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We study supergravity solutions representing D3-branes with transverse 6-space Rashg S° topol-

ogy. We consider regular and fractional D3-branes on a natural one-parameter extension of the standard
Calabi-Yau metrics on singular and resolved conifolds. After imposing, adentification on an angular
coordinate these generalized “6D conifolds” are nonsingular spaces. The back reaction of D3-branes creates
a curvature singularity that coincides with a horizon. In the presence of fractional D3-branes the solutions are
similar to the original ones by Klebanov and Tseytlin and Pando Zayas and Tseytlin: the metric has a naked
repulson-type singularity located behind the radius where the 5-form flux vanishes. The semiclassical behavior
of the Wilson loop suggests that the corresponding gauge theory duals are confining.
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I. INTRODUCTION one extra parametécalledb below). This parameter was set
equal to zero in the previous discussions of D3-branes on
One fruitful approach to generalize the original AdS/ conifolds! These metrics have the sarRex S?x S® topol-
conformal field theory(CFT) correspondencgl] to more  ogy as theib=0 limits, in particular, they again allow the
“realistic” gauge theories with less supersymmetries isintroduction of fractional 3-brang®5-branes wrapped over
based on considering D3-branes on conifold singularities 2-cyclg. Forb+ 0 the conifold and resolved conifold met-
[2-5]. To get non-conformal theories one may &adj7]  rics have regular curvature; it is possible to remove their
“fractional” [8] D3-branes. bolt-type singularity by imposing @, identification on the
Recently, exact supergravity solutions representing sucBoordinate of theJ(1) fiber, thus obtaining non-singular 6D
configurations were constructed with the 6D space transvers@etrics. In contrast, the#0 generalization of théregulaj

to the D3-brane being a conifol®], its deformation[10]  geformed conifold metri§22,23 has a curvature singularity
and its resolutio11]. at the origin.

The deformed conifold10] and resolved conifold11]
backgrounds are two differefdleformatione and resolution
a) one-parameter generalizations of the conife®d one.

As was shown i 16], for any zero or non-zero value bf
these 6D metrics preserve the same fractibd) of type Il
upersymmetry, so that the corresponding D3-brane solu-

The three solutions coincide for large values of the radial; )\« <hould also havd 2,13 the same amount of supersym-
coordinatep, or in the UV in the language of gauge theory metry as the solutions c[’9—11].2

duals. However, the small-distance or IR behavior is differ- \yhan b0 the “standard” (no 3-form fluy D3-brane
ent in each case. In particular, the conifold and the resolvegn the conifoI’d solution has the smail limit which is no

conifold solutions have naked singularities at firtewhile longer Ad$ X T as was in the standatti=0 cas4]. As a

(a special case pthe deformed conifold solution is regular result, the conformal invariance is broken andlays the

[1O|]' . fthe | f th luti both f h role of a “mass scale.” An interesting feature of these solu-
n view of the Interest of these solutions both from the ;¢ i that they have a curvature singularity coinciding with

supergravity and the gauge theory points of vi@se[12— the horizon ap=b, like in the “standard” (p=0) resolved

21]_for some recent_related workt is important to_study_ conifold case discussed fii1] (where the singularity and the
their various generalizations. That may help to clarify wh|chhorizon were located at=0)

of their features are truly universal, in particular regarding Including fractional D3-branes changes the situation radi-

smaularltles ar?d”IR l')ethavlotrh t th st ‘ f:ally. As in the conifold[9] and the resolved conifolfl1]
ere we shall point out that there exists a very naturai.,qeq there is a naked singularity of a repulson %@

one-parameter extension of the three solutiond%f11]. : “ ) el —
The key observation is that the most general Ricci—flatlocated behind the “zero-charge’r6=0) locus. The gauge

Kahler 6D metrics on the three conifolfi22,23 (with non-
trivial dependence on radial direction oplgontain[11,16|
IForb#0 the conifold metric is no longer that of a cone o¥ér.
%Preservation of supersymmetry is obvious for the pure D3-brane
*Email address: Ipandoz@umich.edu solutions. For the fractional D3-branes, it was claimed 14,15
TAlso at Lebedev Institute, Moscow. Email address: that the resolved conifold solution ¢11] breaks all supersymme-
tseytlin.1@osu.edu try.
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theory interpretation of these solutions should probably golro get a more general class of Ricci flat metrics on the co-
along the lines of the discussion j&1]. It would be very nifold let us recall some basic relations frd@2,23,11,1%
interesting to understand the meaning of the parantetar  (where further details and notation may be fourithe co-
the gauge theory side. nifold can be described as a quadricGf, =* ;w?=0, or a
Since the simplestthough non-supersymmetrif24])  solution of detV=0. In terms of the X 2 matrix ¥ and the
Ricci flat 6D space with the same topoloBK S?°x S® is the  potential K the Kzhler metric on the conifold is[r2
cone overT1%=5?x S% we shall, for comparison, consider =trOvtw) =3t |w;|2]
also the corresponding D3-brane solution.
In Sec. Il we shall present the explicit form of the Ricci- ds?=K’ tr(dWTdw) +K"|tr WTdw)|?,
flat metrics with theRx S?x S® topology referred to above.

In Sec. Il we shall construct the generalizations of the stan- . d 5

dard D3-brane solutiofi25,26 to the case when the trans- ()'= W(' ) (2.9

verse 6D spaces are the generalizéd-(Q) standard, re-

solved and deformed conifolds. The Ricci tensor for a Keaer metric is Ry=
The fractional D3-brane solutions which are thes0  —d,dy Indetg, where, for the metric in Eq2.9),

analogues of the conifold and resolved conifold backgrounds
of [9,11] will be found in Sec. IV. In Sec. V we shall study,
following [27,28, the energy of a static fundamental string
(with both ends at the “boundary’p==) in these back- o S
grounds and argue that the corresponding Wilson loop hakhe Ricci-flatness condition implies

confining (area law behavior. This conclusion seems robust TP SR

since the “bent” string does not reach the singular region. [(r°K)7]"=2r, 2.7)

detg= (K")2r?(K'+r2K"). (2.6)

[w,|?

which is integrated to give
Il. RICCI-FLAT METRICS WITH TOPOLOGY RXS$?X S8
(r’k")3=r%+c. (2.9
One natural way to construct Ricci flat spaces of topology
RXx S?x S is to consider cones over Einstein spaces withwe shall assume that the constaris non-negative to avoid
topology S?x S°. Examples of the latter arB"! (supersym-  a curvature singularity at finite

metric and T*° (non-supersymmetric In what follows we The conifold metric(2.5) then iS

shall start with these simplest examples and consider their

natural generalizations. 2 a2 2q020 La2), L W13 a2 | 2
d§—§(c+r )29 rPdr?d Jrie |+ 2 (cHr)M(e) +ef

3 2
A. Cone overS$°XS +e§2+ esz). (2.9

T10 is not only S3x S? topologically, but geometrically
too. The resulting 6D Ricci-flat metric {she radii of the two  For c>0, writing the metric in terms of=3r? we get, near
spheres are adjusted to make the whole space an Einstaig:-Q,

one
2 1
1 1 (ds?), _o=7C 2Xd2+72%]) + ¢t e] +€] +€f
420 2T 2 02 020 a2 a2 3 U2V 0 “é T0
dsi=dp’+p 8(e¢1+eﬁl+e¢l)+4(e92+e¢2)},
(2.1 +e§,,2). (2.10
where the vielbein is Thus(i) near the apexr(=0) the 2-cycles stay finite, and)
it is possible to avoid the conical curvature singularityr at

ey, =d6;, ey=sinbd¢;, e, =dy;+cosfde;. =0 by changing the range @f from the original on¢0,4)

(2.2 to[0,2m).

The generalized conifold witb#0, Eq.(2.9), is the 6D
analogue of the Eguchi-Hanson metf&0] where to avoid
the singularity one is to chang®— S%/Z,=P%. Here i is

The standard conifold metric, i.e., the metric of the conethe coordinate of the fiber of thg(1) bundle overS?x S?.
over TH1=[SU(2)x SU(2)]/U(1) is[22,29 Taking ¢ [0,27) one finds that for large the space is now
the cone ove¥Z,; this is an example of asymptotically
locally Euclidean metric.

To establish the analogy with the Eguchi-Hanson metric
more explicitly let us define the constam=0 by

B. Conifold

1 1
ds2=dp?+p? 5ej+ g(e§1+e§1+e§2+e§2) , (2.3
Wheree{,i and ey, are the same as in EgR.2) and

e,=dy+cosd,d¢p;+cosb,de,. (2.9 3The coordinate here was denoteg in [16].
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EbZ

3 )

and introduce the new radial coordingtehrough the rela-
tion

c=

(2.11

3
6= r4+ b,

p (2.12

3 2 3_(3
5" (| = >

Since O<r <, the range of variation g is b=<p<o.
The metric(2.5),(2.9) then becomes

1 1
dS§= Kk Y(p)dp?+ 3 K(p)pzezl//‘f' gpz(eél-l— eil-l- e§2+ efﬁg)’
(2.13
where

bG

k(p)=1— .

; (2.14

Note that O<k<1. The analysis of this metric follows
closely that of the Eguchi-Hanson metric [iB80,31. It is
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The coordinatep and the original coordinatesOr <co of
the conifold (see[11,1€]) are related according tef. Eq.
(2.12]

3 3
p6+9a2p4=(§ r44 be. (2.17)

The range ofp is thus pp<p<, where py=py(a,b)=0
corresponds to the apex=0, i.e. is the solution ofpg
+9a%pj—b®=0 which is positive and becomes zero when
b=0. We shall assume again théte [0,27) to avoid the
conical bolt singularity ap= pg.

The curvature invariants for the metri2.15 are regular
[unless botha andb are zero when we get back to the origi-
nal singular conifold metri¢2.3)]. In particular,

Riju R = [b%(5184a8+ 432(°p?

p12(p2+ 6a2)6
+ 14404 p*+ 240828+ 20p8) + 14408a%p 10
+ p2(648m8+216M5p2+ 360a%p* + 30a%p®

+p%)],

straightforward to establish that this Ricci-flat metric does

not have any scalar curvature singularity; e.Bjj R
=96p  18(p*?+20b1?) is finite for 0<b=<p<, so that in-

which is non-singular ap—pgy (for a=0 this expression
reduces to the one conifold one given at the end of the pre-

troducing the parametdr smoothens the curvature singular- Vious subsection, and fdr=0 it gives the curvature invari-
ity of the original conifold metric. In that sense the ant for the resolved conifold metric 011]). _
b-generalized conifold introduced above may be called a 10 understand the short-distange- po (r—0) behavior
“regularized conifold” (by analogy with resolved and de- of theb#0 reso_lved coPlfzold metric we |r}tr_oduce as in Eq.
formed conifolds which also contain an extra parameter$2-10 the coordinate=3r“—0, thus obtaining

eliminating the curvature singularijty

The pointp=b is a removable bolt singularity, as can be

seen by introducing the coordinaié= 3 p?«(p) and consid-
ering thep—b limit.

C. Resolved conifold

(dé)rﬂfw(dz2+ %))+ zp(e), +ej)

1
+ g(p§+ 6a%) (e, + €5 ). (2.18

Following [22,11,16, one finds the analogous one new For fixed #; and ¢; the metric is thus proportional tdz>

parameter lf) extended metric on the resolved conif¢kf.
Eq. (2.13]

1 1
ds’=«"(p)dp®+ G r(p)p’el+ p*(ef +€)

1
+ 6(”2+ eaz)(e§,2+ ei,z). (2.15
Herea is the resolution parameter and

9a? b®

vl
K(p)=——pz7 (2.16

1+ —
p

+z2dy?, so that to avoid a conical singularity we need again
to apply azZ, identification toy e [0,4m).°

The short-distance limit of th&=0 resolved conifold
metric (which is to be considered separatelygs=0 for b

=0) is[11] (p?~(/3/8a?)r?)
2 2 1 22 2 2
(dsé)pﬂozgdp +6P (e¢+eel+e¢l)

+ (2.19

1
2, - 2 2 2
a‘+ 4 )(e02+ed,2).

“Explicitly, p2=9a*v 3+ 1°—3a% where v=3[b®—54a®

+pb /1_ 10316”36] (See[22,1]]).

SNote that in thep— p,, limit the metric is topologically the same

For a=0 this metric reduces to the above conifold metricas that of the generalized conifal@.10), i.e. R2x $?x S?, but geo-
(2.13,(2.14. For p much greater than any of the two length metrically the two metrics are differefie.g., the radii of the two

scalesa andb we get the standard conifold metii2.3).

2-spheres spanned by,( ¢;) are different.
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This metric has regular curvature invariants,
(Riji R, 0—40/&*, illustrating that the parametea

e.g.,

PHYSICAL REVIEW D 63 086006

2 3‘542 2, .2 b? 2, 2
(d9)70=gpa ™ (A7 +95) + 157(91+02)

#0 indeed resolves the curvature singularity of the standard

conifold.

D. Deformed conifold

The b-parameter family of metrics on the deformed coni-

fold is found in a similar way22,23,16,11 Using the basis
of [23,10 the metric can be written ag{=e,)

P
\/—2—2(92+92)
rte 1 2

; (2.20

1 1
_ . -1 2, = 2.2, = 2
dsi=x"(p)dp?+ gK(p)pey+ op

r2+ €2 2 2
+ r—z_—ez(93+94)

wherep is related tor according tocf. Egs.(2.12,(2.17)]

6 3\3 4 e € rP+rt-¢* 6
Pr=lg) MY NI i | b
(2.22
and[cf. Egs.(2.14,(2.16]
3\3r4 e b
K(p)=<§) F<1—r—4)=l—ﬁ+0(e). (2.22

Since esr=o, we haveb<p<®. This metric reduces to
the generalized conifold metri@.13 for e—0. Forr greater
than any of the two length scaldsand ¢, it becomes the
standard conifold metri€2.3).

It is useful also to present the deformed conifold metric in

terms of the radial coordinate used in[23,10,1]

3

et + b,

1
ESinI’(ZT) -7

r2= €2 coshr, pGZ(E

0=s7<0>,

(2.23

1 ) T
dsi= EIC{(3/C3)164(d7'2+ g§)+smhz§ (92+g3)

,
+cosﬁ§ (g§+g§)} (2.24
where
{c+3€Ysinh(2r)—27}® 2
()= = 3 p%(sinh7) 7,
2 3
_[4) e
c (3> b®.

2

b
+ 37—1(g§+ g7 (2.25

or, in terms ofp— D,

1 1 p6_b6 1/3
— 1 2, 2,2, 2

6__ |6

p —-1/3
xgirad+| g | (@Erad|. @2

where for K:Kpﬁb:[(%)SéA]l/a(pe_b6)2/3/p6—>0. Note
that the volume of the 2-cycleg(,g,) shrinks to zero, while
volume of the 3-cycleds,d4,0s) stays constant= €2//6).
This metric has a curvature singularity a0 for any b
#0.

For comparsion, the smatt limit of the standardb=0
deformed conifold metric i§23,10

64 1/ 1
(ds)io=(1—2 5(d7?+g8)+g5+ga+ 7 7(01+02)
and is regular atr=0. Indeed, computing the curvature in-
variant R;; R for the general form of the metri(2.24
and then expanding it near=0 (i.e.r =€) one finds a sin-
gular expression fob#0°

1 8 ) 3é
157 " 2p°

8
(R RIK)  —or200" 1 340(%
ijkl 7—0 98 8 T T

and a regular expression fbr=0:

. 192 (18 4 202
. ijkl e _ 2, """ 4 5
(lek|R )THO 5 68/3 5 T +SZST +O(T ) .
E. Remarks

The three one-parameter families of the Ricci-flat metrics
presented above Eqf.13), (2.15 and(2.20 are the most
general solutiongwith non-trivial dependence on the radial
coordinate only for Ricci-flat metrics on respective coni-
folds[11,16. As was shown irf16], they define supersym-
metric backgrounds of type Il supergravity. This is in con-
trast to what happens in the case of the metric of a cone over
Sx S?, Eq.(2.1), which breaks all supersymmetries and thus
may lead to unstable D3-brane solutions.

The analogy with the Eguchi-Hanson metric elucidates
the geometrical meaning of the “mass” parameber~rom
the perspective of dual gauge theories associated with D3-
brane solutions on these generalized conifolds which will be

®Herep andb have canonical lengthdimensions whiler ~1°2,

For largeT we again get the standard conifold metric, while e~1%2 7~|°. Note that the leading term in the expression below is

for small values ofr we get(for b+#0)

what one finds directly from the metri@.25.
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discussed below this parameter should play the role of an IRepresenting 6D Ricci-flat spaces that “interpolate” between

“mass” or “confinement” scale. the generalized resolved and deformed conifold metrics dis-
A feature of the conifold2.13 and the resolved conifold cussed above.

(2.15 is that near the apexr €0) the respective metrics

effectively “factorize” into an R?Xx S?x S? part. This will lll. PURE D3-BRANE SOLUTIONS

have consequences for the structure of D3-brane solutions in

the IR region.

We have seen that while thee=0 conifold had curvature As is well known, given a Ricci flat 6D space with metric
singularity at the origin, itd+# 0 generalization has regular g,,,, one can construct the following generalization of the
curvature(and have no conical singularity after changing thestandard 25,26 3-brane solutior(see, e.g.[3,23,37):
period of the angle)). The resolved conifold metric depend-

A. General remarks

ing on two parametersa(b) is regular for all of their values dsio=h""2(y)dx“dx*+h"2(y)gma(y)dy™dy", (3.1
excepta=b=0. Curiously, this is different from the situa- a1 0 N 5 5
tion for the deformed conifold: while the standare-0 de- Fs=(1+*)dh " Adx/AdXAdXAAX,

formed conifold metric was regulgwith the parametek
playing the role of the “cutoff’), its b# 0 generalization has
a curvature singularity at the origin=e. This implies, in
particular, that one is unlikely to find a direlat- 0 generali-

® =const, (3.2

whereh is a harmonic function on the transverse 6D space,

zation of the regular fractional D3-brane on deformed coni- 1
fold solution of[10] (which is thus a very special point in the —=dm( \/§gm”(7nh) =0. (3.3
parameter space of solutigng-or that reason in what fol- \/6

lows we shall mostly concentrate on the resolved conifold | < of a Ricci-flat cone with metric
case.

Finally, let us note that the.conifold solutions disg:usged gmn(y)dymdy“=dp2+p2yij(z)dz‘dzj, (3.4
above can be derived as special cases of the following “in- _
terpolating” ansatz for 6D metri¢see[16]): one can choosé to depend only orp, thus getting the

L single-center solution
dsi=e?"du’+ ez*x[eg(e§1+ eil)+e*9(ef+ €2)] L4
h=hy+ —. 3.

+ e—ZZ—Xezl/ﬂ (227) 0 p4 ( 5)
_ - Here and below we assume tlgt=0. Then in the near-core
where  €;=€;—a(u)ey,, =€ ta(u)ey €1 region the space becomes AdSX®, whereX® is the Ein-
=sinysin G,d¢,+cosyds,, e,=cosysinb.dp,—sinyds,  stein space which is the base of the cone with the mefyic
and €y,,€4,,€, are as in Eqs(2.2),(2.4). Resolved and de- Particular examples are provided by the standard cone met-

. . . . i 5_7T10_Q2 3 5_T117
formed conifold metrics are special cases of this angegg ~ "1cS (2.1) and (2.3 whereX®=T""=S"XS" andX*=T""%
corresponding ta=0 anda?=1—e?9 respectively. The un- In the general case when the transverse 6-space is not a
known functionsx,z,g,a of the radial coordinates repre- ~€One, one will not find the near-core geometry having an
senting Ricci-flat 6D spaces are subject to equations follow/dSs factor and thus the dual gauge theory will have broken
ing from the following 1D action(plus the “zero-energy” conformal invariance.

constraint:
B. Conifold case

Let us determine the harmonic functibrthat solves Eq.
Slzf du[x'?~z'*~g'?~e"?%a'?-V(x,z,9,a)], (3.3 for the generalized conifold metri@.13 assumingh
(229 =h(p). Using that \gs=1/108°sind;sing,, g=1
— b p® we get

1 4 “2_ 133 2
V= 5o e+ (a2~ 1)%" 9] - de** Pcoshg e, 2 lln(p_6 1) +i(z_arcta2p 1|
b™ 67 p*-1 312 V3
+a’(e”?—e??t2x79)2, (2.29 (3.6)
For the special cases corresponding to the resolved and the ;E %_

deformed conifolds one finds that this system admits a su-
perpotentialW [11], i.e. V=—G"(dW/dq')dW/dq’', where
q'=(x,z,9,a), Gj =‘(1,—“1,—1,—Ae*29), so that one gets a
first-order systeny’'=G'" 9W/dq'. For example, in the re-  “Compactifications of type IIB supergrativity on sudt? were
solved conifold casea=0) W=e “coshg+e®**®, Itwould  discussed ifi24] where it was pointed out that in the family 9
be very interesting to find new solutions of the syt€nP8 spaces onlyT*'! preserves supersymmetry.
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For p/b>1 we recover the standard metric of D3-branes on

the conifold(3.5), i.e.

L4
h(p—o)=hy+ ? (3.7
For small values op we geth— oo:
2L% [p
h(p—)b)z—wm E—l +h1,
L4 4
hy=ho+ W( ﬁﬁsmg).
(3.8

PHYSICAL REVIEW D 63 086006

3

1 1/
p=| 5(1-20%+1=400)|

a=3(2B+3G6+ B, o=pradt

A=4B 1-0? (3.10

We have assumed that-14q°>0 (the opposite case is dis-
cussed beloy
The behavior fop— pg is the same as in Eq$3.9):

L4

h(p—po)=— WIn(F—%) +0(1);  (3.1D)

Recalling from Eq(3.1) that the 00-component of the metric -8~ @S in the previous case, @t p, there is a horizon co-

is h~ 12 we see thap=Db is a horizon. It is also a curvature

singularity. Thus, starting witiR»*xM® where M® is the

generalizedb#0 conifold, the introduction of D3-branes
creates a back reaction that transforms the previously nonéL€
ingular pointp=>b into a curvature singularity coinciding
with the horizon. In contrast, fdo=0 [4] the near-core ge-

ometry was regular—AdS TL,

This is similar to what was found for the D3-brane on a
b=0 resolved &4+ 0) conifold in[11]. Below we will see
that this behavior extends also to the case of the resolve

conifold with b#0.

inciding with curvature singularity.

Compared to Eq.(3.6) here the functionh contains
another (resolution scale a represented by the parameter
[0,0). Depending on the value @f i.e. on the ratio o
andb, one may distinguish three regiorisdominated, inter-
mediate, ancé dominated. The metric defined by E¢83.9),
(3.10 is valid in theb-dominated region whereg®<1, i.e.,
b>3Y221%, Forq=0 (a=0) we get back to the conifold
case(3.6) which should be viewed as the limiting case of the
dominated resolved conifold soluti@B.9). In the interme-
iate region, i.e. 4°=1 [this corresponds ta=0 in Egs.

One of the generic features of D3-branes on the conifold3-9: (3101, we get

and the resolved conifold is the logarithmic formtfp) at
small distances. The origin of this lies in the fdobted in

Sec. 11 B that for smallp the transverse geometry becomes
effectively 2 dimensional as far as the dependence on the
radial coordinate is concerned, so that one finds that the hal¥

monic functionh has the “7-brane-like” logg—pg) struc-
ture.

C. Resolved conifold case

Starting with the resolved conifold metri2.15 and solv-
ing Eq. (3.3 one finds the following expression fti(p):

A ol O i i
T a6 g7 1
B+q? | 2;2-1-0)
—~ E—arctanT , (3.9

where, as in Eq(3.6) (pg is the same as in Sec. I)C

p=

o™

Ho=Po
3 pO by

9a? p?—3a?

+1In
p’+6a’  p’+6a’

2L
81a*

h=h, , (312

here \3a=<p<w. This metric also has a curvature singu-
larity and the horizon ap=py=3a. In the a-dominated
region 4°>1, i.e.a>3"Y2"%p, we find

- 2L4 (1 (p?—p2)° pt1 2p2+ 00—\
=hgy— —In=—— - n— ,
° 9a’a|6 pb+pt—q° A 2p%+0+\

(3.13
wheré

p -1
=—, = —+ —1,
p 3a B=ptu
MEeiw/3[1_(2q6)—1_iq—3 /1_(4q6)—1]1/3,

%[232+3ﬁ+(q6/3)’1], o=p+3,

o

A=\o’—4(q°B) L. (3.14

and for simplicity of presentation we have introduced the

following constants depending on the raéifh:

a
q=13 o B=dn tp—a?

8Note that sincéu|=1, the combination. + u ! is always real so
that B, o, \, anda are always real angy is the positive real root of
the cubic equation.
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This solution has the same generic logarithmic behavior near

po, indicating the existence of a horizon and a singularity.

In the a-dominated expressiof8.13 we are able to take
the g—o (b—0) limit to get back to the “standard” re-
solved conifold case. The functidm in the metric of D3-
branes orb=0 the resolved conifold found ifl1] is

2
1+
ra

9a? I
——1In
p

2L

hb:O:hO_’_W (315)

Again, herep=0 is both the horizon and the singularity.

D. Deformed conifold case

In the deformed conifold cas®.20,(2.21) the harmonic
functionh in Eq. (3.1 is found to be

3l

where the explicit form of (p) in Eq. (2.2]) is transcenden-
tal. Forr> e we haver*=(2p?/3)2 and therefore recover the
D3-brane on the conifold metric with=hg+L* p?. Forr
—€ (p—b) we get

25
3

pdp
ré—

h=h0

(3.1

e’

dsfo=h~Y2dx*dx“+hYAdsh), ., (3.17

where @s5), ., is given by Eq.(2.26) and

S(124
1§1§1§ I

1
(3.18

28/3L4

— — 2 4 BT
h=h1=hap"+0(p),  h2="gp 575 2

h,

and h;=hy+O(L*b*.° This b#0 case is different from
theb=0 deformed conifold casgl0,11] wherep=0 was a
horizon. Here forp—b the space factorizes int@'3x M®
whereM® hasp=b as its curvature singularity.

IV. FRACTIONAL D3-BRANE SOLUTIONS

Let us now construct thb+# 0 generalization of the frac-
tional D3-brane on resolved conifold solution [&,11], i.e.

PHYSICAL REVIEW D 63 086006

A. S2X S® cone case

The 3-brane ansatz for the metric with transverse part
given by Eq.(2.1 is

1 1
ds’=h"Y2dx*dx*+h'? dp?+ §p2d95+ szdﬂz ,
(4.2)

and the natural ansatz for the form fields is similar to the one
in the conifold[7,9] case:

82: f(p)enge(z,z—) H3: f '(p)dpAegz/\e¢2,

F3: Pew/\eel/\e(ﬁl,

Fs=F+*F,  F=K(pley/\ey/\ey ey /Ney,. (4.9
The 10D duals of these fields are
13/
* F= —— dp/AdXPAdX A AN, 4.3
p°h?
502
*Fy= oh dp/\dxo/\dxl/\dxz/\dx3/\e02/\e¢2,
(4.4
pt’
*Hy= — ﬂdxo/\dxl/\dxz/\dx3/\e¢,/\egl/\e¢,l.
4.9

We shall assume that the dilatdnis constant. Then thE;
equation of motiond(e®* F;)=Fz/\H; is satisfied auto-
matically, and from theH; equationd(e ®*Hgz)=—F¢
/\F3 one obtains the following equatior®t = g,)

-

The constant dilaton condition impli¢$3=e>*F3, i.e., us-
ing Eq. (2.13 we get® pf’=25%,P. The Bianchi identity
for the 5-formd* Fs=dF5;=H3/\F3 gives K =Pf’, i.e. K
=Q+Pf. The two linearly independent Einstein equations

2°%PK
h2p5

fir

h

(4.9

The extension of the D3 brane solution of the previous secre 5 consequence of this system of first order differential

tion to the case of additiongkelf-dua) 3-form flux. The

equations. The solution is thus very similar to the original

resolved conifold solution includes the conifold one as a speggnifold one[9]:
cial (a=0) case. The first-order system corresponding to this

background was already obtained[ihl]. It is straightfor-
ward also to construct a simildr#0 generalization of the
solution[10] in the deformed conifold cageeg[11]), but we
shall not discuss the details of this here.

For comparison, we shall start with a similar case of
3-branes on the cone ov&fx S°. This solution was previ-
ously discussed ih33] (see alsd20]).

*Here F,(3.5;5:1)=T ()1 (3)/T(5)~1.77.

f=259.P n’, K=Q+2%9gP? n’,
Po Po

9/2
h: h0+ —_—
p4

1
Q+25’ng|=>2( In% +3 4.7)

0As in [9], the axion equation is satisfied automatically since
H3' F3: O
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Note that as in[9], the complex 3-formG;=gF3;+iH5;  The Bianchi identity for the 5-formd* Fs=dFs=H3/\F,
is self-dual in the 6D sense. Like the conifold soluti®], implies
this solution has a naked singularity located (@&t py,,
Q-+ 2%%gP?[In(pn/po)+3]1=0, i.e. very close to the origin if K'=P(f;—f}), ie. K=Q+P(f;—f,). (4.16
the number of fractional D3-branes is small>g.P?. In
this case the singularity is behind the “zero charge” (K As in [9,11], to determine the metric functioh(p) it is
=0) locus. sufficient to consider the trace of the Einstein equatfdns,
R=—%1Ah=1(e ®H3+e®F)), i.e.
B. Resolved conifold case

L . 1 1 1
The ansatz for the metric will be the same as in &q1), h=%25 ( @gppaph)= - E(gs "H3+gFo)=— ggsF§
ds?,=h"Y4p)dx“dx“+h'%(p)ds3, (4.9 (4.17)
where dsé will be the metric of the generalized#0 re- or
solved conifold(2.15. Our ansatz for the Neveu-Schwarz—
Neveu-SchwarZNS-NS 2-form will be as in[11], i.e. a 5 N 2(1+1“2)
natural generalization of the ansatz[®] motivated by an (p°kI'h")"=—3249.P TRl (4.18
asymmetry between the tv& parts of the resolved conifold
metric: Integrating this we get
Bo=f1(p)ey,\ey +Tapley,/Ney,, 108K
/ / h'=———7. (4.19
Hz=dB,=dp/\[fi(p)eg /\ey +Tr(p)es,Ney,l. (4.9 p°kl’

The conifold cased=0) correspond§7,9]to f;=—f,. The  Plugging in the functionk in Eq. (2.16) the system
forms F3 and F5 will also have the same structure as in (4.15,(4.19 of first-order differential equations can be di-

[9,11] (we follow the notation of11)): rectly integrated.
Here we shall present the explicit form of the solution
Fs= Pe¢A(e92Ae¢2—eglAe¢l), (4.10 only in thea=0 limit, i.e., theb-generalized conifold case
(2.14). For a=0 one findsI'=1, implying f,=—1f;, and
Fs=F+*F, F=K(ple,/\e,/\ey NegNey,, . with k=1—b%p® we obtain
(4.11
1 — _

The rest of the discussion is essentially the same §%lh fi= —fzzigsPIn(pG—l)Jrfo, K=Q+g.P?In(p°—1),
with « in the 6D metric now being dependent also bn (4.20

according to Eq(2.16.

Assuming that the dilato® is constant, thé-; equation — 3 —
of motiond(e™* F3) =Fs/\H is satisfied automatically, and  ,_p, — 54? Em(p__ 1) Lt Z_arctaﬁ_z’) 1
from the H, equationd(e”®*H;) = —Fs/\F5 one obtains b* |67 p6—1 3|2 V3
the following three equationeel=g,):
279P> |3 (22255 1
(f;pxr)’_324gsp|< (fgpx)’_ 3249,PK +—b4(;6_1)2/3 2%3723'3'3'3'3" 51
h h2p°«T , hT’ h2p®kI’ '
(4.12 225 1 —
toFi 3313 7= In(p°=1) |, (4.2
3'3’3 6_1
2 2 p
p-t+6a
fi+0"2f,=0, rz—pz—, (4.13

wherep=p/b [cf. Eq.(3.6)] and oFq is the hypergeometric
function.

hereI’ is the ratio of the squares of the radii of the two
W ! ! av ! " The largep behavior ofh is

spheres in the resolved conifold mett.15. The constant
dilaton condition implieH3=e?*F3, i.e.

27 Sfop 1
992P2 h(p—>0°)—ho+? Q+695P InB+Z ; (4.22)
f1240 2 42= k;pz (1+T772). (4.14
Combined with Egs(4.13) that gives More precisely, there are two linearly independent Einstein
equations: one is the square of Eg.13 and another, written
- 39sP r_ 3gsPT (4.15 above, can be expressed in terms of the first derivative ofE£43
YopklT 2 pK ' using Eq.(4.16.

086006-8



3-BRANES ON SPACES WITHRX $?Xx S® TOPOLOGY PHYSICAL REVIEW D 63 086006

i.e., this solution has the same UV asymptotic as kike0 dg?=h"2(p)(— dx3+ dxdx) + hY%(p)[ k*(p)dp?
conifold one of(9]. In the short-distance limj— b limit we
have, to the leading order, +dsi], (5.1

5 wheredsﬁ is the metric of the corresponding 5D compact
In(_z—l)— 9gsP Inz(_z— 1) space. The Nambu-Goto string action which determines the
P b* P ' expression for the Wilson loop depends on this 10D metric
(4.23 Gy asfdrdoy—detGyndX"dpXN). In the static gauge
(Xo= 7, X,=X=0) and assuming that the string is stretched

— 2 ) ) ~only in the radial direction—i.e., only thg coordinate de-
At py~1+e 298" the solution has a naked singularity pends onr—we get?

of a repulson type. The “zero charge” locus €0) is lo-

18Q
bt

h(p—1)=hg—

— 5 e
cated atpy=1+e YOPI) ie p>pp. 5

We can thus conclude, based on the analysi§9in(b S:Tf dxVGoGuxt GodGpp(dxp)
=a=0), in[11] (b=0,a#0) and here §=0,b+#0), that
generically fractional 3-branes on the conifold and resolved :Tf Tk (ap)2 2
conifold have a repulson-type naked singularity which is lo- dx K (0xp)” 62

cated behind the “zero-charge” locus.
Since the Lagrangian of this “mechanical system” does not
depend explicitly on “time”x, we have a conserved quantity

V. WILSON LOOP BEHAVIOR h=Y[Vh™ 1+ k" Y(9.p)?]; i.e., the first integral is ¢,

Let us now investigate, followinf27,28, the behavior of ~~ €ONSY
the Wilson loop corresponding to a “quark-antiquark” po-
tential in the dual gauge theory. It is given by the exponential dp

of the classical fundamental string action in these D3-brane dx= Jkh™I(h~%c2-1) -3
backgrounds evaluated for a static configuration of open
string ending on the probe D3-brane placed at the “boundThe energy of a static string configuration is thus
ary” p=oo,

We will show that one gets an area ldeonfining be- S dp
havior for the “pure” D3-brane backgrounds of Sec. I, E:_zj dxyvh 14k Y(aep 2=j—2_
assuming that at least one of the scales of the transverse T Vk(1—cgh)
space is kept non-zero. This is different from what is found (5.4

in the standard conifold ca$d] where the near-core geom- ] . ] ]

etry has an AdSfactor and thus the potential is Coulombic Following [27,28, the question about confinement is then

as in[27,2§ (in the single-center case as well as in theréduced to finding the dependence of the endfgyn the

multicenter cas¢34]). distancel bet_ween the string end pointeetween “quark”
For simplicity, we shall consider only the D3-brane back-and the “antiquark’).

ground with the resolved conifold as the transverse space.

The corresponding metri2.15,(3.9) depends on the two B. Conifold case

scale parameters anda. Expressed in terms gf=p/b it For the generalized conifold metric with the schleEgs.
depends only on their ratig= \3a/b. It is sufficient to ana-  (2.13,(2.14), the functionh of the D3-brane solution is given
lyze the Wilson loop in the two limiting cases=0 andq by Eq.(3.6). Introducing the new coordinate

=o: (i) a=0, b#0, i.e., the D3-brane on the generalized

conifold (2.13,(3.6), and (i) a#=0, b=0, i.e., the D3- — P’

brane on the “standard” resolved conifol®.15. In both y=p =2 (5.9
special cases the scale of the transverse spacr &) de-

termines the confinement scale. The behavior of the Wilsomnd removing the asymptotically flat regighe. dropping
loop for general values of will be similar, given that the h,) we obtain the following relation for the quark-antiquark
behavior ofh is generic. Let us emphasize that in contrastseparation:

with other supergravity solutions dual to confinitg=1

gauge theoried36,10,18, this confinement behavior is | L2 (= y f(y)
found for the pure D3-brane background which does not §=—f dy 3 , (5.6
have any non-trivial 3-form fluxes. V2bly, T \y-1 iy, ) —f(y)
wherey, is the turning point and
A. General setup
All examples we have discussed above have metrics of
the type 12T s the time interval and the string tension is set equal to 1.
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Hy) 1 t2y+1 w1 (y—1)°3
=—|arctan——=—— 5| — zIn—5—-,
N 3 2] 6"y1
b4
f(ys) =522 (5.7
¥ 2L%¢s

Note that for any finite value df(y, ) one hag/, >1, mean-
ing that the minimal surface does not regek b which is

PHYSICAL REVIEW D 63 086006

wheref(y, )=81a*/2L*c2. We have used that from the form
of the denominator in the analogue of E®.3) [cf. Eq.
(5.12] it follows that there is a turning point foy; i.e., y
changes frome (p=) toy, . Note thatf(y) is a positive
function and it increases monotonically from zeroyat .
Therefore, for any positive constady there isy=y, that
solvesdi=y t—In(1+y Y.

Similar behavior is found when we switch on thepa-
rameter, i.e. start witlk andh given in Egs(2.16 and(3.9).

the horizon and the curvature singularity. The energy of ther, ;s the minimal surface does not reach the curvature sin-

string configuration is

e b3 Jw ydy 1
282 2¢0 )y, Y3 —1 \F(y, ) —f(y)

(5.9

Evaluating the integrals as ifB85], i.e. assuming that the
main contribution comes from the region negr, we find
the “area law,” i.e., the linear confinement behavior

E~ ) 5.9
~ 2. (5.9

C. Resolved conifold case

Let us first consider the “standardi=0 version of the
D3-brane solution on the resolved conifdd1], i.e. Eq.
(3.19. Introducing the new coordinate

Y= 9a2 (5.10
and settinghy=0 we get
=25y, f=y iy, k=Y
=81t (y), f(y)=y =In(1+y ), K—?-
T3
(5.11
Then the analogue of E@5.6) is
i
I L2 foc dy yT3 f(y) 5.12
2 32aly, y?2 T y+l iy, —fy).

gularity located ap,.® The expression for the energy(ier
b=0)

2
o7 Jw dy /Y73 1 519
252 %)y, y¥2 T YL iy —f(y)

Assuming that the main contribution comes from the region
neary, and expandingf(y)~f(y,)+f'(y,)(y—y,) we
again get the area law behavior, i.e. the relatibrd). An
analogous result is found when one switches on the depen-
dence of the background metric on the parambtgg7].
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BForb=0 one can estimate the valueyaf as follows. For small
do we expandf(y) near zero and finc;/*:(\/ido)’l, i.e. py
~L\/co. For larged,, we expandf(y) for largey to find y,

=dy 2 i.e. p, ~\2IL%c,/3a.
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