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Singlet g2 structure function in the next-to-leading order
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Following a previous study of the one-loop factorization of the nonsingletg2 structure function of the
nucleon, we present in this paper the next-to-leading order coefficient functions in the singlet sector. To obtain
the result, the partonic processes of virtual Compton scattering off two and three on-shell gluons are calculated.
A key step in achieving the correct factorization is to separate the correct twist-two contribution. The Burkardt-
Cottingham sum rule is nominally satisfied at this order.

DOI: 10.1103/PhysRevD.63.094012 PACS number~s!: 13.88.1e, 12.38.Bx, 14.20.Dh
ec
on

ha

ze
n

h
he
ty

of

th
r

to

ol

on

er
the

he
n
ll
ous
ator
de-

o-

nd

on-
rks,
the
y of
In lepton-nucleon deep-inelastic scattering with an el
tromagnetic current, two spin-dependent structure functi
of the nucleon can be studied:g1,2(xB ,Q2). g1(xB ,Q2) is
closely related to the spin structure of the nucleon and
been investigated extensively in the last decade.g2(xB ,Q2)
is present in processes involving transversely polari
nucleons, and is a three-twist structure function in the se
that it contributes to physical observables at order 1/Q @1#.
The experimental measurements of theg2 structure function
have been done by several collaborations@2#. There is a long
history in debating the physics involved ing2(xB ,Q2). As
more results from quantum chromodynamics~QCD! are ob-
tained and understood, it is generally accepted t
g2(xB ,Q2) probes quark and gluon correlations in t
nucleon which cannot be accessed through Feynman-
incoherent parton scattering.

At leading order,g2(xB ,Q2) can be expressed in terms
a simple parton distributionDqT(x),

gT~xB ,Q2![~g11g2!~xB ,Q2!

5
1

2 (
a

ea
2
„DqaT~xB ,Q2!1Dq̄aT~xB ,Q2!…,

~1!

where

DqT~x!5
1

2ME dl

2p
eilx^PS'uc̄~0!g'g5c~ln!uPS'&.

~2!

This result has lead to many incorrect interpretations of
g2 physics. When the leading-logarithmic corrections a
studied, it is found thatDqT(x,Q2) mixes with other more
complicated distributions under scale evolution@3#. In fact,
DqT(x,Q2) is a special moment of a general class of par
distributions involving two light-cone variables@4,5#. When
the scale changes, only those general distributions ev
autonomously.

Thus a general factorization formula forg2 is much more
involved than the leading-order result shows. It should c
tain the generalized two-variable distributions,Ki(x,y). In-
deed, we shall write
0556-2821/2001/63~9!/094012~6!/$20.00 63 0940
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gT~xB ,Q2!

5(
i
E

21

1 dx

x

dy

y H Ci S xB

x
,
xB

y
;asD

3Ki~x,y!1~xB→2xB!J , ~3!

whereCi are the coefficient functions. In a previous pap
@6#, we studied the factorization of the nonsinglet part at
one-loop order where there were two distributions,K1a,2a ,
associated with each nonsinglet componenta, and their one-
loop coefficient functions were obtained for the first time.

In this paper, we study the one-loop factorization of t
singlet part ofgT(xB ,Q2). The subject has previously bee
considered in Ref.@7#, and a comparison of the results wi
be made in the end of the paper. Contrary to the previ
conclusion, the result of this paper represents a local oper
product expansion. Throughout, we use the kinematics
fined in @6#. We first define the singlet quark distributions

KiS~x,y!5(
a

Kia~x,y! ~4!

where the sum is over all quark flavors. Their one-loop c
efficient functions are

C1,2S
(0) S xB

x
,
xB

y D5ē2yd~x2xB!, ~5!

whereē25( iei
2/Nf is the mean square quark charge andNf

is the number of active quark flavors. Using the relation

DqT~x!5
2

xE dy$K1~x,y!1K2~x,y!%, ~6!

it is easy to see that the result is consistent with Eq.~1!.
The general strategy of higher-twist factorization beyo

the leading orders has been presented in@6# and will not be
repeated here. For the singlet factorization, we need to c
sider four classes of parton intermediate states: two qua
two quarks-one gluon, two gluons, and three gluons. In
cases of two-quark and two-quark-one-gluon states, man
the relevant diagrams have been considered in@6#; we will
©2001 The American Physical Society12-1
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not repeat that analysis here. In addition we must take
account the explicit singlet diagrams shown in Fig. 1.
detailed calculation shows that their contributions canc
Thus the one-loop coefficient functions ofKiS(x,y) remain
the same, as do those of the non-singlet sector. In what
lows, we focus entirely on two- and three-gluon intermedi
states.

The diagrams involving two-gluon intermediate states
shown in Fig. 2. To isolate theO(1/Q) contribution, the
incoming gluon is given a transverse momentum which
expanded to first order in the internal propagators. Our
culation shows that only the correlation function

G2gB
m ~x,y!5d~x2y!E dl

2p
eilx

3^PSuAa
m~0!i ]aAa

a~ln!uPS& ~7!

contributes, wherea andm take only transverse values.
The perturbative diagrams corresponding to three gl

intermediate states are shown in Fig. 3. The relevant co
lation function is

G3gB
m ~x,y!5E dl

2p

dm

2p
eilxeim(y2x)

3^PSu~2 i !gBf abcAa
m~0!

3Ab a~mn!Ac
a~ln!uPS&. ~8!

All fields and couplings in the above expressions are b
Gauge invariance demands that the final result depend on
combination

FIG. 2. Two-gluon contributions togT . The crosŝ represents
one transverse momentum operator insertion. There are a tot
eight diagrams.

FIG. 1. Feynman diagrams contributing to two quark and o
gluon intermediate states. The intermediate longitudinal gluon is
shell, so a special propagator derived from the equation of mo
has been employed. There are a total of six diagrams. In dim
sional regularization, the sum is zero.
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GgB
m ~x,y!5G2gB

m ~x,y!1G3gB
m ~x,y!

5E dl

2p

dm

2p
eilxeim(y2x)

3^PSuAa
m~0!iD aab~mn!Ab

a~ln!uPS& ~9!

of distributions, whereDaab
m 5dab]

m2g facbAc . In addition,
gauge invariance demands that physical observables de
on moments of

xyGgB
m ~x,y!5E dl

2p

dm

2p
eilxeim(y2x)

3^PSuFa
1m~0!iD aab~mn!Fb

1a~ln!uPS&

5KgB~x,y!i emabgpanbSg . ~10!

With appropriate insertions of light-cone gauge links, whi
can be generated by summing over states with additio
longitudinally-polarized gluons,KgB is gauge invariant. Our
goal is to calculate its one-loop coefficient function.

The Compton amplitude for virtual photon scattering on
transversely polarized nucleon can be written as (e01235
11),

Tmn52 i emnabqaS'b

1

n
ST~xB ,Q2!. ~11!

In QCD, we can write the singlet part as

ST
S~xB ,Q2!5ē2E

21

1 dx

x

dy

y FM1SS x

xB
,

y

xB
D

3KS1B~x,y!1M2SS x

xB
,

y

xB
D

3KS2B~x,y!1
Nf

y2x
MgS x

xB
,

y

xB
D

3KgB~x,y!G2~xB→2xB!, ~12!

where theM ’s are perturbation series inas and have infrared
poles. Once again, the tree and one-loop level express
of

FIG. 3. Feynman diagrams for three-gluon Compton scatter
There are a total of 24 diagrams represented in~a!. The other 8, in
~b!, have the form of those in Fig. 1, and vanish for the sa
reason.
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for MiS are the same as for the nonsinglet case in Ref.@6#.
The amplitudeMg starts at the one-loop level. To sim

plify the expression, we assumeuxBu.1 so that the ampli-
tude is purely real.

Since all Feynman diagrams are computed in bare pe
ev

lu
n.

h

09401
r-

bation theory, the result depends on the bare couplinggB .
We replace it with the renormalized coupling in the modifi
minimal subtractionMS scheme; the difference appears on
at higher orders inas(m

2). A straightforward calculation
yields
n

he
Mg
(1)~x,y!52

as~m2!TF

4p S m̄2

Q2D e/2
1

2xy H 2

e F S ~y22x!~12x!13y~y2x!26
y

x
~y2x! D log~12x!

1S ~4x23y!~12y!22x~y2x!14
x

y
~y2x! D log~12y!

1S ~x1y!~2x23y!

x2y
„12~x2y!…2xyD log„12~x2y!…G23S y12

~y2x!2

x D ~12x!log~12x!

1S 3~4x23y!14
x

y
~y2x! D ~12y!log~12y!1

6x21xy29y2

x2y
„12~x2y!…log„12~x2y!…

2
1

2 S ~y22x!~12x!13y~y2x!26
y

x
~y2x! D log2~12x!

2
1

2 S ~4x23y!~12y!22x~y2x!14
x

y
~y2x! D log2~12y!

2
1

2 S ~x1y!~2x23y!

x2y
„12~x2y!…2xyD log2

„12~x2y!…J , ~13!

where e542d, m̄254pe2gEm2, and gE is the Euler constant. We have also introduced the generator normalizatioTF
51/2.

Now we want to show thatST
S(xB ,Q2) is factorizable at the one-loop level, i.e., the infrared poles 1/e in Mg match the

ultraviolet poles inKgB . To this end, we use the infrared poles inMg to generate a scale evolution equation for t
renormalized parton distributions,

d

d logm2E
21

1

dxdyS 2

x~xB2x! D „K1S~x,y,m2!1K2S~x,y,m2!…

5
as~m2!NfTF

8p E
21

1 dxdy

x2y2~y2x! F S ~y22x!~xB2x!13y~y2x!26
xBy

x
~y2x! D logS 12

x

xB
D

1S ~4x23y!~xB2y!22x~y2x!14
xBx

y
~y2x! D logS 12

y

xB
D

1S ~x1y!~2x23y!

x2y
„xB2~x2y!…2xyD logS 12

x2y

xB
D GKg~x,y!1•••, ~14!
are

-

where the ellipses denote the homogeneous part of the
lution. This contribution is given explicitly in Ref.@6#. In
order to compare this result to the known twist-three evo
tion @4#, we must first remove the twist-two contributio
Consider the twist-two operator

un11
m1m2•••mn115Fa(m1iD m2

••• iD mniF̃ a
mn11) , ~15!

whose indices have been symmetrized and whose traces
o-

-

ave

been removed. Its matrix elements in the nucleon state
given by

^PSuun11
m1•••mn11uPS&52anP(m1

•••PmnSmn11). ~16!

It is the'1•••1 component ofu that appears in this trans
verse process:
2-3
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un11
( i 1•••)5

2

n11
e i j F ~n11!iA j~ i ]1!ni ]kAk

1 iA j~ i ]1!n21DaFa1

1 f abcAa
j ~ i ]1!n21gAb

ki ]1Ac
k

1 (
m50

n21

f abcAa
j ~ i ]1!mgAb

k~ i ]1!n2mAc
kG . ~17!

Here, latin indices are understood to take values in the tra
verse dimensions. Expanding Eq.~14! in the largexB limit,
one arrives at evolution equations for the moments of
parton distributions. Removing the twist-two part of the
e

th

e
ll
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equations via Eq.~17!, one can obtain the evolution of th
twist-three operators. A detailed check shows that our re
is identical to the one found in Ref.@4#, which was obtained
by studying the ultraviolet divergences present in the tw
three operators. We note here that this separation provid
new homogeneous term in the evolution of the singlet tw
three quark operators. In the absence of this term, the d
onal evolution of these operators would be identical to tha
the nonsinglet sector, since the contributions displayed
Fig. 1 vanish.

The final step of the calculation is to take the imagina
part of the factorizedST

S(xB ,Q2) to get a factorized expres
sion for the structure functiongT

S(xB ,Q2) in the physical
regionxB,1. We find the coefficient function
Cg
(1)S xB

x
,
xB

y D5
as~m2!TF

8p

1

2xy F23S y12
~y2x!2

x D ~xB2x!uS x

xB
21D1S 3~4x23y!14

x

y
~y2x! D

3~xB2y!uS y

xB
21D1

6x21xy29y2

x2y
„xB2~x2y!…uS x2y

xB
21D

2S ~y22x!~xB2x!13y~y2x!26
xBy

x
~y2x! D logS x

xB
21D uS x

xB
21D

2S ~4x23y!~xB2y!22x~y2x!14
xBx

y
~y2x! D logS y

xB
21D uS y

xB
21D

2S ~x1y!~2x23y!

x2y
„xB2~x2y!…2xyD logS x2y

xB
21D uS x2y

xB
21D G , ~18!
me

on
where u(x) is the step-function which appears in Eq.~3!
with a factor of 1/(y2x).

To check the Burkhardt-Cottingham sum rule@8#, we in-
tegrategT

S(xB ,Q2) overxB . Assuming the integration overx
andy can be interchanged with that ofxB , one obtains

E
0

1

dxBgT
S~xB ,Q2!

5
1

2
ē2S 12

7

2
CF

as~Q2!

2p D
3^PSu(

i
c̄ ig'g5c i uPS&, ~19!

whereg5 has been defined in the ’t Hooft-Veltman schem
The coefficient 7/2 reduces to 3/2 if we defineg5 so that the
nonsinglet axial current is conserved. Compared with
factorization formula for g1(xB ,Q2) @9#, we have the
Burkhardt-Cottingham sum rule at one loop as

E
0

1

dxBg2
S~xB ,Q2!50. ~20!

If the order of integration cannot be interchanged becaus
the singular behavior of the parton distributions at smax
.

e

of

and y, the above sum rule may be violated. Indeed, so
small xB studies indicate such singular behavior@10#.

Finally, we consider the next-to-leading order correcti
to the singlet part of thex2 moment ofgT(xB ,Q2). In the
leading order, it is well known:

E
0

1

dxx2gT
S~x,Q2!5

1

3
ē2S 1

2
a2S~Q2!1d2S~Q2! D , ~21!

where a2 is the second moment of theg1(x,Q2) structure
function andd2 is a twist-three matrix element@11#. Using
the coefficient functions found above, we have

E
0

1

dxx2gT
S~x,Q2!

5
1

3
ē2H a2S~Q2!

2 F11
as~Q2!

4p

7

12
CFG

2
a2g~Q2!

2

as~Q2!

4p

5

3
NfTF1d2S~Q2!

3F11
as~Q2!

4p S 27

4
CA2

29

3
CF1

10

3
NfTFD G J .

~22!
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Using the next-to-leading result forg1S(x,Q2) @9#, we find

E
0

1

dxx2S gT
S~x,Q2!2

1

3
g1

S~x,Q2! D
5

1

3
ē2d2S~Q2!

3H 11
as~Q2!

4p S 27

4
CA2

29

3
CF1

10

3
NfTFD J .

~23!

Notice that the combination ofgT and g1 relevant tod2S

receives no radiative correction, as in the nonsinglet sec
A detailed calculation shows that analogous results are v
for all higher moments as well@12#. This implies that the tree
relation betweeng1(x,Q2) and the twist-two part of
g2(x,Q2) is respected at one-loop order. These results
their implications will be presented in a future communic
tion @12#.

The significance of the present result is as follows: In
leading order analysis ofg2, one just needs the leading
logarithmic evolution ofKi(x,y), which is now well known
@4,5,13#, including its largeNc behavior@14#. In the next-to-
leading order, one needs to know the coefficient functio
and the two-loop evolution ofKi(x,y). The former is now
complete with Ref.@6# and the present paper. The latter h
not yet been calculated, but in general its effort is not
important as the coefficient function we calculate here.

Finally, let us add a few remarks on the comparison of
findings with a previous calculation of Ref.@7#. As has been
noted earlier@15#, the result of that paper is not comple
since the contributions of twist-three two-gluon operato
i.e. the diagrams on Fig. 2, were not accounted for. Since
effect of two-gluon graphs on the final answer is reduced
a redefinition of the correlation function~schematically!
from ^Am

'An
'Ar

'& to ^Am
'Dn

'Ar
'& without affecting the three-

gluon coefficient function, we can directly compare both
sults. Before we do it, we observe that the basis of thr
gluon functions used in@16,7# is redundant, namely, in th
decomposition
a

09401
r.
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e
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s
s

r

,
e

o
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-

^AmAnAr&}N~x1 ,x2!gmr
' en21sss

'

1Ñ~x1 ,x2!sr
'emn211 . . . . ~24!

Obviously, the Lorentz structure in front ofÑ can be ex-
pressed in terms of the first line using an identity

sr
'emn215grn

' em21sss
'2grm

' en21sss
' . ~25!

Therefore, in the final equations of@7#, we have to putÑ
50 to be consistent with the present analysis. Moreover,
result in Ref.@16# must also be modified correspondingly.

Next, to have a correspondence with the correlation fu
tions used here and in Ref.@7#, we have to identify the mo-
mentum fractions of the gluon lines as follows:x5x1 and
y5x12x2. For the latter, we introduce a new coefficie
function

E g
(1)~x,y;xB![

1

y2x
Cg

(1)S xB

x
,
xB

y D . ~26!

Since the functionN(x1 ,x2) is symmetric with respect to
interchanges of its arguments, only symmetric parts
E g

(1)(x1 ,x12x2 ;xB) will survive. Thus, a symmetrization
leads to the equation

E g
(1)~x1 ,x12x2 ;xB!1E g

(1)~x2 ,x22x1 ;xB!

5
as

8p
E2~x1 ,x2 ;xB!, ~27!

whereE2 is the coefficient function from Ref.@7#.
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