explicit calculations. —g g

(7.6

fi=0

We choosexy to be the surface which minimizes the ac-
_ _ _ _ _ tion. Thenxy satisfies the “classical equation of motion”

In this section we carry out the semiclassical expansion of
WI[T'] about a classical solution of the effective string theory, IXH
and find the leading contribution of string fluctuations to the Yy
effective action—i logWTI']. The ends of the string follow Jf

VIl. THE SEMICLASSICAL APPROXIMATION

(—V2)xt=0, (7.7
fi=0
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where the covariant Laplacian is

Xy :

X’; XI'L+f ? +O(f|2). (7.1

1 Jd_ ——d i_

_VZZ___agab _g_b (78) f 0 B
V-g 9 9€ The perturbation of the world sheet in the directioff* is
Using the fact that the covariant derivative of the metric is _ XM _

zero, we show in Appendix A that nﬁ(xg—xg)znﬁ—f’: fi+0O(f'2). (7.1

J )

fi=0

(3.X4)(—V2x4) =0. (7.9 ‘
p p A “ N . .
The factors ohM(axplaf.)h.zo in Eq. (7.12 project out the

The VeCtOl’S?X’g/ﬁfihi:O andé)a;/p‘ form a Comp|ete basis, so part of the fluctuationd' perpendicular to the world sheet

Eqgs.(7.7) and (7.9 imply x§; . Only normal fluctuations contribute W[ T'], since fluc-
. tuations along the world sheet are equivalent to a reparam-
—szgzo. (7.10 etrization of the sheet coordinates.
_ The effective action obtained from E(.15 is
Evaluating thef' integral in Eq.(7.4) gives
—i InW[T']=S;+ Sxe- (7.189
L &x" IXp . . . .
W[T]= e iofd?N— 9Det{ v€ ] The first term in Eq(7.18) is the Nambu-Goto action evalu-
2 &f' ofi -0 ated at the “classical” world sheet4(¢),
X Det Y4 G;;']. (7.12)

Su=-0o f d2¢\—g. (7.19

The semiclassical correctid®,,. due to the transverse string
fluctuations is

The inverse propagatds;; 1 (7.6) can be shown to be

14
Xp
ot

"
<9Xp

_W ,uA[ V25— ’CA ’CBab]an

fi=0

’

=0
(7.12)

where/C4, is the extrinsic curvature tensor of the sheet A To summarize, we have integrated out the string fluctuations,
derivation of Eq(7.12) is given in Appendix A of Ref[11].  @nd reduced the problem to the evaluation of the determinant
in Eq. (7.19. This is a quantum mechanical scattering prob-
lem in the background of the solution of the classical equa-
tion (7.10, with appropriate boundary conditions. In the next
section, we describe how to evaluate this determinant.

i L
Stuc=7TrIn[ = V255 = KpC®2]. (7.20

TheFMA’ are vectors normal to the world sheét. Equation
(7.12 gives

Det ¥ G;;1]=Det ¥ — V25,5~ K k22| Det

— IXG Xy
AB | P
X| <€ nMAn,,B —2_2

AND THE ROLE OF THE LU SCHER TERM
2 aft ofl

] VIIl. REGULARIZATION OF STRING INTEGRALS
=0

The argument of the logarithm in E(7.20) is the inverse
(7.13  propagator for fluctuations on the string. This inverse propa-
gator can also be obtained by direct variation of the Nambu-

From the identity(A15), Goto action with respect to any transverse coordinafes

t’U(V: EABn,u,AnVB' (7-14) (925 X e ——
V28,5 AR, 8.1)

we see that the first determinant in E@.11) and the second axax®
determinant in Eq(7.13 cancel. The determinant appearing
in Eq. (6.14 produces exactly the correct normalization for up to an overall normalization factor. In fact, the correction
the Green’s function. The functional integkal11) becomes (7.20 to the effective action has already been studied by
Lischer, Symanzik, and WeigzSW) [11] in the case of a
W[F]=e*“’fdzgvrgDetfl’z[—VzaAB— JCA B0 straight string with fixed ends. We describe their results,
(7.15  Which we will use in evaluating Eq7.20. LSW used Pauli-
Villars regularization to obtain a regulated for§.q of the
We note that Eq(7.15 is independent of the factors of trace in Eq.(7.20),
n (ax"/é’f "Y|fi—o Which appeared in the inverse propagator
(7 12. These factors are the projections of the fluctuatibns :_f dt 1+2 ee tMF | Tr e t(-V20a—KppP)
normal to the string world sheet. For smdill the world ©g ot !
sheetxt is (8.2

094013-8
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The M; are the masses of the regulators, and ¢heare _ ofi ofi
suitably chosen coefficients. The Laplacian in B2 has e'slzf Df,Df, ex —if d?¢\-gg*— —+.

b
been Wick rotated from Minkowski to Euclidean space. 9E" 0€ 88
The regulated quantit. is separated into a divergent (8.8
part Sy, and a finite parSpy, The transformation to conformal coordina&sgives
Steg= Saiv( M ,€j) + Spy . (8.3 _ . oft off
e'Si= | Df,Df,ex —|J d*¢ P —— —,
LSW evaluated the divergent pa;(M; ,€;), and obtained 9" 9¢
terms which are quadratically, linearly, and logarithmically (8.9

divergent in the cutoffs\(;. The quadratic term is a renor- \ynich is of the form 0fS,eq treated by LSW.

malization of the string tension, the linear term is a renor-  \ye will needs, in the limit of largeT, and hence are only
malization of the quark masses, and the logarithmically dijnerested in strings whose metric is time independent. To

vergent term is proportional to the integral over all space ofjetermine which metrics are time independent, we must

the scalar curvatur® of the string world sheet. choose a coordinate system. We choose coordinaaeslt,
LSW also obtained a formal expression for the finite partheret is the time in the lab frame, arrdis orthogonal ta
Spy. They evaluated this expression only for the case of %g,,=0). This guarantees thatis the physical time. From

straigh'F string of lengtiR Wit.h fixed gnds, and calculated a now on we consider only metrigs,, which are independent
correctionVischertO the static potential of t.

In Appendix C, we show that
a

R (8.9

Viischem™ — liM = Spy=—

T S1= Sy givt S finites (8.10

T—oo
where S, 4, contains quark mass and string tension renor-

We are interested in calculatirfgy,; for rotating quarks, malizations. The finite part o8, is

so we must evaluat&,y for a more general surface. We
break Eq.(7.20 into two parts

o
_ 5 —r —Bab Sl,flmte_ T 12Rp ’ (8-11)
. oy —=V4a5— KapK
Seg=1 Trin[—=V=]+ ETrIn “v? . where
(8.5 —
R :JRZ dr gy (1) (8.12
We will evaluate the first term in E48.5) by generalizing P ) R, V _at(r)' )
the calculation of LSW. We will calculate the second term
directly. The results(8.11) and (8.12 are valid for any orthogonal
The first term in Eq(8.9), coordinate system with a time independent metric.
. We show in Appendix C thaR,, is equal to the classical
S;=iTrin[—V?], (8.60  energy of the string divided by the string tensienWe call

R, the “proper length” of the string. For a flat metric, where

involves the Laplacian in the curved background of the clasgr: —gu=1, the proper lengtiR, of the string reduces to

. . . r
S|Ca|' SO!UtIOﬂXﬁ . In tge flat case studied by LSW, the La- the distancdr between its end points_
placian is equal to- g,

IX. CORRECTION TO THE EFFECTIVE ACTION

e 7P @7 FOR A CURVED SHEET
T2 g2 ' . . -
o= ar In the previous section, we evaluated the finite pargpf
for a sheet with a time independent metric using the results

coordinate which takes the valuesR; andR; at the two (g 5),

ends of the string. The length of the stringRs- R; + R,.

To calculateS; we extend the calculation of LSW to more T — V2855~ Kh KB2P

general coordinate systems. We make a coordinate transfor- S,=i=Trin (9.9
. , . 2 . v
mation é— ¢’ to conformal coordinates, where the trans-
ical, = ¢ =di — i -

forrped m?mt%ga'i 77|abe. » ab (:|ag( 11|) Tthlfhtraf?s:[forh [The trace in Eq(9.1) is over functions of andt.
mation puts Ine Laplacian in a torm simiiar to the flat SNeet —yq first make the coordinate transformation x,
Laplacian(8.7), and allows us to evaluate E(B.6) by ex-
tending the calculation of LSW. _ dx 9 (n)

To see how this works, we expresS! as a functional _ O ( X|,—o=0. 9.2

integral dr —at(r)'

094013-9
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The coordinatex runs from—X; to X,, 1
L= lim $(Sl,finite+ S)

T—oo

0 [ 9re (1)
X,= d —,
' f_Rl r —gu(r) w1

“1R. T2

& -
Tr \/_ _axz Opg— NV — g’C{.:b’CBab
p

C(Re, [ 9n(D) [ »
X2— fo dr _at(r), (93) —Tr _E5A3>- (97)

In the next section, we will evaluateg,. for a string of
length R rotating with angular velocity.

In Appendix D, we show that, for a general she®y,is
6Togarithmically divergent. We show that its divergent part is
given by

andX;+X,;=R;. In Appendix C, we show that the metric in

the system X,t) is conformal @yx=— 0 ,0x=0). In this
coordinate system, the inverse propagator for string fluctu
tions is

MRp/ﬂ'

? 9 _ T 1 (% —
(___) 5AB_K:2bICBab' SZ,diV_Z ngl ﬁf_xldX\/_gR’ (98)

_V25AB_’C§b’CBab:— 5 5
atc  Ix

«Q

(9.4  whereR is the scalar curvature,

The string has infinite extent in time, and the curvature Rz(Kﬁa)z—(ICQb)z. ©.9
KaK®?° is independent of, so we can take the Fourier This result agrees, in the large time limit, with the logarith-
transform with respect to the time coordinate. We express thaically divergent term in the cutoff dependent part of the
trace in(9.1) over functions oft andr as an integral over a effective string actio(C10) found by LSW.

frequencyr and a trace over functions of a single variakle

X. EFFECTIVE LAGRANGIAN FOR ROTATING STRING

boundaryl” generated by a quark-antiquark pair separated at
5 . fixed distance®k; andR, from the origin, and rotating with
b2 ‘7_ angular velocityw. This Lagrangian has two parts, the clas-
NG sical string Lagrangian and the contributi@®7) of string
fluctuations.
(9.5 We evaluate the classical string Lagrangian first. The so-
lution to the classical equations of motion.10 yields the

In going from Eqgs.(9.1) to (9.5), we have also carried out classical, straight rotating string
the Wick rotationv— —iv. The integration ovep gives _ . . .
xXH(r,t)=tey+r cogwt)eflr sinwt)ey.  (10.1)

T 5? S — The coordinate is chosen so that the velocity of the string is
Try \/_ P Sap— V —gKa,L0

9 = =} We now evaluate the effective Lagrangian of a string with
( —> O\ QL grang :

_wa dv_l_ |
S2=5 g

5225 zero wherr =0. The coordinate runs from—R; to R, and
t runs from —o to «. The vectorse and e} are two or-

92 thogonal unit vectors in the plane of rotation, aﬁ{]‘ds a unit

—Try\ -~ ﬁ&\B (98 yector in the time direction. The classical Lagrangigii™

obtained from Eq(7.19 is

Equation(9.6) expresses, as the trace of the difference of i 1 ) =
two operators. The first has the form of a Hamiltonian for a Legi"%=— lim $Uf d?év—g

S T—oe
relativistic particle in the local potential—glCQbICBab. The
second operator has the form of a free Hamiltonian. The . Ra —
square roots enter because we are working with relativistic - _Uf_ Rldr 1-rw
degrees of freedom.

The termsS,; and S, are proportional to the tim&, but > R [arcsifwR))
are otherwise time independent. We define the “effective :—O'E = —I+\/1—R?w2 .
ian’”’ i £ : i i=1 2 wRi
Lagrangian” of the string to be the effective action divided (10.2

by the timeT. The sum of Eqs(8.11) and (9.6) gives the
effective Lagrangiaih ;. determining the contribution of the Next, we calculate the contributidry,. (9.7) due to string
string fluctuations toV[T'], fluctuations. The metric of the she@0.]) is

094013-10
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gu=—1+r%0? g,=1, g.=0. (10.3
This metric is independent df andan=0. We make the
transformation9.2) from coordinates andt to coordinatex

andt, and find

1
X= —arcsinwr. (10.9
w
The coordinatex runs from—X; to X,, where
arcsin wR;
Xi:#, (10.5
w
and the proper lengtR,, of the string is
arcsinwR;)
Rp=Xp+Xp=2> ————. (10.6

Using this coordinate system , we evalubtg. in Appen-
dix E for the case of equal quark massRs=R,=R/2:

L v T 2v
flue™ aresiv 12R - 7R

MR

X |y
2(y*—1)

vyln

where

: (10.8

and the functiorf (v) is

s2+ 2s coth(2sv y arcsinv) + 1
(s+1)? '

f(v)=f:dsln

(10.9
Equation(10.7 becomes the Lscher term in the zero veloc-
ity limit.
We are interested in the larde limit, where the quark
velocity is close to the speed of light. Ferclose to one, Eq.

(10.7) becomes
MR
In(—) +1
2 2

Y

2
wRy

+7+O
6R

L= — YR

Iny).

(10.10

PHYSICAL REVIEW B3 094013

The semiclassical expansion is valid, since, as we will Bee,
grows asy? in thev—1 limit. In this case, the long distance
limit where the effective theory is applicable is automatically
the region of weak coupling.

Xl. REGGE TRAJECTORIES

We calculate classical Regge trajectories for equal mass

quarks by adding a quark mass term to the string Lagrangian
Lgtlnng,

Lg=LM9—2m1— 0?2

R
=—0—=

2

arcsin

+ ‘yl) —-2my . (112

We have used Eq10.2 with R;=R,=R/2. The quark ve-
locity is v = wR/2, andy=1/\/1—v? is the quark boost fac-
tor. The Lagrangiarill.]) is a function ofR and w,

Lc|=LC|(R,w). (113
The angular momentum of the meson is obtained by varying
the Lagrangian with respect to the angular velocity

J_&Lc,_ R? [ arcsinu

- -1
o " +mRvy™*. (11.3

_,y—l

v

The meson energy is given by the Hamiltonian

L arcsinv
E=w ™ —Lg=0R +2my. (11.9
The classical equation of motion

o =0 11

R (11.9
for the quarks determing? as a function ofw,
R

o'§=m(72—1). (11.6

Equation(11.6 shows thaR is proportional toy? for large
v. Expanding Eqs(11.3) and (11.4 in the largeR limit,
where the quark velocity goes to one, yields the result

I _ 18 s
£2 2n0\ 1327 PO

(11.9

The first term in Eq(11.7) is the classical formula for the
slope of a Regge trajectory. The second term is the leading

Furthermore, for the semiclassical expansion to be validgorrection for nonzero classical quark mass, where'

the theory must be weakly coupled. Thatlig,. must be less
thanL$"™ (10.2. For largeR,

1
oRy 2+ ~oRy 3+ 0(y “oR).

. T w
Lstrlng: - —gR— — 5
(10.11)

¢! 4 8

=\1-v?%#0.

We now calculate the correction to the energy obtained by
consideringLq,. @ small perturbation to the classical La-
grangianL. . The Lagrangian

L(w)=Le(@)+ L), (11.8
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depends on only one degree of freedom, the rotation ahgle
through its time derivativewo= 6. To first order inLg,., the

correction to the energy is minus the correction to the La-

grangian[22]
E(J)=[Eci(®)— Ll @) 1] o= w3y »

where w is given as a function ofl through the classical
relation(11.3.

The correction(11.9 to the energy of the meson gives a
correction to the slopéll.7) of a Regge trajectory

(11.9

J

J JE
E2 B

(11.10

Using Eq.(11.7) for J/EZ and Eq.(10.10 for Ly, we
obtain

1 2 +1
- nf —
E2 270  7%0RE 22
4 7 1
_ -3 -5
320 +6mRE+O(7 ’REy)'

(11.19)

We write R and y as functions ofE using the definition
(11.4 of E and the classical equation of moti¢hl.6). Be-
causeR and y only appear in the small correction terms in
the result(11.11, we only need their leading order depen-
dence orE,

2E | E 111
—E, Y= % (11.12
Substituting Eq(11.12 in Eq. (11.1) gives
_E? E | (Mm 1
270 3m : o
4 —m3E+ ! +O(E~ 12 11.1
3N 7 12 ( ). (11.13

The leading term is the classical Regge formula. The ne
term is the leading correction due to string fluctuations. Th

PHYSICAL REVIEW D63 094013

7 classical formula
2 —_ - m = 30 MeV
s —_ — m = 100 MeV
* - —_- m = 300 MeV

8 10

FIG. 3. J versusE?.

We have chosen a range of values for the quark masses in
Fig. 3 in order to give a qualitative picture of the dependence
of the Regge trajectory on the quark mass. Since(Ef13
does not include the contribution of quark fluctuations to the
Regge trajectory, this formula is incomplete. We are now in
the process of including the quark degrees of freedom in the

functional integral(6.14). The boundant of the sheetx*
becomes dynamical, and couples to the string fluctuations. It
is clear that a calculation of the contribution of these degrees
of freedom is essential to understanding why the classical
formula for Regge trajectories works so well.

Xll. SUMMARY AND CONCLUSIONS

The primary results of the paper are Ed6.14 and
(11.13. We have expressed the path integhll' | (3.5 of a
renormalizable quantum field theory having classical vortex
solutions as the path integral formulation of an effective
string theory of vortice$6.14). This theory describes the two
transverse fluctuations of the vortex at scales larger than the
inverse mass of the lightest particle in the field theory. Our
method is applicable to any field theory containing vortex
solutions.

Using the string representation 3ff '], we carried out a
semiclassical expansion of the effective actionlogWI']
about a classical solution of the effective string theory. We
calculated the contribution of these string fluctuations explic-
itly for the case where the world linE is generated by the

Xfrajectory of a quark-antiquark pair separated by a distance
&R We are now calculating the contribution to the effective

third term is a nonzero quark mass correction. The fourtl'é'ction —ilogWMT] due to the quantum fluctuations of the

term is another correction due to string fluctuations.
Equation(11.13 gives a meson Regge trajectal{E?).
We used valueg a,=0.25 ando= (455 MeV)? obtained
from the Cornell fits of heavy quark potentidl8]. This
gives M=g¢o=30/4as=910 MeV. The only other pa-
rameter is the quark mass In Fig. 3, we plotJ versus the
square of the energil 1.9 for quark masses of 30, 100, and

boundary.
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300 MeV. For comparison, we also plot the classical formula

J=E?/27o. The pointd23] plotted on the graph are the,
AZ p3 A% p° andA® mesons. The crosses are th f?,

APPENDIX A: NOTATION AND THE CURVATURE
OF THE VORTEX

w?, 4, and f®. We have added one to the value of the an-

gular momentuny in Fig. 3 to account for the contribution
of the spin of the quarks.

We describe the string world sheet by the functiei(¢)
of the coordinates. The physics of the vortex should be
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independent of the coordinate system we choose, so we re- Vat”“znﬁlcg\b (A10)
quire the theory to be invariant under a reparametrization of

the coordinates— &(£). The tangent vectors to the vortex for some tensoiCQb. The tensoﬂCQb is called the extrinsic
world sheet are defined by taking derivatives}ﬁ(g), curvature tensor of the string world sheet. With the definition
(A10), the curvature tensd€?, is

tH(E) =X (£), (A1)

whered, = d/ &2 is a partial derivative with respect to one of
the vortex coordinates. The induced metric on the worldit is symmetric in the indicea andb due to the relationship
sheetx*(¢) is (A8) between derivatives of tangent vectors.
The extrinsic curvature of the string world sheet can also
Jab=151,p - (A2)  be described using derivatives of the normal vectors. The

) ) ) orthogonality of thet,,, and theny implies
It is also convenient to define the square root of the determi-

K Qp=n0V ot = ddpx". (A11)

nant of the metric tpdanf = —KA,. (A12)
- b cd oo .
V=g= V- } €e*g, goa (A3)  Therefore, the derivatives of the normal vectors can be writ-
ten as
We use the’ to define an antisymmetric tensor which de-
scribes the orientation of the string world sheet dank=—trPICA +nEARE, (A13)
b
trr= e £ty (A4) The tensorA4® is called the torsion, and it describes the
NEe atb: twisting of the basis of normal vectors as we move along the

_ . _ _ _ world sheet. The torsion depends on our choice oftheso
This quantity was defined by Polyak¢®1]. It is the projec-  we will choose them so that the torsion is zero. This is done

tion of the antisymmetric tensa®® into the space of four- by requiring that theni satisfy the differential equation
dimensional tensors. This tensor defines the orientation of

the two-dimensional vortex world sheet in four space. The AanE=nZX(Vat,p) 0. (A14)
quantity (A4) is also independent of the coordinate param-
etrization of the world sheet“(¢). Equation(A14) is equivalent to the statememtp°=0. It is

We now describe the curvature of the vortex world sheetconsistent with the condition@\9) which define the normal
We do this by taking covariant derivatives of the tangentvectors. As long as the normal vectors have an orthonormal

vectors. The covariant derivative tf is basis at one point, EqA14) guarantees they will be ortho-
normal in a neighborhood of that point. Therefore, it is al-
Vipts=dpty —Tanté (A5)  ways possible to find a local, orthonormal, torsion free basis
for the normal vectors.
where thel';, are Christoffel symbols There is one additional property of the normal vectors we
¢ 1 cd will use. The antisymmetric combination of the normal vec-
ab=2 9" (daObdt n0ad— ddJab) - (AB)  tors is(with proper orderingequal to the dual of the world

. I sheet orientation tensof” (A4)
The covariant derivatives of the tangent vectors are orthogo-

nal to the world sheet, APty =Tuv, (A15)
teVath=t,c(dath —TIth) =0. (A7)
where

This identity is derived using the definitiofA6) of the _
Christoffel symbols, the definitioitA2) of the metric, and thr=1 e’”"‘ﬁtaﬁ. (Al6)
the relationship between derivatives of differétit

The relationshigA15) can be understood by noting that any

Datl=apth= &aab;(u_ (A8) antisymmetric tensor is of the form

The covariant derivatives of the tangent vectors are nor- A**(£€)=T(&)t*"+N(€)e*Bning+MA3(nkt2—nits).
mal to the string world sheet. We therefore define a basis of 17
normal vectorqy , which satisfy the conditions (AL7)

The tensort“” is orthogonal to the’ , so it must be propor-

N athé=0, N, ANE=Jap- A9 . . .
nATa nATB T TAB A9 ional to e"Bniny . Squaring both of these tensors gives

The niy are an orthonormal basis for the vectors normal to - AB o2
the world sheet. EquatiofA7) implies that (t#")°=(€™"njng)“=2. (A18)
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Thereforet** and €"Bnin} are equal up to an overall sign, dx Orr

which is fixed by choosing an appropriate ordering for the dar gy X[y =0=0. (C3)
normal vectors.

The coordinate runs from—X; to X,
APPENDIX B: DISCUSSION OF J,;

The Jacobian), (5.5 is a Faddeev-Popov determinant, X — 0 d [ Qi
because fixing the position of the string in the field integrals 1~ Ry r

is analogous to fixing a gauge in a gauge theory. In the string
action, we fix the degrees of freedom which generate the R g
7 2
transformation X,= f dr " (C4)

XE(E)—XM()+ XP(E)N,a(8) (B1)

which displaces the vortex. _
The Jacobian, is analogous to the Faddeev-Popov de-

terminant in a gauge theory. In a gauge theory, wheresthe R

function fixes the symmetry generated by the transformation R.= f 2 dr ﬁ (C5)

— O

In these coordinates, the length of the stringXs+ X,
R, the proper length of the string

-1 -1
A,—UA, U 1+Ug,U"Y, (B2)

the Faddeev-Popov determinant appears as a normalizatiéfh thé coordinate systenx(t), the metric is conformal

for the § function[24]

dx\ ~?
s Oxx= a Orr =~ 0Ott»
Zgauge:f DA*S[F(A*)JAgpe™>, (B3)
dx| 1t
where gxt:(a) 9:=0, (Co)
A;pl=fDU5[F(A“)]- (B4)
and

The Wilson loop(B3) is analogous to our Ed5.2) for the SF\2 [ gfi2
effective action. The determinadi; is analogous td, . ISl_j Dflpfzexp[fdtf ( ) +(_) }
In the gauge theory, the Faddeev-Popov method is used to 2

remove nonphysical degrees of freedom from the problem.
The 6 function is inserted in the path integral part to fix the (C7)
fields in some particular gauge. This creates an integral ovef,
all gauges which appears as a normalization factor, and is
removed. Thes function in Eq.(5.2), on the other hand, of S, in Sec. IX. We Fourier transform in both space and
fixes the position of the vortex sheet, which is a physical’[Ime introducing variables andk, = /Ry . This transfor-

' mation puts the action in EC7) in a diagonal form. Doing

degree of freedom. the f; andf, integrations gives

2
mn
RP

where we have Wick rotated— —iv to avoid the poles at
in the effective action for a general string world sheet. Wey=+ 7n/R,.
work in coordinates andt, such that is the time in the lab The lengthR, is just the classical string enerdy, di-
frame, and is orthogonal td (g,,=0). In these coordinates, vided by the strmg tensiom, sincek, is
the functional integra(8.8) for 'St takes the form

1 d
. R _ 2
e'Slszfll)fzexp[—iJ'dtf ’ drv—gu9e Ec|——0ffd §ﬁ\/—g
f' 2+ . [)‘fi 2 - g
JR— rr
5'[ 9 or ' (€2 =0 f f

We consider the case where the metric is independent of
and we make the coordinate transformatienx defined by =oR,. (C9

e evaluate Eq.C7) in a manner analogous to our treatment

APPENDIX C: EVALUATION OF  S;
, (C8)

We want to evaluate the term S = VE;] In

S;=iTrin[—V?], (C1

X gtt
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The quantityR,=E, /o is the length of the string measured Equation(C12) tells us how to regulats;. ReplacingR by
in local comoving coordinates, which are at rest with respecR;, in Eq. (C12) gives the regulated form @,:

to the string. This is different from the string lend#&in the
laboratory frame.

. . : 1 1 T
We will lateS th Its of LSW. Th It _jim=s =— 2 -
e will regulateS, using the results o eir resu |,m_|_51_2 sz €M In/\/lj+2 €M, IR,
for Siqgis the following: T T ] p
(C13

d-2 d-2
Seq=— 7 A2 MIINMF=——L(O)2 M,
) J The first term in Eq(C13) is still a string tension renor-
d—2 1 malization, since both the string tension contribution to the
5 EJ’ dng—_gR)Z €] InMJ—2+ Spv, energy(C9) and the first term in Eq(C13 are proportional
] to R,. The second term in E4C13) is, as before, a renor-
(C10  malization of the quark mass. The finite part of the contribu-
tion of S; to the action is

J’_

whered is the number of dimensions,(C) is the area of the
string world sheetl (C) is the length of its boundary, arfd
is the scalar curvature of the sheet. Th¢; are regulator Syl T ™ (C14)
masses, and the; are appropriate coefficients. The final Hifinte part™ T 19R,,
term, Spy, is finite in the limit where theM;— .

LSW evaluate the finite terr8py, only for a straight string . , ,
of lengthR with fixed ends. In this case, the area of the sheefl NS IS the result stated in Sec. VIII. The res(14) is the
A(C)=RT, the length of the boundark(C)=2T, and the Luscher term, with the distand® between the quarks re-
curvature of the sheet is zero. They then obtained the explich!2ced by the proper leng®, of the string. Our resultis Eq.

contribution to the heavy quark potential, (C5), the derivation ofR; .

— lim 1Sr :iRZ eMZIN M2+ e M;— T APPENDIX D: CUTOFF DEPENDENCE OF S
T, T 2 g T Iha ST 1R ' 2
(C11) In this appendix, we show that the divergent parSgfor

a general sheet is proportional to the integral of the scalar
The first term in Eq(C11) renormalizes the string tension. curvatureR. This agrees with the logarithmic divergence
The second .r.enormalizes the quark mass. The third is th@c10) derived by LSW by other means. To obtain the diver-
well known Lischer term in the heavy quark potential. gent part ofS,, we carry out a Fourier transform with respect
Since the extrinsic curvature vanishes for a flat sheet, wey the variablex. For functions defined on the intervalX,
can identify the resutC11) with our expressioriC8) for S;,  <x<X,, the & function can be expressed as a sum of sines
with R, replaced byR:

1
—|Im?; In

T—oo

2+

n) 2 2 =
E) } 5(X—X')=R— sin K, (x+Xq)]siMk,(x"+X4)],
p n=1
(D1)

1 T
= ERE GMZINMZ+Y &M~ Tp-
! ! wherek,= wn/R%. The Fourier transform of an operator of
(C12  the form—9?/9x?>+U(x) can then be written

2 2 (% 9 )
Kl — —+UX) |k, =—f dxsiMkp(x+X) ]| — —=+U(X) | sink,(x+X;)]
< (9X2 > Rp _Xl (9X2
2 (%
=k§6nym+ R dxsin Ky, (x+Xq)]sin k,(x+X41)JU(X). (D2)
pJ =Xy

Using the formulaD2) to evaluate Eq(9.6) gives

2 (X2 ) ) =
\/kﬁb‘n,m‘sAB_ R« dx sin Ko(X+ X 1) ISin Kn(X+X1) 1V = 9K a2 —Kn 81 mOas| - (D3)
p 1

T
S,= ETrn
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The trace is over indiced,B which run from 1 to 2, and with this choice for then/ , KL, is zero, because thég‘
|ndlcesn m which run from 1 toee. The trace is cutoff at Component ofx* is zero. The 0n|y nonzero Component of
kn=M, the mass of the vector particle in the original field jc4 xBab ig
theory

We expand Eq(D3) for large k,, and obtain the cutoff /—E(Kgb)2= w2 seCwx.

dependent part 05, E9

Now that we know what?, is, we can evaluate Eq.

S,=— I zp: 1 f dx [ (IC )2+ finite. (E2). Inserting Eq.(E5) into Eq.(E1) gives
4 =1 RpkaJ-x, b
(D4) T 7 5 7
S=5|Tr\/ — — t20°seCox—Tr\/ - —|.
p— _ 2 ax X
The term (C},)“ is equal to minus the scalar curvatuRe (E6)
R:(;E/;a)Z_(EQb)Z, (D5)  The traces in Eq(E6) are defined as sums over the eigen-

values of the given operators. Replacing the traces with ex-

since the equation of motiofi7.10 implies Eg‘a:o. The plicit sums gives

cutoff dependent part d, is therefore

T Ro! n
MR I S$=3 2 ( R ) (E7)
T Xy n= P
:Z f dxy— R+f|n|te (D6)
=1 7h where
Equation(D6) agrees with the result of LSW for the leading arcsiny
semiclassical logarithmic divergence. Rp=— (E8)
APPENDIX E: EVALUATION OF S, The eigenvalues\,, are determined by the eigenfunction
equation

We want to evaluaté&,,
&2
— — +2w?seCwx | n(X)=Nnhn(%), (E9)

T 3 =
Sz=z(“\/ = 2 OneT VORGP e

with the boundary conditiong,,(+R,/2)=0. The difference

N A ) ED between the traces in EQGE6) is logarithmically dependent
gx2 N8 on the cutoffA (the mass of the dual glupn

Equation(E9) has the form of the Schdinger equation,

. . 2 . . - .
for the fluctuations about a straight string of lengtiotating ~ With the potential 2 secoX. T his potential is an analytic
continuation of the potential@® secRwx, whose eigenfunc-

with angular velocityw. To evaluate this, we must determine i b dt h tic functi
the value of the extrinsic curvaturé’,. The definition of ['S%S Ja.n te;]_expresl,tse ?_rrgstho _ype;geotr_ne fic functions
the extrinsic curvature is . Using this result, we find the eigenfunctions

¢n(X)

Y\, cog VA X) + @ tanw x sin(yAx)  for n odd,
| N, sin(VAX) — w tanw x cog YA x)  for n even.

K A= Ny dadpXt. (E2)

The stringx* is

~ 1 . . (E10
H(x,t) =&+ — sin wX)[COS wt) &+ sin wt) &].
w E3 The eigenvalues ,, are
R (mn+2a,)v)\?
Thee* are a basis of orthonormal unit vectors in Minkowski M= Rarcsino | (E1D)
space. Theny are a basis for the vectors normalx6. We
choose the basis wherea,, satisfies the transcendental equation
bu—g T

M d;' En+ an

- . A . — = cota,, (E12
n4 =tan wx) el + sec wx)[ — sin(wt) &+ cog wt)&5]. (E4) arcsin 1—v?
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and 0<a,</2. There is non=0 eigenvalue, despite the The contour of the integralE15 lies along the imaginary
fact thatag=arcsinv satisfies Eq(E12), because the corre- axis, and on a semicircle &|=A with the real part ofz

sponding eigenvaluk,= w? makesy, zero everywhere. positive.
We will carry out the suM(E7), To write S, as the contour integrdE15), we need to find
AR,/ the functionsF, (z) andFg (z). The functionFg (2) is
p'm \/_ mn P p
SZ_E ngl A= R_p ) (E13 FRp(Z) =sin(Ry2), (E16)

by converting it to a contour integral. We will find a function which is zero f0rZ=.i mn/R,. We find F,(z) by recalling
F,(z) which has zeros whenevar=+\/\,. We will find  that the eigenfunction$E10) vanish atx=+R/2. There-

another function FRp(z) which has zeros whenever  fore,
=+ mn/R,. We will then define a functioffr;,(2), R, R, (R,
Fodd(z)=zcos<7z +wtar<7w>sm(7z),
(E19 (E17

has zeros at=+/\,, for n odd, and

dinF,(z) dInFg(2)
dz dz '

I:int( 7)=

The functionF;(z) has poles of residue 1 wher= +\,,

and poles of residue-1 whenz==mn/R,. We then re- (Rp Ry Rp
write the sum(E13) as a contour integral, Feved 2)=zsin 57 —owta > @|COS| 5"z,
T (E18
Szsz dzzFn(2). E19  pas zeros ar= J\, for n even. Thus,

F odd( Z) F ever( Z)

Fa(2)= 2

’—w

20 Rp 2 Rp |
1 Z°Sin(Ry2) — 2w ztan —-w | cogRyz) — tar? - ©|sin(Ry;2)

= E 22 > . (Elg)
—w

The factor ¢°— w?)~* removes nonphysical zeros which appear bec&ysg(+ »)=0. These zeros correspond to the
=0 “eigenfunction” which is zero everywhere for,= w?2. The functionF,(z) is

R R
7?—2w Ztar(?pw) cot(R,z) — w? tar? ?pw)
Fin(2)= d—zln > . (E20

Z"—w

Inserting Eq.(E20 in Eq. (E15 and integrating by parts gives

R
’—2w ztar<7pw)col(sz)— w? tar?

%,
T 2

S,=— m dzin

. (E2))
—w

Now, instead of having poles at= |\, andz= mn/R,, the integrand has branch points at these points. The branch cuts run
from \, to mn/R, for all n along the real axis. There is one branch cut for each valure 8ince the contour either includes
both \A,, and mn/R, or excludes both these points, none of these branch cuts cross the contour of integration. There are no
branch points at= *+ w, since both the numerator and denominator vanish there. None of the branch cuts crosses the contour,
so the contour is still closed, and the integration by parts does not produce a boundary term.

The contour of the integralE21) lies on the imaginary axis and a semicircle passing through positive real infinity. We
rewrite Eq.(E21) as two integrals over the different pieces of the contour. For large values of the ayttifé actionS, is
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R
y2+ 2wy tar( 7p w) coth( Ryy) + ? tarf

PHYSICAL REVIEW D63 094013

%,
2

T rA
Szz—ﬂf_Adyln

1 2
_T_

i
yp _led OA€

A

o R
—2—e“"tar<7pw

y2+w2

cotR,A€') +O(A72)|. (E22

For largeA, cot(RpAei“’) is proportional to the sign of, so the# integral vanishes. Thg integral is symmetric undey

— —Yy. Changing variables te=(y/ w)cot(wRy/2) gives

f (Alw)cot(@Ry/2)
0

The numerator in EqE23) is approximately §+1)? for

s|+1

2 Rp
s+ 2scot Rpwta ?w

X,
2

(E23
s?+cof

The cutoff A used in Eq.(E24) is the cutoff in thex

large values ofs. We use this fact to extract the divergent coordinate. We must expredsin terms of the cutofiM for

part of Eq.(E23), getting

T 2v | AR N T Tvz'yf
Sz—— _R vylin 2v2'y 07—5 - ﬁ (U)
(E29)
We have replace®, with its definition
2
R,=—arcsin. (E25
w

y=(1—v?)"Y2is the quark boost factor. The functidiv)
contains the rest of the integral

s+ 2s coth(2sv y arcsinv) + 1

f(v)Ef;dsIn

(s+1)?
(E26)
Forv—1, the asymptotic value df(v) is
f(v) - (E27)
v)=—.
672

ther coordinate, which measures physical distance. The cut-

offs A andM are related by the equatiohéx=M ér, or

dr
A=M-—=My L

dx (E28)

Inserting Eq.(E28) into Eq.(E24) gives

2

T vy
—Tﬁf(v)

20 |( MR )+
vylnl ——|+tvy— %
2(y*-1) 2
(E29

%R

Using the classical equation of moti¢hl.6 then gives

Mm

2v |
vy T

%2R

toy— 5
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