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We use data collected with the CLEO Il detector to perform a high-statistics measurement of the resonant
substructure iM°— K~ 7" #° decays. We find that the Dalitz plot is well represented by a combination of
seven quasi-two-body decay chanréds %70, K~ p, K* “7*, Ko(1430) 7+, Ko(1430P7°, K~ p*(1700),
and K*(1680) 7w "], plus a small non-resonant component. We see no evidence of a scallr 7
resonance in the mass range recently reported by other groups. Using the amplitudes and phases from this
analysis, we calculate an integrat€d® asymmetry of—0.031+0.086.
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[. INTRODUCTION final states, and can cause shifts in the phases of the decay
amplitudes.

A clearer understanding of final state interactions in ex- Three-body decays provide a rich laboratory in which to
clusive weak decays is an important ingredient for our abilityStudy the interference between intermediate state resonances,
to model decay rates as well as for our understanding of"d Provide a direct probe of the final state interactions in
interesting phenomena such as mix[ig There are several certain decays. When a particle decays into three or more

. . daughters, intermediate resonances dominate the decay rate.
theoretical methodp2—6] used to understand the dynamics These resonances will cause a non-uniform distribution of

of two body charmed meson decay§ with exp_eriment_al Me8syents in phase space when analyzed using a “Dalitz plot”
surements as input. Unfortunately, final-state interactions argchnique[7]. Since all events of a particular decay mode
often not well understood, and may not be included properhhave the same final state, multiple resonances at the same
in many models. These long-distance strong interaction efiocation in phase space will interfere. This provides the op-
fects can cause significant changes in decay rates for specifortunity to experimentally measure both the amplitudes and
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phases of the intermediate decay channels, which in turn c A
allows us to deduce their relative branching fractions. These
phase differences can even allow details about very broad
resonances to be extracted by observing their interference

. , . I INE ol -
with other intermediate states. € AT A €
This paper describes a study of the underlying structure in 'AB Resonance

D°— K~ 7" wdecayq14]. Four previous groups have made

similar measurements, each with less than 1000 signal events

[8—11]. In addition to significantly increasing our statistical 0

power, the large CLEO II data set on which this analysis is

based also permits us to tighten analysis requirements to FiG. 1. A representation of the three body decay f
drastically reduce the effect of backgrounds. Coupled with, ABC through anAB resonance. The spin sum is performed to
the superb resolution of the CLEO-II detector, this has a'-obtain the angular dependence of the decay.

lowed us to extract significantly more information about this

decay than was possible in the past. Dalitz plot variables, we need to obtain the angular depen-

dence of the decay products. Each vertex in Fig. 1 contains a
[l. THEORETICAL MODELS spin factore, which depends on the type of the decay: sca-

Since we are studying the decay of a spin-zero particle tdar, vector, tensor, etc. The matrix element for a vector decay

three daughters, only two degrees of freedom are required {8

completely describe the kinematics. To see this, consider the

decay in theD? rest frame. The four-momenta of the three 2

final state particles correspond to 12 unknowns. We have one Y &

constraint for each known mass and four additional con- M=Fp(Ppo+ PC)“MZ—MZ —IMT

straints from the conservation of momentum and energy in r AB rtAB 3

the decay. Finally, since the three degrees of freedom de- @)

scribing the spatial orientation of the decay are irrelevant

(the DO having spin zerp only two independent degrees of whereP denotes the 4-momentum, akt is the mass of the

freedom remain. resonance. In general the form factors at each veRgxand
There are three invariant masses that can be formed by,, are unknown functions; however, in practice they are

considering all possible pairs of final state particles:either set to a constant value or to the Blatt-Weisskopf pen-

mk v
PRI

(PA_ PB)VFr

M-+, Mi- _oandMZ2. ,. Only two of these are indepen- €tration factorg 12].
i i The spin-sum in the numerator of E@) is evaluated to
dent, however, since energy and momentum conservation re-
sults in the additional constraint give
2 2 2 2 _ 2 2 2
MDO+MK’+M7++MWO_MK’W++ MK7WO+M7+7O- PKBPZB

) 2 eftel=—g"'+ @

Choosing two of the above three invariant masses as dy-
namic variables has two compelling advantagés:Their  znd the “mass dependent widthP’ 5 is a function of the
relativistic invariance means the Lorentz frame in which theya B invariant masdM g, the momentum of either daughter
are evaluated is irrelevar(ii) As the expression for the par- jn the AB rest framep,g, the momentum of either daughter
tial width in Eq.(2) indicates, we expect that a scatter plot of j, the resonance rest franpe, the spin of the resonance

events in theM 3, vs M2, plane(known as a Dalitz plotwill  and the width of the resonande , and is expressed &3]
be uniformly distributed if phase space alone determines the

decay dynamics. This allows the decay fraction at each point

2J+1
to be readily correlated with the decay matrix elem@rit _1 [Pas ﬂ 2
. . 1 Fag=1" Fr. 5
without additional corrections: Pr Mag
2
dr= (M| . dMiszés (2) We relax the transversality requirement on the vector
256m°Mp, resonance in Eq4) and divide byM? instead ofM35 . This

substitution gives rise to a small spin zero component when

In this analysis we Choosﬂdﬁfﬂ andMi+,To asourtwo  the vector resonance is off mass shell, a behavior which is
Dalitz plot variables, and must next construct the relevanbbserved to occur with th&/ boson and which should also
decay amplitudes in terms of these. The dynamics can blee expected in the resonance behavior we are studying here.
understood with the aid of Fig. 1. We first consider the decay Inserting this expression for the spin-sum into E).and
of the D° meson into particleC plus anAB resonance, fol- summing over the repeated indices gives the Lorentz invari-
lowed by the decay of thAB resonance into particlesand  ant expression for the matrix element of a vector particle as a
B. To properly describe the structure of this decay using oufunction of position in the Dalitz plot:
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) X (M%— Mé)(MZB— Mi) TABLE . BIett-Welsskopf penetration form factorg, is the

Mac— Mgt 5 momentum of either daughter in the meson rest framg. is the

A (ABC|r)=FoF My momentum of either daughter in the candidate rest frégsaee as
1 phr Mrz— MiB—iM 1 as ’ p, except the parent mass used is the two-track invariant mass of

(6) the candidate rather than the mass of the medRiis the meson
radial parameter.

The procedure for calculating the vector matrix element is
generalizable to intermediate particles having other spin. Fospin Form factor=,
example, we can easily find the amplitude for a spin zero
resonance to be 0

1

1 1 V1+R?p?

Ao(ABC|r)=FpF, ———5— . (7)
MZ— M2~ iM T ng S
r AB r ,—1+R2piB

The procedure for higher spin resonances involves a bit

22 4.4
more algebra. For example, the spin-2 case starts with 2 9+ 3R HRp;
Ay(ABC|r)=Fp(Pp+Pc),(Pp+Po), V9+3R2pZp+R*pis
2 8/“/*801[3’ ) ] )
= “A TA factor to have unit value at the nominal meson mass. The fits
X MZ—MZ-—iM T (PA—Pg), display very little sensitivity to the meson radii; good fits are
r TAB rtAB obtained when these values vary between 0 GeVnd
X (Pp—Pg) gF; . ® 10 GeV * for '[heDO and between 0 GeV* and 3 GeV'*
for the intermediate resonances. To be consistent with other
In this case the spin sum has been previously calculated byxperiments[8] we have chosen theD® to have R
Pilkuhn[13] to be =5 GeV ! and the intermediate resonances all to h&ve
=15 GeVv!?
E St,wsfﬁzE(TWTV;;JFT,L/;TM)_ETMTQB 9) . Before co'ntinuing,lwe must specify our phase conven-
X 2 3 tions for the intermediate resonances. We can explicitly see
the importance of specifying the ordering of particles in the
where decay by examining Ed6). If we were to switch the labels
pupy A and B, we would generate an overall minus sign causing
THY= —grr4 Via (10) the phase to change by 180°. In an attempt to be consistent

with previous results we have chosen the phases in the same
way as the E687 Collaboratidi8] since they are the only
group to have explicitly published their choice of phases and
matrix elements.

Now that we know the form of the intermediate resonance

When this expression is inserted into E§) and the im-
plied sums performed we find the final form of the tensor
matrix element:

FE amplitudes, and have chosen a phase convention that will

A(ABCJr)= = MZD—r'I‘ v [( Méc_ Mic allow us to_ compare our results_ with previous measurements,
r A 1L AVl we can write down an expression for the overall matrix ele-

2 ment of the decay. Guided by the results of previous mea-

2 a2 2 a2
+ (M5 —Mg)(Mj—Mg) surementg8—10], we begin with only three vector reso-

2 g
M: nancesp(770)", K* = andK*° [15] as well as a flat non-
2_ W22 resonaninr) component:
“ Lz omz—omzy Mo MO ) comp
3 AB D C M2 0 — + 0
r M(D =K~ 7" )
(M2-M32)2 =a,er+a e A (m 7K |p*
x| M2g—2M% —2Mg +— o " o2 O Aalm K o)
r

+agxoe K0 A (K™ ot 0| K*0)

1y +ags - A (K- 707 |K* D), (12
Next we return to the form factorB, and F,, which

attempt to model the underlying quark structure of B  where thea; and ¢; are the amplitude and relative phase of

meson and the intermediate resonances. We use the Blatbeith component respectively. The overall normalization is

Weisskopf penetration factors shown in Table |. These havarbitrary, and is chosen to be

one free parameteR, which is the “radius” of the meson,

and are dependent on the momentRmf the decay particles 2 _

in the parent rest frame. In all cases, we normalize the form J IM|*dDP=1 (13
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wheredDP indicates that the integral is performed over the ————
Dalitz plot. This is equivalent to saying that we are sensitive - .
only to relative phases and amplitudes, which in turn means - T
that we are free to fix one phase and one amplitude in Eq. 3000
(12). To minimize correlated errors on the phases and ampli- i
tudes we choose the largest moHe€,p, to have a fixed zero

phase and an amplitude of one. N§

Since the choice of normalization, phase convention, and 2 290
amplitude formalism may not always be identical for differ- &
ent experiments, fit fractions are reported instead of ampli-
tudes to allow for more meaningful comparisons between §
w

results. The fit fraction is defined as the integral of a single

component divided by the coherent sum of all components: 108901=

|a,e'?r A(ABC|r)|2dDP

fit fraction= 5 . (19 0 -
gl i 1.6 1.7 1.8 1.9 2.0 2.1
f 2 aje'% A(ABCj)| dDP M 29 (Govi)
The sum of the fit fractions for all components of a fitwill ~ FIG. 2. TheD®—K™ " #° reconstructed mass distribution for

in general not be 1 because of interference. all event candidateepc_)ints). The solid_line represents a fit Fo the
One must also consider the statistical errors in the fit fracgata using a double bifurcated Gaussian to represent the signal plus

tions. We have chosen to use the full covariance matrix fronf Straight line to represent the backgroustaded area

the fits to determine the errors in fit fractions so that theber of fake7%s from random shower combinations and to

assigned errors will properly include the correlated compo- rove their resolution. we require that each shower have
nents of the errors in the amplitudes and phases. After eaéﬂ]gr above 100 Mev’ and bg in the central reaion of the
fit, the covariance matrix and final parameter values are use Egy” detector. Furthermore. the invariant massgof the two
to generate 500 sample parameter sets. For each set, the §|1roton combinétion is restéicted to be between 128
fractions are calculated and recorded in histograms. Eac ev/c2and 140 MeVEZ (i.e. within about one standard de-

hi ram is fit with ingl ian xtr its width, .~ L .
stogram is fit with a single Gaussian to extract its width, iation of the #° mas$. The two shower combination is

which is used as a measure of the statistical error on the fﬁ. ) \ ; 0
fraction. inematically fit to give the knownr” mass.

Once we have a vertex with~, a#* and a=° candi-
date, we combine the momenta of the three particles to find
the D® momentum. With the decay location and the momen-

The CLEO Il detector is described elsewhéié]. This  tum known, theD? is projected back to the beam spot. In
measurement uses the entire CLEO Il data set, which repré-LEO, the beam spot has a ribbon-like shape with a width of
sents approximately 4.7 T3 of integratede e~ luminosity ~ 700 um, a height of 2Qum, and a length of about 2 cm. We
at \/'s~10.6 GeV. project theD® candidate back to the vertical position of the

TheD%s used in this analysis are required to be producedeam, since this dimension of the beam is most precisely

by the decay chaiD* *—D%z! , which significantly re- known. The intersection of thB° projection and the beam
L g . . . +

duces the combinatorial background. To reconstruct th@0sition defines the production point of tBe* .
D?s, we take pairs of oppositely charged tracks and assign Ve refit the slow pion track to include ta" ™ produc-
the track with the same sign as the pion from Bie* decay  tion pointas an additional constraint, providing a better mea-
to be the pion from theD® decay. This Cabibbo-favored Surement of its true momentum. The result of this is that the
correlation between the signs of the pions eliminates th&vidth of the mass difference peakAM=M(D*")

0 . . -
need for other particle identification techniques in this analy-— M(D"), is reduced from 590 keV to 490 keV, providing a
sis. 15% reduction in the number of background events in our

For tracks to be used they must be well fitted, and reconfin@l sample.ZWe make a requirement thevl be between
struct to within 5 cm of the interaction point along the beam144.9 MeVE® and 145.9 MeV¢*. We also require that the
pipe and within 5 mm perpendicular to the beam piper-  normalizedD* momentum,Xp« = Ppx / VEfcan— M5, be
responding to about 5 standard deviations in length and morgreater than 0.6, which significantly reduces the combinato-
than 10 standard deviations in the width of the beam)spot rial background level and kinematically excludes the possi-

We fit pairs of tracks passing these requirements to #&ility that aD* candidate came from a decayiBgmeson.
common vertex, which is the candidate decay position of the After obtaining the candidat®®'s as described above, we
D% meson. Each such pair of charged tracks is combinedan plot the mass of the°— K~ 7" #° candidates as shown
with all 7° candidates in an event. The® candidates are in Fig. 2, where the fit to the mass distribution is also shown.
found by combining all pairs of electromagnetic showersWhen examining the Dalitz plot, we only use the events
which are unmatched to charged tracks. To reduce the nunwhich have 1.85 Ge\M?<Mpo<1.88 GeVt? (i.e. within

IIl. EXPERIMENTAL DETAILS
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FIG. 4. A box plot showingD°—K ™ 7" 7% candidates in the
70_70 AM vs Mpo plane. The shaded areas on each side of the peak are
nbinnedye sigebands determined to best represent the background.

FIG. 3. The  Dalitz distribution of all
D°— K™ 7" #°candidates in our data sample shown in an u
scatter plot.

Knowing only the amount of background is not enough if

about one standard deviation of the kno®f mass. -
. . . . we want to correctly extract the amplitudes and phases of the
We have chosen quite restrictive cuts on our kinematic

variables(approximately one standard deviation on eaich signal component; the shape of the background in the Dalitz

e . lot is also important. There are several sidebdid$ that
minimize the effect of the background on our result. Sinc : .
. o ould be chosen to study the shape of this background using
we are studying the shape of the distribution and are no

i . . . data, and a Monte Carlo studgutlined below is used to

trying to extract a branching ratio, the fact that this increases . . . . .
i ) - etermine which one is best. As will become apparent in the

the systematic uncertainty of the overall efficiency somewhat = . .

is not an issue section on systematic errors, the overall low level of the

Applying the above requirements produces 7070 events 'ﬁiﬁﬁ?ﬁﬂg chﬁ:neS that the final result has very little sensi-

the Dalitz plot. Fi-gure 3 shows the distribution of .this sample To determine which sideband will best represent the Dal-
as a scatter plot in the chosen mass squared vanPir‘[ﬁesﬁ+ itz plot shape of the background in the signal region, a

2 -

andMZ . _ . signal-free sample ok"e”™—qq Monte Carlo simulated

In order to reduce the smearing effects introduced by thgat5 is usedreferred to below as the “vetoed” sample
detector, those combinations passing the above requiremen{pese data are generated using a &EANT based detector
are k|r3emat|cally fit such that when coombmed, te, 7T+ simulation[18], and are processed by the same reconstruc-
and - reconstruct to give the corre€t” mass. This kine-  tjon code that is used for real data.
matic fit has two effects. First, the uncertainty of the This Monte Carlo sample represents the background we
4-momentum of the particles is reduced, giving a more preyant to measure in data, and we use it as a reference in our
cise measurement of the mass squared variables used to ‘i‘?ﬂdy. The next step is to consider a number of possible

fine an event's position in the Dalitz plot. Second, the decajdeband samples, and see which does the best job represent-
position in these variables is guaranteed to respect the kingng the Dalitz shape of the vetoed sample.

matic boundaries of the Dalitz plot. Many sideband samples can be formed in the space de-
fined by the three mass variablesM, Mpo and M 0. TO
A. Background choose the best one, we fit the distribution in the Dalitz plot

Turning again to Fig. 2, we can see that the signal regior’rjsgng an “”biQ”ed likelihood fit t9 a CUb_iC polynomial in
contains a small but non-zero number of background eventdk-+ @1dMZ7. o as well as non-interfering squared am-
We use the fit shown to measure the fraction of events in thiglitudes for thep(770), K* (892)~ andK*°. A x? is formed
region which are “true signal” by integrating the signal between each Monte Carlo sideband sample and the refer-
function (a double bifurcated Gaussjaand the background ence vetoed sample to give us a measure of their relative
function (a line) and comparing the two. The signal fraction merits.
and its associated statistical error, 0.28¥.011, are used in Based on this, the sideband which seems to best represent
the likelihood function minimized during the fitting proce- the vetoed sample consists of those events which hdvie
dure. <0.1549 GeV¢?, are in theM o signal region, and are in
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TABLE Il. Background and efficiency best fit parameters. The 0.04 ,

fitting functions are described in Sec. IV.
0.03 b
Background Efficiency g
. £0.02
Bo 1.0 (fixed) Eo (22.1+1.8)x10°° &
By —1.188+0.018 E, (—6.89+2.9)x107° " i
B, —0.742+0.044 E, (—27.1+3.7)x10°°
B2 0.483+0.015 E,2 (10.4-1.6)x10°° ‘ ‘
By 0.874+-0.032 Ey  (38.2£3.2)x10°5 . (an°)2 : o 22
By2 0.122+0.047 E,e (12.4+2.8)x10°°
B,s —0.052+0.004 E.s  (—3.00+0.27)x107° 0.04 . '
By —0.162+0.010 Eey (—7.97+0.73)x10°°
B,y —0.202:0.014  E,> (—12.8:0.94)x10° 30-03‘ 0.02] 1
By 0.061+0.016 E,s (—0.53£0.73)x10 ° H H
-2 0.02- 2
Bixo (1.65+1.70)x 1075 £ g
B, (3.69+0.58)x 104 Yool w 0.01p ]
By - (7.69+1.95)x 10 ° |
0 1I I 3 0 0].5 1I.0 1|.5 2.0

the off-peak regions dfl po: 1.76<Mpo (GeV/c?)<1.80 or

1.91<Mpo (GeV/c?)<1.95. This choice of sidebands along

2
M (KrH)2 (GeV/c?)2

M ( 2*7%)? (GeV/c?)2

FIG. 6. Results of the best fit to thB°— K~ 7" wdetection

with the D°—K ™~ 7" #° candidates is shown in Fig. 4.
The assumption is now made that the sideband methoplot (top right) and as projections onto the three mass squared vari-

which best represents the background in the Dalitz plot whe@bles of both fithistogram and raw efficiency(points. In each of

analyzing the Monte Carlo simulated data is also the bes‘f‘_e projections, the quantity plotted is the average efficiency at the

sideband method for use in real data. Those events from t

efficiency distribution. The fit function is shown as a Manhattan

piven M2 value.

actual data which are in the selected “best” sideband are fit

with the cubic polynomial plus the three non-interfering result. We use this parametrization of the background shape
resonances. The resulting best fit parameters are shown in the fit to the distribution of events in the Dalitz plot by
Table Il. We project the fit and the background points ontoincluding both the parameters and the covariance matrix in
the three mass squared variables and show the results in Figpe final likelihood functionlas described in Sec. vV

5, along with a two dimensional Manhattan plot of the fit

1200

ry
(=]
(=]
o

800
600
400
200

Background Level

] 2
M (K702 (GeV/c?)2

— 800 .
% ¢
-
.gsoo * % - 1 1000f 1
3 LL RS
% 400 1
é 500} 1
& 200
0 1 3 0 05 10 18

FIG. 5. Results of the best fit to tH®°— K~ 7" #%sideband

2
M (K2 (GeV/c?)?

2.0
M ( 7*7%)?2 (GeV/c?)?

B. Efficiency

Next, we determine the efficiency for detecting signal
events as a function of position in the two dimensional Dalitz
plot. After generating 4.2 10° signal Monte Carlo events
with a flat distribution in phase spagee. uniform across the
Dalitz plot), these events are analyzed to find the number of
observed events as a function if;__. and M2, ,. The
events observed are binned into regions with 50 (M2)7
on a side, and we divide the number of events observed in
each bin by the number generated to give a measure of the
efficiency for that bin. Because of the finite number of Monte
Carlo events observed in each bin, each individual efficiency
measurement has about a 10% statistical error. Since we ex-
pect (and observethat the efficiency is a slowly varying
function across the Dalitz plot, we fit the efficiency measure-
ments with a cubic polynomial iM5__. andM?2. , and
use the resulting function to parametrize the efficiency.

As a check that the efficiency function obtained using
phase space Monte Carlo is reasonable, we repeat the proce-
dure described above with another 2.40° signal Monte
Carlo events generated with the Dalitz distribution found by
E691[9]. Again the efficiency in each bin is calculated and

background sample. The fit function is shown as a Manhattan plofit. Since the resulting fit agrees well with the efficiency cal-
(top right and as projections onto the three mass squared variablegulated from the phase space distribution of points, we com-
showing both fitthistogram and data(points.

bine the two Monte Carlo samples and calculate the effi-
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ciency using the full 6.& 10° events. The fit parameters for — ¢— Eo+ ExMi— L EyM2+ 0+Ex2(Mi— )2
this combined fit are shown in Table Il. Figure 6 shows the i T i
raw efficiency for each bin as well as the fit and the projec- +E M5 M2, o+E2(M2, 0)2+E (M- )3
tions onto each of the three mass-squared axes. X ) ) )
+Eey(Mi—+)®MZ 1 o+ EyeMy (M2 o)?

IV. FITTING PROCEDURE 2 3

+E,a(M2, )%, (22)
Having a parametrization for both the background and

efficiency as well as knowing the fraction of events in the |n expressing this likelihood function we have made the
signal region which are in fact background, we can fit theexplicit assumption that background events and signal events
data in the Dalitz plot to extract the amplitudes and phases Qfre distinct, allowing us to factor the likelihood into two

any contributing intermediate resonances. o _components which do not interfere. Thé, ., terms repre-
To do this we use an unbinned maximum likelihood fit sent the information from the fits used to determine the sig-
which minimizes the functio given by nal fraction, the background parametrization, and the effi-
ciency parametrizationV;; and W;; are the covariance

2 (15) matrices from the background and efficiency fits respec-
penalty tively. The last term is used only when evaluating the sys-
tematic errors due to the efficiency parametrization; hence

J—'=[ > -2Int

events

where Esysis set to zero during “normal” fitting.
) ) In addition to the likelihood, we need a measure to assess
FEM- Mo o) M|? how well any given fit represents the dai®)]. A confidence

L= Neiana level can be calculated directly from the likelihood function
signa by utilizing the best fit parameters. This idea was described

B(Mi- M2, o) by ARGUS[20] and is a direct application of the central

+(1-F) N (16)  limit theorem from statistic§21]. Assuming the candidates

background are truly distributed according to the likelihood function

F_F.\2 which gives the best fit, the average value is
— o
Xpenalty:( +i2j (Bi_BiO)Vij(Bj_BjO) 1 N
r=Y > (—2In£)wf L(—2InL)dDP (22
i=1
+Egy (Ei—Ei)W;(Ej—Ejo)  (17)
. whereN is the number of candidates. The variance is given
and by
1 N
2_— _ V2 _ 2 _ 2
Afsignalzj 5(M§—ﬂ+,Mi+ﬁo)|M|2dDP (18) TN izl( 2InL—p) fﬁ( 2 InL)dDP— u”.
(23

Nbackground= f B(Mi,w+,Mi+Wo)dDP. (19 Because we have a large number of candidates distributed

according to this function, the central limit theorem tells us
that the mean should follow a normal distribution. The sum
of minus logarithmic likelihoods, which is the value mini-
mized in the fit, has a mean ®™yx and follows a normal
distribution with a variance oNai. Thus, the minimal
value will come from a normal distribution with mean

The signal fractiorF, and its erroro (0.967 and 0.011
respectively are determined from the fit to thB® mass
spectrum shown in Fig. 2, and the parametyg and E;,
describe the nominal background and efficiency shapes
Table Il) via the cubic polynomial shapes

B=Bo+BM:__+BM?, o+Ba(Ms_ )2 <—2Z |n,c>:Nf£(—2|nL)dDP—n (24)
+B M2_ M2, o+B2(M%, 0)2+Ba(M2__.)3
WK a0 Byl KA and standard deviation

+BX2Y(Mi*ﬂ'+)2Mi+WO+ BXYZMﬁ*ﬂ'*(Mi*wO)Z
— _ 2 2
+By3(MfT+70)3+ BE*O|A1(K_7T+7TO|K*O)|2 O(-23InL)y~= \/NJ E(—Z InL) dDP—- N,LL (25)

Bl As(m " T [p )P Bex | Ay(KT w0 T [K* )2 wheren is the number of parameters extracted from the fit.
(200  The confidence level for the fit is then just the area of a
Gaussian with the above mean and width which lies above

and the value obtained in our fit. It is worth pointing out that this
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TABLE Ill. A comparison between input Monte Carlo param- TABLE IV. Results of the best fit to the data with only
eters and the results from a subsequent fit to the Dalitz plot using* K*° K*~ and non-resonant components included.
the techniques described in Sec. IV. Note that the input amplitudes

and phases are completely fictitious. an 1.70+0.07
a,+ 1.00 (fixed)
Resonance Generated Measured - 0.378+0.008
Amplitude Phasdédeg Amplitude Phasddeg a0 0.422+0.009
K*O 1.0 45 1.030.02 471 b 59.7°+2.0°
p* 1.0 0 1.0(fixed) O (fixed) b, 0° (fixed)
K*~ 1.0 —115 1.030.02 —-113+2 byx - 166.7°+ 2.0°
K% (1430)" 0.5 —115 0.54:0.05 —107+6 dicxo —7.8°+2.2°
Non-resonant 1.0 —90 1.08£0.05 2733
-2InL 7070
Conf. level. 0.0%
value only gives a measurement of the goodness of fit as- X 650
suming the fit function correctly describes the true distribu
tion.

Having a second measure of the goodness of the fit woul@rated with “secret” mixtures of intermediate resonances
be extremely valuable, and an obvious choice isyheThis ~ Were analyzed. In each case, our fitting and evaluation pro-
requires the data to be binned, and furthermore that there iedure identified the correct set of resonances, and recovered
enough events in each bin that Gaussian statistics can paeir amplitudes and phases within statistical errors. The re-
assumed. As we saw in Fig. 3, the density of candidates igulting amplitudes and phases for one of the fits is shown in
the D°— K~ 7" #° Dalitz plot varies significantly as a func- Table IIl.
tion of position; hence to form a sensibyé measure we will

need to have bins of varying size. V. FITTING THE DATA
To systematically choose these bins, we start by placing a ) . . ) .
grid of small regions, 50 (Me\6?)2 on a side, over the Dal- Armed with the tools described in the previous section,

itz plot. Next, adjacent regions are combined into bins untive are ready to fit the data distribution shown in Fig. 3.
each contains approximately 30 candidates. After Comp|etin5>rewous experiments have observed three intermediate reso-
this procedure, our Dalitz plot is divided into 228 bins of nances inD°— K~ 7" #%ecays;p™, K*® andK* ~; hence
varying size, and g2 variable for the multinomial distribu-
tion [22,23 can be calculated as

500
228
. 400
x2=-2>, niln(&) (26) "
i=1 n; T 300
&

wheren; is the number of events observed in bimndp; is

the number predicted from the fit. For a large number of 109

events this formulation of thg? becomes equivalent to the

usual ond 24]. ()
One can naively calculate the number of degrees of free-

dom for the fit as the number of biii) minus the number of

fit parametergk) minus 1, as would be correct for a binned

maximum likelihood fit. However, since we are minimizing 300

the unbinned likelihood function, our ¥?” variable does 8

not asymptotically follow ay? distribution [24], but it is g 200

bounded by ay? variable with ¢ —1) degrees of freedom Y

and ay? variable with { —k—1) degrees of freedom. Be- 100

cause it is bounded by twg? variables, it should be a useful

statistic for comparing the relative goodness of fits. In what : . N T B Y

follows, we use both the? and the confidence level de- M (K~%)2 (GeV/c?)2 M (7402 (GeVicR)?

scribed above as our “goodness of fit” measures to deter-

mine which of the many possible sets of intermediate reso- F|G. 7. The results of fitting th&°—K ~ 7+ #° data with only

nances are prefgrred. p*, K*9 K*~, and non-resonant components included. The effi-

Before analyzing thé®°— K~ 7" 7° data, we performed ciency corrected fit is shown as a Manhattan glop right and as
many checks of both the fitting and fit evaluation proceduresprojections onto the three mass squared variables of bothigto-
One of these was a double-blind study in which severagram and data(points. The dashed line shows the level of the
Monte Carlo samples containiid’— K~ 7+ 7° decays gen-  background.
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TABLE V. A comparison of the fit fractions obtained with our “three resonance” fit and those reported
by previous experiments. The errors shown are statistical only. Note that although the data is not well fit by
this model, the results are consistent with those reported by previous experiments.

Decay mode CLEO (3 resonance E687 Mark Il E691
Kp* 0.834+0.007 0.765:0.041 0.8%0.03 0.647-0.039
K* 7™ 0.129+0.006 0.1480.028 0.12-0.02 0.084-0.011
K*0,0 0.157+0.007 0.165:0.031 0.13-0.02 0.142-0.018
Non-resonant 0.0740.006 0.10%*0.033 0.090.02 0.036

we begin by considering only these in addition to a non-nances which can possibly contribute to this decay, as listed

resonant component. The resulting fit parameters are given in Table VII [26]. The results of this fit are shown in the

Table IV. “All resonances” column of Table VIl and in Fig. 8. There
Figure 7 shows the projections of both the fit and the datare five resonances which have fit fractions that are less than

onto the three mass squared variables, as well as a two dime standard deviation away from Zer&*é(ﬂgo)o,

mensional Manhattan plot of the final fit function. Even a , « T * - ok
quick glance suggests that the data are not well representé(oe(ﬂso) , K* (14109, K*(1410)" andK*(1680f. Two

by this function, and the large value g as well as the zero Other resonance; (1430f andK3 (1430, have fit frac-

confidence level confirms this observation. These parameteH9Ns close to zero. When the first five resonances are re-
are useful for comparison with previous experiments how noved and the fit repeated, the fit fractions of these last two

ever, which reported observation of these three resonancégSonances do become consistent with zero, and hence are
with much less statistics. We show the comparison in Table&!sC removed.
V and VI and see good agreement. Unfortunately, we can Notice that in the “All resonances” C(ilumn of Table+VIII
only compare the results for the phases to E687 since th&ere are two heavy mesons|p(1450)" and p(1700)"]
other experiments do not give their choice of particle order\Which have surprisingly large fit fractions. Both have masses
ing or potential complex constants in their choice forW_h'Ch place their peak out5|d2e the Dalitz plot, butzboth are
A(ABC]r). Although the phases match for the three resoide enough (31860 MeV/c” and 2403-60 MeV/c® re-
nant components, the non-resonant phase seems to be off ppectively[26]) that their tails extend well into the region of
180°. This observation is consistent with comments thafiterest, making it difficult to distinguish between them.
E687 had an unreported negative sign in their vector ampliSince the fitted phases of thegts are very close to being
tude[25]. 1_80’ apart, thelr_larg_e_ fit fractions are assumed to _be an ar-
Since we have at least a factor of 10 more statistics fo_pfact of the_ _flt’s inability to tell them apart. Supporting this
this analysis, one should not be surprised that more resdS the additional fact that when both resonances are com-
nances are needed to accurately represent the data. The quii§ied, their net contribution to the fit fraction is much
tion now becomes how best to determine which additionapmaller, (32)%. Since the inclusion of botp resonances
resonances to include. We have tried two proceduf@s: IS probably a misrepresentation of t_he contents of t_he Dalitz
adding all possible resonances and subsequently removirELOt’ only one of these is included in all following fits. We
those which do not contribute significantly, afiy) adding ~ Choose the one which gives the bgstand goodness of fit
new resonances one at a time and choosing the best addile p(1700)", and consider thg(1450)" only when evalu-
tional one at each iteration, stopping when no additionaPting our systematic errors. . . _
resonances contribute significantly. Both of these methods After the seven resonances consistent with zero fit frac-
lead us to the same results; hence only the first one is ddion are removed along with thp(1450)" (as discussed
scribed below. abovg, seven resonances remain in addition to the non-

We begin by fitting the Dalitz plot with all known reso- resonant component;p(770)", K*(892)~, K*(892),

TABLE VI. A comparison of the phasd@ degreesobtained with our “three resonance” fit and those
reported by previous experiments. The errors shown are statistical only. In the “rotated” column we have
shifted the reported phases such that ghbas a phase of0in order to ease comparison with the other
results. Note that although the data are not well fit by this model, the results are consistent with those reported
by previous experiments.

Decay mode CLEO II3 resonance E687 Mark Il E691(rotated
Kp* 0 (fixed) 0 (fixed) 0 (fixed) 0+7

K* 7™ 166.7+2.0 16210 154+ 11 —152+9
K*0,;0 —7.8£2.2 —2*12 =7 127+ 9
Non-resonant 59%2.0 —122+10 52+9 — 40 (fixed)
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TABLE VII. The resonances considered when fitting th8—K 7" #° Dalitz plot, along with the
masses and widths used when evaluating the matrix element.

Parameters
Resonance JP Mass (GeVt?) Width (GeVic?)
p(770)" 1~ 0.770+0.001 0.150%0.0011
K*(892)° 1~ 0.8961+0.0003 0.050% 0.0006
K*(892)~ 1~ 0.8915-0.0003 0.056:0.001
K* (1410) 1- 1.414+0.015 0.232-0.021
K*(1410Y 1~ 1.414+0.015 0.232:0.021
K% (1430)" o+ 1.412+0.006 0.2940.023
K (1430 0 1.412-0.006 0.294:0.023
K3 (1430)" 2t 1.425+0.002 0.09& 0.003
i;(]_430)0 2+ 1.432+0.001 0.100.005
p(1450)" 1~ 1.465+-0.025 0.316:0.060
p(1700)" 1~ 1.700+0.020 0.2460.060
K*(1680)" 1~ 1.717+0.027 0.3220.110
K*(1680)0 1~ 1.717+0.027 0.3220.110
Kg(1780)0 3" 1.776-0.007 0.1590.021
K3 (1780)" 3" 1.776+-0.007 0.1590.021

p(1700)", E0(1430)0, Ko(1430)", andK* (1680) . Figure  €ters extracted from this fit is shown in Table IX.

9 shows the result of fitting the Dalitz plot with these com-  As a curious side note, if a single vectdt {7°) reso-
ponents. The fit fractions and phases are shown in the “Finahtance with a floating mass and width is added in place of the
resonances” column of Table VIII, and the full set of param-four new “standard resonances” discussed above, a good fit

TABLE VIII. The parameters from the fits to tH2°— K ~ 7" 70 Dalitz plot with all resonances included
(“All resonances” column and after we remove resonances consistent with zero fit fra¢tiéinal reso-
nances” columi The p(1450)" andp(1700)" contributions are discussed in the text.

All resonances Final resonances

Component Phasg@leg Fit fraction (%) Phase(deg Fit fraction (%)
K4(1780f 263+ 16 0.3t7.5

K3(1780)" 86+ 12 0.5-2.9

K*(1680)° 175+ 25 0.4:0.5

K* (1680)" 67+19 1.0:0.5 103-8 1.3+0.3
p(1700)" 149+8 75+18 171+6 5.7+0.8
p(1450)" —45+10 34r11

Non Res. 3¢5 9.1+1.3 31+4 7.5+0.9
K* (1410¥ 279+ 52 0.1+0.2

K,(1430) 148+13 0.3+0.14

Ko(1430f 168+5 8.0+1.3 166-5 4.1+0.6
K* (1410) 152+31 0.2-0.2

K,(1430)" 339+21 0.12+0.08

Ko(1430) 42+6 5.6+1.1 55.5-5.8 3.3+0.6
K*(892)" 159+ 2.6 12.8-1.8 163-2.3 16.2-0.7
p(770)* 0 (fixed) 74+ 4 0 (fixed) 78.7+2.0
K*(892)° 2.8+3.2 11.3-1.5 —-0.2+3.3 12.720.9
X2 203 257

-2InL 6490 6570

C.L. 91.3 94.9
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FIG. 8. The results of fitting th®°—K~ 7" 7° data with all FIG. 9. The results of fitting th®°—K 7" 7° data with the
known resonances likely to contributeee Table VII. The effi-  “final set” of components. The efficiency corrected fit is shown as

ciency corrected fit is shown as a Manhattan glop righy and as  a Manhattan plottop right and as projections onto the three mass
projections onto the three mass squared variables of bothistb-  squared variables of both fihistogram and data(points. The
gram and data(points. The dashed line shows the level of the dashed line shows the level of the background.

background.

We have fitted these samples with the same set of resonances
can obtained. Unfortunately, while this new resonance has @escribed above, and the results are shown in Table X. When
reasonable mass of 1.406 GeY/it prefers a negative width performing these fits, the efficiency functions were found
of I'=—0.25 GeVt? which does not seem to represent theseparately for th@° andD°® samples; however, a common
underlying dynamics we are trying to measure. It is possibléhackground shape was assumed. Forming a singplée-
that the desire for this resonance is an indication of an inactween the two sets of fit parameters we fm: 16.2 for 14
curacy of the formalism used for the resonance shapes or afegrees of freedom.
indication that multiple resonances are nee(w we have We calculate an integratddp asymmetry across the Dal-
assumejfl We note that the optimum set of seven resonanceg; plot by evaluating
used above, all of which have positive widths, provide a fit
which has a lowery? than the inclusion of this single un- | M po|?—| M pol?
physical state. Acp= M 0|2+|M_0|2d1)7> (27)

Other experiments have reported evidence of a light scalar b b

- o -4+
(7" @ ) resonance, the., in D"—m 7 m~ decays28],  jnq obtainA.,= —0.031+0.086, consistent with zero. Note
as well as evidence of a scald€ (") resonance, the, in a4 this number is not dependent on the numbeb dfand

D*—K #"a" decays29]. Since a significant fit fraction —, didates | dat le. but rath the sh ¢
for D" — k7" has been reported by these authors, we hav%1 candidates In our data sampie, but ratner on the shapes o
these distributions in the respective Dalitz plots.

searched for a scalak—K 7" resonance in theD°
— k7 channel, fixing the mass and width of tiketo the
values reported i29], (0.815 GeVt? and 0.560 GeWw? VI. SYSTEMATIC UNCERTAINTIES

rgsfsff“ée;%/ We gnd a fit fract|on conf|§tetr;]t with fléero After finding the best fit to the data, we must attempt to
(0.4%=0. °.)’ and see no improvement in e CONNAeNCe,qiimate the systematic uncertainties in the fit parameters.
level of the fit with this additional resonance included. We

. ) There are several possible sources: the background, the effi-
have also a_IIowed the Mass and W'dth of _th&) float in the ciency, biases due to experimental resolution, and the mod-
fit, and again see€ no S|gn!f|cant cpntnbuuon. eling of the decay. These contributions are discussed in or-

Last, since this a.nall/sls- considers 0'?39 megorls PTO= " der, and the final systematic errors are shown in Table XI,
duced from a decayin@® " in the modeD* " —D"xg , W€ where experimental and model dependent sources of system-
have the ability to divide our data into separ@€ and D° atic uncertainty are summarized in detail.
samples by simply considering the sign of thg from the The background was modeled by the choice of sideband
D** decay. The Dalitz plots of these samples can then beample that gave the best parameterization of the vetoed data
fitted separately and compared in a searchdé¥ violation.  sample from Monte Carlo simulations. Furthermore, the
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TABLE IX. Summary of our best fit to the data with the final set
of eight components included.

To obtain the efficiency across the Dalitz plot, signal
Monte Carlo events were fit to a cubic polynomial. As a
check, we have allowed this polynomial to float in our(éis
was done with the backgroupgubject to ay? constraint

Signal parameters Background parameters

an 1.75+0.12 from its covariance matrix in the likelihood functidme.,
a,- 1.00 (fixed) = 1.0+0.0 setting Eqy=1 in Eq. (17)]. If the efficiency is not well
ags - 0.44+0.01 B, —1.206+0.001 modeled by a cubic polynomial, there could still be an effect
ako 0.39+0.01 B, —0.74+0.23 that this check yvould fai_l to find. To search for this we tried
ay (1430 0.77+0.08 B, 0.468+0.001 a .Iocgl smoothlng algorithm rather than _the glgbal polyno-
ag (1430 0.85+0.06 By 0.842+0.008 mlgl fit. The efficiency was.smo.othed by fitting either 9 or 25
a,(1700)" 2.50+0.19 B, 0.168+0.001 ne!g_hbors around each bin with a local plgne. anh bin’'s
A (1680 2.50+0.3 B, —0.055+0.001 efficiency value was then replaced by the height of this plane
dar 31.2+4.2 B,y —0.16+0.06 interpolated to its center. As a final check, we used the raw
b, 0° (fixed) B,y —0.188+0.001 measurements of the efficiency in each bin of our fits. We
byx - 163+2.2 B,s 0.077+0.001 conclude that the effects of parametrization of the efficiency
bicro —0.2+3.®  Bixo (3.4+0.1)x10°® function over the Dalitz _plot is not a significant source of.
bic(1430r 55 5+ 5.8 B, (4.27x0.05)<10* concern as most of the fit parameters vary by less than their
i, (14308 166+ 5° By (9.64+0.01)x10°° one sigma error bars in the above checks.
1700y 171°+ 6° Since we make no requirement on the momentum of the
b (1680) 10P+8° charged tracks, one might worry that low momentum tracks
may be poorly measured and could affect the Dalitz plot
Signal fraction  0.96& 0.007 distribution in a way not well modeled by our Monte Carlo
-2Ing 6570 calculation. To search for such a momentum dependent ef-
Conf. level. 94.9% fect, we fit the data with the additional requirement that all
X2 257 tracks have a momentum above 350 MeV/

The cuts used to obtain our signal determine the structure
of our efficiency. To assess how well the Monte Carlo repro-
background parameters were allowed to float in our fits taduces the data distributions, we varied the cuts used in the
the data, constrained only by the covariance matrix from th@nalysis and fit the resulting Dalitz distributions. Each cut
fit that determined the nominal background function. Towas relaxed in turn. The cuts on the masd$égp, AM and
search for any systematic effects due the background paranvi o, were opened to double the size of the signal region.
etrization, the fitting procedure was repeated for a number cfhe minimum energy on the photons was relaxed to 90
different sideband choices. Because the background fractioMeV, and the requirement oXp« was loosened to 0.5.
our sample is a mere 3.3%, or about 230 out of the 7070 The rms variation in the fit parameters from each of the
events in the Dalitz plot, these changes have a minimal effedests described above was taken as our estimate of the sys-
on the fit parameters. We use the rms spread of these resutematic uncertainty on the efficiency. These values are
as our estimate of the systematic error due to our choice ashown in the “Eff” column of Table XI.
background parameterization. These values are shown in the A final contribution to the experimental systematic error,
“Bkgnd” column of Table XI. presented in column “Resol” of Table Xl, is due to the finite

TABLE X. Fit results when thd® and D° samples are considered separately.

D? sample D° sample
Component Amplitude Phaddeg Amplitude Phasddeg
p(770)" 1.0+0.0 0 (fixed) 1.0+0.0 0 (fixed)
K*(892)~ 0.433+0.034 168.93.3 0.442:0.015 157.&83.4
K*(892)° 0.391+0.026 1.3:3.7 0.4106:0.022 —4.9+4.9
p(1700)" 2.590+0.538 175.67.5 2.720-0.272 163.97.6
Ko(1430) 0.989+0.124 173.9-8.2 0.774-0.089 159.3-8.1
Ko(1430)" 0.701£0.211 59.¢10.0 0.91A0.117 55.¢7.1
K*(1680)" 2.567+1.540 107.469.2 2.060:0.423 106.413.5
Non Res. 1.84£10.146 39.¢7.9 1.780-0.160 21.36.0
X° 227 233
—2Int 3237 3302
C.L.(%) 93.1 80.7
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TABLE XI. A summary of the systematic errors on each fit parameter. The first two columns show the
results from the best fit and the associated statistical errors. The nexttioe® columns summarize the
systematic uncertainties due to experimefriabdeling sources respectively. Details are provided in the text.

From fit Experimental errors Modeling errors
Parameter Value Staterr Bkgnd Eff Resol Total Shape Add Total
K*(892) fit frac (%) 12.66 0.91 0.17 040 024 050 142 038 147
K*(892)° phase(deg -0.20 3.28 1.06 162 104 220 6.99 0.67 7.02
p(770)* fit frac (%) 78.76 1.93 0.52 1.10 0.53 1.33 4.40 1.33 4.60

K*(892)" fit frac (%) 16.11  0.69 047 053 018 073 3% o059 282
K*(892) phase(deg  163.40  2.32 094 262 130 308 420 109 4.34
Ko(1430)" fit frac (%) 3.32 0.64 013 060 040 073 116 040 1.23
Ko(1430) phase(deg  55.52  5.76 120 276 131 328 ;1%® 285 12

Ko(1430Y fit frac (%) 4.05 0.61 015 066 024 072 3% 039 3%
Ko(1430f phase(deg ~ 16590  5.23 239 383 070 457 114 320 118
p(1700)" fit frac (%) 5.65 0.76 020 043 050 068 571 059 574

p(1700)" phase(deg 17050  6.07 190 390 150 459 ;3% 517 &l
K*(1680) fit frac (%) 1.33 0.33 007 032 011 034 017 032 0.36
K*(1680) phase(deg  103.20  7.90 371 591 200 726 921 989 135
Non-res fit frac(%) 7.50 0.95 035 042 0.05 055 55 041 1558
Non-res phasédeg 31.20  4.28 1.28 508 170 551 ;% 119 3/,

resolution of the Dalitz plot variables. As a check, we haveresonances and the uncertainty in their shapes. In Sec. Il we
included the effects of smearing when fitting the data. Thisnotivated our choice of parametrization of the intermediate
was done by measuring the resolution as a function of posiresonances; however, other groups have used different func-
tion across the Dalitz plot and numerically convoluting thistional forms in their fits[8,9]. We varied these shapes to
with the amplitude at each point when performing the fit.study any systematic effects resulting from our choice. We
Again, the parameters vary by less than the statistical errorgxamine three variationsi) the Zemach formalisnj30]

on the nominal best fit, and their variation from the nominalwhich enforces the transversality of the mesons by using
values is taken as an estimate of the systematic uncertaintj4 rather tharM? in the denominator of the spin sunti)

The above three systematic error categofickground, a simple cosine distribution for the spin sum &id a non-
efficiency and resolutionare summarized in Table XI. They relativistic rather than relativistic Breit-Wigner in the propa-
are combined in quadrature to give the total experimentafjator. Further consideration was also given to the radial pa-
uncertainty, which is shown in the “Total” column under rameters used in the form factors, which were varied
“Experiment.” between 0 GeV'! and 3 GeV! for the intermediate reso-

Modeling systematic errors can arise from our choice ofnances and between 0 Ge¥ and 10 GeV?! for the D°

TABLE XII. Fit results after removal of the either tH€* (1680) resonance or the non-resonant com-
ponent. See Sec. VI for discussion.

RemovedK* (1680)" Removed non-resonant
Component Phas@leg Fit fraction (%) Phase(deg Fit fraction (%)
p(770)* 0 (fixed) 80.8+8.5 0 (fixed) 77.8+1.8
K*(892)~ 157+6.7 13.8-1.0 161+2.2 18.2+0.7
K* (892)° —4.7+5.7 14.5-1.3 -15+2.8 10.7-0.8
p(1700)" 161+ 20 6.7-0.8 161+5 5.4+0.8
KO(1430)0 164+9 4.4+0.5 194+9 1.0+0.3
Ko(1430)" 47.8+3.6 45-0.7 11+4 5.2+-0.7
K*(1680)" 0 0.0 90:5 1.9+0.5
Non-res. 3%*6 7.7+2.6 0 0.0
X2 316 411
—-2Int 6653 6798
C.L.(%) 98.5 0.7
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TABLE XIII. Final fit results. The errors shown are statistical, experimental systematic, and modeling
systematic respectively, as discussed in Sec. VI and summarized in Table XI.

Mode Fit fraction Phasé&deg
p(770)" K~ 0.788+0.019+0.013+ 0.046 0.0(fixed)
K*(892) m* 0.161+0.007+0.007" 3-953 163+2.3+3.1+4.3
K*(892)°7° 0.127+0.009+ 0.005* 0.015 —0.2+3.3+2.2+7.0
p(1700)" K~ 0.057+0.008+ 0.007+ 0.006 171+6+5"8}
K (1430P7° 0.041+0.006+0.007" 3-93¢ 166+5+4.6+12
K& (1430) 7" 0.033+0.006+0.007+0.012 55.5+5.8+3.3"12
K*(1680) 7" 0.013+0.003+0.003* 0.003 103 8+7+14
Non-resonant 0.075+0.009+ 0.006" 3958 31+4+5514

meson. The masses and widths of the intermediate resis the removal of theK* (1680) . We considered this be-

nances were allowed to vary within the known errf2§]. cause the final fit fraction for this resonance is a rather small

The non-resonant contribution was described in our fits by d.3%:* 0.3%. When theK* (1680) is removed they? in-

constant term, but as a check we also modeled it by a lineasreases from 257 to 316, indicating that this resonance

function or a shape given by the spin structure without theshould remain. The parameters for this fit are shown in the

Breit-Wigner amplitude$31]. “RemovedK* (1680) " column of Table XII. For compari-
The above tests were used to explore the systematic dgpn, when the other “new” resonancesy(1430Y,

pendence of the fit .paramc_aters on the way the.ph_ysic_s W38 (1430)", andp(1700)", are removed, thg? increases to
modeled. The variations using a simple cosine distribution in379 348, and 381 respectively. The second case which de-
place of the spin sum and using a spin structured rather thagsryes special attention is the removal of the non-resonant
constant non-resonant component resulted in fits with S|gn|flcomponem' Some theoretical models, such as chiral pertur-
cantly worsenedy” (368 and 322 respectivelyand are not  pation theory{32], prefer a small non-resonant component,
considered when assigning a systematic error as the data SUgiiggesting it proceeds only by the coherent sum of two body
gest that these forms could not be correct. We take the largiecays. When this test is performed on our data, the resulting
est of the remaining variations as the systematic error due t92 jumps to 411, suggesting that a non-resonant component
our choice of modeling shapes, and the results are shown ig indeed present. The parameters for this fit are shown in the
the “Shape” column of Table XI. _ _ “Removed non-resonant” column of Table XII.

The final systematic check is on our choice of which reso-  gjnce removal of any of the fit components causes a sig-
nances to include. For example, there is only a slight preferpificant increase in thg? of the fit, these variations were not
ence for thep(1700)" over the p(1450)" based on the jncluded in the modeling systematic error. To obtain the final
goodness of fit. To account for this uncertainty, both fitsyggel dependent systematic error we add the “Shape” and

were performed and the variation of the parameters wereaqqd” columns of Table Xl in quadrature to obtain the
noted. Fits were also performed which included additionakegyit shown in the “Total” column under “Model.”

resonances from Table VII. The rms variation in the fit pa-
rameters from the above checks is presented in the “Add VIl. SUMMARY OF RESULTS
column of Table XI.
We also considered the effects of removing resonances, We have fit the distribution of data in the°
and two of these studies deserve further comment. The first-K ™ 7+ 7% Dalitz plot obtained with the CLEO Il experi-

TABLE XIV. Partial branching fractions calculated by combining our fit fractions with the previously
measuredD’— K~ 7" 7% branching ratio as described in the text. The errors shown are statistical, experi-
mental systematic, and modeling systematic respectively.

Mode Partial branching fraction
B[D%— p(770)" K~ X B[ p(770)" — 7" 7°] 0.109+0.003+0.007+ 0.006
B[D°—K*(892)” 7" X B[K*(892)" =K~ 7] 0.022+0.001+0.002" 3:35¢
B[D%—K*(892)°7%]x B[K* (892)°—K 7] 0.018+0.001*+0.001+0.002
B[D°— p(1700)" K~ ]x B[ p(1700)" — 7" 7] 0.008+0.001+0.001+ 0.001
B[ D% K (14300 7°] X B[KZ (14300 — K~ 7] 0.006+0.001+0.001°§:601
B[D°— K} (1430) 7] x B[K% (1430) —K ™~ 7°] 0.005* 0.001+ 0.001:+ 0.002
B[D%—K*(1680) 7" X B[K* (1680) — K ~ 7] 0.0018+0.0004+ 0.0004+ 0.0004
B(D°—K™ 7" #°% non-resonant 0.010+0.001+0.001 3508
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ment to a coherent sum of seven intermediate resonances By separately fitting the D°—K 7" #° and D°
plus a non-resonant component. All resonances are either, K * -~ 9 Dalitz plots, we have calculated the integrated
scalar or vector; no significant tensor contribution was foundcp asymmetry across the Dalitz plot to bé,,= —0.031
The non-resonant contribution is significant, and cannot be- og6.

removed without seriously compromising the quality of the
fit. We see no evidence of a scalar~K~ 7" resonance in
the mass range recently reported by other groups.

The final fit fraction and phase for each component is
given in Table XIll. These fit fractions, multiplied by the  We gratefully acknowledge the effort of the CESR staff in
world averageD°— K™ 7" #° branching ratio of (13.9 providing us with excellent luminosity and running condi-
+0.9)% [27], yield the partial branching fractions shown in tions. M. Selen thanks the PFF program of the NSF and the
Table XIV. The error in the world average branching ratio isResearch Corporation, A. H. Mahmood thanks the Texas Ad-
incorporated by adding it in quadrature with the experimenvanced Research Program, F. Blanc thanks the Swiss Na-
tal systematic errors in the fit fractions to give the experi-tional Science Foundation, and E. von Toerne thanks the
mental systematic error in the partial branching fractionsAlexander von Humboldt Stiftung for support. This work
Note that as a result of interference, the fit fractions do notvas supported by the National Science Foundation, the U. S.
add to unity, and consequently the partial branching fraction®epartment of Energy, and the Natural Sciences and Engi-
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