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Effective string theory of vortices and Regge trajectories

M. Baker and R. Steinke
Department of Physics, University of Washington, Seattle, Washington 98195-1560

~Received 9 June 2000; published 4 April 2001!

Starting from a field theory containing classical vortex solutions, we obtain an effective string theory of
these vortices as a path integral over the two transverse degrees of freedom of the string. We carry out a
semiclassical expansion of this effective theory, and use it to obtain corrections to Regge trajectories due to
string fluctuations.
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I. INTRODUCTION

The goal of this paper is to derive an effective stri
theory of vortices beginning with a field theory containin
classical vortex solutions. The Abelian Higgs model is
example of such a theory. Nielsen and Olesen@1# showed
that this model has classical magnetic vortex solutio
These vortices are tubes of magnetic flux with constant
ergy per unit length.

The motivation for this work came from the dual supe
conductor picture of confinement@2–4#. In this picture, a
dual Meissner effect confines electric color flux (Z3 flux! to
narrow tubes connecting quark-antiquark pairs. Calculati
with explicit models of this type@5# have been compare
both with experimental data and with Monte Carlo simu
tions of QCD @6#. To a good approximation, aside from
color factor, the dual Abelian Higgs model, coupling du
potentials to a scalar Higgs field carrying magnetic char
can be used to describe the results of these calculati
However, these calculations neglect the effect of fluctuati

in the shape of the flux tube on theqq̄ interactions. We show
in this paper that taking account of those fluctuations lead
an effective string theory of long distance QCD.

Well before the introduction of the idea of dual superco
ductivity, string models@7# had been used to understand t
origin of Regge trajectories, and they have continued to
used to describe other features of hadron physics, such a
spectrum of hybrid mesons. In the dual superconductor
ture, a string arises because the dual potentials couple
quark-antiquark pair via a Dirac string whose ends ar
source and sink of electric color flux. The effect of the stri
is to create a flux tube~or Abrikosov-Nielsen-Olesen vorte
@8,1#! connecting the quark-antiquark pair. As the p
moves, this flux tube sweeps out a space time surface
which the dual Higgs field must vanish. This condition d
termines the location of the QCD string in the dual sup
conductor picture.

The effort to obtain an effective string theory fo
Abrikosov-Nielsen-Olesen~ANO! vortices has a long his
tory, independent of any connection to QCD. Nambu@2#
attached quarks to the ends of superconducting vortices,
found an expression for the classical action of the resul
ANO vortex in the singular London limit of infinite Higgs
boson mass. He introduced a cutoff to render this ac
finite, and showed that it was proportional to the area of
0556-2821/2001/63~9!/094013~19!/$20.00 63 0940
n

s.
n-

s

-

l
e,
s.
s

to

-

e
the
c-

a
a

r
on
-
-

nd
g

n
e

world sheet~the Nambu-Goto action!.
Förster @9# took into consideration the curvature of th

world sheet. He showed that in the strong coupling lim
with the ratio of vector and scalar masses held fixed,
effects of curvature were unimportant, and the classical
tion for the vortex reduced to the Nambu-Goto action. T
limit can be regarded as the long distance limit, since o
zero mass excitations are left in the theory. Equivalen
since the flux tube radius vanishes in this limit, all physic
distances, measured in units of the flux tube radius, are
coming large. All degrees of freedom except the transve
oscillations of the vortex are frozen out.

Gervais and Sakita@10# first considered the quantum
theory of the vortices of the Abelian Higgs model in th
same long distance limit. They used the results of Fo¨rster to
define collective coordinates for the vortices, by means
which they constructed an effective vortex action. They a
obtained a formal expression for the Feynman path inte
of the Abelian Higgs model as an integration over vort
sheets. However, they were not able to write this express
as an integral over the physical degrees of freedom of
vortices.

Lüscher, Symanzik, and Weisz@11# considered the lead
ing semiclassical corrections to the classical Nambu-G
action due to transverse string fluctuations, and showed
to regulate the resulting divergences. They showed that f
string of lengthR with fixed ends, the leading semiclassic
contribution to the heavy quark potential is2p/12R. In a
second paper, Lu¨scher@12# showed that this result was un
affected by the addition of other terms to the effective str
action.

Polchinski and Strominger@13# discussed the relation o
the Abelian Higgs model to fundamental string theory,
garding the theory of ANO vortices as an effective stri
theory. They explained how existing string quantizati
methods were inappropriate for quantizing the vortices.
compensate for the anomalies@14# in these quantization
methods, they introduced an additional term, the ‘‘Polchin
Strominger term,’’ into the effective vortex action.

Akhmedov, Chernodub, Polikarpov, and Zubkov@15#
studied the quantum theory of ANO vortices in the Lond
limit. In particular, they studied the transformation from fie
degrees of freedom to vortex degrees of freedom. T
showed that the Jacobian of this transformation contained
‘‘Polchinski Strominger term’’ as a factor. Although they
similar to Gervais and Sakita, did not obtain a complete
©2001 The American Physical Society13-1
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pression for the path integral, this paper provided an imp
tant stimulus to our own work.

In the current paper, we simplify and extend work done
an earlier paper@16#. We begin with the path integral repre
sentation of a field theory having vortex solutions. It is
effective field theory describing phenomena at distan
greater than the flux tube radius. We end up with an effec
string theory of vortices in a form suitable for explicit calc
lations.

We apply this theory to calculate the energyE and angu-
lar momentumJ of the fluctuations of a string bounded b
the curve generated by the worldlines of a quark-antiqu
pair separated by a fixed distance and rotating with fix
angular velocity. This gives the contribution of string flu
tuations to the Regge trajectoryJ(E2), which we compare
with the experimentalr andv trajectories.

II. OUTLINE

In Sec. III, we rewrite the path integral over field config
rations of the Abelian Higgs model containing vortices as
integral over surfaces on which the Higgs field vanish
This introduces a Jacobian due to the change from field v
ables to string variables~surfaces!. This Jacobian is the key
to determining the action of the effective string theory, a
to defining the integral over all surfaces. We next use
formalism described in Sec. III to obtain an effective theo
of ANO vortices. In Sec. IV, we show how the Jacobi
divides into a field part and a string part. The two parts of
Jacobian play different roles in the effective theory. In S
V, we define an expression for the action of the effect
string theory. All the dependence on the Abelian Hig
model is contained in the string action. We also obtain
expression for the path integral over vortices. In Sec. VI,
show how to express the integral over surfaces as an inte
over the two physical degrees of freedom of the vortex, a
obtain the final form of the effective string theory.

In the remaining sections we compute the leading se
classical contribution to Regge trajectories due to the fl
tuations of the string. We obtain an expression for the c
tribution of string fluctuations to the effective action in Se
VII, and in Secs. VIII and IX describe how to regularize th
expression, making use of the results of Lu¨scher, Symanzik,
and Weisz@11#. In Sec. X we calculate the contribution o
string fluctuations to the effective action for a straight, rot
ing string, and in Sec. XI obtain the resulting corrections
Regge trajectories.

III. THE TRANSFORMATION FROM FIELDS
TO STRINGS

In this section we consider the Abelian Higgs mod
coupled via a Dirac string to a moving quark-antiquark pa
We transform the path integral over field configurations c
taining vortices to an integral over the surfacesx̃m determin-
ing the location of the vortices.

We denote the~dual! potentials byCm and the complex
~monopole! Higgs field byf. The dual coupling constant i
g52p/e, wheree is the Yang-Mills coupling constant (as
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5e2/4p). The world lines of the quark and antiquark traje
tories form the closed loopG ~see Fig. 1!. The moving
quark-antiquark pair couples to the dual potentialsCm via a
Dirac string tensorGmn

S , which is nonvanishing along som

line L connecting theqq̄ pair. As the pair moves, the lineL
sweeps out a world sheetx̃m(j) parametrized by coordinate
ja, a51,2. The fieldf vanishes on this world sheet

f~xm!50, atxm5 x̃m~j!. ~3.1!

The corresponding Dirac string tensorGmn
S is given by

Gmn
S 52eE d2j

1

2
eabemnab

] x̃a

]ja

] x̃b

]jb
d (4)@xm2 x̃m~j!#.

~3.2!

The actionS of a field configuration which has a vortex o
the sheetx̃m(j) is

S5
4

3E d4xF2
1

4
~Gmn!22

1

2
u~]m2 igCm!fu2

2
l

4
~ ufu22f0

2!2G , ~3.3!

where the field strengthGmn is given by

Gmn5]mCn2]nCm1Gmn
S . ~3.4!

The Higgs mechanism gives the vector particle~dual gluon!
a mass MV5gf0 and the scalar particle a massMS

5A2lf0, wheref0 is the vacuum expectation value of th
Higgs field. We have introduced the color factor4

3 in Eq.
~3.4! because we are interested in usingSas a model for long
distance QCD. We considerS to be an effective action de
scribing distances greater than the flux tube radiusa.

The long distanceqq̄ interaction is determined by th
Wilson loopW@G#,

W@G#5E Df* DfDCmei (S[f,C] 1SGF), ~3.5!

FIG. 1. The loopG.
3-2
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EFFECTIVE STRING THEORY OF VORTICES AND . . . PHYSICAL REVIEW D63 094013
whereSGF is a gauge fixing term. The functional integra
are cut off at the momentum scale 1/a. The action~3.3!
describes a field theory having classical vortex solutions.
functional integral~3.5! goes over all field configuration
containing a vortex bounded byG.

Previous calculations@5# of W@G# were carried out in the
classical approximation~corresponding to a flat vortex she
x̃m), and showed that the Landau-Ginzburg parameterl/g2

is approximately equal to12 . This corresponds to a superco
ductor on the border between type I and type II. In th
situation, both particles have the same massM5MV5MS ,
the string tension iss5 4

3 pf0
2, and the flux tube radius is

a5A2/M .
To take into account the fluctuations of these vortices,

must evaluateW@G# beyond the classical approximation. W
carry out the functional integration~3.5! in two steps:~1! We
fix the location of a vortex sheetx̃m, and integrate only ove
field configurations for whichf(xm) vanishes onx̃m. ~2! We
integrate over all possible vortex sheets. To implement
procedure, we introduce into the functional integral~3.5! the
factor one, written in the form

15J@f#E Dx̃md$Ref@ x̃m~j!#%d$Im f@ x̃m~j!#%.

~3.6!

The integrationDx̃m is over the four functionsx̃m(j). The
functionsx̃m(j) are a particular parametrization of the wor
sheetx̃m.

The expression~3.6! implies that the string world shee
x̃m, determined by thed functions, is the surface of the zero
of the fieldf. The factorJ@f# is a Jacobian, and is define
by Eq. ~3.6!. Inserting Eq.~3.6! into Eq. ~3.5! puts the Wil-
son loop in the form

W@G#5E Df* DfDCmei (S[f,C] 1SGF)J@f#

3E Dx̃md$Ref@ x̃m~j!#%d$Im f@ x̃m~j!#%.

~3.7!

We then reverse the order of the field integration and
string integration over surfacesx̃m(j),

W@G#5E Dx̃mE Df* DfDCmJ@f#d$Ref@ x̃m~j!#%

3d$Im f@ x̃m~j!#%ei (S[f,C] 1SGF). ~3.8!

In Eq. ~3.7!, thed functions fixx̃m to lie on the surface of the
zeros of a given fieldf, while in Eq. ~3.8!, they restrict the
field f to vanish on a given surfacex̃m. The integral overf
in Eq. ~3.8! is therefore restricted to functionsf which van-
ish on x̃m, in contrast to the integral overf in Eq. ~3.7!, in
which f can be any function.
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IV. FACTORIZATION OF THE JACOBIAN

To evaluateW@G# we divide J@f# into two parts. The
JacobianJ@f# in Eq. ~3.8! is evaluated for field configura
tions f which vanish on a particular surfacex̃m. We make
this explicit by writing Eq.~3.6! as

J@f,x̃m#215E Dỹmd$Ref@ ỹm~t!#%d$Im f@ ỹm~t!#%,

~4.1!

where ỹm is some other string worldsheet, distinct fromx̃m.
The evaluation of the Jacobian is the essential new ingred
in deriving W@G#.

The d functions in Eq.~4.1! select surfacesỹm(t) which
lie in a neighborhood of the surfacex̃m(j) of the zeros off.
We separateỹm(t) into components lying on the surfac
x̃m(j) and components lying along vectorsnm

A(j) normal to

x̃m(j) at the pointj:

ỹm~t!5 x̃m@j~t!#1y'
A@j~t!#nm

A@j~t!#. ~4.2!

The point x̃m@j(t)# is the point on the surfacex̃m(j) lying
closest toỹm(t), and the magnitude ofy'

A@j(t)# is the dis-

tance fromỹm(t) to x̃m@j(t)# ~see Fig. 2!.
We evaluate the Jacobian~4.1! by making the change o

variables

ỹm~t!→@j~t!,y'
A~j!# ~4.3!

defined by Eq.~4.2!. Although thed functions in Eq.~4.1!
force y'

A to vanish, the integrations overy'
A give a contribu-

tion to the Jacobian. Furthermore, this contribution depe
on the field variablef in a neighborhood of the surface. Th
integration over the reparametrizationsj(t) of the surface
x̃m(j), on the other hand, depends upon the surface, but
on the fields. The change of variables~4.3! leads to a factor-
ization of the Jacobian into a field contribution, and into
contribution depending only on the intrinsic properties of t
world sheetx̃m(j).

We now exhibit the factorization of the Jacobian. Und
the transformation~4.3!, the integral overỹm becomes

FIG. 2. World sheets and normal vectors.
3-3
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Dỹm5DettF emnab
1

2
eab

] x̃m

]ja

] x̃n

]jb

1

2
eABna

Anb
BGDy'

ADj

5DettFA2
1

2 S eab
] x̃m

]ja

] x̃n

]jbD 2
1

2
~eABna

Anb
B!2GDy'

ADj

5Dett@A2g~j!uj5j(t)#Dy'
ADj, ~4.4!

whereA2g is the square root of the determinant of the
duced metric

gab5
] x̃m

]ja

] x̃m

]jb
~4.5!

evaluated on the world sheetx̃m. Appendix A gives a sum-
mary of our notation, and of the relations used to obtain
~4.4!.

The functional determinant in Eq.~4.4! is the product of
its argument evaluated at all pointst on the sheet, in the
same way that the integration overDỹm is a product of inte-
grals at all pointst. Making the change of coordinates~4.2!,
~4.3! in the Jacobian~4.1! gives

J@f,x̃m#215E DjDy'
A Dett@A2g#d„Ref$x̃m@j~t!#

1y'
A@j~t!#nA

m@j~t!#%…d„Im f$x̃m@j~t!#

1y'
A@j~t!#nA

m@j~t!#%…. ~4.6!

Equation~4.6! has the form

J@f,x̃#215E Dj~t!Dett@A2g#J'$f,x̃m@j~t!#%21,

~4.7!

where

J'$f,x̃m@j~t!#%215E Dy'
Ad„Ref$x̃m@j~t!#

1y'
A@j~t!#nA

m@j~t!#%…

3d„Im f$x̃m@j~t!#

1y'
A@j~t!#nA

m@j~t!#%… ~4.8!

contains all the dependence onf. SinceJ' is independent of
the parametrizationj(t), the Jacobian factors into two par

J@f,x̃#215Ji@ x̃#21J'@f,x̃#21, ~4.9!

where

Ji@ x̃#215E Dj Dett@A2g#. ~4.10!

The string partJi of the Jacobian arises from the parame
zation degrees of freedom. In the next section, we show
J' is the Faddeev-Popov determinant for thed functions in
09401
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Eq. ~3.8!. This allows us to define the action of the effectiv
string theory. In the following section, we will useJi to fix
the reparametrization degrees of freedom.

V. THE STRING ACTION

Inserting the factorized form~4.9! of J@f# into the ex-
pression~3.8! for W@G# gives the Wilson Loop the form

W@G#5E Dx̃mJi@ x̃#eiSeff, ~5.1!

where the actionSeff of the effective string theory is given b

eiSeff[ x̃
m(j)]5E Df* DfDCmJ'@f#d$Ref@ x̃m~j!#%

3d$Im f@ x̃m~j!#%ei (S1SGF). ~5.2!

The string action~5.2! was obtained previously by Gerva
and Sakita@10#. The novel feature of our result is the strin
integration measure of the Wilson loop~5.1!.

The string action depends upon the field partJ' of the
Jacobian

J'@f,x̃m#215E Dy'
Ad@Ref~ x̃m1y'

AnmA!#

3d@ Im f~ x̃m1y'
AnmA!#. ~5.3!

The d functions forcey'
A to be zero, so we can expand the

arguments in a power series iny'
A ,

f~ym!5f~ x̃m!1y'
AnA

n ]nf~ x̃m!1O~y'
2 !. ~5.4!

The zeroth order term in Eq.~5.4! vanishes becausex̃m is the
surface of the zeros off. The integration~5.3! overy'

A gives
the result

J'@f,x̃m#215Detj
21@eABnA

mnB
n ~]mRef!~]nIm f!uxm5 x̃m#.

~5.5!

The JacobianJ' is a Faddeev-Popov determinant, which w
discuss in Appendix B.

Equation~5.2! gives the actionSeff( x̃
m) of the effective

string theory as an integral over field configurations wh
have a vortex fixed atx̃m. Since the vortex theory~3.5! is an
effective long distance theory, the path integral~3.5! for
W@G#, written in terms of the fields of the Abelian Higg
model, is cutoff at a scaleL which is on the order of the
massM of the dual gluon. Furthermore, the integration~5.1!
over x̃m includes all the long distance fluctuations of th
theory. Therefore, the path integral~5.2! contains neither
short distance nor long distance fluctuations, and is de
mined by minimizing the field actionS@ x̃m,f,Cm# for a fixed
position of the vortex sheet

Seff@ x̃m#5S@ x̃m,fclass,Cm
class#, fclass~ x̃m!50. ~5.6!
3-4
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EFFECTIVE STRING THEORY OF VORTICES AND . . . PHYSICAL REVIEW D63 094013
The fieldsfclass and Cm
class are the solutions of the classic

equations of motion, subject to the boundary condit
f( x̃m)50.

The actionSeff depends both on the distanceR between
the quarks, and the radius of curvatureRV of the vortex sheet
bounded byG. In the long distance limit, when the length o
the string R and its radiusRV are large compared to th
thickness of the flux tubea, the string action~5.6! becomes
the Nambu-Goto actionSNG,

SNG52sE d2jA2g, ~5.7!

wheres is the classical string tension, determined from t
solution of the Nielsen-Olesen equations for a straight, i
nitely long string.

It is convenient to separate the action~5.6! into its pertur-
bative and nonperturbative parts

Seff@ x̃m#5S@ x̃m,fclass,Cm
class#5SMaxwell@ x̃m#1SNP@ x̃m#,

~5.8!

whereSMaxwell is the action obtained by settingl5g50 in
Eq. ~3.3!. The value of SMaxwell depends only upon the
boundaryG, and is the usual electromagnetic interaction b
tween charged particles

SMaxwell@G#5
4

3

e2

2 R dxm R dx8mDmn~xm2x8m!,

~5.9!

whereDmn is the photon propagator.
To calculate the Wilson loopW@G# from the effective

string theory ~5.1!, we must also examineSeff at smaller
values ofR and RV , on the order of the string thicknessa.
We first consider the dependence ofSeff on R for a flat string,
where RV→`. In this case, the curveG is a rectangle of
length T in the time direction, and widthR in the space
direction. In the largeT limit, the actionSeff reduces to the
product ofT and the potentialVclass(R) previously used to fit
the energy levels of heavy quark systems.

Evaluation of Eq.~5.8! for a flat sheet gives a correspon
ing decomposition ofVclass(R),

Vclass~R!5VCoulomb~R!1VNP~R!. ~5.10!

For smallR,

Vclass~R! ——→
R→0

VCoulomb~R!52
4

3

as

R
, ~5.11!

while Eq. ~5.7! gives the largeR behavior

VNP~R! ——→
R→`

sR. ~5.12!

Recent numerical studies@17# of the classical equations o
motion for a flat sheet have shown that for a supercondu
on the I-II border, the long distance behavior~5.12! of
VNP(R) persists to small values ofR, even to values less tha
09401
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the string thicknessa. Therefore, for a superconductor on th
I-II border, Vclass(R) is, to a good approximation, equal t
the Cornell potential@18#

Vclass~R!'2
4

3

as

R
1sR. ~5.13!

In other words, for a flat sheet,

SNP~R!'SNG. ~5.14!

Thus, for short straight strings the Nambu-Goto action
mains a good approximation to the nonperturbative p
of the classical action for a superconductor on the type
border.

Next, consider the nonperturbative contribution to t
classical action for a long bent string.@The Maxwell action
has the value~5.9! independent of the shape of the vortex#
The leading correction to the Nambu-Goto action when
string is bent is the curvature term

Scurvature52bE d2jA2g~K ab
A !2, ~5.15!

whereK ab
A is the extrinsic curvature.

K ab
A 5nm

A]a]bxm. ~5.16!

The magnitude ofK ab
A is of the order of 1/RV , so that

Scurvature;(a2/RV
2)SNG.

The calculation of the ‘‘rigidity’’ b determining the size
of Scurvaturehas been considered by a number of authors@19#,
but the value ofb for a superconductor on the I-II borde
was never calculated. We conjecture that the value ofb is
small, because de Vega and Schaposnik@20# have shown
that the components of the stress tensor perpendicular to
axis of a straight Nielsen-Olesen flux tube vanish for a
perconductor on the border between type I and type II.
other words, there are no ‘‘bonds’’ perpendicular to the fie
lines of a straight flux tube of infinite extent. When the flu
tube is bent slightly, there are no perpendicular bonds to
stretched or compressed, and the change in the energy is
the string tension multiplied by the change in length. That
the curvature term, which in a sense represents the attrac
or repulsion between neighboring parts of the string, sho
vanish. A more formal argument can be made by regard
the borderline superconductor as the long distance limit o
theory where the forces between vortices become we
Polyakov@21# has shown, using renormalization group me
ods, thatb also vanishes in this limit.

Similar Heuristic arguments give a reason for the abo
mentioned result that the Nambu-Goto action is a good
proximation for short, straight strings on the I-II border. T
bending of the field lines as the quark-antiquark separa
becomes smaller causes no additional changes in the en

We therefore take the action of the effective string theo
to be equal to the sum of the Maxwell action~5.9! and the
Nambu-Goto action~5.7!:
3-5
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Seff@ x̃m#5SMaxwell@G#2sE d2jA2g. ~5.17!

We use Eq.~5.17! for the full range of string lengthsR and
radii of curvatureRV greater than the inverse of the massM
of the dual gluon, which is the cutoff of the effective strin
theory ~5.1!.

Equation~5.17! for Seff@ x̃m# is the generalization of Eq
~5.13! to a general sheet. The first term,SMaxwell@G#, is just a
boundary term, independent of the fluctuating string, and
take takeSeff5SNG for the calculations carried out in the re
of this paper. In the next section we show how to carry
the integration overx̃m in Eq. ~5.1! by separating the degree
of freedom of the world sheetx̃m into two physical degrees
of freedom and two reparametrization degrees of freed
This treatment makes no use of Eq.~5.17!, and is applicable
to any effective string theory of vortices.

VI. EFFECTIVE THEORY OF TRANSVERSE STRING
FLUCTUATIONS

We next show how to evaluate the integral overx̃m(j) in
Eq. ~5.1!,

W@G#5E Dx̃mJi@ x̃m#eiSeff. ~6.1!

The integration overx̃m(j) is the product of an integral ove
string world sheets and an integral over reparametrization
the coordinates of the string. The JacobianJi is the inverse
of the integration~4.10! over reparametrization degrees
freedom. In this section, we fix the parametrization of t
string, and show thatJi cancels the integration over reparam
etrizations.

Any surfacex̃m has only two physical degrees of freedom
The other two degrees of freedom represent the invarianc
the surface under coordinate reparametrizations. We fix
coordinate reparametrization symmetry by choosing a p
ticular ‘‘representation’’xp

m of the surface, which depends o
two functionsf 1(j), f 2(j),

xp
m~j!5xp

m@ f 1~j!, f 2~j!,j#. ~6.2!

A particular example of a representationxp
m is obtained by

expanding in transverse fluctuationsx'
A about a fixed shee

x̄p
m ,

xp
m~j!5xp

m@x'
A~j!,j#5 x̄p

m~j!1x'
A~j!n̄A

m~j!. ~6.3!

The vectorsn̄A
m are orthogonal to the surfacex̄p

m . In this
example,f 1 and f 2 are the transverse coordinatesx'

A .
Any physical surface can be expressed in terms ofxp

m by
a suitable choice off 1 and f 2. In particular, the world shee
x̃m(j) appearing in the integral~6.1! can be written in terms
of a reparametrizationj̃(j) of the representationxp

m ,

x̃m~j!5xp
m$ f 1@ j̃~j!#, f 2@ j̃~j!#,j̃~j !%. ~6.4!
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The four degrees of freedom inx̃m(j) are replaced by two
physical degrees of freedomf 1(j), f 2(j) and two reparam-
etrization degrees of freedomj̃(j).

We can write the integral overx̃m(j) in Eq. ~6.1! in terms
of integrals overf 1(j), f 2(j), and j̃(j),

Dx̃m5DetF emnab

1

2
eab

] x̃m

]j̃a

] x̃n

]j̃b

] x̃a

] f 1

] x̃b

] f 2GDf 1Df 2Dj̃.

~6.5!

Noting that the derivative ofx̃m with respect toj̃(j) is

] x̃m

]j̃a
5F ]xp

m

] f 1

] f 1

]ja
1

]xp
m

] f 2

] f 2

]ja
1

]xp
m

]jaGU
j5 j̃

, ~6.6!

we can write

Dx̃m5DetF emnab

1

2
eab

]xp
a

]ja

]xp
b

]jb

]xp
m

] f 1

]xp
n

] f 2 U
j5 j̃

Df 1Df 2Dj̃

5DetF t̃ mnA2gp
]xp

m

] f 1

]xp
n

] f 2 U
j5 j̃

GDf 1Df 2Dj̃,

~6.7!

where

t̃ mn5
1

2
emnab

eab

A2g

] x̃a

]ja

] x̃b

]jb
~6.8!

is the antisymmetric tensor normal to the world sheet an

gab
p 5

]xp
m

]ja

]xp
m

]jb
~6.9!

is the induced metric ofxp
m(j). The metricgab

p is related to

the metricgab of x̃m(j),

gab5
]j̃c

]ja

]j̃d

]jb
gcd

p . ~6.10!

The induced metricgab of the original world sheetx̃m(j)
does not appear in Eq.~6.7! because the determinant is ind
pendent ofj̃. Only the induced metricgab

p of the world sheet
xp

m(j) enters into the determinant.

With the parametrization~6.4! of x̃m, the path integral
~6.1! takes the form

W@G#5E Dj̃Df 1Df 2DetF t̃ mn
]xp

m

] f 1

]xp
n

] f 2GDet@A2gp#Jie
iSeff.

~6.11!

The actionSeff is parametrization independent, so it is ind
pendent ofj̃(j). The same is true forJi . Furthermore,t̃ mn is
parametrization independent, so that the product
3-6
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Df 1Df 2 DetF t̃ mn
]xp

m

] f 1

]xp
n

] f 2G ~6.12!

is independent ofj̃(j). Therefore, this product, along withJi

andeiSeff, can be brought outside thej̃ integral in Eq.~6.11!.
The path integral then takes the form

W@G#5E Df 1Df 2 DetF t̃ mn
]xp

m

] f 1

]xp
n

] f 2GJie
iSeff

3E Dj̃ Det@A2gp#. ~6.13!

The remaining integral over reparametrizationsj̃ is equal
to Ji

21 , defined by Eq.~4.10!, and is canceled by the explic
factor of Ji appearing in Eq.~6.13!. This means we do no
need to evaluateJi , and can avoid the complications inhe
ent in evaluating the integral over reparametrizations of
string coordinates. The anomalies produced in string the
by evaluating this integral are not present, so we do not h
a Polchinski-Strominger term in the theory. Equation~6.13!
gives the final result for the Wilson loop

W@G#5E Df 1Df 2 DetF t̃ mn

]xp
m

] f 1

]xp
n

] f 2GeiSeff, ~6.14!

as an integration over two functionf 1(j) and f 2(j), the
physical degrees of freedom of the string.

The path integral~6.14! is invariant under reparametriza
tions of the string, and describes a two-dimensional fi
theory with two degrees of freedom, the two transverse
cillations of a two-dimensional sheet. The integration~6.14!
goes over the normal fluctuations of the string world she
The components off 1 and f 2 along the sheet are nonphys
cal. The determinant in Eq.~6.14! is a normalization factor
for f 1 and f 2. This can be seen by applying the identi
t̃ mn5eABnmAnnB to the determinant

DetF t̃ mn

]xp
m

] f 1

]xp
n

] f 2G5DetF eABS nmA

]xp
m

] f 1 D S nnB

]xp
n

] f 2D G .

~6.15!

The factors ofnmA(]xp
m/] f i) determine the amount of th

fluctuation f i which is in a direction normal to the sheet.
Equation~6.14! is the string representation of any fie

theory containing classical vortex solutions. The express
~5.2! for Seff had been obtained previously by Gervais a
Sakita@10#; we are unaware of any previous derivation of t
string representation~6.14! for the path integral. We now
show how it provides a method for explicit calculations.

VII. THE SEMICLASSICAL APPROXIMATION

In this section we carry out the semiclassical expansion
W@G# about a classical solution of the effective string theo
and find the leading contribution of string fluctuations to t
effective action2 i logW@G#. The ends of the string follow
09401
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the pathG fixed by the prescribed trajectory of the quark
and the fluctuations of the string are cutoff at the moment
scaleM of the inverse string radius. As explained in Sec.
we take the actionSeff of the effective string theory to be th
Nambu-Goto action

Seff52sE d2jA2g, ~7.1!

and Eq.~6.14! becomes

W@G#5E Df 1~j!Df 2~j!DetF t̃ mn
]xp

m

] f 1

]xp
n

] f 2Ge2 is*d2jA2g.

~7.2!

We expand Eq.~7.2! in small fluctuationsf i of xp
m@ f i ,j#

around a fixed sheetx̄p
m(j), subject to the condition that th

boundary ofx̄p
m lies on the curveG,

xp
m~ f i ,j!5 x̄p

m~j!1 f i
]xp

m

] f i U
f i50

1
1

2
f i f j

]2xp
m

] f i] f jU
f i50

1O~ f 3!,

~7.3!

where x̄p
m(j)[xp

m( f i50,j) is the position of the string
worldsheet whenf 15 f 250. ExpandingA2g to quadratic
order in smallf 1 and f 2, we obtain

W@G#5E Df i~j!DetF1

2
t̃ mne i j

]xp
m

] f i

]xp
n

] f j U
f i50

G
3expH 2 isE d2jA2ḡ

3F11ḡab
]xp

m

]ja U
f i50

]

]jb S ]xp
m

] f i U
f i50

f i D
1

1

2
f iGi j

21f j G J , ~7.4!

whereḡab is

ḡab5
] x̄p

m

]ja

] x̄p
m

]jb
, ~7.5!

the metric of the fixed world sheetx̄p
m , and

Gi j
215

1

A2g

]2A2g

] f i] f j U
f i50

. ~7.6!

We choosex̄p
m to be the surface which minimizes the a

tion. Thenx̄p
m satisfies the ‘‘classical equation of motion’’

]xp
m

] f i U
f i50

~2¹2!x̄p
m50, ~7.7!
3-7
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where the covariant Laplacian is

2¹25
1

A2ḡ

]

]ja
ḡabA2ḡ

]

]jb
. ~7.8!

Using the fact that the covariant derivative of the metric
zero, we show in Appendix A that

~]ax̄p
m!~2¹2x̄p

m!50. ~7.9!

The vectors]xp
m/] f i u f i50 and]ax̄p

m form a complete basis, s
Eqs.~7.7! and ~7.9! imply

2¹2x̄p
m50. ~7.10!

Evaluating thef i integral in Eq.~7.4! gives

W@G#5e2 is*d2jA2ḡDetF1

2
t̃ mne i j

]xp
m

] f i

]xp
n

] f j U
f i50

G
3Det21/2@Gi j

21#. ~7.11!

The inverse propagatorGi j
21 ~7.6! can be shown to be

Gi j
2152

]xp
m

] f i U
f i50

n̄mA@2¹2dAB2K̄ab
A K̄Bab#n̄nB

]xp
n

] f j U
f i50

,

~7.12!

whereK̄ab
A is the extrinsic curvature tensor of the sheetx̄p

m . A
derivation of Eq.~7.12! is given in Appendix A of Ref.@11#.
The n̄mA are vectors normal to the world sheetx̄p

m . Equation
~7.12! gives

Det21/2@Gi j
21#5Det21/2@2¹2dAB2K̄ab

A K̄Bab#Det21

3F1

2
eABn̄mAn̄nBe i j

]xp
m

] f i

]xp
n

] f j U
f i50

G .

~7.13!

From the identity~A15!,

t̃ mn5eABn̄mAn̄nB , ~7.14!

we see that the first determinant in Eq.~7.11! and the second
determinant in Eq.~7.13! cancel. The determinant appearin
in Eq. ~6.14! produces exactly the correct normalization f
the Green’s function. The functional integral~7.11! becomes

W@G#5e2 is*d2jA2ḡ Det21/2@2¹2dAB2K̄ab
A K̄Bab#.

~7.15!

We note that Eq.~7.15! is independent of the factors o
nm

A(]xp
m/] f i)u f i50 which appeared in the inverse propaga

~7.12!. These factors are the projections of the fluctuationf i

normal to the string world sheet. For smallf i , the world
sheetxp

m is
09401
r

xp
m5 x̄p

m1 f i

]xp
m

] f i U
f i50

1O~ f i2!. ~7.16!

The perturbation of the world sheet in the directionn̄mA is

nm
A~xp

m2 x̄p
m!5nm

A
] x̄p

m

] f i U
f i50

f i1O~ f i2!. ~7.17!

The factors ofnm
A(]xp

m/] f i)u f i50 in Eq. ~7.12! project out the
part of the fluctuationsf i perpendicular to the world shee
x̄p

m . Only normal fluctuations contribute toW@G#, since fluc-
tuations along the world sheet are equivalent to a repar
etrization of the sheet coordinates.

The effective action obtained from Eq.~7.15! is

2 i ln W@G#5Scl1Sfluc . ~7.18!

The first term in Eq.~7.18! is the Nambu-Goto action evalu
ated at the ‘‘classical’’ world sheetx̄p

m(j),

Scl52sE d2jA2ḡ. ~7.19!

The semiclassical correctionSfluc due to the transverse strin
fluctuations is

Sfluc5
i

2
Tr ln@2¹2dAB2K̄ab

A K̄Bab#. ~7.20!

To summarize, we have integrated out the string fluctuatio
and reduced the problem to the evaluation of the determin
in Eq. ~7.15!. This is a quantum mechanical scattering pro
lem in the background of the solution of the classical eq
tion ~7.10!, with appropriate boundary conditions. In the ne
section, we describe how to evaluate this determinant.

VIII. REGULARIZATION OF STRING INTEGRALS
AND THE ROLE OF THE LU¨ SCHER TERM

The argument of the logarithm in Eq.~7.20! is the inverse
propagator for fluctuations on the string. This inverse pro
gator can also be obtained by direct variation of the Nam
Goto action with respect to any transverse coordinatesx'

A ,

]2S

]x'
A]x'

B
52¹2dAB2K̄ab

A K̄Bab, ~8.1!

up to an overall normalization factor. In fact, the correcti
~7.20! to the effective action has already been studied
Lüscher, Symanzik, and Weisz~LSW! @11# in the case of a
straight string with fixed ends. We describe their resu
which we will use in evaluating Eq.~7.20!. LSW used Pauli-
Villars regularization to obtain a regulated formSreg of the
trace in Eq.~7.20!,

Sreg52E
0

`dt

t S 11(
j

e je
2tM j

2DTr e2t(2¹2dAB2K̄ab
A K̄Bab).

~8.2!
3-8
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The Mj are the masses of the regulators, and thee j are
suitably chosen coefficients. The Laplacian in Eq.~8.2! has
been Wick rotated from Minkowski to Euclidean space.

The regulated quantitySreg is separated into a divergen
part Sdiv and a finite partSPV,

Sreg5Sdiv~Mj ,e j !1SPV. ~8.3!

LSW evaluated the divergent partSdiv(Mj ,e j ), and obtained
terms which are quadratically, linearly, and logarithmica
divergent in the cutoffsMj . The quadratic term is a renor
malization of the string tension, the linear term is a ren
malization of the quark masses, and the logarithmically
vergent term is proportional to the integral over all space
the scalar curvatureR of the string world sheet.

LSW also obtained a formal expression for the finite p
SPV. They evaluated this expression only for the case o
straight string of lengthR with fixed ends, and calculated
correctionVLüscher to the static potential

VLüscher52 lim
T→`

1

T
SPV52

p

12R
. ~8.4!

We are interested in calculatingSfluc for rotating quarks,
so we must evaluateSreg for a more general surface. W
break Eq.~7.20! into two parts

Sreg5 i Tr ln@2¹2#1
i

2
Tr lnF2¹2dAB2K̄ab

A K̄Bab

2¹2 G .

~8.5!

We will evaluate the first term in Eq.~8.5! by generalizing
the calculation of LSW. We will calculate the second te
directly.

The first term in Eq.~8.5!,

S15 i Tr ln@2¹2#, ~8.6!

involves the Laplacian in the curved background of the cl
sical solutionx̄p

m . In the flat case studied by LSW, the La
placian is equal to2]2,

2]25
]2

]t2
2

]2

]r 2
. ~8.7!

The coordinatet is the time in the lab frame, andr is a radial
coordinate which takes the values2R1 and R2 at the two
ends of the string. The length of the string isR5R11R2.

To calculateS1 we extend the calculation of LSW to mor
general coordinate systems. We make a coordinate tran
mation j→j8 to conformal coordinates, where the tran
formed metricgab8 5habe

w,hab5diag(21,1). This transfor-
mation puts the Laplacian in a form similar to the flat sh
Laplacian~8.7!, and allows us to evaluate Eq.~8.6! by ex-
tending the calculation of LSW.

To see how this works, we expresseiS1 as a functional
integral
09401
-
i-
f

t
a

-

or-
-

t

eiS15E Df 1Df 2 expH 2 i E d2jA2ggab
] f i

]ja

] f i

]jbJ .

~8.8!

The transformation to conformal coordinatesj8 gives

eiS15E Df 1Df 2 expH 2 i E d2j8hab
] f i

]j8a

] f i

]j8bJ ,

~8.9!

which is of the form ofSreg treated by LSW.
We will needS1 in the limit of largeT, and hence are only

interested in strings whose metric is time independent.
determine which metrics are time independent, we m
choose a coordinate system. We choose coordinatesr and t,
wheret is the time in the lab frame, andr is orthogonal tot
(grt50). This guarantees thatt is the physical time. From
now on we consider only metricsgab which are independen
of t.

In Appendix C, we show that

S15S1,div1S1,finite, ~8.10!

where S1,div contains quark mass and string tension ren
malizations. The finite part ofS1 is

S1,finite5T
p

12Rp
, ~8.11!

where

Rp5E
2R1

R2
drA ḡrr ~r !

2ḡtt~r !
. ~8.12!

The results~8.11! and ~8.12! are valid for any orthogona
coordinate system with a time independent metric.

We show in Appendix C thatRp is equal to the classica
energy of the string divided by the string tensions. We call
Rp the ‘‘proper length’’ of the string. For a flat metric, wher
ḡrr 52ḡtt51, the proper lengthRp of the string reduces to
the distanceR between its end points.

IX. CORRECTION TO THE EFFECTIVE ACTION
FOR A CURVED SHEET

In the previous section, we evaluated the finite part ofS1
for a sheet with a time independent metric using the res
of LSW. In this section we evaluate the second term in E
~8.5!,

S2[ i
T

2
Tr lnF2¹2dAB2K̄ab

A K̄Bab

2¹2 G . ~9.1!

The trace in Eq.~9.1! is over functions ofr and t.
We first make the coordinate transformationr→x,

dx

dr
5A ḡrr ~r !

2ḡtt~r !
, xur 5050. ~9.2!
3-9
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The coordinatex runs from2X1 to X2,

X15E
2R1

0

drA ḡrr ~r !

2ḡtt~r !
,

X25E
0

R2
drA ḡrr ~r !

2ḡtt~r !
, ~9.3!

andX11X25Rp . In Appendix C, we show that the metric i
the system (x,t) is conformal (ḡxx52ḡtt ,ḡxt50). In this
coordinate system, the inverse propagator for string fluc
tions is

2¹2dAB2K̄ab
A K̄Bab5

1

A2ḡ
S ]2

]t2
2

]2

]x2D dAB2K̄ab
A K̄Bab.

~9.4!

The string has infinite extent in time, and the curvatu
K̄ab

A K̄Bab is independent oft, so we can take the Fourie
transform with respect to the time coordinate. We express
trace in~9.1! over functions oft and r as an integral over a
frequencyn and a trace over functions of a single variablex,

S25
T

2E2`

` dn

2p
Trx lnF S n22

]2

]x2D dAB2A2ḡK̄ab
A K̄Bab

n22
]2

]x2

G .

~9.5!

In going from Eqs.~9.1! to ~9.5!, we have also carried ou
the Wick rotationn→2 in. The integration overn gives

S25
T

2 FTrxA2
]2

]x2
dAB2A2ḡK̄ab

A K̄Bab

2TrA2
]2

]x2
dABG . ~9.6!

Equation~9.6! expressesS2 as the trace of the difference o
two operators. The first has the form of a Hamiltonian fo

relativistic particle in the local potentialA2ḡK̄ab
A K̄Bab. The

second operator has the form of a free Hamiltonian. T
square roots enter because we are working with relativi
degrees of freedom.

The termsS1 and S2 are proportional to the timeT, but
are otherwise time independent. We define the ‘‘effect
Lagrangian’’ of the string to be the effective action divide
by the timeT. The sum of Eqs.~8.11! and ~9.6! gives the
effective LagrangianLfluc determining the contribution of the
string fluctuations toW@G#,
09401
a-

e

e

e
ic

e

Lfluc[ lim
T→`

1

T
~S1,finite1S2!

5
p

12Rp
1

1

2 S TrA2
]2

]x2
dAB2A2ḡK̄ab

A K̄Bab

2TrA2
]2

]x2
dABD . ~9.7!

In the next section, we will evaluateLfluc for a string of
lengthR rotating with angular velocityv.

In Appendix D, we show that, for a general sheet,S2 is
logarithmically divergent. We show that its divergent part
given by

S2,div5
T

4 (
n51

MRp /p
1

pnE2X1

X2
dxA2ḡR, ~9.8!

whereR is the scalar curvature,

R5~K a
Aa!22~K ab

A !2. ~9.9!

This result agrees, in the large time limit, with the logarit
mically divergent term in the cutoff dependent part of t
effective string action~C10! found by LSW.

X. EFFECTIVE LAGRANGIAN FOR ROTATING STRING

We now evaluate the effective Lagrangian of a string w
boundaryG generated by a quark-antiquark pair separate
fixed distancesR1 andR2 from the origin, and rotating with
angular velocityv. This Lagrangian has two parts, the cla
sical string Lagrangian and the contribution~9.7! of string
fluctuations.

We evaluate the classical string Lagrangian first. The
lution to the classical equations of motion~7.10! yields the
classical, straight rotating string

x̄m~r ,t !5t ê0
m1r cos~vt !ê1

mlr sin~vt !ê2
m . ~10.1!

The coordinater is chosen so that the velocity of the string
zero whenr 50. The coordinater runs from2R1 to R2, and
t runs from 2` to `. The vectorsê1

m and ê2
m are two or-

thogonal unit vectors in the plane of rotation, andê0
m is a unit

vector in the time direction. The classical LagrangianLcl
string

obtained from Eq.~7.19! is

Lcl
string[2 lim

T→`

1

T
sE d2jA2ḡ

52sE
2R1

R2
drA12r 2v2

52s(
i 51

2
Ri

2 S arcsin~vRi !

vRi
1A12Ri

2v2D .

~10.2!

Next, we calculate the contributionLfluc ~9.7! due to string
fluctuations. The metric of the sheet~10.1! is
3-10
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ḡtt5211r 2v̄2, ḡrr 51, ḡrt50. ~10.3!

This metric is independent oft, and ḡrt50. We make the
transformation~9.2! from coordinatesr andt to coordinatesx
and t, and find

x5
1

v
arcsinvr . ~10.4!

The coordinatex runs from2X1 to X2, where

Xi5
arcsin~vRi !

v
, ~10.5!

and the proper lengthRp of the string is

Rp5X11X25(
i

arcsin~vRi !

v
. ~10.6!

Using this coordinate system , we evaluateLfluc in Appen-
dix E for the case of equal quark masses,R15R25R/2:

Lfluc5
v

arcsinv
p

12R
2

2v
pR

3Fvg lnS MR

2~g221!
D 1vg2

p

2 G2
v2g

pR
f ~v !,

~10.7!

where

v[
R

2
v, g5

1

A12v2
, ~10.8!

and the functionf (v) is

f ~v !5E
0

`

ds lnFs212s coth~2svg arcsinv !11

~s11!2 G .

~10.9!

Equation~10.7! becomes the Lu¨scher term in the zero veloc
ity limit.

We are interested in the largeR limit, where the quark
velocity is close to the speed of light. Forv close to one, Eq.
~10.7! becomes

Lfluc52
2

pR
gF lnS MR

2g2D 11G1
7

6R
1OS ln g

gR D .

~10.10!

Furthermore, for the semiclassical expansion to be va
the theory must be weakly coupled. That is,Lfluc must be less
thanLcl

string ~10.2!. For largeR,

Lcl
string52

p

4
sR2

p

8
sRg221

1

6
sRg231O~g24sR!.

~10.11!
09401
,

The semiclassical expansion is valid, since, as we will seeR
grows asg2 in thev→1 limit. In this case, the long distanc
limit where the effective theory is applicable is automatica
the region of weak coupling.

XI. REGGE TRAJECTORIES

We calculate classical Regge trajectories for equal m
quarks by adding a quark mass term to the string Lagrang
Lcl

string,

Lcl5Lcl
string22mA12v2

52s
R

2 S arcsinv
v

1g21D22mg21. ~11.1!

We have used Eq.~10.2! with R15R25R/2. The quark ve-
locity is v5vR/2, andg51/A12v2 is the quark boost fac-
tor. The Lagrangian~11.1! is a function ofR andv,

Lcl5Lcl~R,v!. ~11.2!

The angular momentum of the meson is obtained by vary
the Lagrangian with respect to the angular velocity

J5
]Lcl

]v
5s

R2

4v S arcsinv
v

2g21D1mRvg21. ~11.3!

The meson energy is given by the Hamiltonian

E5v
]Lcl

]v
2Lcl5sR

arcsinv
v

12mg. ~11.4!

The classical equation of motion

]L

]R
50 ~11.5!

for the quarks determinesR as a function ofv,

s
R

2
5m~g221!. ~11.6!

Equation~11.6! shows thatR is proportional tog2 for large
g. Expanding Eqs.~11.3! and ~11.4! in the largeR limit,
where the quark velocityv goes to one, yields the result

J

Ecl
2

5
1

2ps S 12
8

3p
g231O~g25! D . ~11.7!

The first term in Eq.~11.7! is the classical formula for the
slope of a Regge trajectory. The second term is the lead
correction for nonzero classical quark mass, whereg21

5A12v2Þ0.
We now calculate the correction to the energy obtained

consideringLfluc a small perturbation to the classical La
grangianLcl . The Lagrangian

L~v!5Lcl~v!1Lfluc~v!, ~11.8!
3-11
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depends on only one degree of freedom, the rotation angu,
through its time derivativev5 u̇. To first order inLfluc , the
correction to the energy is minus the correction to the
grangian@22#

E~J!5@Ecl~v!2Lfluc~v!#uv5v(J) , ~11.9!

where v is given as a function ofJ through the classica
relation ~11.3!.

The correction~11.9! to the energy of the meson gives
correction to the slope~11.7! of a Regge trajectory

J

E2
5

J

Ecl
2

Ecl
2

E2
.

J

Ecl
2 S 112

Lfluc

E D . ~11.10!

Using Eq. ~11.7! for J/Ecl
2 and Eq. ~10.10! for Lfluc , we

obtain

J

E2
5

1

2ps
2

2

p2sRE
gF lnS MR

2g2D 11G
2

4

3p2s
g231

7

6psRE
1OS g25,

1

REg D .

~11.11!

We write R and g as functions ofE using the definition
~11.4! of E and the classical equation of motion~11.6!. Be-
causeR and g only appear in the small correction terms
the result~11.11!, we only need their leading order depe
dence onE,

R.
2E

ps
, g.A E

pm
. ~11.12!

Substituting Eq.~11.12! in Eq. ~11.11! gives

J5
E2

2ps
2A E

p3m
F lnS Mm

s D11G
2

4

3s
Am3E

p
1

7

12
1O~E21/2!. ~11.13!

The leading term is the classical Regge formula. The n
term is the leading correction due to string fluctuations. T
third term is a nonzero quark mass correction. The fou
term is another correction due to string fluctuations.

Equation~11.13! gives a meson Regge trajectoryJ(E2).
We used values43 as50.25 ands5(455 MeV)2 obtained
from the Cornell fits of heavy quark potentials@18#. This
gives M5gf05A3s/4as5910 MeV. The only other pa-
rameter is the quark massm. In Fig. 3, we plotJ versus the
square of the energy~11.9! for quark masses of 30, 100, an
300 MeV. For comparison, we also plot the classical form
J5E2/2ps. The points@23# plotted on the graph are ther1,
A2, r3, A4, r5, andA6 mesons. The crosses are thev1, f 2,
v3, f 4, and f 6. We have added one to the value of the a
gular momentumJ in Fig. 3 to account for the contribution
of the spin of the quarks.
09401
-

xt
e
h

a

-

We have chosen a range of values for the quark masse
Fig. 3 in order to give a qualitative picture of the dependen
of the Regge trajectory on the quark mass. Since Eq.~11.13!
does not include the contribution of quark fluctuations to
Regge trajectory, this formula is incomplete. We are now
the process of including the quark degrees of freedom in
functional integral~6.14!. The boundaryG of the sheetx̃m

becomes dynamical, and couples to the string fluctuation
is clear that a calculation of the contribution of these degr
of freedom is essential to understanding why the class
formula for Regge trajectories works so well.

XII. SUMMARY AND CONCLUSIONS

The primary results of the paper are Eqs.~6.14! and
~11.13!. We have expressed the path integralW@G# ~3.5! of a
renormalizable quantum field theory having classical vor
solutions as the path integral formulation of an effecti
string theory of vortices~6.14!. This theory describes the tw
transverse fluctuations of the vortex at scales larger than
inverse mass of the lightest particle in the field theory. O
method is applicable to any field theory containing vort
solutions.

Using the string representation ofW@G#, we carried out a
semiclassical expansion of the effective action2 i logW@G#
about a classical solution of the effective string theory. W
calculated the contribution of these string fluctuations exp
itly for the case where the world lineG is generated by the
trajectory of a quark-antiquark pair separated by a dista
R. We are now calculating the contribution to the effecti
action 2 i logW@G# due to the quantum fluctuations of th
boundary.
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APPENDIX A: NOTATION AND THE CURVATURE
OF THE VORTEX

We describe the string world sheet by the functionx̃m(j)
of the coordinatesj. The physics of the vortex should b

FIG. 3. J versusE2.
3-12
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EFFECTIVE STRING THEORY OF VORTICES AND . . . PHYSICAL REVIEW D63 094013
independent of the coordinate system we choose, so we
quire the theory to be invariant under a reparametrization
the coordinatesj→ j̃(j). The tangent vectors to the vorte
world sheet are defined by taking derivatives ofx̃m(j),

ta
m~j![]ax̃m~j!, ~A1!

where]a5]/]ja is a partial derivative with respect to one
the vortex coordinates. The induced metric on the wo
sheetx̃m(j) is

gab[ta
mtmb . ~A2!

It is also convenient to define the square root of the deter
nant of the metric

A2g5A2 1
2 eabecdgacgbd. ~A3!

We use theta
m to define an antisymmetric tensor which d

scribes the orientation of the string world sheet

tmn[
eab

A2g
ta
mtb

n . ~A4!

This quantity was defined by Polyakov@21#. It is the projec-
tion of the antisymmetric tensoreab into the space of four-
dimensional tensors. This tensor defines the orientation
the two-dimensional vortex world sheet in four space. T
quantity ~A4! is also independent of the coordinate para
etrization of the world sheetx̃m(j).

We now describe the curvature of the vortex world she
We do this by taking covariant derivatives of the tange
vectors. The covariant derivative ofta

m is

¹bta
m5]btm

a 2Gab
c tc

m , ~A5!

where theGab
c are Christoffel symbols

Gab
c 5 1

2 gcd~]agbd1]bgad2]dgab!. ~A6!

The covariant derivatives of the tangent vectors are ortho
nal to the world sheet,

tmc¹atb
m5tmc~]atb

m2Gab
d td

m!50. ~A7!

This identity is derived using the definition~A6! of the
Christoffel symbols, the definition~A2! of the metric, and
the relationship between derivatives of differentta

m ,

]atb
m5]bta

m5]a]bx̃m. ~A8!

The covariant derivatives of the tangent vectors are n
mal to the string world sheet. We therefore define a basi
normal vectorsnA

m , which satisfy the conditions

nmAta
m50, nmAnB

m5dAB . ~A9!

The nA
m are an orthonormal basis for the vectors normal

the world sheet. Equation~A7! implies that
09401
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¹atb
m5nA

mK ab
A ~A10!

for some tensorK ab
A . The tensorK ab

A is called the extrinsic
curvature tensor of the string world sheet. With the definiti
~A10!, the curvature tensorK ab

A is

K ab
A [nm

A¹atb
m5nm

A]a]bxm. ~A11!

It is symmetric in the indicesa andb due to the relationship
~A8! between derivatives of tangent vectors.

The extrinsic curvature of the string world sheet can a
be described using derivatives of the normal vectors. T
orthogonality of thetma and thenA

m implies

tmb]anA
m52K ab

A . ~A12!

Therefore, the derivatives of the normal vectors can be w
ten as

]anA
m52tmbK ab

A 1nB
mA a

AB . ~A13!

The tensorA a
AB is called the torsion, and it describes th

twisting of the basis of normal vectors as we move along
world sheet. The torsion depends on our choice of thenA

m , so
we will choose them so that the torsion is zero. This is do
by requiring that thenA

m satisfy the differential equation

]anA
m5nA

n ~¹atnb!tmb. ~A14!

Equation~A14! is equivalent to the statementA b
AB50. It is

consistent with the conditions~A9! which define the norma
vectors. As long as the normal vectors have an orthonor
basis at one point, Eq.~A14! guarantees they will be ortho
normal in a neighborhood of that point. Therefore, it is
ways possible to find a local, orthonormal, torsion free ba
for the normal vectors.

There is one additional property of the normal vectors
will use. The antisymmetric combination of the normal ve
tors is ~with proper ordering! equal to the dual of the world
sheet orientation tensortmn ~A4!

eABnA
mnB

n 5 t̃ mn, ~A15!

where

t̃ mn5 1
2 emnabtab . ~A16!

The relationship~A15! can be understood by noting that an
antisymmetric tensor is of the form

Amn~j!5T~j!tmn1N~j!eABnA
mnB

n 1MAa~nA
mta

n2nA
n ta

m!.

~A17!

The tensort̃ mn is orthogonal to theta
m , so it must be propor-

tional to eABnA
mnB

n . Squaring both of these tensors gives

~ t̃ mn!25~eABnA
mnB

n !252. ~A18!
3-13
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Therefore,t̃ mn andeABnA
mnB

n are equal up to an overall sign
which is fixed by choosing an appropriate ordering for t
normal vectors.

APPENDIX B: DISCUSSION OF J�

The JacobianJ' ~5.5! is a Faddeev-Popov determinan
because fixing the position of the string in the field integr
is analogous to fixing a gauge in a gauge theory. In the st
action, we fix the degrees of freedom which generate
transformation

x̃m~j!→ x̃m~j!1dx'
A~j!nmA~j! ~B1!

which displaces the vortex.
The JacobianJ' is analogous to the Faddeev-Popov d

terminant in a gauge theory. In a gauge theory, where thd
function fixes the symmetry generated by the transforma

Am→UAmU211U]mU21, ~B2!

the Faddeev-Popov determinant appears as a normaliz
for the d function @24#

Zgauge5E DAmd@F~Am!#DFPe
2S, ~B3!

where

DFP
215E DUd@F~Am!#. ~B4!

The Wilson loop~B3! is analogous to our Eq.~5.2! for the
effective action. The determinantDFP is analogous toJ' .

In the gauge theory, the Faddeev-Popov method is use
remove nonphysical degrees of freedom from the probl
The d function is inserted in the path integral part to fix th
fields in some particular gauge. This creates an integral o
all gauges which appears as a normalization factor, an
removed. Thed function in Eq. ~5.2!, on the other hand
fixes the position of the vortex sheet, which is a physi
degree of freedom.

APPENDIX C: EVALUATION OF S1

We want to evaluate the term

S15 iTr ln@2¹2#, ~C1!

in the effective action for a general string world sheet. W
work in coordinatesr andt, such thatt is the time in the lab
frame, andr is orthogonal tot (grt50). In these coordinates
the functional integral~8.8! for eiS1 takes the form

eiS15E Df 1Df 2 expH 2 i E dtE
2R1

R2
drA2gttgrr

3FgttS ] f i

]t D 2

1grr S ] f i

]r D 2G J . ~C2!

We consider the case where the metric is independentt,
and we make the coordinate transformationr→x defined by
09401
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e

dx

dr
5A grr

2gtt
, xur 5050. ~C3!

The coordinatex runs from2X1 to X2,

X15E
2R1

0

drA grr

2gtt
,

X25E
0

R2
drA grr

2gtt
. ~C4!

In these coordinates, the length of the string isX11X2
5Rp , the proper length of the string

Rp5E
2R1

R2
drA grr

2gtt
. ~C5!

In the coordinate system (x,t), the metric is conformal

gxx5S dx

dr D
22

grr 52gtt ,

gxt5S dx

dr D
21

grt50, ~C6!

and

eiS15E Df 1Df 2expH E dtE
2X1

X2
dxF2S ] f i

]t D 2

1S ] f i

]x D 2G J .

~C7!

We evaluate Eq.~C7! in a manner analogous to our treatme
of S2 in Sec. IX. We Fourier transform in both space a
time, introducing variablesn andkn5pn/Rp . This transfor-
mation puts the action in Eq.~C7! in a diagonal form. Doing
the f 1 and f 2 integrations gives

S15(
n,n

lnFn21S pn

Rp
D 2G , ~C8!

where we have Wick rotatedn→2 in to avoid the poles at
n56pn/Rp .

The lengthRp is just the classical string energyEcl di-
vided by the string tensions, sinceEcl is

Ecl52s
1

TE d2j
]

] ẋ0
A2g

5s
1

TE dtE
2R1

R2
drA grr

2gtt

5sRp . ~C9!
3-14
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The quantityRp5Ecl /s is the length of the string measure
in local comoving coordinates, which are at rest with resp
to the string. This is different from the string lengthR in the
laboratory frame.

We will regulateS1 using the results of LSW. Their resu
for Sreg is the following:

Sreg52
d22

4p
A~C!(

j
e jM j

2 ln M j
22

d22

4
L~C!(

j
e jMj

1S d22

6
2

1

4pE d2jA2gRD(
j

e j ln M j
21SPV,

~C10!

whered is the number of dimensions,A(C) is the area of the
string world sheet,L(C) is the length of its boundary, andR
is the scalar curvature of the sheet. TheMj are regulator
masses, and thee j are appropriate coefficients. The fin
term,SPV, is finite in the limit where theMj→`.

LSW evaluate the finite termSPV only for a straight string
of lengthR with fixed ends. In this case, the area of the sh
A(C)5RT, the length of the boundaryL(C)52T, and the
curvature of the sheet is zero. They then obtained the exp
contribution to the heavy quark potential,

2 lim
T→`

1

T
Sreg5

1

2p
R(

j
e jM j

2 ln M j
21(

j
e jMj2

p

12R
.

~C11!

The first term in Eq.~C11! renormalizes the string tension
The second renormalizes the quark mass. The third is
well known Lüscher term in the heavy quark potential.

Since the extrinsic curvature vanishes for a flat sheet,
can identify the result~C11! with our expression~C8! for S1,
with Rp replaced byR:

2 lim
T→`

1

T (
n,n

lnFn21S pn

R D 2G
5

1

2p
R(

j
e jM j

2 ln M j
21(

j
e jMj2

p

12R
.

~C12!
ct

t
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e

Equation~C12! tells us how to regulateS1. ReplacingR by
Rp in Eq. ~C12! gives the regulated form ofS1:

2 lim
T→`

1

T
S15

1

2p
Rp(

j
e jM j

2 ln Mj1(
j

e jMj2
p

12Rp
.

~C13!

The first term in Eq.~C13! is still a string tension renor-
malization, since both the string tension contribution to t
energy~C9! and the first term in Eq.~C13! are proportional
to Rp . The second term in Eq.~C13! is, as before, a renor
malization of the quark mass. The finite part of the contrib
tion of S1 to the action is

S1ufinite part5T
p

12Rp
. ~C14!

This is the result stated in Sec. VIII. The result~C14! is the
Lüscher term, with the distanceR between the quarks re
placed by the proper lengthRp of the string. Our result is Eq
~C5!, the derivation ofRp .

APPENDIX D: CUTOFF DEPENDENCE OF S2

In this appendix, we show that the divergent part ofS2 for
a general sheet is proportional to the integral of the sc
curvatureR. This agrees with the logarithmic divergenc
~C10! derived by LSW by other means. To obtain the dive
gent part ofS2, we carry out a Fourier transform with respe
to the variablex. For functions defined on the interval2X1
,x,X2, thed function can be expressed as a sum of sin

d~x2x8!5
2

Rp
(
n51

`

sin@kn~x1X1!#sin@kn~x81X1!#,

~D1!

wherekn5pn/Rp . The Fourier transform of an operator o
the form2]2/]x21U(x) can then be written
K kmU2
]2

]x2
1U~x!UknL 5

2

Rp
E

2X1

X2
dx sin@km~x1X1!#S 2

]2

]x2
1U~x!D sin@kn~x1X1!#

5kn
2dn,m1

2

Rp
E

2X1

X2
dx sin@km~x1X1!#sin@kn~x1X1!#U~x!. ~D2!

Using the formula~D2! to evaluate Eq.~9.6! gives

S25
T

2
TrnFAkn

2dn,mdAB2
2

Rp
E

2X1

X2
dx sin@km~x1X1!#sin@kn~x1X1!#A2ḡK̄ab

A K̄Bab2kndn,mdABG . ~D3!

094013-15
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The trace is over indicesA,B which run from 1 to 2, and
indicesn,m which run from 1 to`. The trace is cutoff at
kn5M , the mass of the vector particle in the original fie
theory.

We expand Eq.~D3! for large kn and obtain the cutoff
dependent part ofS2,

S252
T

4 (
n51

MRp /p
1

Rpkn
E

2X1

X2
dxA2ḡ~K̄ab

A !21finite.

~D4!

The term (K̄ab
A )2 is equal to minus the scalar curvatureR,

R5~K̄a
Aa!22~K̄ab

A !2, ~D5!

since the equation of motion~7.10! implies K̄a
Aa50. The

cutoff dependent part ofS2 is therefore

S25
T

4 (
n51

MRp /p
1

pnE2X1

X2
dxA2ḡR1finite. ~D6!

Equation~D6! agrees with the result of LSW for the leadin
semiclassical logarithmic divergence.

APPENDIX E: EVALUATION OF S2

We want to evaluateS2,

S25
T

2 S TrA2
]2

]x2
dAB2A2ḡK ab

A K Bab

2TrA2
]2

]x2
dABD ~E1!

for the fluctuations about a straight string of lengthR rotating
with angular velocityv. To evaluate this, we must determin
the value of the extrinsic curvatureK ab

A . The definition of
the extrinsic curvature is

K ab
A 5nm

A]a]bxm. ~E2!

The stringxm is

xm~x,t !5tê0
m1

1

v
sin~vx!@cos~vt !ê1

m1sin~vt !ê2
m#.

~E3!

The êi
m are a basis of orthonormal unit vectors in Minkows

space. ThenA
m are a basis for the vectors normal toxm. We

choose the basis

n1
m5ê3

m ,

n2
m5tan~vx!ê0

m1sec~vx!@2sin~vt !ê1
m1cos~vt !ê2

m#. ~E4!
09401
With this choice for thenA
m , K ab

1 is zero, because theê3
m

component ofxm is zero. The only nonzero component
K ab

A K Bab is

A2ḡ~K ab
2 !2522v2 sec2vx. ~E5!

Now that we know whatK ab
A is, we can evaluate Eq

~E1!. Inserting Eq.~E5! into Eq. ~E1! gives

S25
T

2 S TrA2
]2

]x2
12v2 sec2vx2TrA2

]2

]x2D .

~E6!

The traces in Eq.~E6! are defined as sums over the eige
values of the given operators. Replacing the traces with
plicit sums gives

S25
T

2 (
n51

LRp /p SAln2
pn

Rp
D , ~E7!

where

Rp5
arcsinv

v
R. ~E8!

The eigenvaluesln are determined by the eigenfunctio
equation

S 2
]2

]x2
12v2 sec2vxD cn~x!5lncn~x!, ~E9!

with the boundary conditionscn(6Rp/2)50. The difference
between the traces in Eq.~E6! is logarithmically dependen
on the cutoffL ~the mass of the dual gluon!.

Equation~E9! has the form of the Schro¨dinger equation,
with the potential 2v2 sec2vx. This potential is an analytic
continuation of the potential 2v2 sech2vx, whose eigenfunc-
tions can be expressed terms of hypergeometric funct
@25#. Using this result, we find the eigenfunctions

cn~x!

5HAln cos~Alnx!1v tanv x sin~Alnx! for n odd,

Aln sin~Alnx!2v tanv x cos~Alnx! for n even.
~E10!

The eigenvaluesln are

ln5S ~pn12an!v
R arcsinv D 2

, ~E11!

wherean satisfies the transcendental equation

p

2
n1an

arcsinv
5

v

A12v2
cotan , ~E12!
3-16
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and 0,an,p/2. There is non50 eigenvalue, despite th
fact thata05arcsinv satisfies Eq.~E12!, because the corre
sponding eigenvaluel05v2 makescn zero everywhere.

We will carry out the sum~E7!,

S25
T

2 (
n51

LRp /p SAln2
pn

Rp
D , ~E13!

by converting it to a contour integral. We will find a functio
Fl(z) which has zeros wheneverz56Aln. We will find
another function FRp

(z) which has zeros wheneverz

56pn/Rp . We will then define a functionF int(z),

F int~z!5
d ln Fl~z!

dz
2

d ln FRp
~z!

dz
. ~E14!

The functionF int(z) has poles of residue 1 whenz56Aln
and poles of residue21 when z56pn/Rp . We then re-
write the sum~E13! as a contour integral,

S25
T

4p i E dzzFint~z!. ~E15!
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The contour of the integral~E15! lies along the imaginary
axis, and on a semicircle atuzu5L with the real part ofz
positive.

To write S2 as the contour integral~E15!, we need to find
the functionsFl(z) andFRp

(z). The functionFRp
(z) is

FRp
~z!5sin~Rpz!, ~E16!

which is zero forz56pn/Rp . We find Fl(z) by recalling
that the eigenfunctions~E10! vanish atx56Rp/2. There-
fore,

Fodd~z!5z cosS Rp

2
zD1v tanS Rp

2
v D sinS Rp

2
zD ,

~E17!

has zeros atz5Aln for n odd, and

Feven~z!5z sinS Rp

2
zD2v tanS Rp

2
v D cosS Rp

2
zD ,

~E18!

has zeros atz5Aln for n even. Thus,
s run
s

are no
contour,

. We
Fl~z!5
Fodd~z!Feven~z!

z22v2

5
1

2

z2sin~Rpz!22v z tanS Rp

2
v D cos~Rpz!2v2tan2S Rp

2
v D sin~Rpz!

z22v2
. ~E19!

The factor (z22v2)21 removes nonphysical zeros which appear becauseFeven(6v)50. These zeros correspond to then
50 ‘‘eigenfunction’’ which is zero everywhere forl05v2. The functionF int(z) is

F int~z!5
d

dz
lnF z222v z tanS Rp

2
v D cot~Rpz!2v2 tan2S Rp

2
v D

z22v2
G . ~E20!

Inserting Eq.~E20! in Eq. ~E15! and integrating by parts gives

S252
T

4p i E dz lnF z222v z tanS Rp

2
v D cot~Rpz!2v2 tan2S Rp

2
v D

z22v2
G . ~E21!

Now, instead of having poles atz5Aln andz5pn/Rp , the integrand has branch points at these points. The branch cut
from Aln to pn/Rp for all n along the real axis. There is one branch cut for each value ofn. Since the contour either include
both Aln andpn/Rp or excludes both these points, none of these branch cuts cross the contour of integration. There
branch points atz56v, since both the numerator and denominator vanish there. None of the branch cuts crosses the
so the contour is still closed, and the integration by parts does not produce a boundary term.

The contour of the integral~E21! lies on the imaginary axis and a semicircle passing through positive real infinity
rewrite Eq.~E21! as two integrals over the different pieces of the contour. For large values of the cutoffL, the actionS2 is
3-17
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S252
T

4pE2L

L

dy lnF y212vy tanS Rp

2
v D coth~Rpy!1v2 tan2S Rp

2
v D

y21v2
G

2T
1

4pE2p/2

p/2

duLeiuF22
v

L
e2 iutanS Rp

2
v D cot~RpLeiu!1O~L22!G . ~E22!

For largeL, cot(RpLeiu) is proportional to the sign ofu, so theu integral vanishes. They integral is symmetric undery
→2y. Changing variables tos5(y/v)cot(vRp/2) gives

S252T
v

2p
tanS Rp

2
v D E

0

~L/v!cot(vRp/2)
ds lnF s212s cothFRpv tanS Rp

2
v D sG11

s21cot2S Rp

2
v D G . ~E23!
nt
cut-
The numerator in Eq.~E23! is approximately (s11)2 for
large values ofs. We use this fact to extract the diverge
part of Eq.~E23!, getting

S252T
2v
pRFvg lnS LR

2v2g
D 1vg2

p

2 G2T
v2g

pR
f ~v !.

~E24!

We have replacedRp with its definition

Rp5
2

v
arcsinv. ~E25!

g5(12v2)21/2 is the quark boost factor. The functionf (v)
contains the rest of the integral

f ~v ![E
0

`

ds lnFs212s coth~2svg arcsinv !11

~s11!2 G .

~E26!

For v→1, the asymptotic value off (v) is

f ~v !.
1

6g2
. ~E27!
-
m
,

ri

09401
The cutoff L used in Eq.~E24! is the cutoff in thex
coordinate. We must expressL in terms of the cutoffM for
the r coordinate, which measures physical distance. The
offs L andM are related by the equationLdx5M dr , or

L5M
dr

dx
5Mg21. ~E28!

Inserting Eq.~E28! into Eq. ~E24! gives

S252T
2v
pRFvg lnS MR

2~g221!
D 1vg2

p

2 G2T
v2g

pR
f ~v !.

~E29!

Using the classical equation of motion~11.6! then gives

S252T
2v
pR Fvg lnS Mm

s D1vg2
p

2 G2T
v2g

pR
f ~v !.

~E30!
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