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Singlet g, structure function in the next-to-leading order
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Following a previous study of the one-loop factorization of the nonsingjestructure function of the
nucleon, we present in this paper the next-to-leading order coefficient functions in the singlet sector. To obtain
the result, the partonic processes of virtual Compton scattering off two and three on-shell gluons are calculated.
A key step in achieving the correct factorization is to separate the correct twist-two contribution. The Burkardt-
Cottingham sum rule is nominally satisfied at this order.
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In lepton-nucleon deep-inelastic scattering with an elec- gr(xg,Q?)
tromagnetic current, two spin-dependent structure functions
of the nucleon can be studied; AXg,Q2). 91(xg,Q?) is B 1 dx dy Xg Xg_
H y - T C| _l — 1 aS
closely related to the spin structure of the nucleon and has T Joax y X'y

been investigated extensively in the last decagéxg,Q?)

is present in processes involving transversely polarized

nucrl)eons, and ig a three-twist strucq[ure function ?;1 t%e sense X Ki(x'yH(XBH_XB)]’ )
that it contributes to physical observables at ordé€) [1].

The experimental measurements of thestructure function whereC; are the coefficient functions. In a previous paper
have been done by several collaboratif?ls There is a long  [6], we studied the factorization of the nonsinglet part at the
history in debating the physics involved gy(xg,Q?). As  one-loop order where there were two distributios 2, ,
more results from quantum chromodynamiQCD) are ob-  associated with each nonsinglet comporgrdand their one-
tained and understood, it is generally accepted thakoop coefficient functions were obtained for the first time.
0,(xg,Q?%) probes quark and gluon correlations in the In this paper, we study the one-loop factorization of the
nucleon which cannot be accessed through Feynman-typginglet part ofgr(xg,Q?). The subject has previously been

incoherent parton scattering. considered in Ref( 7], and a comparison of the results will
At leading orderg,(xg,Q?) can be expressed in terms of be made in the end of the paper. Contrary to the previous
a simple parton distributiod g(x), conclusion, the result of this paper represents a local operator
product expansion. Throughout, we use the kinematics de-
g7(Xg,Q%)=(g;+7,)(Xg,Q?) fined in[6]. We first define the singlet quark distributions
1 —
=5 2 €(A0ar(xa, Q%)+ Adar(Xe Q%) Kis(xy)=2 Kia(xy) @

(D where the sum is over all quark flavors. Their one-loop co-

efficient functions are
where

X X
222 =@y s(x—xg), (5)

X'y

R Cix

Aar00 = 5y7 [ 58 (PS.[(0) 3, 75y [PS,)
(2 wheree?==3,e?/N; is the mean square quark charge &hd

is the number of active quark flavors. Using the relation
This result has lead to many incorrect interpretations of the
g, physics. When the leading-logarithmic corrections are 2
studied, it is found that\g(x,Q?) mixes with other more Agr(x)= - J dy{K1(x,y) +Ka(x,y)}, (6)
complicated distributions under scale evoluti@. In fact,
Ag+(x,Q?) is a special moment of a general class of partonit is easy to see that the result is consistent with @&.

distributions involving two light-cone variabldg,5]. When The general strategy of higher-twist factorization beyond
the scale changes, only those general distributions evolvihe leading orders has been presentefbirand will not be
autonomously. repeated here. For the singlet factorization, we need to con-

Thus a general factorization formula fgs is much more  sider four classes of parton intermediate states: two quarks,
involved than the leading-order result shows. It should contwo quarks-one gluon, two gluons, and three gluons. In the
tain the generalized two-variable distributio§(x,y). In-  cases of two-quark and two-quark-one-gluon states, many of
deed, we shall write the relevant diagrams have been considerefGlnwe will
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FIG. 1. Feynman diagrams contributing to two quark and one FIG. 3. Feynman diagrams for three-gluon Compton scattering.
gluon intermediate states. The intermediate longitudinal gluon is orThere are a total of 24 diagrams representethinThe other 8, in
shell, so a special propagator derived from the equation of motiorib), have the form of those in Fig. 1, and vanish for the same
has been employed. There are a total of six diagrams. In dimeneason.
sional regularization, the sum is zero.

. . . [ye(x,y) =T B(X y)+T% 98(X, y)
g

not repeat that analysis here. In addition we must take into

account the explicit singlet diagrams shown in Fig. 1. A d\ du

detailed calculation shows that their contributions cancel. om 2m

Thus the one-loop coefficient functions kfs (x,y) remain

P drxduly=x)

the same, as do those of the non-singlet sector. In what fol- X(PYAL(0)iD gap( wN)AF(AN)[PS)  (9)
lows, we focus entirely on two- and three-gluon intermediate
states. of distributions, wherd*%, = 5,p0* — 9fachAc . IN addition,

The diagrams involving two-gluon intermediate states argyauge invariance demands that physical observables depend
shown in Fig. 2. To isolate thé)(1/Q) contribution, the  on moments of
incoming gluon is given a transverse momentum which is
expanded to first order in the internal propagators. Our cal- d\ du

culation shows that only the correlation function xyl4a(X,y)= 5= é“e’“(y X)

X(PYF,#(0)iD sap(1n)Fy “(NN)|PS)

d\ .
T4 o(X,y)= 8(X— f—e'“
208(X.Y)=8(x=Yy) | 5— =Kgs(X,)i€*#7p,n,S, . (10

“00)i a
X(PHAL(0)id.ALAMIPS) @) With appropriate insertions of light-cone gauge links, which
can be generated by summing over states with additional
contributes, wherer and u. take only transverse values. longitudinally-polarized gluons 4g is gauge invariant. Our

The perturbative diagrams corresponding to three gluomoal is to calculate its one-loop “coefficient function.
intermediate states are shown in Fig. 3. The relevant corre- The Compton amplitude for virtual photon scattering on a

lation function is transversely polarized nucleon can be written a$'%¢=
+1),
T4 a(X,y)= D 9 rxgutr— 1
’ 2m 27 TH'=~ie""*q,S, 5= Sr(xg, Q7). (1)
X<PS ngabcAa(O)
X Ap o LMAZAN)|PS). ) In QCD, we can write the singlet part as
2 dx dy Xy
All fields and couplings in the above expressions are bare. ST(XBa = f > y 3%
Gauge invariance demands that the final result depend on the B 78

combination y

X
XKy1p(X,y)+ Mzz(x—,x—)

§ § B XB
N X
:gj; @ @ e
X Kgg(X,Y) | = (Xg— —Xg), (12

FIG. 2. Two-gluon contributions tg;. The cross® represents
one transverse momentum operator insertion. There are a total ¥here theM’s are perturbation series i and have infrared
eight diagrams. poles. Once again, the tree and one-loop level expressions
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for M;y are the same as for the nonsinglet case in F&f.  bation theory, the result depends on the bare cougling
The amplitudeM,, starts at the one-loop level. To sim- We replace it with the renormalized coupling in the modified
plify the expression, we assunieg|>1 so that the ampli- minimal subtractiorMS scheme; the difference appears only

tude is purely real. at higher orders inag(u?). A straightforward calculation
Since all Feynman diagrams are computed in bare pertursields
|
2 2 €l2
Wy vy GHITe (1 1]2
Mg (X,y) in g2 2xyle (Y=2x)(1=x)+3y(y—x)— 62 < (V=) [log(1—x)
X
+ (4x—3y)(1—y)—ZX(y—X)+4§(y—X))Iog(l—y)
(x+y)(2x—3y) (y—x)?
+ T(l—(x—y))—xy log(1—(x—=y))|=3| y+2 (1-x)log(1~x)
X 6x2+xy—9y?
| 3(4x=3y) +4 2 (y =) |(1=y)log(1—y) + —— (1= (x=y))log(1 = (x=y))
1 y )
5| (Y=2)(1=x)+3y(y—x) =6 (y=Xx) |log (1-X)

1
(4x—3y><1—y>—2x<y—x>+4§(y—x))log2<1—y>

(X+y)(2x—3y)

2
1
3 X—y (A—-(x—y))—xy

Iogz(l—(x—y))], (13)

where e=4—d, p?=4me "eu?, and yg is the Euler constant. We have also introduced the generator normaliZation
=1/2.

Now we want to show thaS?(xB,Qz) is factorizable at the one-loop level, i.e., the infrared polesii/M4 match the
ultraviolet poles inKyg. To this end, we use the infrared poles lhy to generate a scale evolution equation for the
renormalized parton distributions,

d fl g dy( 2 ) < 2 K ,
C“Og/_l,2 -1 X X(XB_X) ( lE(vauu“ )+ ZE(vauu ))

as(,u )N¢ TFf dxdy
8 1X°y%(y—X)

XgY X
(y—ZX)(xB—X)+3y(y—X)—6T(y—X))Iog( 1- X—)

B
y
'°g(1‘g)

(xg— (x—y))—xy) Iog( 1- ﬂ)
XB

XgX
+ (4X—3Y)(XB—Y)—2X()’—X)+47(y—x)

N (X+y)(2x—3y)
X—y

Kg(X:Y)"‘ T (14)

where the ellipses denote the homogeneous part of the evbeen removed. Its matrix elements in the nucleon state are
lution. This contribution is given explicitly in Ref6]. In  given by

order to compare this result to the known twist-three evolu-

tion [4], we must first remove the twist-two contribution.

Consider the twist-two operator (P gLt #rl PG =2a,PW1. .. Prngtn1) - (16)
aﬁJlr/’iZ"/’«nJrl: Ealuijp #2. . .iDMniEp‘”*;) , (15

Itis thel +---+ component of that appears in this trans-
whose indices have been symmetrized and whose traces haverse process:
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64+, ):n+16” (n+2)iAl(ia7)NigkAk

+iAl(ioH)" D Fo*
+faPCAL (19N tgAki T AK
n—-1

+m2:O fabeal (iaF)MgAk(ia )" MAK. (17)
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equations via Eq(17), one can obtain the evolution of the
twist-three operators. A detailed check shows that our result
is identical to the one found in Rd#], which was obtained

by studying the ultraviolet divergences present in the twist-
three operators. We note here that this separation provides a
new homogeneous term in the evolution of the singlet twist-
three quark operators. In the absence of this term, the diag-
onal evolution of these operators would be identical to that in
the nonsinglet sector, since the contributions displayed in
Fig. 1 vanish.

Here, latin indices are understood to take values in the trans- The final step of the calculation is to take the imaginary

verse dimensions. Expanding BEd4) in the largexg limit,

part of the factorlzecST(xB, Q?) to get a factorized expres-

one arrives at evolution equations for the moments of thesion for the structure funct|0|g|T(xB Q?) in the physical
parton distributions. Removing the twist-two part of theseregionxg<<1. We find the coefficient function

a’s(l’v )Te 1

(1)
¢ 8 2xy

9

Xg Xp
X'y y

3(y+2

x(xB—y)a(l—l +
XB

(y—x)?

6x%+ xy— 9y?
X—y

)(XB—X)H(i—l + 3(4x—3y)+4§(y—x)
XB y

(ke (x—Y) >o(%—1)

XgY X X
— (y—2x)(xB—x)+3y(y—x)—GT(y—x)) Iog(X—B—l) 0(—— 1)

— ( (4x—3y)(xB—y)—2x(y—x)+4%(y—x)> Iog(xl—l) 6(1— 1)
B

[ (x+y)(2x—3y)
x—y

where 6(x) is the step-function which appears in E®)
with a factor of 1/f —x).

To check the Burkhardt-Cottingham sum r(ifd, we in-
tegrateg%(xB ,Q?) overxg. Assuming the integration over
andy can be interchanged with that »f, one obtains

1
fo dXBQ%(XB ,Q?)

1 ay(Q?)
:28(1 25 o )

X(P2 div.ysuilPS), (19

oo 4

Xg

Xp

X (18

andy, the above sum rule may be violated. Indeed, some
small xg studies indicate such singular behavia0].

Finally, we consider the next-to-leading order correction
to the singlet part of the®> moment ofg(xg,Q?). In the
leading order, it is well known:

azz(Q 2)+dys(Q?) ], (2D

f dxCg3 (x, QZ)—

wherea, is the second moment of thg;(x,Q?) structure
function andd, is a twist-three matrix elemef1]. Using
the coefficient functions found above, we have

Joldxngﬁ(x,QZ)

where ys has been defined in the 't Hooft-Veltman scheme.
The coefficient 7/2 reduces to 3/2 if we defipe so that the
nonsinglet axial current is conserved. Compared with the
factorization formula forg;(xg,Q?%) [9], we have the
Burkhardt-Cottingham sum rule at one loop as
1
fo dxgg5(xg,Q%) =0. (20)
If the order of integration cannot be interchanged because of
the singular behavior of the parton distributions at smxall
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Using the next-to-leading result forx (x,Q?) [9], we find <AMAvAp>°‘N(X1vxz)gﬁpfv—wsﬁ
1 1 ~
fo dX%(g%(X,QZ)_ggi(X,QZ)) +N(X1,X2)SJF5€#V,++ AN (24)
Obviously, the Lorentz structure in front & can be ex-
- §gzd22(Qz) pressed in terms of the first line using an identity
as( QZ) 27 29 10 Si; 6;/,1/7 += nggye,u,f +Usé_ g;/J,EV* +US§ . (25)
X 1+ 477' Z A_§ F+§NfTF

Therefore, in the final equations §7], we have to puiN
(23 =0 to be consistent with the present analysis. Moreover, the
result in Ref.[16] must also be modified correspondingly.
Next, to have a correspondence with the correlation func-
Q‘ons used here and in Rdf7], we have to identify the mo-
mentum fractions of the gluon lines as follows=x,; and
y=X;—X,. For the latter, we introduce a new coefficient

Notice that the combination aofr and g, relevant tod,s
receives no radiative correction, as in the nonsinglet secto
A detailed calculation shows that analogous results are vali
for all higher moments as wdll2]. This implies that the tree
relation betweeng;(x,Q?) and the twist-two part of

0,(x,Q?) is respected at one-loop order. These results angunctlon
their implications will be presented in a future communica-
tion [12] (1) . _ 1 (1) Xg Xp
. . . gg (vale):TCg VIR (26)
The significance of the present result is as follows: In the y—X Xy

leading order analysis of,, one just needs the leading-

logarithmic evolution of;(x,y), which is now well known  Since the functionN(x;,x,) is symmetric with respect to
[4,5,13, including its largeN, behavior{14]. In the next-to-  interchanges of its arguments, only symmetric parts of
leading order, one needs to know the coefficient functions {”(x1,X; —X,;xg) Will survive. Thus, a symmetrization
and the two-loop evolution oK;(x,y). The former is now leads to the equation

complete with Ref[6] and the present paper. The latter has

not yet been calculated, but in general its effort is not as EM(X1, 1= X2 %8) + E P (Xg X0 — X1 1 Xp)

important as the coefficient function we calculate here.

Finally, let us add a few remarks on the comparison of our EE (X1, X0 Xg) (27)
findings with a previous calculation of Réf7]. As has been 8m 2 172 7BL
noted earlief15], the result of that paper is not complete
since the contributions of twist-three two-gluon operatorswhereE, is the coefficient function from Ref7].
i.e. the diagrams on Fig. 2, were not accounted for. Since the
effect of two-gluon graphs on the final answer is reduced to
a redefinition of the correlation functiofschematically
from (AL A, A7) to (A,D,A;) without affecting the three-  The authors would like to thank V. M. Braun and G. P.
gluon coefficient function, we can directly compare both re-Korchemsky for useful discussions on the subject of this
sults. Before we do it, we observe that the basis of threepaper. In addition, we wish to acknowledge the support of
gluon functions used ifl6,7] is redundant, namely, in the the U.S. Department of Energy under Grant No. DE-FGO02-
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