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We use data collected with the CLEO II detector to perform a high-statistics measurement of the resonant
substructure inD0→K2p1p0 decays. We find that the Dalitz plot is well represented by a combination of

seven quasi-two-body decay channels@K̄* 0p0, K2r, K* 2p1, K0(1430)2p1, K̄0(1430)0p0, K2r1(1700),
and K* (1680)2p1#, plus a small non-resonant component. We see no evidence of a scalark→K2p1

resonance in the mass range recently reported by other groups. Using the amplitudes and phases from this
analysis, we calculate an integratedCP asymmetry of20.03160.086.
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I. INTRODUCTION

A clearer understanding of final state interactions in
clusive weak decays is an important ingredient for our abi
to model decay rates as well as for our understanding
interesting phenomena such as mixing@1#. There are severa
theoretical methods@2–6# used to understand the dynami
of two body charmed meson decays with experimental m
surements as input. Unfortunately, final-state interactions
often not well understood, and may not be included prope
in many models. These long-distance strong interaction
fects can cause significant changes in decay rates for spe
09200
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final states, and can cause shifts in the phases of the d
amplitudes.

Three-body decays provide a rich laboratory in which
study the interference between intermediate state resona
and provide a direct probe of the final state interactions
certain decays. When a particle decays into three or m
daughters, intermediate resonances dominate the decay
These resonances will cause a non-uniform distribution
events in phase space when analyzed using a ‘‘Dalitz pl
technique@7#. Since all events of a particular decay mo
have the same final state, multiple resonances at the s
location in phase space will interfere. This provides the o
portunity to experimentally measure both the amplitudes
1-2
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DALITZ ANALYSIS OF THE DECAY D0→K2p1p0 PHYSICAL REVIEW D 63 092001
phases of the intermediate decay channels, which in
allows us to deduce their relative branching fractions. Th
phase differences can even allow details about very br
resonances to be extracted by observing their interfere
with other intermediate states.

This paper describes a study of the underlying structur
D0→K2p1p0decays@14#. Four previous groups have mad
similar measurements, each with less than 1000 signal ev
@8–11#. In addition to significantly increasing our statistic
power, the large CLEO II data set on which this analysis
based also permits us to tighten analysis requirement
drastically reduce the effect of backgrounds. Coupled w
the superb resolution of the CLEO-II detector, this has
lowed us to extract significantly more information about th
decay than was possible in the past.

II. THEORETICAL MODELS

Since we are studying the decay of a spin-zero particle
three daughters, only two degrees of freedom are require
completely describe the kinematics. To see this, consider
decay in theD0 rest frame. The four-momenta of the thre
final state particles correspond to 12 unknowns. We have
constraint for each known mass and four additional c
straints from the conservation of momentum and energy
the decay. Finally, since the three degrees of freedom
scribing the spatial orientation of the decay are irrelev
~the D0 having spin zero!, only two independent degrees o
freedom remain.

There are three invariant masses that can be formed
considering all possible pairs of final state particle
MK2p1

2 , MK2p0
2 andMp1p0

2 . Only two of these are indepen
dent, however, since energy and momentum conservatio
sults in the additional constraint

MD0
2

1MK2
2

1Mp1
2

1Mp0
2

5MK2p1
2

1MK2p0
2

1Mp1p0
2 .

~1!

Choosing two of the above three invariant masses as
namic variables has two compelling advantages:~i! Their
relativistic invariance means the Lorentz frame in which th
are evaluated is irrelevant.~ii ! As the expression for the par
tial width in Eq.~2! indicates, we expect that a scatter plot
events in theM12

2 vs M23
2 plane~known as a Dalitz plot! will

be uniformly distributed if phase space alone determines
decay dynamics. This allows the decay fraction at each p
to be readily correlated with the decay matrix elementM
without additional corrections:

dG5
uMu2

256p3MD
3 dM12

2 dM23
2 . ~2!

In this analysis we chooseMK2p1
2 andMp1p0

2 as our two
Dalitz plot variables, and must next construct the relev
decay amplitudes in terms of these. The dynamics can
understood with the aid of Fig. 1. We first consider the de
of the D0 meson into particleC plus anAB resonance, fol-
lowed by the decay of theAB resonance into particlesA and
B. To properly describe the structure of this decay using
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Dalitz plot variables, we need to obtain the angular dep
dence of the decay products. Each vertex in Fig. 1 contai
spin factor«l which depends on the type of the decay: sc
lar, vector, tensor, etc. The matrix element for a vector de
is

M5FD~PD01PC!m

(
l

«l
m* «l

n

Mr
22MAB

2 2 iM rGAB
~PA2PB!nFr

~3!

whereP denotes the 4-momentum, andMr is the mass of the
resonance. In general the form factors at each vertex,FD and
Fr , are unknown functions; however, in practice they a
either set to a constant value or to the Blatt-Weisskopf p
etration factors@12#.

The spin-sum in the numerator of Eq.~3! is evaluated to
give

(
l

«l
m* «l

n52gmn1
PAB

m PAB
n

MAB
2 ~4!

and the ‘‘mass dependent width’’GAB is a function of the
AB invariant massMAB , the momentum of either daughte
in theAB rest framepAB , the momentum of either daughte
in the resonance rest framepr , the spin of the resonanceJ,
and the width of the resonanceG r , and is expressed as@13#

GAB5G r S pAB

pr
D 2J11S Mr

MAB
DFr

2 . ~5!

We relax the transversality requirement on the vec
resonance in Eq.~4! and divide byMr

2 instead ofMAB
2 . This

substitution gives rise to a small spin zero component w
the vector resonance is off mass shell, a behavior whic
observed to occur with theW boson and which should als
be expected in the resonance behavior we are studying h

Inserting this expression for the spin-sum into Eq.~3! and
summing over the repeated indices gives the Lorentz inv
ant expression for the matrix element of a vector particle a
function of position in the Dalitz plot:

FIG. 1. A representation of the three body decay ofD0

→ABC through anAB resonance. The spin sum is performed
obtain the angular dependence of the decay.
1-3
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A1~ABCur !5FDFr

MAC
2 2MBC

2 1
~MD

2 2MC
2 !~MB

22MA
2 !

Mr
2

Mr
22MAB

2 2 iM rGAB
.

~6!

The procedure for calculating the vector matrix elemen
generalizable to intermediate particles having other spin.
example, we can easily find the amplitude for a spin z
resonance to be

A0~ABCur !5FDFr

1

Mr
22MAB

2 2 iM rGAB
. ~7!

The procedure for higher spin resonances involves a
more algebra. For example, the spin-2 case starts with

A2~ABCur !5FD~PD1PC!m~PD1PC!n

3

(
l

«l
mn* «l

ab

Mr
22MAB

2 2 iM rGAB
~PA2PB!a

3~PA2PB!bFr . ~8!

In this case the spin sum has been previously calculated
Pilkuhn @13# to be

(
l

«l*
mn«l

ab5
1

2
~TmaTnb1TmbTna!2

1

3
TmnTab ~9!

where

Tmn52gmn1
PmPn

M2 . ~10!

When this expression is inserted into Eq.~8! and the im-
plied sums performed we find the final form of the tens
matrix element:

A2~ABCur !5
FDFr

Mr
22MAB

2 2 iGABMr
F S MBC

2 2MAC
2

1
~MD

2 2MC
2 !~MA

22MB
2 !

Mr
2 D 2

2
1

3 S MAB
2 22MD

2 22MC
2 1

~MD
2 2MC

2 !2

Mr
2 D

3S MAB
2 22MA

222MB
21

~MA
22MB

2 !2

Mr
2 D G .

~11!

Next we return to the form factorsFD and Fr , which
attempt to model the underlying quark structure of theD0

meson and the intermediate resonances. We use the B
Weisskopf penetration factors shown in Table I. These h
one free parameter,R, which is the ‘‘radius’’ of the meson
and are dependent on the momentumP of the decay particles
in the parent rest frame. In all cases, we normalize the fo
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m

factor to have unit value at the nominal meson mass. The
display very little sensitivity to the meson radii; good fits a
obtained when these values vary between 0 GeV21 and
10 GeV21 for the D0 and between 0 GeV21 and 3 GeV21

for the intermediate resonances. To be consistent with o
experiments @8# we have chosen theD0 to have R
55 GeV21 and the intermediate resonances all to haveR
51.5 GeV21

Before continuing, we must specify our phase conve
tions for the intermediate resonances. We can explicitly
the importance of specifying the ordering of particles in t
decay by examining Eq.~6!. If we were to switch the labels
A and B, we would generate an overall minus sign caus
the phase to change by 180°. In an attempt to be consis
with previous results we have chosen the phases in the s
way as the E687 Collaboration@8# since they are the only
group to have explicitly published their choice of phases a
matrix elements.

Now that we know the form of the intermediate resonan
amplitudes, and have chosen a phase convention that
allow us to compare our results with previous measureme
we can write down an expression for the overall matrix e
ment of the decay. Guided by the results of previous m
surements@8–10#, we begin with only three vector reso
nancesr(770)1, K* 2 and K̄* 0 @15# as well as a flat non-
resonant~nr! component:

M~D0→K2p1p0!

5anre
ifnr1areifrA1~p1p0K2ur1!

1aK̄* 0eifK̄* 0A1~K2p1p0uK̄* 0!

1aK* 2eifK* 2A1~K2p0p1uK* 2!, ~12!

where theai andf i are the amplitude and relative phase
the i th component respectively. The overall normalization
arbitrary, and is chosen to be

E uMu2dDP51 ~13!

TABLE I. Blatt-Weisskopf penetration form factors.pr is the
momentum of either daughter in the meson rest frame.pAB is the
momentum of either daughter in the candidate rest frame~same as
pr except the parent mass used is the two-track invariant mas
the candidate rather than the mass of the meson!. R is the meson
radial parameter.

Spin Form factorFr

0 1

1
A11R2pr

2

A11R2pAB
2

2
A913R2pr

21R4pr
4

A913R2pAB
2 1R4pAB

4

1-4
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wheredDP indicates that the integral is performed over t
Dalitz plot. This is equivalent to saying that we are sensit
only to relative phases and amplitudes, which in turn me
that we are free to fix one phase and one amplitude in
~12!. To minimize correlated errors on the phases and am
tudes we choose the largest mode,K2r, to have a fixed zero
phase and an amplitude of one.

Since the choice of normalization, phase convention,
amplitude formalism may not always be identical for diffe
ent experiments, fit fractions are reported instead of am
tudes to allow for more meaningful comparisons betwe
results. The fit fraction is defined as the integral of a sin
component divided by the coherent sum of all componen

fit fraction5

E uare
ifrA~ABCur !u2dDP

E U(
j

aje
if jA~ABCu j !U2

dDP
. ~14!

The sum of the fit fractions for all components of a fit w
in general not be 1 because of interference.

One must also consider the statistical errors in the fit fr
tions. We have chosen to use the full covariance matrix fr
the fits to determine the errors in fit fractions so that
assigned errors will properly include the correlated com
nents of the errors in the amplitudes and phases. After e
fit, the covariance matrix and final parameter values are u
to generate 500 sample parameter sets. For each set, t
fractions are calculated and recorded in histograms. E
histogram is fit with a single Gaussian to extract its wid
which is used as a measure of the statistical error on th
fraction.

III. EXPERIMENTAL DETAILS

The CLEO II detector is described elsewhere@16#. This
measurement uses the entire CLEO II data set, which re
sents approximately 4.7 fb21 of integratede1e2 luminosity
at As;10.6 GeV.

TheD0’s used in this analysis are required to be produc
by the decay chainD* 1→D0ps

1 , which significantly re-
duces the combinatorial background. To reconstruct
D0’s, we take pairs of oppositely charged tracks and ass
the track with the same sign as the pion from theD* 1 decay
to be the pion from theD0 decay. This Cabibbo-favore
correlation between the signs of the pions eliminates
need for other particle identification techniques in this ana
sis.

For tracks to be used they must be well fitted, and rec
struct to within 5 cm of the interaction point along the bea
pipe and within 5 mm perpendicular to the beam pipe~cor-
responding to about 5 standard deviations in length and m
than 10 standard deviations in the width of the beam spo!.

We fit pairs of tracks passing these requirements t
common vertex, which is the candidate decay position of
D0 meson. Each such pair of charged tracks is combi
with all p0 candidates in an event. Thep0 candidates are
found by combining all pairs of electromagnetic showe
which are unmatched to charged tracks. To reduce the n
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ber of fakep0’s from random shower combinations and
improve their resolution, we require that each shower h
energy above 100 MeV and be in the central region of
CLEO II detector. Furthermore, the invariant mass of the t
photon combination is restricted to be between 1
MeV/c2and 140 MeV/c2 ~i.e. within about one standard de
viation of the p0 mass!. The two shower combination is
kinematically fit to give the knownp0 mass.

Once we have a vertex with aK2, a p1 and ap0 candi-
date, we combine the momenta of the three particles to
theD0 momentum. With the decay location and the mome
tum known, theD0 is projected back to the beam spot.
CLEO, the beam spot has a ribbon-like shape with a width
700 mm, a height of 20mm, and a length of about 2 cm. W
project theD0 candidate back to the vertical position of th
beam, since this dimension of the beam is most precis
known. The intersection of theD0 projection and the beam
position defines the production point of theD* 1.

We refit the slow pion track to include theD* 1 produc-
tion point as an additional constraint, providing a better m
surement of its true momentum. The result of this is that
width of the mass difference peak,DM5M (D* 1)
2M (D0), is reduced from 590 keV to 490 keV, providing
15% reduction in the number of background events in
final sample. We make a requirement thatDM be between
144.9 MeV/c2 and 145.9 MeV/c2. We also require that the
normalizedD* momentum,XD* 5PD* /AEbeam

2 2MD*
2 , be

greater than 0.6, which significantly reduces the combina
rial background level and kinematically excludes the pos
bility that a D* candidate came from a decayingB meson.

After obtaining the candidateD0’s as described above, w
can plot the mass of theD0→K2p1p0 candidates as show
in Fig. 2, where the fit to the mass distribution is also show
When examining the Dalitz plot, we only use the even
which have 1.85 GeV/c2,MD0,1.88 GeV/c2 ~i.e. within

FIG. 2. TheD0→K2p1p0 reconstructed mass distribution fo
all event candidates~points!. The solid line represents a fit to th
data using a double bifurcated Gaussian to represent the signa
a straight line to represent the background~shaded area!.
1-5
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about one standard deviation of the knownD0 mass!.
We have chosen quite restrictive cuts on our kinema

variables~approximately one standard deviation on each! to
minimize the effect of the background on our result. Sin
we are studying the shape of the distribution and are
trying to extract a branching ratio, the fact that this increa
the systematic uncertainty of the overall efficiency somew
is not an issue.

Applying the above requirements produces 7070 event
the Dalitz plot. Figure 3 shows the distribution of this samp
as a scatter plot in the chosen mass squared variablesMK2p1

2

andMp1p0
2 .

In order to reduce the smearing effects introduced by
detector, those combinations passing the above requirem
are kinematically fit such that when combined, theK2, p1

and p0 reconstruct to give the correctD0 mass. This kine-
matic fit has two effects. First, the uncertainty of t
4-momentum of the particles is reduced, giving a more p
cise measurement of the mass squared variables used t
fine an event’s position in the Dalitz plot. Second, the de
position in these variables is guaranteed to respect the k
matic boundaries of the Dalitz plot.

A. Background

Turning again to Fig. 2, we can see that the signal reg
contains a small but non-zero number of background eve
We use the fit shown to measure the fraction of events in
region which are ‘‘true signal’’ by integrating the sign
function ~a double bifurcated Gaussian! and the background
function ~a line! and comparing the two. The signal fractio
and its associated statistical error, 0.96760.011, are used in
the likelihood function minimized during the fitting proce
dure.

FIG. 3. The Dalitz distribution of all 7070
D0→K2p1p0candidates in our data sample shown in an unbin
scatter plot.
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Knowing only the amount of background is not enough
we want to correctly extract the amplitudes and phases of
signal component; the shape of the background in the Da
plot is also important. There are several sidebands@17# that
could be chosen to study the shape of this background u
data, and a Monte Carlo study~outlined below! is used to
determine which one is best. As will become apparent in
section on systematic errors, the overall low level of t
background means that the final result has very little se
tivity to this choice.

To determine which sideband will best represent the D
itz plot shape of the background in the signal region
signal-free sample ofe1e2→qq̄ Monte Carlo simulated
data is used~referred to below as the ‘‘vetoed’’ sample!.
These data are generated using a fullGEANT based detector
simulation @18#, and are processed by the same reconstr
tion code that is used for real data.

This Monte Carlo sample represents the background
want to measure in data, and we use it as a reference in
study. The next step is to consider a number of poss
sideband samples, and see which does the best job repre
ing the Dalitz shape of the vetoed sample.

Many sideband samples can be formed in the space
fined by the three mass variables,DM , MD0 and Mp0. To
choose the best one, we fit the distribution in the Dalitz p
using an unbinned likelihood fit to a cubic polynomial
MK2p1

2 and Mp1p0
2 as well as non-interfering squared am

plitudes for ther(770), K* (892)2 andK̄* 0. A x2 is formed
between each Monte Carlo sideband sample and the re
ence vetoed sample to give us a measure of their rela
merits.

Based on this, the sideband which seems to best repre
the vetoed sample consists of those events which haveDM
,0.1549 GeV/c2, are in theMp0 signal region, and are in

d

FIG. 4. A box plot showingD0→K2p1p0 candidates in the
DM vs MD0 plane. The shaded areas on each side of the peak
the sidebands determined to best represent the background.
1-6
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the off-peak regions ofMD0: 1.76,MD0 (GeV/c2),1.80 or
1.91,MD0 (GeV/c2),1.95. This choice of sidebands alon
with the D0→K2p1p0 candidates is shown in Fig. 4.

The assumption is now made that the sideband met
which best represents the background in the Dalitz plot w
analyzing the Monte Carlo simulated data is also the b
sideband method for use in real data. Those events from
actual data which are in the selected ‘‘best’’ sideband are
with the cubic polynomial plus the three non-interferin
resonances. The resulting best fit parameters are show
Table II. We project the fit and the background points on
the three mass squared variables and show the results in
5, along with a two dimensional Manhattan plot of the

FIG. 5. Results of the best fit to theD0→K2p1p0sideband
background sample. The fit function is shown as a Manhattan
~top right! and as projections onto the three mass squared varia
showing both fit~histogram! and data~points!.

TABLE II. Background and efficiency best fit parameters. T
fitting functions are described in Sec. IV.

Background Efficiency

B0 1.0 ~fixed! E0 (22.161.8)31025

Bx 21.18860.018 Ex (26.8962.9)31025

By 20.74260.044 Ey (227.163.7)31025

Bx2 0.48360.015 Ex2 (10.461.6)31025

Bxy 0.87460.032 Exy (38.263.2)31025

By2 0.12260.047 Ey2 (12.462.8)31025

Bx3 20.05260.004 Ex3 (23.0060.27)31025

Bx2y 20.16260.010 Ex2y (27.9760.73)31025

Bxy2 20.20260.014 Exy2 (212.860.94)31025

By3 0.06160.016 Ey3 (20.5360.73)31025

BK̄* 0 (1.6561.70)31025

Br1 (3.6960.58)31024

BK* 2 (7.6961.95)31025
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result. We use this parametrization of the background sh
in the fit to the distribution of events in the Dalitz plot b
including both the parameters and the covariance matrix
the final likelihood function~as described in Sec. IV!.

B. Efficiency

Next, we determine the efficiency for detecting sign
events as a function of position in the two dimensional Da
plot. After generating 4.23106 signal Monte Carlo events
with a flat distribution in phase space~i.e. uniform across the
Dalitz plot!, these events are analyzed to find the numbe
observed events as a function ofMK2p1

2 and Mp1p0
2 . The

events observed are binned into regions with 50 (MeV/c2)2

on a side, and we divide the number of events observe
each bin by the number generated to give a measure of
efficiency for that bin. Because of the finite number of Mon
Carlo events observed in each bin, each individual efficie
measurement has about a 10% statistical error. Since we
pect ~and observe! that the efficiency is a slowly varying
function across the Dalitz plot, we fit the efficiency measu
ments with a cubic polynomial inMK2p1

2 and Mp1p0
2 and

use the resulting function to parametrize the efficiency.
As a check that the efficiency function obtained usi

phase space Monte Carlo is reasonable, we repeat the p
dure described above with another 2.43106 signal Monte
Carlo events generated with the Dalitz distribution found
E691 @9#. Again the efficiency in each bin is calculated an
fit. Since the resulting fit agrees well with the efficiency ca
culated from the phase space distribution of points, we co
bine the two Monte Carlo samples and calculate the e

ot
les

FIG. 6. Results of the best fit to theD0→K2p1p0detection
efficiency distribution. The fit function is shown as a Manhatt
plot ~top right! and as projections onto the three mass squared v
ables of both fit~histogram! and raw efficiency~points!. In each of
the projections, the quantity plotted is the average efficiency at
given M2 value.
1-7
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ciency using the full 6.63106 events. The fit parameters fo
this combined fit are shown in Table II. Figure 6 shows t
raw efficiency for each bin as well as the fit and the proj
tions onto each of the three mass-squared axes.

IV. FITTING PROCEDURE

Having a parametrization for both the background a
efficiency as well as knowing the fraction of events in t
signal region which are in fact background, we can fit t
data in the Dalitz plot to extract the amplitudes and phase
any contributing intermediate resonances.

To do this we use an unbinned maximum likelihood
which minimizes the functionF given by

F5F (
events

22 lnLG1xpenalty
2 ~15!

where

L5S FE~MK2p1
2 ,Mp1p0

2
!uMu2

Nsignal

1~12F !
B~MK2p1

2 ,Mp1p0
2

!

Nbackground
D ~16!

xpenalty
2 5S F2F0

sF
D 2

1(
i j

~Bi2Bi0!Vi j ~Bj2Bj 0!

1Esys(
i j

~Ei2Ei0!Wi j ~Ej2Ej 0! ~17!

and

Nsignal5E E~MK2p1
2 ,Mp1p0

2
!uMu2dDP ~18!

Nbackground5E B~MK2p1
2 ,Mp1p0

2
!dDP. ~19!

The signal fractionF0 and its errorsF ~0.967 and 0.011
respectively! are determined from the fit to theD0 mass
spectrum shown in Fig. 2, and the parametersBj 0 and Ej 0
describe the nominal background and efficiency shapes~see
Table II! via the cubic polynomial shapes

B5B01BxMK2p1
2

1ByMp1p0
2

1Bx2~MK2p1
2

!2

1BxyMK2p1
2 Mp1p0

2
1By2~Mp1p0

2
!21Bx3~MK2p1

2
!3

1Bx2y~MK2p1
2

!2Mp1p0
2

1Bxy2MK2p1
2

~Mp1p0
2

!2

1By3~Mp1p0
2

!31BK̄* 0uA1~K2p1p0uK̄* 0!u2

1bruA1~p1p0K2ur1!u21bK* 2uA1~K2p0p1uK* 2!u2

~20!

and
09200
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E5E01ExMK2p1
2

1EyMp1p0
2

1Ex2~MK2p1
2

!2

1ExyMK2p1
2 Mp1p0

2
1Ey2~Mp1p0

2
!21Ex3~MK2p1

2
!3

1Ex2y~MK2p1
2

!2Mp1p0
2

1Exy2MK2p1
2

~Mp1p0
2

!2

1Ey3~Mp1p0
2

!3. ~21!

In expressing this likelihood function we have made t
explicit assumption that background events and signal ev
are distinct, allowing us to factor the likelihood into tw
components which do not interfere. Thexpenalty

2 terms repre-
sent the information from the fits used to determine the s
nal fraction, the background parametrization, and the e
ciency parametrization.Vi j and Wi j are the covariance
matrices from the background and efficiency fits resp
tively. The last term is used only when evaluating the s
tematic errors due to the efficiency parametrization; he
Esys is set to zero during ‘‘normal’’ fitting.

In addition to the likelihood, we need a measure to ass
how well any given fit represents the data@19#. A confidence
level can be calculated directly from the likelihood functio
by utilizing the best fit parameters. This idea was describ
by ARGUS @20# and is a direct application of the centr
limit theorem from statistics@21#. Assuming the candidate
are truly distributed according to the likelihood functio
which gives the best fit, the average value is

m5
1

N (
i 51

N

~22 lnL!'E L~22 lnL!dDP ~22!

whereN is the number of candidates. The variance is giv
by

sm
2 5

1

N (
i 51

N

~22 lnL2m!2'E L~22 lnL!2dDP2m2.

~23!

Because we have a large number of candidates distrib
according to this function, the central limit theorem tells
that the mean should follow a normal distribution. The su
of minus logarithmic likelihoods, which is the value min
mized in the fit, has a mean ofNm and follows a normal
distribution with a variance ofNsm

2 . Thus, the minimal
value will come from a normal distribution with mean

K 22( ln LL 5NE L~22 lnL!dDP2n ~24!

and standard deviation

s^22( ln L&5ANE L~22 lnL!2dDP2Nm2 ~25!

wheren is the number of parameters extracted from the
The confidence level for the fit is then just the area o
Gaussian with the above mean and width which lies ab
the value obtained in our fit. It is worth pointing out that th
1-8
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value only gives a measurement of the goodness of fit
suming the fit function correctly describes the true distrib
tion.

Having a second measure of the goodness of the fit wo
be extremely valuable, and an obvious choice is thex2. This
requires the data to be binned, and furthermore that ther
enough events in each bin that Gaussian statistics ca
assumed. As we saw in Fig. 3, the density of candidate
theD0→K2p1p0 Dalitz plot varies significantly as a func
tion of position; hence to form a sensiblex2 measure we will
need to have bins of varying size.

To systematically choose these bins, we start by placin
grid of small regions, 50 (MeV/c2)2 on a side, over the Dal
itz plot. Next, adjacent regions are combined into bins u
each contains approximately 30 candidates. After comple
this procedure, our Dalitz plot is divided into 228 bins
varying size, and ax2 variable for the multinomial distribu-
tion @22,23# can be calculated as

x2522(
i 51

228

ni lnS pi

ni
D ~26!

whereni is the number of events observed in bini, andpi is
the number predicted from the fit. For a large number
events this formulation of thex2 becomes equivalent to th
usual one@24#.

One can naively calculate the number of degrees of fr
dom for the fit as the number of bins~r! minus the number of
fit parameters~k! minus 1, as would be correct for a binne
maximum likelihood fit. However, since we are minimizin
the unbinned likelihood function, our ‘‘x2’’ variable does
not asymptotically follow ax2 distribution @24#, but it is
bounded by ax2 variable with (r 21) degrees of freedom
and ax2 variable with (r 2k21) degrees of freedom. Be
cause it is bounded by twox2 variables, it should be a usefu
statistic for comparing the relative goodness of fits. In w
follows, we use both thex2 and the confidence level de
scribed above as our ‘‘goodness of fit’’ measures to de
mine which of the many possible sets of intermediate re
nances are preferred.

Before analyzing theD0→K2p1p0 data, we performed
many checks of both the fitting and fit evaluation procedur
One of these was a double-blind study in which seve
Monte Carlo samples containingD0→K2p1p0 decays gen-

TABLE III. A comparison between input Monte Carlo param
eters and the results from a subsequent fit to the Dalitz plot u
the techniques described in Sec. IV. Note that the input amplitu
and phases are completely fictitious.

Resonance Generated Measured
Amplitude Phase~deg! Amplitude Phase~deg!

K̄* 0 1.0 45 1.0360.02 4761

r1 1.0 0 1.0~fixed! 0 ~fixed!

K* 2 1.0 2115 1.0360.02 211362
K0* (1430)2 0.5 2115 0.5460.05 210766
Non-resonant 1.0 290 1.0860.05 27363
09200
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erated with ‘‘secret’’ mixtures of intermediate resonanc
were analyzed. In each case, our fitting and evaluation p
cedure identified the correct set of resonances, and recov
their amplitudes and phases within statistical errors. The
sulting amplitudes and phases for one of the fits is shown
Table III.

V. FITTING THE DATA

Armed with the tools described in the previous sectio
we are ready to fit the data distribution shown in Fig.
Previous experiments have observed three intermediate r
nances inD0→K2p1p0decays:r1, K̄* 0 and K* 2; hence

FIG. 7. The results of fitting theD0→K2p1p0 data with only

r1, K̄* 0, K* 2, and non-resonant components included. The e
ciency corrected fit is shown as a Manhattan plot~top right! and as
projections onto the three mass squared variables of both fit~histo-
gram! and data~points!. The dashed line shows the level of th
background.

g
es

TABLE IV. Results of the best fit to the data with onl

r1, K̄* 0, K* 2, and non-resonant components included.

anr 1.7060.07
ar1 1.00 ~fixed!

aK* 2 0.37860.008
aK̄* 0 0.42260.009

fnr 59.7°62.0°
fr1 0° ~fixed!

fK* 2 166.7°62.0°
f K̄* 0 27.8°62.2°

22 lnL 7070
Conf. level. 0.0%

x2 650
1-9
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TABLE V. A comparison of the fit fractions obtained with our ‘‘three resonance’’ fit and those repo
by previous experiments. The errors shown are statistical only. Note that although the data is not we
this model, the results are consistent with those reported by previous experiments.

Decay mode CLEO II~3 resonance! E687 Mark III E691

K2r1 0.83460.007 0.76560.041 0.8160.03 0.64760.039
K* 2p1 0.12960.006 0.14860.028 0.1260.02 0.08460.011

K̄* 0p0 0.15760.007 0.16560.031 0.1360.02 0.14260.018

Non-resonant 0.07460.006 0.10160.033 0.0960.02 0.036
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we begin by considering only these in addition to a no
resonant component. The resulting fit parameters are give
Table IV.

Figure 7 shows the projections of both the fit and the d
onto the three mass squared variables, as well as a two
mensional Manhattan plot of the final fit function. Even
quick glance suggests that the data are not well represe
by this function, and the large value ofx2 as well as the zero
confidence level confirms this observation. These parame
are useful for comparison with previous experiments, ho
ever, which reported observation of these three resona
with much less statistics. We show the comparison in Tab
V and VI and see good agreement. Unfortunately, we
only compare the results for the phases to E687 since
other experiments do not give their choice of particle ord
ing or potential complex constants in their choice f
A(ABCur ). Although the phases match for the three re
nant components, the non-resonant phase seems to be o
180°. This observation is consistent with comments t
E687 had an unreported negative sign in their vector am
tude @25#.

Since we have at least a factor of 10 more statistics
this analysis, one should not be surprised that more re
nances are needed to accurately represent the data. The
tion now becomes how best to determine which additio
resonances to include. We have tried two procedures:~a!
adding all possible resonances and subsequently remo
those which do not contribute significantly, and~b! adding
new resonances one at a time and choosing the best
tional one at each iteration, stopping when no additio
resonances contribute significantly. Both of these meth
lead us to the same results; hence only the first one is
scribed below.

We begin by fitting the Dalitz plot with all known reso
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nances which can possibly contribute to this decay, as lis
in Table VII @26#. The results of this fit are shown in th
‘‘All resonances’’ column of Table VIII and in Fig. 8. There
are five resonances which have fit fractions that are less
one standard deviation away from zero:K̄3* (1780)0,

K3* (1780)2, K̄* (1410)0, K* (1410)2 and K̄* (1680)0. Two

other resonances,K̄2* (1430)0 andK2* (1430)2, have fit frac-
tions close to zero. When the first five resonances are
moved and the fit repeated, the fit fractions of these last
resonances do become consistent with zero, and hence
also removed.

Notice that in the ‘‘All resonances’’ column of Table VII
there are two heavyr mesons@r(1450)1 and r(1700)1#
which have surprisingly large fit fractions. Both have mas
which place their peak outside the Dalitz plot, but both a
wide enough (310660 MeV/c2 and 240660 MeV/c2 re-
spectively@26#! that their tails extend well into the region o
interest, making it difficult to distinguish between them
Since the fitted phases of theser ’s are very close to being
180o apart, their large fit fractions are assumed to be an
tifact of the fit’s inability to tell them apart. Supporting thi
is the additional fact that when both resonances are c
bined, their net contribution to the fit fraction is muc
smaller, (962)%. Since the inclusion of bothr resonances
is probably a misrepresentation of the contents of the Da
plot, only one of these is included in all following fits. W
choose the one which gives the bestx2 and goodness of fit,
the r(1700)1, and consider ther(1450)1 only when evalu-
ating our systematic errors.

After the seven resonances consistent with zero fit fr
tion are removed along with ther(1450)1 ~as discussed
above!, seven resonances remain in addition to the n
resonant component:r(770)1, K* (892)2, K̄* (892)0,
e
have

er
eported
TABLE VI. A comparison of the phases~in degrees! obtained with our ‘‘three resonance’’ fit and thos
reported by previous experiments. The errors shown are statistical only. In the ‘‘rotated’’ column we
shifted the reported phases such that ther has a phase of 0o in order to ease comparison with the oth
results. Note that although the data are not well fit by this model, the results are consistent with those r
by previous experiments.

Decay mode CLEO II~3 resonance! E687 Mark III E691~rotated!

K2r1 0 ~fixed! 0 ~fixed! 0 ~fixed! 067
K* 2p1 166.762.0 162610 154611 215269

K̄* 0p0 27.862.2 22612 767 12769

Non-resonant 59.762.0 2122610 5269 240 ~fixed!
1-10
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TABLE VII. The resonances considered when fitting theD0→K2p1p0 Dalitz plot, along with the
masses and widths used when evaluating the matrix element.

Parameters

Resonance JP Mass (GeV/c2) Width (GeV/c2)

r(770)1 12 0.77060.001 0.150760.0011

K̄* (892)0 12 0.896160.0003 0.050560.0006

K* (892)2 12 0.891560.0003 0.05060.001
K* (1410)2 12 1.41460.015 0.23260.021

K̄* (1410)0 12 1.41460.015 0.23260.021

K0* (1430)2 01 1.41260.006 0.29460.023

K̄0* (1430)0 01 1.41260.006 0.29460.023

K2* (1430)2 21 1.42560.002 0.09860.003

K̄2* (1430)0 21 1.43260.001 0.10960.005

r(1450)1 12 1.46560.025 0.31060.060
r(1700)1 12 1.70060.020 0.24060.060
K* (1680)2 12 1.71760.027 0.32260.110

K̄* (1680)0 12 1.71760.027 0.32260.110

K̄3* (1780)0 32 1.77660.007 0.15960.021

K3* (1780)2 32 1.77660.007 0.15960.021
-
in the

d fit
r(1700)1, K̄0(1430)0, K0(1430)2, andK* (1680)2. Figure
9 shows the result of fitting the Dalitz plot with these com
ponents. The fit fractions and phases are shown in the ‘‘F
resonances’’ column of Table VIII, and the full set of param
09200
al
-

eters extracted from this fit is shown in Table IX.
As a curious side note, if a single vector (K2p0) reso-

nance with a floating mass and width is added in place of
four new ‘‘standard resonances’’ discussed above, a goo
d
TABLE VIII. The parameters from the fits to theD0→K2p1p0 Dalitz plot with all resonances include
~‘‘All resonances’’ column! and after we remove resonances consistent with zero fit fraction~‘‘Final reso-
nances’’ column!. Ther(1450)1 andr(1700)1 contributions are discussed in the text.

All resonances Final resonances

Component Phase~deg! Fit fraction ~%! Phase~deg! Fit fraction ~%!

K̄3(1780)0 263616 0.367.5

K3(1780)2 86612 0.562.9

K̄* (1680)0 175625 0.460.5

K* (1680)2 67619 1.060.5 10368 1.360.3
r(1700)1 14968 75618 17166 5.760.8
r(1450)1 245610 34611
Non Res. 3065 9.161.3 3164 7.560.9

K̄* (1410)0 279652 0.160.2

K̄2(1430)0 148613 0.360.14

K̄0(1430)0 16865 8.061.3 16665 4.160.6

K* (1410)2 152631 0.260.2
K2(1430)2 339621 0.1260.08
K0(1430)2 4266 5.661.1 55.565.8 3.360.6
K* (892)2 15962.6 12.861.8 16362.3 16.160.7
r(770)1 0 ~fixed! 7464 0 ~fixed! 78.762.0

K̄* (892)0 2.863.2 11.361.5 20.263.3 12.760.9

x2 203 257
22 lnL 6490 6570
C.L. 91.3 94.9
1-11
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can obtained. Unfortunately, while this new resonance ha
reasonable mass of 1.406 GeV/c2, it prefers a negative width
of G520.25 GeV/c2 which does not seem to represent t
underlying dynamics we are trying to measure. It is poss
that the desire for this resonance is an indication of an in
curacy of the formalism used for the resonance shapes o
indication that multiple resonances are needed~as we have
assumed!. We note that the optimum set of seven resonan
used above, all of which have positive widths, provide a
which has a lowerx2 than the inclusion of this single un
physical state.

Other experiments have reported evidence of a light sc
(p1p2) resonance, thes, in D1→p2p1p1 decays@28#,
as well as evidence of a scalar (K2p1) resonance, thek, in
D1→K2p1p1 decays@29#. Since a significant fit fraction
for D1→kp1 has been reported by these authors, we h
searched for a scalark→K2p1 resonance in theD0

→kp0 channel, fixing the mass and width of thek to the
values reported in@29#, ~0.815 GeV/c2 and 0.560 GeV/c2

respectively!. We find a fit fraction consistent with zer
(0.4%60.3%), and see no improvement in the confiden
level of the fit with this additional resonance included. W
have also allowed the mass and width of thek to float in the
fit, and again see no significant contribution.

Last, since this analysis considers onlyD0 mesons pro-
duced from a decayingD* 1 in the modeD* 1→D0ps

1 , we

have the ability to divide our data into separateD0 and D̄0

samples by simply considering the sign of theps
6 from the

D* 6 decay. The Dalitz plots of these samples can then
fitted separately and compared in a search forCP violation.

FIG. 8. The results of fitting theD0→K2p1p0 data with all
known resonances likely to contribute~see Table VII!. The effi-
ciency corrected fit is shown as a Manhattan plot~top right! and as
projections onto the three mass squared variables of both fit~histo-
gram! and data~points!. The dashed line shows the level of th
background.
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We have fitted these samples with the same set of resona
described above, and the results are shown in Table X. W
performing these fits, the efficiency functions were fou
separately for theD0 and D̄0 samples; however, a commo
background shape was assumed. Forming a simplex2 be-
tween the two sets of fit parameters we findxcp

2 516.2 for 14
degrees of freedom.

We calculate an integratedCP asymmetry across the Da
itz plot by evaluating

Acp5E uM D0u22uM D̄0u2

uM D0u21uM D̄0u2 dDP ~27!

and obtainAcp520.03160.086, consistent with zero. Not
that this number is not dependent on the number ofD0 and
D̄0 candidates in our data sample, but rather on the shape
these distributions in the respective Dalitz plots.

VI. SYSTEMATIC UNCERTAINTIES

After finding the best fit to the data, we must attempt
estimate the systematic uncertainties in the fit paramet
There are several possible sources: the background, the
ciency, biases due to experimental resolution, and the m
eling of the decay. These contributions are discussed in
der, and the final systematic errors are shown in Table
where experimental and model dependent sources of sys
atic uncertainty are summarized in detail.

The background was modeled by the choice of sideb
sample that gave the best parameterization of the vetoed
sample from Monte Carlo simulations. Furthermore, t

FIG. 9. The results of fitting theD0→K2p1p0 data with the
‘‘final set’’ of components. The efficiency corrected fit is shown
a Manhattan plot~top right! and as projections onto the three ma
squared variables of both fit~histogram! and data~points!. The
dashed line shows the level of the background.
1-12
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DALITZ ANALYSIS OF THE DECAY D0→K2p1p0 PHYSICAL REVIEW D 63 092001
background parameters were allowed to float in our fits
the data, constrained only by the covariance matrix from
fit that determined the nominal background function.
search for any systematic effects due the background pa
etrization, the fitting procedure was repeated for a numbe
different sideband choices. Because the background frac
our sample is a mere 3.3%, or about 230 out of the 7
events in the Dalitz plot, these changes have a minimal ef
on the fit parameters. We use the rms spread of these re
as our estimate of the systematic error due to our choic
background parameterization. These values are shown in
‘‘Bkgnd’’ column of Table XI.

TABLE IX. Summary of our best fit to the data with the final s
of eight components included.

Signal parameters Background parameters

anr 1.7560.12
ar1 1.00 ~fixed! B0 1.060.0

aK* 2 0.4460.01 Bx 21.20660.001
aK̄* 0 0.3960.01 By 20.7460.23

aK0(1430)2 0.7760.08 Bx2 0.46860.001
aK̄0(1430)0 0.8560.06 Bxy 0.84260.008
ar(1700)1 2.5060.19 By2 0.16860.001

aK* (1680)2 2.5060.3 Bx3 20.05560.001
fNR 31.2o64.3o Bx2y 20.1660.06
fr1 0o ~fixed! Bxy2 20.18860.001

fK* 2 16362.3o By3 0.07760.001
f K̄* 0 20.2o63.3o BK̄* 0 (3.460.1)31025

fK0(1430)2 55.5o65.8o Br (4.2760.05)31024

f K̄0(1430)0 166o65o BK* 2 (9.6460.01)31025

fr(1700)1 171o66o

fK* (1680)2 103o68o

Signal fraction 0.96860.007
22 lnL 6570

Conf. level. 94.9%
x2 257
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To obtain the efficiency across the Dalitz plot, sign
Monte Carlo events were fit to a cubic polynomial. As
check, we have allowed this polynomial to float in our fit~as
was done with the background! subject to ax2 constraint
from its covariance matrix in the likelihood function@i.e.,
setting Esys51 in Eq. ~17!#. If the efficiency is not well
modeled by a cubic polynomial, there could still be an effe
that this check would fail to find. To search for this we trie
a local smoothing algorithm rather than the global polyn
mial fit. The efficiency was smoothed by fitting either 9 or 2
neighbors around each bin with a local plane. Each bi
efficiency value was then replaced by the height of this pla
interpolated to its center. As a final check, we used the
measurements of the efficiency in each bin of our fits. W
conclude that the effects of parametrization of the efficien
function over the Dalitz plot is not a significant source
concern as most of the fit parameters vary by less than t
one sigma error bars in the above checks.

Since we make no requirement on the momentum of
charged tracks, one might worry that low momentum trac
may be poorly measured and could affect the Dalitz p
distribution in a way not well modeled by our Monte Car
calculation. To search for such a momentum dependent
fect, we fit the data with the additional requirement that
tracks have a momentum above 350 MeV/c.

The cuts used to obtain our signal determine the struc
of our efficiency. To assess how well the Monte Carlo rep
duces the data distributions, we varied the cuts used in
analysis and fit the resulting Dalitz distributions. Each c
was relaxed in turn. The cuts on the masses,MD0, DM and
Mp0, were opened to double the size of the signal regi
The minimum energy on the photons was relaxed to
MeV, and the requirement onXD* was loosened to 0.5.

The rms variation in the fit parameters from each of t
tests described above was taken as our estimate of the
tematic uncertainty on the efficiency. These values
shown in the ‘‘Eff’’ column of Table XI.

A final contribution to the experimental systematic erro
presented in column ‘‘Resol’’ of Table XI, is due to the finit
TABLE X. Fit results when theD0 andD̄0 samples are considered separately.

D0 sample D̄0 sample

Component Amplitude Phase~deg! Amplitude Phase~deg!

r(770)1 1.060.0 0 ~fixed! 1.060.0 0 ~fixed!

K* (892)2 0.43360.034 168.963.3 0.44260.015 157.863.4

K̄* (892)0 0.39160.026 1.363.7 0.41060.022 24.964.9

r(1700)1 2.59060.538 175.067.5 2.72060.272 163.967.6

K̄0(1430)0 0.98960.124 173.968.2 0.77460.089 159.368.1

K0(1430)2 0.70160.211 59.0610.0 0.91760.117 55.067.1
K* (1680)2 2.56761.540 107.4669.2 2.06060.423 106.4613.5
Non Res. 1.84060.146 39.967.9 1.78060.160 21.366.0

x2 227 233
22 lnL 3237 3302
C.L.~%! 93.1 80.7
1-13
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TABLE XI. A summary of the systematic errors on each fit parameter. The first two columns sho
results from the best fit and the associated statistical errors. The next four~three! columns summarize the
systematic uncertainties due to experimental~modeling! sources respectively. Details are provided in the te

From fit Experimental errors Modeling errors

Parameter Value Stat err Bkgnd Eff Resol Total Shape Add To

K̄* (892)0 fit frac ~%! 12.66 0.91 0.17 0.40 0.24 0.50 1.42 0.38 1.4

K̄* (892)0 phase~deg! 20.20 3.28 1.06 1.62 1.04 2.20 6.99 0.67 7.0

r(770)1 fit frac ~%! 78.76 1.93 0.52 1.10 0.53 1.33 4.40 1.33 4.6
K* (892)2 fit frac ~%! 16.11 0.69 0.47 0.53 0.18 0.73 20.48

12.58 0.59 20.76
12.65

K* (892)2 phase~deg! 163.40 2.32 0.94 2.62 1.30 3.08 4.20 1.09 4.3
K0(1430)2 fit frac ~%! 3.32 0.64 0.13 0.60 0.40 0.73 1.16 0.40 1.2
K0(1430)2 phase~deg! 55.52 5.76 1.20 2.76 1.31 3.28 13.1

212.8 2.85 213.1
14.2

K̄0(1430)0 fit frac ~%! 4.05 0.61 0.15 0.66 0.24 0.72 20.24
13.04 0.39 20.46

13.06

K̄0(1430)0 phase~deg! 165.90 5.23 2.39 3.83 0.70 4.57 11.4 3.20 11.

r(1700)1 fit frac ~%! 5.65 0.76 0.20 0.43 0.50 0.68 5.71 0.59 5.7
r(1700)1 phase~deg! 170.50 6.07 1.90 3.90 1.50 4.59 13.3

254.7 5.17 254.9
16.1

K* (1680)2 fit frac ~%! 1.33 0.33 0.07 0.32 0.11 0.34 0.17 0.32 0.3
K* (1680)2 phase~deg! 103.20 7.90 3.71 5.91 2.00 7.26 9.21 9.89 13.
Non-res fit frac~%! 7.50 0.95 0.35 0.42 0.05 0.55 20.79

15.54 0.41 20.89
15.56

Non-res phase~deg! 31.20 4.28 1.28 5.08 1.70 5.51 13.5
214.4 1.19 214.4

13.7
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resolution of the Dalitz plot variables. As a check, we ha
included the effects of smearing when fitting the data. T
was done by measuring the resolution as a function of p
tion across the Dalitz plot and numerically convoluting th
with the amplitude at each point when performing the
Again, the parameters vary by less than the statistical er
on the nominal best fit, and their variation from the nomin
values is taken as an estimate of the systematic uncerta

The above three systematic error categories~background,
efficiency and resolution! are summarized in Table XI. The
are combined in quadrature to give the total experime
uncertainty, which is shown in the ‘‘Total’’ column unde
‘‘Experiment.’’

Modeling systematic errors can arise from our choice
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resonances and the uncertainty in their shapes. In Sec. I
motivated our choice of parametrization of the intermedi
resonances; however, other groups have used different f
tional forms in their fits@8,9#. We varied these shapes t
study any systematic effects resulting from our choice. W
examine three variations:~i! the Zemach formalism@30#
which enforces the transversality of the mesons by us
MAB

2 rather thanMr
2 in the denominator of the spin sums,~ii !

a simple cosine distribution for the spin sum and~iii ! a non-
relativistic rather than relativistic Breit-Wigner in the prop
gator. Further consideration was also given to the radial
rameters used in the form factors, which were var
between 0 GeV21 and 3 GeV21 for the intermediate reso
nances and between 0 GeV21 and 10 GeV21 for the D0
-
TABLE XII. Fit results after removal of the either theK* (1680)2 resonance or the non-resonant com
ponent. See Sec. VI for discussion.

RemovedK* (1680)2 Removed non-resonant

Component Phase~deg! Fit fraction ~%! Phase~deg! Fit fraction ~%!

r(770)1 0 ~fixed! 80.868.5 0 ~fixed! 77.861.8
K* (892)2 15766.7 13.861.0 16162.2 18.260.7

K̄* (892)0 24.765.7 14.561.3 21.562.8 10.760.8

r(1700)1 161620 6.760.8 16165 5.460.8

K̄0(1430)0 16469 4.460.5 19469 1.060.3

K0(1430)2 47.863.6 4.560.7 1164 5.260.7
K* (1680)2 0 0.0 9065 1.960.5
Non-res. 3766 7.762.6 0 0.0

x2 316 411
22 lnL 6653 6798
C.L.~%! 98.5 0.7
1-14



eling

DALITZ ANALYSIS OF THE DECAY D0→K2p1p0 PHYSICAL REVIEW D 63 092001
TABLE XIII. Final fit results. The errors shown are statistical, experimental systematic, and mod
systematic respectively, as discussed in Sec. VI and summarized in Table XI.

Mode Fit fraction Phase~deg!

r(770)1K2 0.78860.01960.01360.046 0.0~fixed!

K* (892)2p1 0.16160.00760.00720.008
10.026 16362.363.164.3

K̄* (892)0p0 0.12760.00960.00560.015 20.263.362.267.0

r(1700)1K2 0.05760.00860.00760.006 1716665255
16.1

K̄0* (1430)0p0 0.04160.00660.00720.005
10.031 1666564.6612

K0* (1430)2p1 0.03360.00660.00760.012 55.565.863.3213
14.2

K* (1680)2p1 0.01360.00360.00360.003 1036867614
Non-resonant 0.07560.00960.00620.009

10.056 316465.523.7
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meson. The masses and widths of the intermediate r
nances were allowed to vary within the known errors@26#.
The non-resonant contribution was described in our fits b
constant term, but as a check we also modeled it by a lin
function or a shape given by the spin structure without
Breit-Wigner amplitudes@31#.

The above tests were used to explore the systematic
pendence of the fit parameters on the way the physics
modeled. The variations using a simple cosine distribution
place of the spin sum and using a spin structured rather
constant non-resonant component resulted in fits with sig
cantly worsenedx2 ~368 and 322 respectively!, and are not
considered when assigning a systematic error as the data
gest that these forms could not be correct. We take the l
est of the remaining variations as the systematic error du
our choice of modeling shapes, and the results are show
the ‘‘Shape’’ column of Table XI.

The final systematic check is on our choice of which re
nances to include. For example, there is only a slight pre
ence for ther(1700)1 over the r(1450)1 based on the
goodness of fit. To account for this uncertainty, both
were performed and the variation of the parameters w
noted. Fits were also performed which included additio
resonances from Table VII. The rms variation in the fit p
rameters from the above checks is presented in the ‘‘Ad
column of Table XI.

We also considered the effects of removing resonan
and two of these studies deserve further comment. The
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is the removal of theK* (1680)2. We considered this be
cause the final fit fraction for this resonance is a rather sm
1.3%60.3%. When theK* (1680)2 is removed thex2 in-
creases from 257 to 316, indicating that this resona
should remain. The parameters for this fit are shown in
‘‘RemovedK* (1680)2’’ column of Table XII. For compari-
son, when the other ‘‘new’’ resonances,K̄0(1430)0,
K0(1430)2, andr(1700)1, are removed, thex2 increases to
379, 348, and 381 respectively. The second case which
serves special attention is the removal of the non-reson
component. Some theoretical models, such as chiral pe
bation theory@32#, prefer a small non-resonant compone
suggesting it proceeds only by the coherent sum of two b
decays. When this test is performed on our data, the resu
x2 jumps to 411, suggesting that a non-resonant compon
is indeed present. The parameters for this fit are shown in
‘‘Removed non-resonant’’ column of Table XII.

Since removal of any of the fit components causes a
nificant increase in thex2 of the fit, these variations were no
included in the modeling systematic error. To obtain the fi
model dependent systematic error we add the ‘‘Shape’’
‘‘Add’’ columns of Table XI in quadrature to obtain the
result shown in the ‘‘Total’’ column under ‘‘Model.’’

VII. SUMMARY OF RESULTS

We have fit the distribution of data in theD0

→K2p1p0 Dalitz plot obtained with the CLEO II experi
sly
peri-
TABLE XIV. Partial branching fractions calculated by combining our fit fractions with the previou
measuredD0→K2p1p0 branching ratio as described in the text. The errors shown are statistical, ex
mental systematic, and modeling systematic respectively.

Mode Partial branching fraction

B@D0→r(770)1K2#3B@r(770)1→p1p0# 0.10960.00360.00760.006
B@D0→K* (892)2p1#3B@K* (892)2→K2p0# 0.02260.00160.00220.001

10.004

B@D0→K̄* (892)0p0#3B@K̄* (892)0→K2p1# 0.01860.00160.00160.002

B@D0→r(1700)1K2#3B@r(1700)1→p1p0# 0.00860.00160.00160.001

B@D0→K̄0* (1430)0p0#3B@K̄0* (1430)0→K2p1# 0.00660.00160.00120.001
10.004

B@D0→K0* (1430)2p1#3B@K0* (1430)2→K2p0# 0.00560.00160.00160.002
B@D0→K* (1680)2p1#3B@K* (1680)2→K2p0# 0.001860.000460.000460.0004
B(D0→K2p1p0) non-resonant 0.01060.00160.00120.001

10.008
1-15
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ment to a coherent sum of seven intermediate resona
plus a non-resonant component. All resonances are e
scalar or vector; no significant tensor contribution was fou
The non-resonant contribution is significant, and cannot
removed without seriously compromising the quality of t
fit. We see no evidence of a scalark→K2p1 resonance in
the mass range recently reported by other groups.

The final fit fraction and phase for each component
given in Table XIII. These fit fractions, multiplied by th
world averageD0→K2p1p0 branching ratio of (13.9
60.9)% @27#, yield the partial branching fractions shown
Table XIV. The error in the world average branching ratio
incorporated by adding it in quadrature with the experim
tal systematic errors in the fit fractions to give the expe
mental systematic error in the partial branching fractio
Note that as a result of interference, the fit fractions do
add to unity, and consequently the partial branching fracti
do not sum to the world average.
09200
es
er
.
e

s

-
-
.
t
s

By separately fitting the D0→K2p1p0 and D̄0

→K1p2p0 Dalitz plots, we have calculated the integrat
CP asymmetry across the Dalitz plot to beAcp520.031
60.086.
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