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Nonrelativistic QCD analysis of bottomonium production at the Fermilab Tevatron
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Recent data from the CDF Collaboration on the production of spin-triplet bottomonium states at the Fermi-

lab Tevatronpp̄ collider are analyzed within the NRQCD factorization formalism. The color-singlet matrix
elements are determined from electromagnetic decays and from potential models. The color-octet matrix
elements are determined by fitting the CDF data on the cross sections forY(1S), Y(2S), andY(3S) at large
pT and the fractions ofY(1S) coming fromxb(1P) and xb(2P). We use the resulting matrix elements to
predict the cross sections at the Tevatron for the spin-singlet stateshb(nS) andhb(nP). We argue thathb(1S)
may be observable in run II through the decayhb→J/c1J/c.
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I. INTRODUCTION

The nonrelativistic QCD~NRQCD! factorization formal-
ism provides a systematic framework for analyzing the
clusive production of heavy quarkonium@1#. Long-distance
effects involving the binding of a heavy quark-antiquark p
into quarkonium are factored into parameters called NRQ
matrix elements. These nonperturbative parameters are
versal, so values extracted from one high energy phy
experiment can be used to predict the production rate in
ers. The NRQCD matrix elements scale as definite power
v, wherev is the typical relative velocity of the heavy quar
The NRQCD factorization approach becomes phenome
logically useful upon truncating the expansion inv so as to
reduce the independent NRQCD matrix elements to a m
ageable number. The truncation is most reliable for

heaviest quarkonium states, namely thebb̄ system for which
v2 is roughly 1/10.

The most abundant source of data on bottomonium p
duction is the Fermilab Tevatronpp̄ collider. In run IA of
the Tevatron, the Collider Detector at Fermilab~CDF! Col-
laboration was able to resolve the individual S-wave bo
monium statesY(1S), Y(2S), andY(3S) and measure thei
production cross sections@2#. An analysis of the CDF data
within the NRQCD factorization formalism was carried o
by Cho and Leibovich@3#. The analysis is complicated b
the production of P-wave bottomonium states that sub
quently make transitions to S-wave states. Cho and Leib
ich found that the CDF data was insufficient to determine
the important NRQCD matrix elements and they had to m
educated guesses for some of them.

The CDF Collaboration has recently analyzed the data
bottomonium production from run IB at the Tevatron.
addition to much higher statistics on the cross sections
Y(1S), Y(2S), andY(3S) @4#, they also have results on th
production of the P-wave statesxb(1P) andxb(2P) @5#. The
0556-2821/2001/63~9!/094006~12!/$20.00 63 0940
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high quality of the new CDF data justifies an updated th
retical analysis, with careful attention to the experimen
and theoretical errors.

In this paper, we present a quantitative analysis of
new CDF data on bottomonium production within th
NRQCD factorization formalism. The color-singlet NRQC
matrix elements for S-wave states are determined from t
electromagnetic decays, while those for P-wave states
estimated from potential models. The color-octet NRQC
matrix elements are determined by fitting the CDF data
pT.8 GeV, taking full account of the feeddown from tran
sitions between bottomonium states. The resulting value
the matrix elements are used to predict the cross section
the spin-triplet and spin-singlet bottomonium states in run
of the Tevatron. Our analysis does not take into acco
fragmentation or soft-gluon radiation, so it is only reliable
the intermediate range ofpT where those effects are unim
portant.

II. NRQCD MATRIX ELEMENTS

The NRQCD factorization approach provides a mod
independent framework for analyzing the inclusive produ
tion of heavy quarkonium@1#. The factorization formula for
the differential cross section for the inclusive production o
bottomonium stateH of momentumP has the schematic
form

ds@H~P!#5(
n

ds@bb̄~n,P!#^OH~n!&, ~1!

where the sum extends over both color-singlet and co
octet and over all angular momentum channels for thebb̄

pair. Thebb̄ cross sections, which are independent of t
bottomonium stateH, can be calculated using perturbativ
QCD. All dependence on the stateH is factored into param-
eters^OH(n)& called NRQCD matrix elements. These phe-
©2001 The American Physical Society06-1
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nomenological parameters can be expressed as matrix
ments in an effective field theory called nonrelativistic QC
~NRQCD!. A nonperturbative analysis of NRQCD revea
how the various matrix elements scale with the typical re
tive velocity v of the heavy quark in quarkonium@6#. Spin
symmetry, which is an approximate symmetry of QCD, a
gives relations between various matrix elements.

The relative importance of the terms in the factorizati
formula ~1! depends on the size of thebb̄ cross sections and
on the size of the matrix elements. According to the veloc
scaling rules, the most important matrix element for dir
Y(1S) production is the color-singlet paramet
^O1

Y(1S)(3S1)&. The spin-symmetry relations can be used
reduce the next most important matrix elements to th
color-octet parameters:̂O8

Y(1S)(3S1)&, ^O8
Y(1S)(1S0)&, and

^O8
Y(1S)(3P0)&. These color-octet matrix elements are impo

tant, because the cross sections for producing color-octebb̄

pairs can be much larger than for color-singletbb̄ pairs.
There are analogous matrix elements that describe the d
production ofY(2S) andY(3S). The NRQCD factorization
formula ~1! for direct Y(nS) production reduces to

ds@Y~nS!#5ds@bb̄1~3S1!#^O1
Y(nS)~3S1!&1ds@bb̄8~3S1!#

3^O8
Y(nS)~3S1!&1ds@bb̄8~1S0!#

3^O8
Y(nS)~1S0!&1S (

J
~2J11!

3ds@bb̄8~3PJ!# D ^O8
Y(nS)~3P0!&. ~2!

The factor of 2J11 in the last term comes from using
spin-symmetry relation to eliminatêO8

Y(nS)(3PJ)& in favor
of ^O8

Y(nS)(3P0)&.
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The most important matrix elements for the direct produ
tion of the P-wave statesxbJ(1P), J50,1,2, can be reduced
to a color-singlet parameter̂O1

xb0(1P)(3P0)& and a single

color-octet parameter̂O8
xb0(1P)(3S1)&. There are analogou

matrix elements that describe the direct production
xbJ(2P) and xbJ(3P). The NRQCD factorization formula
~1! for direct xbJ(nP) production reduces to

ds@xbJ~nP!#5ds@bb̄1~3PJ!#^O1
xbJ(nP)

~3PJ!&

1~2J11!ds@bb̄8~3S1!#^O8
xb0(nP)

~3S1!&.

~3!

In the last term, the factor of 2J11 comes from using a
spin-symmetry relation to eliminatêO8

xbJ(nP)(3S1)& in favor

of ^O8
xb0(nP)(3S1)&. We can also use a spin-symmetry rel

tion to replace^O1
xbJ(nP)(3PJ)& in the first term by (2J

11)^O1
xb0(nP)(3P0)&. The matrix elements forY(nS) and

xbJ(nP) enumerated above should be sufficient for a qu
titative description of the production of S-wave and P-wa
bottomonium states. Alternative power-counting schemes
the matrix elements have been suggested@7#, but they all
give a subset of the matrix elements in this list.

The NRQCD factorization formula gives the cross sect
for the direct production of a given bottomonium state. Th
cross sections that are most easily measured in experim
are inclusivecross sections that include contributions fro
the direct production of higher bottomonium states wh
subsequently decay into the given state. For example,
feeddown fromxb(1P), Y(2S), and xb(2P) accounts for
roughly 27%, 11%, and 11% of theY(1S) cross section,
respectively@5#. Taking into account the feeddown from
higherY(mS) andxbJ(mP) states, the cross section for in
clusiveY(nS) production can be written
ds@Y~nS!# inc5ds@bb̄1~3S1!#^O1~3S1!& inc
Y(nS)1(

J
ds@bb̄1~3PJ!#^O1~3PJ!& inc

Y(nS)1ds@bb̄8~3S1!#^O8~3S1!& inc
Y(nS)

1ds@bb̄8~1S0!#^O8~1S0!& inc
Y(nS)1S (

J
~2J11!ds@bb̄8~3PJ!# D ^O8~3P0!& inc

Y(nS) , ~4!
tes
i-
up-

d

c-
er
s.
where the ‘‘inclusive NRQCD matrix elements’’ are

^O@n#& inc
Y(nS)5^OY(nS)@n#&1(

H
BH→Y(nS)^O

H@n#&.

~5!

The sum overH includes all higher bottomonium states th
can make transitions toY(nS). The coefficientBH→H8 is the
inclusive branching fraction forH to decay intoH8. The
inclusive branching fraction for the observed bottomoniu
states are collected in Table I. These numbers were obta
by combining the measured branching fractions for the
ed
-

clusive decaysY(nS)→xbJ(mP)1g, xbJ(nP)→Y(mS)
1g, and Y(nS)→Y(mS)1pp, with the exception of
BY(3S)→Y(1S) , which is a direct measurement@8#.

In Table I, we have not included the spin-singlet sta
hb(nS) andhb(nP), which have yet to be observed. Trans
tions between spin-singlet and spin-triplet states are s
pressed, because they proceed through magneticDS51 tran-
sitions. The rates forDS51 transitions are suppresse
relative to those forDS50 transitions by a factor ofv2,
which is roughly an order of magnitude. The branching fra
tions for hb(2S) into other bottomonium states are furth
suppressed by its large annihilation width into two gluon
6-2
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TABLE I. Inclusive branching fractionsBH→H8 ~in %! for transitions between spin-triplet bottomonium states. The entries ‘‘0 ?’’ in
first row indicate that the feeddown fromxbJ(3P) is neglected in our analysis.

Y(3S) xb2(2P) xb1(2P) xb0(2P) Y(2S) xb2(1P) xb1(1P) xb0(1P) Y(1S)

xbJ(3P) 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ?
Y(3S) 11.460.8 11.360.6 5.460.6 10.660.8 0.660.1 0.660.1 0.460.1 11.360.5
xb2(2P) 16.262.4 1.160.2 1.160.2 0.660.1 12.261.3
xb1(2P) 2164 1.560.3 1.460.3 0.860.2 15.261.8
xb0(2P) 4.662.1 0.360.1 0.360.1 0.260.1 2.460.9
Y(2S) 6.660.9 6.760.9 4.361.0 31.761.2
xb2(1P) 2264
xb1(1P) 3568
xb0(1P) ,6
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Quantitative estimates of the electromagnetic and hadr
transition rates are given in Refs.@9,10#. They support the
conclusion that the branching fractions for decays of sp
singlet states into spin-triplet states can be neglected.

The tiny branching fractions in Table I for the transitio
xbJ(2P)→xbJ8(1P) are the contributions from the doub
radiative transitions viaY(2S). We have not included the
contributions from the two-pion decaysxbJ(2P)
→xbJ8(1P)1pp, which have not been observed. We c
estimate their magnitude by observing that the rates
Y(3S)→Y(2S)1pp and Y(3S)→Y(2S)1gg are equal
to within experimental errors. Since the phase space av
able for the transitionsxbJ(2P)→xbJ8(1P) is similar to that
for Y(3S)→Y(2S), we expect the rate forxbJ(2P)
→xbJ8(1P)1pp to be comparable to that forxbJ(2P)
→xbJ8(1P)1gg. Including the effects of two-pion transi
tions could increase the branching fraction forxbJ(2P)
→xbJ8(1P) by a factor of 2 or 3, but since the values
BxbJ(2P)→xbJ8(1P) in Table I are all less than 1.5%, the
should still be negligible.

As indicated by the entries ‘‘0 ?’’ in the first row of Tabl
I, we neglect the feeddown from thexb(3P) states, which
have not been observed. A naive extrapolation from the o
entries of the table suggest that the branching fractions
xb1(3P) and xb2(3P) into Y(3S) could be about 12%
while their branching fractions intoY(1S) could be about
7%. These are small enough that they would not hav
significant effect on our analysis. We have also neglected
feeddown from D-wave states.

III. PARTON DIFFERENTIAL CROSS SECTIONS

In hadron collisions, bottomonium with transverse m
mentum pT of order mb or larger is produced, at leadin
order inas , by partonfusionprocessesi j →bb̄1k. The dif-
ferential cross section for producing a bottomonium stateH
with momentumP can be expressed in the schematic for

ds@H~P!# fusion5 f i /p^ f j / p̄^ dŝ@ i j →bb̄~P,n!1k#

3^OH~n!&, ~6!
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where there is an implied sum over the partonsi , j ,k and

over thebb̄ channelsn.
The order-as

3 fusion cross section in Eq.~6! gives a good
first approximation only if the transverse momentum is n
too much larger or too much smaller thanmb . For pT

@mb , the order-as
3 fusion cross section for the chann

bb̄8(3S1) has the scaling behaviordŝ/dpT
2;1/pT

4 , while all
other channels are suppressed by powers ofmb

2/pT
2 at leading

order. Parton processes with scaling behavior are calledfrag-

mentationprocesses. The fragmentation contributions tobb̄

channels other thanbb̄8(3S1) enter at higher order inas .
The order-as

3 fusion cross sections therefore underestim

thebb̄ cross section in these channels at largepT . However,
the CDF data on bottomonium production extends only
to pT520 GeV @4#, which is not large enough for fragmen
tation effects to dominate. In extracting the NRQCD mat
elements from that data, it should therefore be sufficien
use the fusion cross section~6!.

The order-as
3 fusion cross section in Eq.~6! also fails at

small pT . For somebb̄ channels, includingbb̄8(1S0) and
bb̄8(3P0,2), there is an order-as

2 fusion cross section from the

parton processi j →bb̄, which produces abb̄ pair with pT

50. In these channels, the order-as
3 fusion cross sections

ds/dpT
2 diverge like 1/pT

2 as pT→0. The divergence in the

integral of the cross section fori j →bb̄1k is canceled by the
radiative corrections to the cross section fori j →bb̄, so that
the cross section integrated overpT is finite order by order in
as . In order to obtain a smooth prediction fords/dpT

2 in the
smallpT region, it is necessary to resum higher order corr
tions involving soft-gluon radiation. This resummation w
have a significant effect on the shape of thepT distribution,
and therefore on the values of the NRQCD matrix eleme
used to fit that distribution. We will avoid the complication
due to soft-gluon radiation at smallpT by using only the data
from pT.8 GeV to fit the NRQCD matrix elements.

We proceed to describe each of the factors in the fus
cross section~6! in more detail. We include the contribution
from the following combinations of colliding partons:i j
5gg, gq, gq̄, qq̄, where q5u,d,s,c and thec quark is
treated as a massless parton. The parton distribut
6-3
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TABLE II. Direct color-singlet matrix elements forY andxb states, witĥ O1(3S1)& in units of GeV3 and
^O1(3PJ)& in units of GeV5.

^O1
Y(nS)(3S1)& ^O1

xb0(nP)(3P0)&
Phenomenology Potential models Lattice Potential models Latti

Y(3S) 4.360.9 3.761.5 9.66? xb(3P) 2.760.7
Y(2S) 4.560.7 5.061.8 3.66? xb(2P) 2.660.5
Y(1S) 10.961.6 10.865.5 7.66? xb(1P) 2.460.4 1.56?
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f i /p(x1 ,mF) and f j / p̄(x2 ,mF), which specify the momenta o
the colliding partons, depend on a factorization scalemF .
We will consider the CTEQ5L and MRST98LO parton di
tribution functions. They are both obtained from leading
der analyses, and thus can be used consistently with lea
order parton cross sections. Explicit expressions for the

ton differential cross sectionsdŝ are given in Ref.@3# and in
Ref. @11#. They are proportional toas

3(mR), wheremR is the
renormalization scale, and they depend on the massmb of
the bottom quark. As part of the theoretical error, we w
allow mF and mR to vary by factors of 2 from the centra
valuesmT5(mb

21pT
2)1/2. This central value interpolates be

tween half the partonic invariant mass atbb̄ threshold and
half the partonic invariant mass at largepT and central ra-
pidity.

The cross sections also depend on two fundamental Q
parameters:as andmb . We take the QCD coupling constan
as(m) to run according to the one-loop formula, with th
boundary value appropriate to the parton distribution fu
tion that is being used. For CTEQ5L, the coupling const
satisfiesas(MZ)50.127 andas(mb)50.232. For the 1998
Martin-Roberts-Stirling-Thorne~MRST98! leading order
~LO! set, the coupling constant satisfiesas(MZ)50.125 and
as(mb)50.226.

The other fundamental QCD parameter in our calculat
is the bottom quark massmb . There have been several rece
determinations ofmb using sum rules calculated to next-t
next-to-leading order accuracy with nonrelativistic resumm
tion @12#. A useful summary of these results is given
Beneke in Ref.@13#. The value of the pole mass is rath
unstable under radiative corrections compared to sh
distance definitions of the mass, such as the running m

evaluated at its own scale,m̄b5mb(m̄b). Beneke’s best esti

mate for this mass ism̄b54.2360.08 GeV. The definition of

m̄b is purely mathematical in character and not related to
physical thresholds involving theb quark. Two definitions
that are also relatively stable under radiative corrections
whose definitions are related to thresholds in the bottom
nium system are the 1S mass, which is the perturbative
ergy of the lowest bound state, and the PS mass, which is
sum of the pole mass and some energy related to the po

tial between theb and b̄. Beneke’s best estimates for the
masses aremb,1S54.7760.11 GeV and mb,PS(2 GeV)
54.5760.10 GeV. The relation between the two is given
a power series inas :
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mb,PS~m!5mb,1S2
4as~m!

3p
m1O~as

2!. ~7!

The difference between Beneke’s values formb,1S andmb,PS
is mostly accounted for by the order-as correction. We will
choose the 1S mass as our prescription for theb quark mass.
Beneke’s central value for the PS mass differs by 2 stand
deviations from the 1S mass. This difference should not
regarded as an ambiguity in the quark mass, because it c
not be eliminated by a more precise determination ofmb .
Instead its effects on the cross section could be decrease
calculating the next-to-leading order radiative correction
the parton cross sections. The uncertainty due to differ
prescriptions for the quark mass can therefore be regarde
part of the error due to radiative corrections.

IV. COLOR-SINGLET MATRIX ELEMENTS

The color-singlet matrix elements forY(nS) can be de-
termined phenomenologically from its decay rate into a le
ton pair. The electronic decay rate of theY(nS), including
the QCD radiative correction of orderas and the first rela-
tivistic correction of orderv2, is

G@Y~nS!→e1e2#5
2pa2eb

2

9mb
2 S 12

8

3

as

p

2
1

3

MY(nS)22mb

2mb
D 2

^O1
Y(nS)~3S1!&,

~8!

whereeb521/3 is the bottom quark charge andmb is the 1S
mass. The relativistic correction was first expressed in te
of MY(nS)22mb by Gremm and Kapustin@14#. The vacuum
saturation approximation, which is accurate up to correcti
of order v4, has been used to express the NRQCD ma
element that enters naturally in annihilation rates in terms
the corresponding production matrix element^O1

Y(nS)(3S1)&.
It has also been used to express the radiative and relativ
correction factor as a square. Settingmb54.77 GeV and
as(mb)50.22 and using the measured value for the de
rates, we obtain the values for the color-singlet matrix e
ments in Table II. In addition to the experimental errors
the decay rates, there are theoretical errors from relativi
corrections and from perturbative corrections. As a meas
of the relativistic error of orderv4, we take the square of th
largest of the order-v2 corrections for the threeY(nS) states:
6-4
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TABLE III. Inclusive color-singlet matrix elements forY states, witĥ O1(3S1)& in units of GeV3 and
^O1(3PJ)& in units of GeV5.

^O1(3S1)& inc
Y(nS) ^O1(3P0)& inc

Y(nS) 1
3 ^O1(3P1)& inc

Y(nS) 1
5 ^O1(3P2)& inc

Y(nS)

Y(3S) 4.360.9 0 ? 0 ? 0 ?
Y(2S) 5.060.7 0.1260.06 0.5560.15 0.4260.10
Y(1S) 12.861.6 ,0.2 1.2360.25 0.8460.15
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@(MY(3S)22mb)/(3mb)#2'0.2%. As a measure of the pe
turbative error from higher orders inas , we take the square
of the order-as correction in Eq.~8!: @16as /(3p)#2'14%.
The error bars quoted in Table II are obtained by combin
the experimental, relativistic, and perturbative errors
quadrature. The error bars are dominated by the 14% pe
bative error, except in the case of theY(3S) for which the
experimental error is 16%. The values for^O1

Y(nS)(3S1)& in
Table II are larger by a factor of 3 than those given in Ta
I of the first paper in Ref.@3# because of a normalizatio
error in the table. This normalization error did not appear
the cross sections and therefore did not affect the result

There is no data that can be used for phenomenolog
determinations of the color-singlet matrix elements for
P-wave states. However the color-singlet matrix elements
both the S-wave and P-wave states can be estimated u
wave functions from potential models. Using the vacuu
saturation approximation, the color-singlet matrix elem
for Y(nS) can be expressed in terms of its radial wave fu
tion at the origin, while that forxbJ(nP) can be expressed i
terms of the derivative of its radial wave function at t
origin:

^O1
Y(nS)~3S1!&'

9

2p
uRY(nS)~0!u2, ~9!

^O1
xbJ(nP)

~3PJ!&'~2J11!
9

2p
uRxb(nP)8 ~0!u2.

~10!

Eichten and Quigg have tabulated the radial wave functi
and their derivatives at the origin for 4 potential models t
reproduce the observed bottomonium spectrum@15#. As es-
timates of the color-singlet matrix elements~9! and~10!, we
take the mean values from the 4 potential models in R
@15#. The mean values are tabulated in Table II. The err
are the root-mean-square deviations of the 4 potential-m
values. The potential model estimates of^O1

Y(nS)(3S1)& are
consistent with the phenomenological values, but have la
error bars. This gives us some confidence in the poten
model estimates for̂O1

xb0(nP)(3P0)& in Table II. These val-
ues are consistent within errors with those used in the an
sis of Ref.@3#.

The most accurate determination of the color-singlet m
trix elements for the lowest bottomonium states may even
ally come from lattice gauge theory. The corresponding
nihilation matrix elements can be readily calculated us
lattice simulations of NRQCD@16#. The NRQCD Collabora-
tion has calculated the wave functions for the lowest S-w
09400
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states@16# and P-wave states@17# of bottomonium. Inserting
these wave functions into the expressions in Eqs.~9! and
~10!, we obtain the estimates of the color-singlet matrix e
ments in Table II. The largest errors in the lattice calcu
tions come from matching of lattice NRQCD operators w
continuum NRQCD operators and from the omission of d
namical light quarks. Both errors could be as large as 25%
the present calculations. It is premature to quote error b
for the lattice gauge theory results in Table II.

We will adopt the phenomenological values
^O1

Y(nS)(3S1)& in Table II and the potential-model values fo

^O1
xb0(nP)(3S1)&. Using the branching fractions in Table

we can form the linear combinations that appear in the
pressions~4! for the inclusiveY(nS) cross sections. Thes
are tabulated in Table III. As indicated by the zeros in t
first row, we neglect feeddown from thexb(3P) states.

V. COLOR-OCTET MATRIX ELEMENTS

The color-octet NRQCD matrix elements are phenome
logical parameters that can only be determined from exp
mental data. We first extract the inclusive color-octet mat
elements forY(nS) from the CDF measurements of the in
clusive Y(nS) cross sections. We then extract direct colo
octet matrix elements forxbJ(nP) from the CDF measure
ments of the fraction ofY(1S) coming fromxb’s. This gives
us enough information to determine the direct color-oc
matrix elements forY(nS).

A. Inclusive matrix elements for S waves

The inclusiveY(nS) cross sections depend linearly on th
inclusive matrix elements defined in Eq.~5!. The inclusive
color-singlet matrix elements are given in Table III. We c
extract the inclusive color-octet matrix elements from t
CDF measurements of theY(nS) cross sections@4#. The
differential cross sections integrated over rapiditiesuyu,0.4
have been measured out topT5 20 GeV@4#. The CDF data
on Bds/dpT for Y(nS), whereB is the branching fraction
for Y(nS)→m1m2, are shown in Figs. 1, 2, and 3 fo
Y(1S), Y(2S), and Y(3S), respectively. We avoid the
problem of carrying out soft-gluon resummation to det
mine the shapes of the theoreticalpT distributions at lowpT
by using only the data frompT. 8 GeV to fit the color-octet
matrix elements. This leaves 5pT bins for Y(1S) and 3pT
bins each forY(2S) andY(3S).
6-5
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ERIC BRAATEN, SEAN FLEMING, AND ADAM K. LEIBOVICH PHYSICAL REVIEW D 63 094006
The inclusiveY(nS) cross sections depend on the incl
sive color-octet matrix elements through the linear combi
tion @^O8(1S0))1m ^O8(3P0)&/mb

2] 1n ^O8(3S1)), where
m varies from 4.6 atpT58 GeV to 3.4 atpT520 GeV, while
n varies from 1.0 atpT58 GeV to 6.3 atpT520 GeV. The
parameterŝO8(1S0)& and ^O8(3P0)& cannot be determined
independently, because the corresponding parton cross
tions have similar dependences onpT . We therefore carry
out our analysis under the two extreme assumptions tha
ther the^O8(1S0)& term or the^O8(3P0)& term dominates
and that the other can be neglected. Assuming both ma
elements are positive, the truth will be somewhere in
tween the two extremes. We will take the difference betwe
the two extremes as part of the theoretical error.

For a given choice of the parton distributions and t
scalesmF and mR , we can integrate theY(nS) differential
cross section~4! over uyu,0.4 and over eachpT bin. We
determine the best fits for the color-octet matrix elements

FIG. 1. Inclusive cross section forY(1S) at y50 in run I mul-
tiplied by its branching fractionB into m1m2 as a function ofpT :
CDF data, NRQCD fit~solid line! with statistical error bars~dotted
lines!, and color-singlet model prediction~dashed line!.

FIG. 2. Inclusive cross section forY(2S) at y50 in run I mul-
tiplied by its branching fractionB into m1m2 as a function ofpT :
CDF data, NRQCD fit, and color-singlet model prediction.
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minimizing the x2 associated with the sum overpT bins.
Fixing mF5mR5mT and assuming that̂O8(3P0)& is negli-
gible, we obtain the values of^O8(3S1)& and ^O8(1S0)& in
the 1st and 3rd columns of Table IV. Repeating the analy
but assuming that̂O8(1S0)& is negligible, we obtain the
values of^O8(3S1)& and ^O8(3P0)& in the 2nd and 4th col-
umns. The first errors in Table IV are extracted from t
matrix of second derivatives of thex2 function. There is also
an error from varying the renormalization and factorizati
scalesmF andmR . These errors are large, but since they a
highly correlated, we have separated them out as a sec
error in Table IV. The upper and lower errors are the shifts
the matrix elements that minimizex2 whenmR andmF are
changed from the central valuemT5Amb

21pT
2 by multipli-

cative factors of 2 and 1/2, respectively. The error from va
ing mb is also highly correlated, but it is smaller and we d
not list it separately. It can be taken into account when
use the matrix elements to calculate other observables.

Our fits for Bds/dpTdy at y50 for inclusive Y(1S),
Y(2S), andY(3S) are compared to the CDF data in Figs.
2, and 3. The error bands reflect the statistical uncertain
in the matrix elements. The fits are reasonably good in
region pT.8 GeV that we used for fitting. At lowpT , our
fits for ds/dpT behave like 1/pT , because we have no
implemented the effects of soft-gluon radiation on the sh
of the pT distribution. The fits therefore diverge from th
data belowpT58 GeV. ForY(2S), the central curve be-
comes negative at smallpT because our fit gives a negativ
central value for̂ O8(1S0)& inc

Y(2S) or ^O8(3P0)& inc
Y(2S) . If we

had fit the color-octet matrix elements using the data forpT
.4 GeV, instead of only the data forpT.8 GeV, the central
values for ^O8(1S0)& inc or ^O8(3P0)& inc would also have
been negative forY(1S) andY(3S).

In Figs. 1, 2, and 3, the color-singlet model predictio
from order-as

3 fusion processes are shown as dashed lin
At the largest values ofpT shown, the predictions fall more
than an order of magnitude below the data. The color-sin

FIG. 3. Inclusive cross section forY(3S) at run I multiplied by
its branching fractionB into m1m2 as a function ofpT : CDF data,
NRQCD fit, and color-singlet model prediction.
6-6
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TABLE IV. Inclusive color-octet matrix elements forY states~in units of 1022 GeV3).

CTEQ5L MRSTLO

^O8(3S1)& inc
Y(3S) 3.661.921.3

11.8 3.961.721.4
12.0 3.762.121.3

11.7 4.161.921.4
11.9

^O8(1S0)& inc
Y(3S) 5.464.322.2

13.1 0 7.564.922.5
13.4 0

5

mb
2 ^O8~

3P0!&inc
Y(3S) 0 5.764.622.3

13.3 0 7.965.222.6
13.7

^O8(3S1)& inc
Y(2S) 18.065.626.4

18.9 17.265.026.2
18.7 19.666.326.5

18.9 19.065.626.4
18.7

^O8(1S0)& inc
Y(2S) 210.269.711.8

23.1 0 28.7611.111.8
22.4 0

5

mb
2 ^O8~

3P0!&inc
Y(2S) 0 210.6610.212.2

23.0 0 28.9611.711.8
22.5

^O8(3S1)& inc
Y(1S) 11.662.724.2

15.9 12.462.524.7
16.6 11.763.024.2

15.7 13.062.824.7
16.4

^O8(1S0)& inc
Y(1S) 10.966.227.1

110.2 0 18.167.228.1
111.4 0

5

mb
2 ^O8~

3P0!&inc
Y(1S) 0 11.166.527.5

110.7 0 18.667.528.4
111.9
e
n

ns

b

ions
model prediction forY(3S) indicates the shape of th
bb̄1(3S1) cross section. The color-singlet model predictio
for Y(1S) andY(2S) behave very differently at smallpT ,
because they receive contributions from decays ofxbJ(nP).
The predictions diverge aspT→0, because the cross sectio
dŝ/dpT for bb̄1(3P0,2) behave like 1/pT . In order to obtain
the correct threshold behavior in these channels, it would
necessary to resum the effects of soft-gluon radiation.
rs
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B. Direct matrix elements for P waves

The color-octet matrix elementŝO8(3S1)& for the xb’s
can be determined from CDF measurements of the fract
of Y(1S)’s that come fromxb(1P)1g and from xb(2P)
1g @5#. The important feeddown decays forxbJ(1P) and
xbJ(2P) proceed through theY(2S) and Y(3S), respec-
tively. The fractionsFxb(nP)

Y(1S) of Y(1S)’s from xb(nP)1g
therefore satisfy
Fxb(1P)
Y(1S) s@Y~1S!# inc5(

J
BxbJ(1P)→Y(1S)1g s@xbJ~1P!#1S (

J
BY(2S)→xbJ(1P)BxbJ(1P)→Y(1S)1gDs@Y~2S!# inc , ~11!

Fxb(2P)
Y(1S) s@Y~1S!# inc5(

J
BxbJ(2P)→Y(1S)1g s@xbJ~2P!#1S (

J
BY(3S)→xbJ(2P)BxbJ(2P)→Y(1S)1gDs@Y~3S!# inc .

~12!
oss

iven
The coefficients ofs@Y(2S)# inc and s@Y(3S)# inc in Eqs.
~11! and ~12! are (3.860.7)% and (1.860.2)%, respec-
tively.

The CDF result for the fractions ofY(1S)’s with uyu
,0.4 and pT.8 GeV that come fromxb(1P)1g and
xb(2P)1g are

Fxb(1P)
Y(1S) 5~27.168.1!%, ~13!

Fxb(2P)
Y(1S) 5~10.564.8!%, ~14!

where we have added the statistical and systematic erro
quadrature. The inclusiveY(nS) cross sections in Eqs.~11!
and ~12! are the cross sections integrated overuyu,0.4 and
in

pT.8 GeV. Using the CDF measurements of these cr
sections, Eqs.~13! and ~14! reduce to the following con-
straints on the cross sections forxbJ(1P) andxbJ(2P):

(
J

BxbJ(nP)→Y(1S) s@xbJ~nP!#

5~0.8560.29! nb, n51, ~15!

5~0.3460.17! nb, n52. ~16!

The branching fractions and the associated errors are g
in Table I.
6-7
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TABLE V. Direct color-octet matrix elements forxb andY states~in units of 1022GeV3).

CTEQ5L MRSTLO

^O8
xb0(2P)(3S1)& 0.861.120.8

11.1 1.261.320.8
11.1

^O8
xb0(1P)(3S1)& 1.561.121.0

11.3 1.961.321.0
11.4

^O8
Y(2S)(3S1)& 16.465.725.1

17.1 15.665.224.9
16.9 17.466.425.1

17.0 16.865.825.0
16.8

^O8
Y(2S)(1S0)& 210.869.712.0

23.4 0 29.5611.112.1
22.8 0

5

mb
2^O8

Y~2S!~3P0!& 0 211.2610.212.4
23.3 0 29.7611.612.1

22.9

^O8
Y(1S)(3S1)& 2.064.110.5

20.6 3.063.820.1
10.2 0.460.710.7

21.0 1.864.410.1
20.2

^O8
Y(1S)(1S0)& 13.666.827.5

110.8 0 20.267.828.5
111.9 0

5

mb
2^O8

Y~1S!~3P0!& 0 13.967.128.0
111.4 0 20.768.128.8
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The theoretical cross sections fors@xbJ(nP)#, J50,1,2,
are obtained by integrating Eq.~3! over the appropriate re
gion of y and pT . The constraints~15! and ~16! are then
linear equations for̂O8

xb0(nP)(3S1)&, which give the values
in Table V. The first error is obtained by settingmF5mR
5mT and combining in quadrature the experimental er
from Eqs.~15! or ~16!, the error from the branching fraction
in Table I, and the errors from the color-singlet matrix e
ments in Table II. The second upper and lower errors
Table V are the shifts in the matrix elements whenmR and
mF are changed from their central values by multiplicati
factors of 2 and 1/2, respectively.

C. Direct matrix elements for S waves

The NRQCD matrix elements in Table IV can be used
calculate the inclusiveY(nS) cross sections. To calculate th
direct Y(nS) cross sections, we must extract direct colo
octet matrix elements for theY(nS) states from the inclusive
color-octet matrix elements given in Table IV. The line
combinations of matrix elements determined by the inclus
Y(1S) cross sections are

^O8~3S1!& inc
Y(1S)5^O8

Y(1S)~3S1!&10.311̂ O8
Y(2S)~3S1!&

10.112̂ O8
Y(3S)~3S1!&

12.15̂ O8
xb0(1P)

~3S1!&

11.08̂ O8
xb0(2P)

~3S1!&, ~17!

^O8~1S0!& inc
Y(1S)5^O8

Y(1S)~1S0!&10.311̂ O8
Y(2S)~1S0!&

10.112̂ O8
Y(3S)~1S0!&, ~18!

^O8~3P0!& inc
Y(1S)5^O8

Y(1S)~3P0!&10.311̂ O8
Y(2S)~3P0!&

10.112̂ O8
Y(3S)~3P0!&. ~19!
09400
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The errors on the branching fractions in Eqs.~17!–~19! have
been suppressed, but they are (0.31160.016), (0.112
60.005), (2.1560.31), and (1.0860.08). The linear com-
binations determined by the inclusiveY(2S) cross sections
are

^O8~3S1& inc
Y(2S)5^O8

Y(2S)~3S1!&10.106̂ O8
Y(3S)~3S1!&

11.49̂ O8
xb0(2P)

~3S1!&, ~20!

^O8~1S0!& inc
Y(2S)5^O8

Y(2S)~1S0!&10.106̂ O8
Y(3S)~1S0!&,

~21!

^O8~3P0!& inc
Y(2S)5^O8

Y(2S)~3P0!&10.106̂ O8
Y(3S)~3P0!&.

~22!

The errors on the branching fractions in Eqs.~20!–~22! are
(0.10660.008) and (1.4960.17). Using the color-octet ma
trix elements for inclusiveY(nS) in Table IV and the color-
octet matrix elements for directxb(nP) in Table V, we ob-
tain the color-octet matrix elements for directY(nS) in
Table V.

Our analysis gives a negative value consistent with z
for the matrix elementŝ O8

Y(2S)(1S0)& or ^O8
Y(2S)(3P0)&.

Our values for ^O8
xb0(2P)(3S1)&, ^O8

xb0(1P)(3S1)&, and

^O8
Y(1S)(3S1)& are also consistent with zero given the stat

tical error. The only direct color-octet matrix elements th
differ from zero by two or more statistical error bars a
^O8

Y(2S)(3S1)& and ^O8
Y(1S)(1S0)& or ^O8

Y(1S)(3P0)&.
We now compare our values for the matrix elements w

those obtained by Cho and Leibovich in their pioneeri
analysis of bottomonium production at the Tevatron. Th
analysis was based on the CDF data sample from run IA
the Tevatron@2#. To reduce the errors associated with t
shape of thepT distribution at smallpT , they used only the
data frompT.3.5 GeV in their analysis. The data was i
sufficient to determine all the matrix elements, so they e
mated the matrix elementŝO8

Y(nS)(3S1)& by applying scal-
ing relations to the corresponding matrix elements in
6-8
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charmonium sector. Their value for^O8
Y(1S)(3S1)& is consis-

tent with ours to within our large error bars, but their val
for ^O8

Y(2S)(3S1)& is smaller than ours by about a factor
40. They used the CDF data to fit the matrix eleme
^O8

xb(nP)(3S1)& and the linear combinationsM5
Y(nS)

5^O8
Y(nS)(1S0)&15^O8

Y(nS)(3P0)&/mb
2 . Their values for

^O8
xb(nP)(3S1)& are comparable to ours in magnitude, b

they have much smaller error bars. Their values forM5
Y(nS)

differ from zero by only about one error bar. In our analys
we included the matrix elements^O8

Y(nS)(3S1)& in the list of
those to be fit to the CDF data. The much higher quality
the CDF data from run IB of the Tevatron@4# allowed us to
carry out a reasonable fit using the data restricted topT.8
GeV.

VI. INCLUSIVE CROSS SECTIONS FOR SPIN-TRIPLET
STATES

Having determined the most important matrix eleme
for the production of the spin-triplet bottomonium states,
can use them to calculate the cross sections for these sta
other high energy processes. In particular, we can calcu
their cross sections in run II of the Tevatron in which t
center-of-mass energy will be increased from 1.8 TeV to
TeV. In order to cancel the large theoretical errors, such
those from the uncertainties in the matrix elements and fr
the choice of scale, we normalize the cross sections to
for inclusiveY(1S) at As51.8 TeV. For each bottomonium
stateH, we define the ratio

RH~As!5
s@H;As#

s@ inclusiveY~1S!; As51.8 TeV#
, ~23!

where the cross sections are integrated overpT.8 GeV and
over uyu,0.4.

To calculate the inclusive cross section forY(nS), we
simply use the inclusive color-singlet matrix elements fro
Table III and the inclusive color-octet matrix elements fro
Table IV. To calculate the inclusive cross section f
xbJ(nP), we must first compute the direct cross sections
xbJ(nP) and the higher bottomonium states using the dir
color-singlet matrix elements from Table II and the dire
color-octet matrix elements from Table V, and then comb
them using the inclusive branching fractions in Table I. T
resulting ratiosRH shown in Table VI are the averages of th
4 values obtained by using either the CTEQ5L
MRST98LO parton distributions and either settin
^O8(1S0)&50 or ^O8(3P0)&50. The error bars come from
combining in quadrature the statistical errors in the ma
elements from the tables, the error from varyingm by a
factor of two from its central value, the difference betwe
using the CTEQ5L and MRST98LO parton distributions, t
difference between settinĝO8(1S0)&50 and ^O8(3P0)&
50, and the error from varyingmb . The error bars in the
numerator and denominator of Eq.~23! are both large, but
they are highly correlated and tend to cancel in the ratio. T
largest contributions to the error bars are the statistical er
on the matrix elements, with the exception ofY(1S), for
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which the largest contribution comes from varying the sca
For Y(2S) andY(3S), the results in Table VI forAs51.8
TeV are consistent with the actual CDF measureme
which give 0.6160.12 forY(2S) and 0.2960.12 forY(3S).
When the center-of-mass energy is increased from 1.8 T
to 2.0 TeV, all the cross sections increase by about 16%.
increase depends onpT , changing from about 15% atpT
58 TeV to about 19% atpT520 TeV.

VII. DIRECT CROSS SECTIONS FOR SPIN-SINGLET
STATES

Having determined the most important matrix eleme
for the production of the spin-triplet bottomonium states,
can also use them to calculate the production rate of
spin-singlet stateshb(nS) andhb(nP). The matrix elements
for these states are related to those of the corresponding
triplet states by the approximate spin symmetry of NRQC
Spin symmetry relates the matrix elements forhb(nS) to
those forY(nS):

^O1
hb(nS)

~1S0!&5
1

3
^O1

Y(nS)~3S1!&, ~24!

^O8
hb(nS)

~1P1!&53^O8
Y(nS)~3P0!&, ~25!

^O8
hb(nS)

~1S0!&5
1

3
^O8

Y(nS)~3S1!&, ~26!

^O8
hb(nS)

~3S1!&5^O8
Y(nS)~1S0!&. ~27!

The direct matrix elements forhb(nS) can therefore be read
off from those for Y(nS) in Tables II and V. The spin-
symmetry relations have been used to calculate the c
sections for producing thehc at the Tevatron@18#, in photo-
production and electroproduction,@19#, at Hera-B@20#, and
in B decays@21#. The spin-symmetry relations~24!–~27!
agree with those in@21#. Incorrect spin-symmetry relation
have been used in several previous papers. In Ref.@18#, the
factors of 1/3 and 3 were omitted in Eqs.~24! and ~25!. In

TABLE VI. Ratios of the inclusive cross sections for the spi
triplet bottomonium statesH at the Tevatron withAs5 1.8 TeV and
2.0 TeV to the inclusive cross section forY(1S) with As5 1.8
TeV. The cross sections are integrated overpT.8 GeV and over
uyu,0.4.

H RH~1.8 TeV! RH~2.0 TeV!

Y(3S) 0.3160.14 0.3660.16
xb2(2P) 0.4460.26 0.5260.30
xb1(2P) 0.3460.16 0.3960.19
xb0(2P) 0.2060.07 0.2460.08
Y(2S) 0.6560.35 0.7660.41
xb2(1P) 0.5760.26 0.6660.31
xb1(1P) 0.4160.17 0.4860.19
xb0(1P) 0.2360.08 0.2660.09
Y(1S) 1 1.1660.01
6-9
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Ref. @19#, the factor of 1/3 was omitted in Eq.~26!. Spin
symmetry also relates the matrix elements forhb(nP) to
those forxb0(nP):

^O1
hb(nP)

~1P1!&53^O1
xb0(nP)

~3P0!&, ~28!

^O8
hb(nP)

~1S0!&53^O8
xb0(nP)

~3S1!&. ~29!

The direct matrix elements forhb(nP) can therefore be rea
off from those forxb(nP) in Tables II and V. These rela
tions have been used to calculate the cross section for
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ducing thehc in photoproduction@22#, at Hera-B@20#, and in
B decays@21#.

To calculate the cross sections for the direct production
the spin-singlet states at the Tevatron, we need the appro

ate parton differential cross sectionsdŝ. Explicit expressions
for most of those that are needed are given in Ref.@3# and in
Ref. @11#. The exception is the cross sections for produc

bb̄8(1P1), which contributes tohb production. The cross

sections for the production ofbb̄8(1P1) in qq̄, gq, andgg
scattering are
ds

d t̂
~qq̄→ 1P1

(8)g!5
^O8~1P1!&

16p ŝ2

4~4pas!
3

9M3

t̂21û2

ŝ~ ŝ2M2!2
, ~30!

ds

d t̂
~gq→ 1P1

(8)q!5
^O8~1P1!&

16p ŝ2

~4pas!
3

6M3

ŝ21û2

~2 t̂ !~M22 t̂ !2
, ~31!

ds

d t̂
~gg→1P1

(8)g!5
^O8~1P1!&

16p ŝ2

~4pas!
3

36M3

1

z2ŝ~ ŝ2M2!3~ ŝM21z2!3
$27ŝz2~ ŝ824ŝ6z21 ŝ4z41 ŝ2z61z8!

1M2~27ŝ102243ŝ8z21697ŝ6z42665ŝ4z61346ŝ2z8227z10!2M4ŝ~135ŝ82702ŝ6z2

11340ŝ4z421087ŝ2z61135z8!1M6~324ŝ821134ŝ6z211557ŝ4z42698ŝ2z6154z8!

2M8ŝ~486ŝ621091ŝ4z21882ŝ2z4292z6!1M10~486ŝ62616ŝ4z21374ŝ2z4227z6!

2M12ŝ~324ŝ42211ŝ2z2138z4!1M14ŝ2~135ŝ2238z2!227M16ŝ3%, ~32!
-
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wherez25 t̂ û.
We proceed to calculate the cross sections for the di

production of the spin-singlet states at the Tevatron at cen
of-mass energiesAs51.8 TeV and 2.0 TeV. To minimize
the effect of the highly correlated errors, we calculate
ratio ~23! of the direct cross section integrated overpT.8
GeV and overuyu,0.4 to the corresponding inclusive cro
section forY(1S) at 1.8 TeV. The resulting predictions a
shown in Table VII. The cross sections for thehb(nP) states
are small compared to those forY(1S) and they have large
error bars. The cross sections forhb(nS) are predicted to be
several times larger than those forY(nS) and they have
reasonably small error bars. These predictions should
fairly reliable, because the cross sections are for the s
kinematical region as the data used to extract the matrix
ements. When the center-of-mass energy is increased
1.8 TeV to 2 TeV, all the cross sections increase by ab
16%.

We can make a rough estimate of the cross sections
grated over allpT by assuming that the spin-singlet cro
sections have the same shape at smallpT as theY(1S) cross
ct
r-

e

be
e

l-
m

ut

e-

section. The measured inclusiveY(1S) cross section at cen
tral rapidity integrated over allpT up to 20 GeV satisfies
Bds/dy5690625 pb, whereB'2.5% is the branching
fraction of Y(1S) into m1m2. The cross section integrate
only over pT.8 GeV satisfiesBds/dy510667 pb. The
ratio of these cross sections is 6.560.5. Multiplying the in-
clusiveY(1S) cross sectionds/dy528 nb by the ratio 4.6
from Table VI, we find that the cross section forhb(1S)
integrated over allpT should be approximatelyds/dy
5130 nb. This is probably an underestimate, because it d
not take into account the large color-singlet contribution
hb production at smallpT from the parton processgg

→bb̄1(1S0), which has no analog forY.
The cross section forhb(1S) indicates that this state mus

have been produced in abundance in run I of the Tevat
However thehb(1S) can be observed only if it has a larg
enough branching fraction into a decay mode that can
triggered upon. One possibility is the double-J/c decay
hb(1S)→J/c1J/c, followed by the decaysJ/c→m1m2.
The decayhb(1S)→J/c1J/c has essentially the same k
nematics as the decayhc→ff, except that all masses ar
6-10
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scaled up by a factor of 3. Thus the branching fraction
hb(1S)→J/c1J/c could be as large as that forhc→ff,
which is approximately 731023. We can obtain a lower
bound on the branching fraction by using the fact that in
limit mb→` with mc fixed, the branching fraction fo
hb(1S)→J/c1J/c scales like 1/mb

4 @23#. If mc and mb

were both in this scaling region, then the branching fract
into light JPC5122 mesons would be smaller forhb(1S)
than for hc by a factor of (mc /mb)4, which is about 1022.
Since we are not deep into this scaling region, the supp
sion should be smaller than this. Thus the branching frac
for hb(1S)→J/c1J/c should be in the range between
31025 and 731023. Multiplying by the branching fractions
of 6% for each of the decaysJ/c→m1m2, our estimate for
the branching fraction forhb(1S)→J/c1J/c→m1m2

1m1m2 is B'2.53102661. The cross section for produc
ing this particular decay mode ofhb(1S) is therefore
Bds/dy'.3 pb, give or take a factor of 10. Multiplying b
the rapidity interval 0.8 and by the integrated luminosity
about 100 pb21 in run I of the Tevatron, we obtain betwee
2.4 and 240 produced events.

We must also take into account the acceptances and
ciencies for observing the decaysJ/c→m1m2. These can
be estimated using the CDF data on the production of pro
J/c in run IA of the Tevatron@24#. Based on the observatio
of about 22 000J/c→m1m2 candidates withpT.5 GeV
and pseudorapidityuhu,0.6 in a 15 pb21 data sample, they
measured the cross section in that region ofpT andh to be
Bs'17 nb. We infer that the product of the acceptance a
the efficiency is roughlye'0.09. This is probably a conse
vative estimate, because it may be possible to relax the
ton identification constraints on one of theJ/c decays. Mul-
tiplying the number of events that are produced bye2, we get
between 0.02 and 2 observed events. Thus this cross se
is probably too small to be observed in run I of the Tevatr
In run II, the integrated luminosity will be larger by a facto
of 20 and there will be significant improvements in the a
ceptances and efficiencies for observing muons in both
CDF and D0 detectors. Thus thehb(1S) may be discovered
in run II through the decayhb→J/c1J/c.

VIII. DISCUSSION

We have carried out an updated NRQCD analysis of
CDF data on the production of spin-triplet bottomoniu
states from run I of the Tevatron. In spite of using only t
data frompT.8 GeV, we were able to extract all the re
evant color-octet matrix elements directly from the da
Only one of the 8 color-octet matrix elements comes
with a negative central value, but several others are a
consistent with zero to within errors. In our analysis, w
distinguished between the inclusive color-octet matrix e
ments that can be used to compute inclusiveY(nS) cross
sections and the direct color-octet matrix elements requ
to compute directY(nS) cross sections and, by spin symm
try, directhb(nS) cross sections.

The most serious deficiency in our analysis was our f
ure to take into account the effects of soft-gluon radiat
that are needed to give a smoothpT distribution at smallpT .
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This forced us to use only the small fraction of the data fro
pT.8 GeV to fit the color-octet matrix elements, which le
to large errors in these matrix elements. If these matrix e
ments are used to predict bottomonium cross sections
other high energy processes, the predictions will proba
have large error bars. Our theoretical cross sections also
verge from the CDF data belowpT58 GeV, which gives us
another reason to be cautious in applying our matrix e
ments to other high energy processes.

An analysis that deals properly with the smallpT region
could take full advantage of the CDF data and therefore
termine the color-octet matrix elements more accurate
Such an analysis requires a prescription for combining

leading-order cross sections fori j →bb̄1k with the next-to-

leading order cross sections fori j →bb̄ recently calculated
by Petrelli et al. @25# to get a smoothpT distribution near
pT50. The matrix elements extracted from such an analy
should give reliable predictions for observables at the Te
tron that are dominated by lowpT . They should also give
reliable predictions for bottomonium production in oth
high energy processes.

A different NRQCD-inspired analysis of the bottomoniu
production data from the Tevatron has been carried out
Domenech and Sanchis-Lozano@26#. They used the even
generatorPYTHIA to take into account initial-state and fina
state gluon radiation. Color-octet production mechanis
were taken into account through a fictitious colored interm
diate state with mass 2mb . They used the CTEQ2L and
CTEQ4L parton distributions, and determined the NRQC
matrix elements by fitting the CDF data withpT.1 GeV.
Their value for the inclusive color-octet matrix eleme
^O8(3S1)& inc

Y(1S) was about 40%~2 statistical error bars!
smaller for CTEQ4L compared to CTEQ2L. We shou
therefore be wary of comparing their matrix elements
ours, which were obtained using CTEQ5L. If we compa
them nonetheless, their results for^O8(3S1)& inc

Y(nS) are all
within 2 statistical error bars of ours, being smaller forn
51 and 2 and larger forn53.

Our analysis should give reliable predictions for the cro
sections of the spin-singlet stateshb(nS) andhb(nP) at the
Tevatron. We find that the direct cross section forhb(1S) at
pT.8 GeV should be greater than the inclusive cross sec

TABLE VII. Ratios of the direct cross sections for the spi
singlet bottomonium statesH at the Tevatron withAs5 1.8 TeV
and 2.0 TeV to the inclusive cross section forY(1S) with As5 1.8
TeV. The cross sections are integrated overpT.8 GeV and over
uyu,0.4.

H RH ~1.8 TeV! RH ~2.0 TeV!

hb(3S) 1.8360.54 2.1360.62
hb(2P) 0.0760.07 0.0860.09
hb(2S) 1.6060.59 1.8760.69
hb(1P) 0.1160.08 0.1360.09
hb(1S) 4.5960.83 5.3460.96
6-11
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for Y(1S) by a factor of about 4.6. If we assume that thepT
distributions have the same shapes at smallerpT , we can
estimate the cross section forhb(1S) integrated over allpT .
The resulting cross section is large enough that it may
possible to observe thehb(1S) at the Tevatron if there is a
decay mode with a large enough branching fraction that
be used as a trigger. We argued that the decayhb→J/c
1J/c may allow the discovery of thehb(1S) in run II of the
Tevatron.
to
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