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3-branes on spaces withRÃS2ÃS3 topology
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We study supergravity solutions representing D3-branes with transverse 6-space havingR3S23S3 topol-
ogy. We consider regular and fractional D3-branes on a natural one-parameter extension of the standard
Calabi-Yau metrics on singular and resolved conifolds. After imposing aZ2 identification on an angular
coordinate these generalized ‘‘6D conifolds’’ are nonsingular spaces. The back reaction of D3-branes creates
a curvature singularity that coincides with a horizon. In the presence of fractional D3-branes the solutions are
similar to the original ones by Klebanov and Tseytlin and Pando Zayas and Tseytlin: the metric has a naked
repulson-type singularity located behind the radius where the 5-form flux vanishes. The semiclassical behavior
of the Wilson loop suggests that the corresponding gauge theory duals are confining.
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I. INTRODUCTION

One fruitful approach to generalize the original Ad
conformal field theory~CFT! correspondence@1# to more
‘‘realistic’’ gauge theories with less supersymmetries
based on considering D3-branes on conifold singulari
@2–5#. To get non-conformal theories one may add@6,7#
‘‘fractional’’ @8# D3-branes.

Recently, exact supergravity solutions representing s
configurations were constructed with the 6D space transv
to the D3-brane being a conifold@9#, its deformation@10#
and its resolution@11#.

The deformed conifold@10# and resolved conifold@11#
backgrounds are two different~deformatione and resolution
a) one-parameter generalizations of the conifold@9# one.
The three solutions coincide for large values of the rad
coordinater, or in the UV in the language of gauge theo
duals. However, the small-distance or IR behavior is diff
ent in each case. In particular, the conifold and the resol
conifold solutions have naked singularities at finiter, while
~a special case of! the deformed conifold solution is regula
@10#.

In view of the interest of these solutions both from t
supergravity and the gauge theory points of view~see@12–
21# for some recent related work! it is important to study
their various generalizations. That may help to clarify whi
of their features are truly universal, in particular regardi
singularities and IR behavior.

Here we shall point out that there exists a very natu
one-parameter extension of the three solutions of@9–11#.
The key observation is that the most general Ricci-
Kähler 6D metrics on the three conifolds@22,23# ~with non-
trivial dependence on radial direction only! contain @11,16#
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one extra parameter~calledb below!. This parameter was se
equal to zero in the previous discussions of D3-branes
conifolds.1 These metrics have the sameR3S23S3 topol-
ogy as theirb50 limits, in particular, they again allow the
introduction of fractional 3-branes~D5-branes wrapped ove
a 2-cycle!. For bÞ0 the conifold and resolved conifold me
rics have regular curvature; it is possible to remove th
bolt-type singularity by imposing aZ2 identification on the
coordinate of theU(1) fiber, thus obtaining non-singular 6D
metrics. In contrast, thebÞ0 generalization of the~regular!
deformed conifold metric@22,23# has a curvature singularity
at the origin.

As was shown in@16#, for any zero or non-zero value ofb
these 6D metrics preserve the same fraction~1/4! of type II
supersymmetry, so that the corresponding D3-brane s
tions should also have@12,13# the same amount of supersym
metry as the solutions of@9–11#.2

When bÞ0, the ‘‘standard’’ ~no 3-form flux! D3-brane
on the conifold solution has the smallr limit which is no
longer AdS53T1,1 as was in the standardb50 case@4#. As a
result, the conformal invariance is broken andb plays the
role of a ‘‘mass scale.’’ An interesting feature of these so
tions is that they have a curvature singularity coinciding w
the horizon atr5b, like in the ‘‘standard’’ (b50) resolved
conifold case discussed in@11# ~where the singularity and the
horizon were located atr50).

Including fractional D3-branes changes the situation ra
cally. As in the conifold@9# and the resolved conifold@11#
cases there is a naked singularity of a repulson type@37#
located behind the ‘‘zero-charge’’ (F550) locus. The gauge

1For bÞ0 the conifold metric is no longer that of a cone overT1,1.
2Preservation of supersymmetry is obvious for the pure D3-br

solutions. For the fractional D3-branes, it was claimed in@14,15#
that the resolved conifold solution of@11# breaks all supersymme
try.
©2001 The American Physical Society06-1
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theory interpretation of these solutions should probably
along the lines of the discussion in@21#. It would be very
interesting to understand the meaning of the parameterb on
the gauge theory side.

Since the simplest~though non-supersymmetric@24#!
Ricci flat 6D space with the same topologyR3S23S3 is the
cone overT1,05S23S3, we shall, for comparison, conside
also the corresponding D3-brane solution.

In Sec. II we shall present the explicit form of the Ricc
flat metrics with theR3S23S3 topology referred to above
In Sec. III we shall construct the generalizations of the st
dard D3-brane solution@25,26# to the case when the trans
verse 6D spaces are the generalized (bÞ0) standard, re-
solved and deformed conifolds.

The fractional D3-brane solutions which are thebÞ0
analogues of the conifold and resolved conifold backgrou
of @9,11# will be found in Sec. IV. In Sec. V we shall study
following @27,28#, the energy of a static fundamental strin
~with both ends at the ‘‘boundary’’r5`) in these back-
grounds and argue that the corresponding Wilson loop
confining~area law! behavior. This conclusion seems robu
since the ‘‘bent’’ string does not reach the singular regio

II. RICCI-FLAT METRICS WITH TOPOLOGY RÃS2ÃS3

One natural way to construct Ricci flat spaces of topolo
R3S23S3 is to consider cones over Einstein spaces w
topologyS23S3. Examples of the latter areT1,1 ~supersym-
metric! and T1,0 ~non-supersymmetric!. In what follows we
shall start with these simplest examples and consider t
natural generalizations.

A. Cone overS3ÃS2

T1,0 is not only S33S2 topologically, but geometrically
too. The resulting 6D Ricci-flat metric is~the radii of the two
spheres are adjusted to make the whole space an Ein
one!

ds6
25dr21r2F1

8
~ec1

2 1eu1

2 1ef1

2 !1
1

4
~eu2

2 1ef2

2 !G ,
~2.1!

where the vielbein is

eu i
5du i , ef i

5sinu idf i , ec1
5dc11cosu1df1 .

~2.2!

B. Conifold

The standard conifold metric, i.e., the metric of the co
over T1,15@SU(2)3SU(2)#/U(1) is @22,29#

ds6
25dr21r2F1

9
ec

21
1

6
~eu1

2 1ef1

2 1eu2

2 1ef2

2 !G , ~2.3!

whereeu i
andef i

are the same as in Eqs.~2.2! and

ec5dc1cosu1df11cosu2df2 . ~2.4!
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To get a more general class of Ricci flat metrics on the
nifold let us recall some basic relations from@22,23,11,16#
~where further details and notation may be found!. The co-
nifold can be described as a quadric inC4, ( i 51

4 wi
250, or a

solution of detW50. In terms of the 232 matrixW and the
potential K the Kähler metric on the conifold is@r 2

5tr(W †W)5( i 51
4 uwi u2#

ds25K8 tr~dW †dW!1K9utr~W †dW!u2,

~••• !8[
d

dr2 ~••• !. ~2.5!

The Ricci tensor for a Ka¨hler metric is Rpq̄5
2]p] q̄ ln detg, where, for the metric in Eq.~2.5!,

detg5
1

uw4u2 ~K8!2r 2~K81r 2K9!. ~2.6!

The Ricci-flatness condition implies

@~r 2K8!3#852r 2, ~2.7!

which is integrated to give

~r 2K8!35r 41c. ~2.8!

We shall assume that the constantc is non-negative to avoid
a curvature singularity at finiter.

The conifold metric~2.5! then is3

ds25
2

3
~c1r 4!22/3S r 2dr21

1

4
r 4ec

2 D1
1

4
~c1r 4!1/3~eu1

2 1ef1

2

1eu2

2 1ef2

2 !. ~2.9!

For c.0, writing the metric in terms ofz5 1
2 r 2 we get, near

r 50,

~ds2!r→05
2

3
c22/3~dz21z2ec

2 !1
1

4
c1/3~eu1

2 1ef1

2 1eu2

2

1ef2

2 !. ~2.10!

Thus~i! near the apex (r 50) the 2-cycles stay finite, and~ii !
it is possible to avoid the conical curvature singularity ar
50 by changing the range ofc from the original one@0,4p)
to @0,2p).

The generalized conifold withbÞ0, Eq. ~2.9!, is the 6D
analogue of the Eguchi-Hanson metric@30# where to avoid
the singularity one is to changeS3→S3/Z25P3. Herec is
the coordinate of the fiber of theU(1) bundle overS23S2.
TakingcP@0,2p) one finds that for larger the space is now
the cone overT1,1/Z2; this is an example of asymptoticall
locally Euclidean metric.

To establish the analogy with the Eguchi-Hanson me
more explicitly let us define the constantb>0 by

3The coordinater here was denotedr in @16#.
6-2
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c[S 2

3
b2D 3

, ~2.11!

and introduce the new radial coordinater through the rela-
tion

r65F3

2
r 2K8~r !G3

5S 3

2D 3

r 41b6. ~2.12!

Since 0<r ,`, the range of variation ofr is b<r,`.
The metric~2.5!,~2.9! then becomes

ds6
25k21~r!dr21

1

9
k~r!r2ec

21
1

6
r2~eu1

2 1ef1

2 1eu2

2 1ef2

2 !,

~2.13!

where

k~r!512
b6

r6 . ~2.14!

Note that 0<k<1. The analysis of this metric follows
closely that of the Eguchi-Hanson metric in@30,31#. It is
straightforward to establish that this Ricci-flat metric do
not have any scalar curvature singularity; e.g.,Ri jkl R

i jkl

596r216(r12120b12) is finite for 0,b<r,`, so that in-
troducing the parameterb smoothens the curvature singula
ity of the original conifold metric. In that sense th
b-generalized conifold introduced above may be called
‘‘regularized conifold’’ ~by analogy with resolved and de
formed conifolds which also contain an extra paramet
eliminating the curvature singularity!.

The pointr5b is a removable bolt singularity, as can b
seen by introducing the coordinateu25 1

9 r2k(r) and consid-
ering ther→b limit.

C. Resolved conifold

Following @22,11,16#, one finds the analogous one ne
parameter (b) extended metric on the resolved conifold@cf.
Eq. ~2.13!#

ds25k21~r!dr21
1

9
k~r!r2ec

21
1

6
r2~eu1

2 1ef1

2 !

1
1

6
~r216a2!~eu2

2 1ef2

2 !. ~2.15!

Herea is the resolution parameter and

k~r!5

11
9a2

r2 2
b6

r6

11
6a2

r2

. ~2.16!

For a50 this metric reduces to the above conifold met
~2.13!,~2.14!. For r much greater than any of the two leng
scalesa andb we get the standard conifold metric~2.3!.
08600
s
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The coordinater and the original coordinate 0<r ,` of
the conifold ~see@11,16#! are related according to@cf. Eq.
~2.12!#

r619a2r45S 3

2D 3

r 41b6. ~2.17!

The range ofr is thus r0<r,`, wherer05r0(a,b)>0
corresponds to the apexr 50, i.e. is the solution ofr0

6

19a2r0
42b650 which is positive and becomes zero wh

b50.4 We shall assume again thatcP@0,2p) to avoid the
conical bolt singularity atr5r0.

The curvature invariants for the metric~2.15! are regular
@unless botha andb are zero when we get back to the orig
nal singular conifold metric~2.3!#. In particular,

Ri jkl R
i jkl 5

96

r12~r216a2!6
@b12~5184a814320a6r2

11440a4r41240a2r6120r8!1144b6a4r10

1r12~6480a812160a6r21360a4r4130a2r6

1r8!#,

which is non-singular atr→r0 ~for a50 this expression
reduces to the one conifold one given at the end of the p
vious subsection, and forb50 it gives the curvature invari-
ant for the resolved conifold metric of@11#!.

To understand the short-distancer→r0 (r→0) behavior
of the bÞ0 resolved conifold metric we introduce as in E
~2.10! the coordinatez5 1

2 r 2→0, thus obtaining

~ds6
2!r→05

3

8r0
2~r0

216a2!
~dz21z2ec

2 !1
1

6
r0

2~eu1

2 1ef1

2 !

1
1

6
~r0

216a2!~eu2

2 1ef2

2 !. ~2.18!

For fixed u i and f i the metric is thus proportional todz2

1z2dc2, so that to avoid a conical singularity we need aga
to apply aZ2 identification tocP@0,4p).5

The short-distance limit of theb50 resolved conifold
metric ~which is to be considered separately asr050 for b
50) is @11# (r2'(A3/8a2)r 2)

~ds6
2!r→05

2

3
dr21

1

6
r2~ec

21eu1

2 1ef1

2 !

1S a21
1

6
r2D ~eu2

2 1ef2

2 !. ~2.19!

4Explicitly, r0
259a4n21/31n1/323a2, where n5

1
2 @b6254a6

1b6A12108a6 /b6# ~see@22,11#!.
5Note that in ther→r0 limit the metric is topologically the same

as that of the generalized conifold~2.10!, i.e. R23S23S2, but geo-
metrically the two metrics are different@e.g., the radii of the two
2-spheres spanned by (u i ,f i) are different#.
6-3
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This metric has regular curvature invariants, e.
(Ri jkl R

i jkl )r→0→40/3a4, illustrating that the parametera
Þ0 indeed resolves the curvature singularity of the stand
conifold.

D. Deformed conifold

The b-parameter family of metrics on the deformed co
fold is found in a similar way@22,23,16,11#. Using the basis
of @23,10# the metric can be written as (g55ec)

ds6
25k21~r!dr21

1

9
k~r!r2ec

21
1

6
r2FAr 22e2

r 21e2~g1
21g2

2!

1Ar 21e2

r 22e2~g3
21g4

2!G , ~2.20!

wherer is related tor according to@cf. Eqs.~2.12!,~2.17!#

r65S 3

2D 3

r 4FA12
e4

r 42
e4

r 4 ln
r 21Ar 42e4

e2 G1b6,

~2.21!

and @cf. Eqs.~2.14!,~2.16!#

k~r!5S 3

2D 3 r 4

r6 S 12
e4

r 4D512
b6

r6 1O~e!. ~2.22!

Since e<r<`, we haveb<r,`. This metric reduces to
the generalized conifold metric~2.13! for e→0. Forr greater
than any of the two length scalesb and e, it becomes the
standard conifold metric~2.3!.

It is useful also to present the deformed conifold metric
terms of the radial coordinatet used in@23,10,11#

r 25e2 cosht, r65S 3

2D 3

e4F1

2
sinh~2t!2tG1b6,

0<t,`, ~2.23!

ds6
25

1

2
KF ~3K 3!21e4~dt21g5

2!1sinh2
t

2
~g1

21g2
2!

1cosh2
t

2
~g3

21g4
2!G , ~2.24!

where

K~t!5
$c1 1

2 e4@sinh~2t!22t#%1/3

sinht
5

2

3
r2~sinht!21,

c5S 2

3D 3

b6.

For larget we again get the standard conifold metric, wh
for small values oft we get~for bÞ0)
08600
,

rd
~ds!t→0

2 5
3e4

8b4 t2~dt21g5
2!1

b2

12
t~g1

21g2
2!

1
b2

3
t21~g3

21g4
2! ~2.25!

or, in terms ofr→b,

~ds6
2!r→b5k21~r!dr21

1

9
k~r!r2ec

21
1

6
r2F S r62b6

18e4 D 1/3

3~g1
21g2

2!1S r62b6

18e4 D 21/3

~g3
21g4

2!G , ~2.26!

where for k5kr→b5@( 3
2 )5e4#1/3(r62b6)2/3/r6→0. Note

that the volume of the 2-cycle (g1 ,g2) shrinks to zero, while
volume of the 3-cycle (g3 ,g4 ,g5) stays constant (5e2/A6).
This metric has a curvature singularity att50 for any b
Þ0.

For comparsion, the smallt limit of the standardb50
deformed conifold metric is@23,10#

~ds!t→0
2 5S e4

12D
1/3F1

2
~dt21g5

2!1g3
21g4

21
1

4
t2~g1

21g2
2!G ,

and is regular att50. Indeed, computing the curvature in
variant Ri jkl R

i jkl for the general form of the metric~2.24!
and then expanding it neart50 ~i.e. r 5e) one finds a sin-
gular expression forbÞ0,6

~Ri jkl R
i jkl !t→05

5120b8

9e8

1

t8 F12
8

15
t21

3e4

4b6 t31O~t4!G ,
and a regular expression forb50:

~Ri jkl R
i jkl !t→05

192•~18!1/3

5 e8/3 F12
4

5
t21

202

525
t41O~t5!G .

E. Remarks

The three one-parameter families of the Ricci-flat metr
presented above Eqs.~2.13!, ~2.15! and ~2.20! are the most
general solutions~with non-trivial dependence on the radi
coordinate only! for Ricci-flat metrics on respective con
folds @11,16#. As was shown in@16#, they define supersym
metric backgrounds of type II supergravity. This is in co
trast to what happens in the case of the metric of a cone o
S33S2, Eq.~2.1!, which breaks all supersymmetries and th
may lead to unstable D3-brane solutions.

The analogy with the Eguchi-Hanson metric elucida
the geometrical meaning of the ‘‘mass’’ parameterb. From
the perspective of dual gauge theories associated with
brane solutions on these generalized conifolds which will

6Herer andb have canonical lengthl dimensions whiler; l 3/2,
e; l 3/2, t; l 0. Note that the leading term in the expression below
what one finds directly from the metric~2.25!.
6-4
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discussed below this parameter should play the role of an
‘‘mass’’ or ‘‘confinement’’ scale.

A feature of the conifold~2.13! and the resolved conifold
~2.15! is that near the apex (r 50) the respective metric
effectively ‘‘factorize’’ into an R23S23S2 part. This will
have consequences for the structure of D3-brane solution
the IR region.

We have seen that while theb50 conifold had curvature
singularity at the origin, itsbÞ0 generalization has regula
curvature~and have no conical singularity after changing t
period of the anglec). The resolved conifold metric depend
ing on two parameters (a,b) is regular for all of their values
excepta5b50. Curiously, this is different from the situa
tion for the deformed conifold: while the standardb50 de-
formed conifold metric was regular~with the parametere
playing the role of the ‘‘cutoff’’!, its bÞ0 generalization has
a curvature singularity at the originr 5e. This implies, in
particular, that one is unlikely to find a directbÞ0 generali-
zation of the regular fractional D3-brane on deformed co
fold solution of@10# ~which is thus a very special point in th
parameter space of solutions!. For that reason in what fol
lows we shall mostly concentrate on the resolved conif
case.

Finally, let us note that the conifold solutions discuss
above can be derived as special cases of the following ‘
terpolating’’ ansatz for 6D metric~see@16#!:

ds6
25e2z13xdu21ez1x@eg~eu1

2 1ef1

2 !1e2g~ ẽ1
21 ẽ2

2!#

1e22z2xec
2, ~2.27!

where ẽ15e12a(u)eu1
, ẽ25e21a(u)ef1

, e1

5sinc sinu2df21coscdu2, e25cosc sinu2df22sincdu2,
and eu1

,ef1
,ec are as in Eqs.~2.2!,~2.4!. Resolved and de

formed conifold metrics are special cases of this ansatz@16#
corresponding toa50 anda2512e2g respectively. The un-
known functionsx,z,g,a of the radial coordinateu repre-
senting Ricci-flat 6D spaces are subject to equations foll
ing from the following 1D action~plus the ‘‘zero-energy’’
constraint!:

S15E du@x822z822g822e22ga822V~x,z,g,a!#,

~2.28!

V5
1

2
e22z@e2g1~a221!2e22g#24ez12xcoshg

1a2~e2z2e2z12x2g!2. ~2.29!

For the special cases corresponding to the resolved and
deformed conifolds one finds that this system admits a
perpotentialW @11#, i.e. V52Gi j (]W/]qi)]W/]qj , where
qi5(x,z,g,a), Gi j 5(1,21,21,2e22g), so that one gets a
first-order systemq8 i5Gi j ]W/]qj . For example, in the re
solved conifold case (a50) W5e2zcoshg1e2z12x. It would
be very interesting to find new solutions of the sytem~2.28!
08600
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representing 6D Ricci-flat spaces that ‘‘interpolate’’ betwe
the generalized resolved and deformed conifold metrics
cussed above.

III. PURE D3-BRANE SOLUTIONS

A. General remarks

As is well known, given a Ricci flat 6D space with metr
gmn , one can construct the following generalization of t
standard@25,26# 3-brane solution~see, e.g.,@3,23,32#!:

ds10
2 5h21/2~y!dxmdxm1h1/2~y!gmn~y!dymdyn, ~3.1!

F55~11* !dh21`dx0`dx1`dx2`dx3,

F5const, ~3.2!

whereh is a harmonic function on the transverse 6D spa

1

Ag
]m~Aggmn]nh!50. ~3.3!

In the case of a Ricci-flat cone with metric

gmn~y!dymdyn5dr21r2g i j ~z!dzidzj , ~3.4!

one can chooseh to depend only onr, thus getting the
single-center solution

h5h01
L4

r4 . ~3.5!

Here and below we assume thath0>0. Then in the near-core
region the space becomes AdS53X5, whereX5 is the Ein-
stein space which is the base of the cone with the metricg i j .
Particular examples are provided by the standard cone m
rics ~2.1! and ~2.3! whereX55T1,05S23S3 andX55T1,1.7

In the general case when the transverse 6-space is n
cone, one will not find the near-core geometry having
AdS5 factor and thus the dual gauge theory will have brok
conformal invariance.

B. Conifold case

Let us determine the harmonic functionh that solves Eq.
~3.3! for the generalized conifold metric~2.13! assumingh
5h(r). Using that Ag651/108r5 sinu1 sinu2, grr51
2b6/r6 we get

h5h02
2L4

b4 F1

6
ln

~ r̄221!3

r̄621
1

1

A3
S p

2
2arctan

2r̄211

A3
D G ,

~3.6!

r̄[
r

b
.

7Compactifications of type IIB supergrativity on suchX5 were
discussed in@24# where it was pointed out that in the family ofTp,q

spaces onlyT1,1 preserves supersymmetry.
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For r/b@1 we recover the standard metric of D3-branes
the conifold~3.5!, i.e.

h~r→`!5h01
L4

r4 . ~3.7!

For small values ofr we geth→`:

h~r→b!52
2L4

3b4 lnS r

b
21D1h1 ,

h15h01
L4

9b4 SA3p13ln
4

3D .

~3.8!

Recalling from Eq.~3.1! that the 00-component of the metr
is h21/2 we see thatr5b is a horizon. It is also a curvatur
singularity. Thus, starting withR1,33M6 where M6 is the
generalizedbÞ0 conifold, the introduction of D3-brane
creates a back reaction that transforms the previously n
ingular point r5b into a curvature singularity coinciding
with the horizon. In contrast, forb50 @4# the near-core ge
ometry was regular—AdS53T1,1.

This is similar to what was found for the D3-brane on
b50 resolved (aÞ0) conifold in @11#. Below we will see
that this behavior extends also to the case of the reso
conifold with bÞ0.

One of the generic features of D3-branes on the conif
and the resolved conifold is the logarithmic form ofh(r) at
small distances. The origin of this lies in the fact~noted in
Sec. II E! that for smallr the transverse geometry becom
effectively 2 dimensional as far as the dependence on
radial coordinate is concerned, so that one finds that the
monic functionh has the ‘‘7-brane-like’’ log(r2r0) struc-
ture.

C. Resolved conifold case

Starting with the resolved conifold metric~2.15! and solv-
ing Eq. ~3.3! one finds the following expression forh(r):

h5h02
2L4

ab4 F1

6
ln

~ r̄22 r̄0
2!3

r̄613q2r̄421

1
b1q2

l
S p

2
2arctan

2r̄21s

l
D G , ~3.9!

where, as in Eq.~3.6! (r0 is the same as in Sec. II C!

r̄5
r

b
, r̄05

r0

b
,

and for simplicity of presentation we have introduced t
following constants depending on the ratioa/b:

q5A3
a

b
, b5q4m211m2q2,
08600
n

s-

ed

d

e
r-

m[F1

2
~122q61A124q6!G1/3

,

a5
1

3
~2b213q2b1b21!, s5b13q2,

l5A4b212s2. ~3.10!

We have assumed that 124q6.0 ~the opposite case is dis
cussed below!.

The behavior forr→r0 is the same as in Eqs.~3.8!:

h~r→r0!52
2L4

3ab4 ln~ r̄2 r̄0!1O~1!; ~3.11!

i.e., as in the previous case, atr5r0 there is a horizon co-
inciding with curvature singularity.

Compared to Eq.~3.6! here the functionh contains
another ~resolution! scale a represented by the paramet
qP@0,̀ ). Depending on the value ofq, i.e. on the ratio ofa
andb, one may distinguish three regions:b dominated, inter-
mediate, anda dominated. The metric defined by Eqs.~3.9!,
~3.10! is valid in theb-dominated region where 4q6,1, i.e.,
b.31/221/3a. For q50 (a50) we get back to the conifold
case~3.6! which should be viewed as the limiting case of t
b-dominated resolved conifold solution~3.9!. In the interme-
diate region, i.e. 4q651 @this corresponds tol50 in Eqs.
~3.9!, ~3.10!#, we get

h5h02
2L4

81a4 S 9a2

r216a2 1 ln
r223a2

r216a2D , ~3.12!

whereA3a<r,`. This metric also has a curvature sing
larity and the horizon atr5r05A3a. In the a-dominated
region 4q6.1, i.e.a.321/2221/3b, we find

h5h02
2L4

9a4a F1

6
ln

~ r̄22 r̄0
2!3

r̄61 r̄42q26
2

b11

l
ln

2r̄21s2l

2r̄21s1l
G ,

~3.13!

where8

r̄5
r

A3a
, b5m1m2121,

m[eip/3@12~2q6!212 iq23A12~4q6!21#1/3,

a5
1

3
@2b213b1~q6b!21#, s5b13,

l5As224~q6b!21. ~3.14!

8Note that sinceumu51, the combinationm1m21 is always real so
thatb, s, l, anda are always real andr0 is the positive real root of
the cubic equation.
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This solution has the same generic logarithmic behavior n
r0, indicating the existence of a horizon and a singularity

In the a-dominated expression~3.13! we are able to take
the q→` (b→0) limit to get back to the ‘‘standard’’ re-
solved conifold case. The functionh in the metric of D3-
branes onb50 the resolved conifold found in@11# is

hb505h01
2L4

81a4 F9a2

r2 2 lnS 11
9a2

r2 D G . ~3.15!

Again, herer50 is both the horizon and the singularity.

D. Deformed conifold case

In the deformed conifold case~2.20!,~2.21! the harmonic
function h in Eq. ~3.1! is found to be

h5h02
25

33 L4E rdr

r 42e4 , ~3.16!

where the explicit form ofr (r) in Eq. ~2.21! is transcenden-
tal. Forr @e we haver 45(2r2/3)3 and therefore recover th
D3-brane on the conifold metric withh5h01L4/r4. For r
→e (r→b) we get

ds10
2 5h21/2dxmdxm1h1/2~ds6

2!r→b , ~3.17!

where (ds6
2)r→b is given by Eq.~2.26! and

h5h12h2r21O~r4!, h25
28/3L4

35/3b2e4/3 2F1S 1

3
,
2

3
;
4

3
;1D ,

~3.18!

and h15h01O(L4/b4).9 This bÞ0 case is different from
the b50 deformed conifold case@10,11# wherer50 was a
horizon. Here forr→b the space factorizes intoR1,33M6

whereM6 hasr5b as its curvature singularity.

IV. FRACTIONAL D3-BRANE SOLUTIONS

Let us now construct thebÞ0 generalization of the frac
tional D3-brane on resolved conifold solution of@9,11#, i.e.
The extension of the D3 brane solution of the previous s
tion to the case of additional~self-dual! 3-form flux. The
resolved conifold solution includes the conifold one as a s
cial (a50) case. The first-order system corresponding to
background was already obtained in@11#. It is straightfor-
ward also to construct a similarbÞ0 generalization of the
solution@10# in the deformed conifold case~see@11#!, but we
shall not discuss the details of this here.

For comparison, we shall start with a similar case
3-branes on the cone overS23S3. This solution was previ-
ously discussed in@33# ~see also@20#!.

9Here 2F1( 1
3 , 2

3 ; 4
3 ;1)5G( 1

3 )G( 4
3 )/G( 2

3 )'1.77.
08600
ar

c-

-
is

f

A. S2ÃS3 cone case

The 3-brane ansatz for the metric with transverse p
given by Eq.~2.1! is

ds25h21/2dxmdxm1h1/2S dr21
1

8
r2dV3

21
1

4
r2dV2

2D ,

~4.1!

and the natural ansatz for the form fields is similar to the o
in the conifold@7,9# case:

B25 f ~r!eu2
`ef2

→H35 f 8~r!dr`eu2
`ef2

,

F35Pec`eu1
`ef1

,

F55F1* F, F5K~r!ec`eu1
`ef1

`eu2
`ef2

. ~4.2!

The 10D duals of these fields are

* F5
213/2K

r5h2
dr`dx0`dx1`dx2`dx3, ~4.3!

* F35
25/2P

rh
dr`dx0`dx1`dx2`dx3`eu2

`ef2
,

~4.4!

* H352
r f 8

25/2h
dx0`dx1`dx2`dx3`ec`eu1

`ef1
.

~4.5!

We shall assume that the dilatonF is constant. Then theF3
equation of motiond(eF* F3)5F5`H3 is satisfied auto-
matically, and from theH3 equation d(e2F* H3)52F5
`F3 one obtains the following equation (eF5gs)

S f 18r

h D 8
5

29gsPK

h2r5
. ~4.6!

The constant dilaton condition impliesH3
25e2FF3

2, i.e., us-
ing Eq. ~2.13! we get10 r f 8525/2gsP. The Bianchi identity
for the 5-formd* F55dF55H3`F3 gives K85P f8, i.e. K
5Q1P f . The two linearly independent Einstein equatio
are a consequence of this system of first order differen
equations. The solution is thus very similar to the origin
conifold one@9#:

f 525/2gsP ln
r

r0
, K5Q125/2gsP

2 ln
r

r0
,

h5h01
29/2

r4 FQ125/2gsP
2S ln

r

r0
1

1

4D G . ~4.7!

10As in @9#, the axion equation is satisfied automatically sin
H3•F350.
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Note that as in@9#, the complex 3-formG35gsF31 iH 3
is self-dual in the 6D sense. Like the conifold solution@9#,
this solution has a naked singularity located atr5rh ,
Q125/2gsP

2@ ln(rh /r0)1
1
4#50, i.e. very close to the origin if

the number of fractional D3-branes is small,Q@gsP
2. In

this case the singularity is behind the ‘‘zero charge’’ (
50) locus.

B. Resolved conifold case

The ansatz for the metric will be the same as in Eq.~3.1!,

ds10
2 5h21/2~r!dxmdxm1h1/2~r!ds6

2 , ~4.8!

where ds6
2 will be the metric of the generalizedbÞ0 re-

solved conifold~2.15!. Our ansatz for the Neveu-Schwarz
Neveu-Schwarz~NS-NS! 2-form will be as in @11#, i.e. a
natural generalization of the ansatz in@9# motivated by an
asymmetry between the twoS2 parts of the resolved conifold
metric:

B25 f 1~r!eu1
`ef1

1 f 2~r!eu2
`ef2

,

H35dB25dr`@ f 18~r!eu1
`ef1

1 f 28~r!eu2
`ef2

#. ~4.9!

The conifold case (a50) corresponds@7,9# to f 152 f 2. The
forms F3 and F5 will also have the same structure as
@9,11# ~we follow the notation of@11#!:

F35Pec`~eu2
`ef2

2eu1
`ef1

!, ~4.10!

F55F1* F, F5K~r!ec`eu1
`ef1

`eu2
`ef2

.
~4.11!

The rest of the discussion is essentially the same as in@11#
with k in the 6D metric now being dependent also onb
according to Eq.~2.16!.

Assuming that the dilatonF is constant, theF3 equation
of motiond(eF* F3)5F5`H3 is satisfied automatically, an
from the H3 equationd(e2F* H3)52F5`F3 one obtains
the following three equations (eF5gs):

S f 18rkG

h D 8
5

324gsPK

h2r5kG
, S f 28rk

hG D 8
52

324gsPK

h2r5kG
,

~4.12!

f 181G22f 2850, G[
r216a2

r2 , ~4.13!

whereG is the ratio of the squares of the radii of the tw
spheres in the resolved conifold metric~2.15!. The constant
dilaton condition impliesH3

25e2FF3
2, i.e.

f 18
21G22f 28

25
9gs

2P2

k2r2 ~11G22!. ~4.14!

Combined with Eqs.~4.13! that gives

f 185
3gsP

rkG
, f 2852

3gsPG

rk
. ~4.15!
08600
The Bianchi identity for the 5-form,d* F55dF55H3`F3,
implies

K85P~ f 182 f 28!, i.e. K5Q1P~ f 12 f 2!. ~4.16!

As in @9,11#, to determine the metric functionh(r) it is
sufficient to consider the trace of the Einstein equation11

R52 1
2 Dh5 1

24 (e2FH3
21eFF3

2), i.e.

h23/2
1

Ag
]r~Aggrr]rh!52

1

12
~gs

21H3
21gsF3

2!52
1

6
gsF3

2

~4.17!

or

~r5kGh8!852324gsP
2
~11G2!

rkG
. ~4.18!

Integrating this we get

h852
108K

r5kG
. ~4.19!

Plugging in the functionk in Eq. ~2.16! the system
~4.15!,~4.19! of first-order differential equations can be d
rectly integrated.

Here we shall present the explicit form of the solutio
only in the a50 limit, i.e., theb-generalized conifold case
~2.14!. For a50 one findsG51, implying f 252 f 1, and
with k512b6/r6 we obtain

f 152 f 25
1

2
gsPln~ r̄621!1 f 0 , K5Q1gsP

2 ln~ r̄621!,

~4.20!

h5h02
54Q

b4 F1

6
ln

~ r̄221!3

r̄621
1

1

A3
S p

2
2arctan

2r̄211

A3
D G

1
27gsP

2

b4~ r̄621!2/3F3

2 3F2S 2

3
,
2

3
,
2

3
;
5

3
,
5

3
;2

1

r̄621
D

1 2F1S 2

3
,
2

3
;
5

3
;2

1

r̄621
D ln~ r̄621!G , ~4.21!

wherer̄5r/b @cf. Eq. ~3.6!# and pFq is the hypergeometric
function.

The larger behavior ofh is

h~r→`!5h01
27

r4 FQ16gsP
2S ln

r

b
1

1

4D G ; ~4.22!

11More precisely, there are two linearly independent Einst
equations: one is the square of Eq.~4.13! and another, written
above, can be expressed in terms of the first derivative of Eq.~4.13!
using Eq.~4.16!.
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i.e., this solution has the same UV asymptotic as theb50
conifold one of@9#. In the short-distance limitr→b limit we
have, to the leading order,

h~ r̄→1!5h02
18Q

b4 ln~ r̄221!2
9gsP

2

b4 ln2~ r̄221!.

~4.23!

At r̄h'11e22Q/(gsP2) the solution has a naked singulari
of a repulson type. The ‘‘zero charge’’ locus (K50) is lo-
cated atr̄K511e2Q/(gsP2), i.e. r̄K. r̄h .

We can thus conclude, based on the analysis in@9# (b
5a50), in @11# (b50,aÞ0) and here (a50,bÞ0), that
generically fractional 3-branes on the conifold and resolv
conifold have a repulson-type naked singularity which is
cated behind the ‘‘zero-charge’’ locus.

V. WILSON LOOP BEHAVIOR

Let us now investigate, following@27,28#, the behavior of
the Wilson loop corresponding to a ‘‘quark-antiquark’’ p
tential in the dual gauge theory. It is given by the exponen
of the classical fundamental string action in these D3-br
backgrounds evaluated for a static configuration of op
string ending on the probe D3-brane placed at the ‘‘bou
ary’’ r5`.

We will show that one gets an area law~confining! be-
havior for the ‘‘pure’’ D3-brane backgrounds of Sec. II
assuming that at least one of the scales of the transv
space is kept non-zero. This is different from what is fou
in the standard conifold case@4# where the near-core geom
etry has an AdS5 factor and thus the potential is Coulomb
as in @27,28# ~in the single-center case as well as in t
multicenter case@34#!.

For simplicity, we shall consider only the D3-brane bac
ground with the resolved conifold as the transverse sp
The corresponding metric~2.15!,~3.9! depends on the two
scale parametersb and a. Expressed in terms ofr̄5r/b it
depends only on their ratioq5A3a/b. It is sufficient to ana-
lyze the Wilson loop in the two limiting casesq50 andq
5`: ~i! a50, bÞ0, i.e., the D3-brane on the generaliz
conifold ~2.13!,~3.6!, and ~ii ! aÞ50, b50, i.e., the D3-
brane on the ‘‘standard’’ resolved conifold~3.15!. In both
special cases the scale of the transverse space (b or a) de-
termines the confinement scale. The behavior of the Wil
loop for general values ofq will be similar, given that the
behavior ofh is generic. Let us emphasize that in contra
with other supergravity solutions dual to confiningN51
gauge theories@36,10,18#, this confinement behavior i
found for the pure D3-brane background which does
have any non-trivial 3-form fluxes.

A. General setup

All examples we have discussed above have metrics
the type
08600
d
-

l
e
n
-

se
d

-
e.

n

t

t

of

ds25h21/2~r!~2dx0
21dxkdxk!1h1/2~r!@k21~r!dr2

1ds5
2#, ~5.1!

where ds5
2 is the metric of the corresponding 5D compa

space. The Nambu-Goto string action which determines
expression for the Wilson loop depends on this 10D me
GMN as*dtdsA2det(GMN]aXM]bXN). In the static gauge
(x05t, x1[x5s) and assuming that the string is stretch
only in the radial direction—i.e., only ther coordinate de-
pends ons—we get12

S5TE dxAG00Gxx1G00Grr~]xr!2

5TE dxAh211k21~]xr!2. ~5.2!

Since the Lagrangian of this ‘‘mechanical system’’ does n
depend explicitly on ‘‘time’’x, we have a conserved quantit

h21/@Ah211k21(]xr)2#; i.e., the first integral is (c0
5const)

dx5
dr

Akh21~h21/c0
221!

. ~5.3!

The energy of a static string configuration is thus

E5
S

T
5E dxAh211k21~]xr!25E dr

Ak~12c0
2h!

.

~5.4!

Following @27,28#, the question about confinement is the
reduced to finding the dependence of the energyE on the
distancel between the string end points~between ‘‘quark’’
and the ‘‘antiquark’’!.

B. Conifold case

For the generalized conifold metric with the scaleb, Eqs.
~2.13!,~2.14!, the functionh of the D3-brane solution is given
by Eq. ~3.6!. Introducing the new coordinate

y5 r̄25
r2

b2 , ~5.5!

and removing the asymptotically flat region~i.e. dropping
h0) we obtain the following relation for the quark-antiqua
separation:

l

2
5

L2

A2b
E

y
*

`

dy
y

Ay321

f ~y!

Af ~y* !2 f ~y!
, ~5.6!

wherey* is the turning point and

12T is the time interval and the string tension is set equal to 1
6-9
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f ~y!5
1

A3
S arctan

2y11

A3
2

p

2 D 2
1

6
ln

~y21!3

y321
,

f ~y* !5
b4

2L4c0
2 . ~5.7!

Note that for any finite value off (y* ) one hasy* .1, mean-
ing that the minimal surface does not reachr5b which is
the horizon and the curvature singularity. The energy of
string configuration is

E5
b3

23/2L2c0
E

y
*

` ydy

Ay321

1

Af ~y* !2 f ~y!
. ~5.8!

Evaluating the integrals as in@35#, i.e. assuming that the
main contribution comes from the region neary* , we find
the ‘‘area law,’’ i.e., the linear confinement behavior

E'
c0

2
l . ~5.9!

C. Resolved conifold case

Let us first consider the ‘‘standard’’b50 version of the
D3-brane solution on the resolved conifold@11#, i.e. Eq.
~3.15!. Introducing the new coordinate

y5
r2

9a2 ~5.10!

and settingh050 we get

h5
2L4

81a4 f ~y!, f ~y![y212 ln~11y21!, k5
y11

y1
2

3

.

~5.11!

Then the analogue of Eq.~5.6! is

l

2
5

L2

3A2a
E

y
*

` dy

y1/2

Ay1
2

3

y11

f ~y!

Af ~y !2 f ~y!
, ~5.12!
*

T

E

08600
e

wheref (y* )581a4/2L4c0
2. We have used that from the form

of the denominator in the analogue of Eq.~5.3! @cf. Eq.
~5.12!# it follows that there is a turning point fory; i.e., y
changes from̀ (r5`) to y* . Note thatf (y) is a positive
function and it increases monotonically from zero aty5`.
Therefore, for any positive constantd0 there isy5y* that
solvesd0

25y212 ln(11y21).
Similar behavior is found when we switch on theb pa-

rameter, i.e. start withk andh given in Eqs.~2.16! and~3.9!.
Thus the minimal surface does not reach the curvature
gularity located atr0.13 The expression for the energy is~for
b50)

E5
27a3

23/2L2c0
E

y
*

` dy

y1/2

Ay1
2

3

y11

1

Af ~y* !2 f ~y!
. ~5.13!

Assuming that the main contribution comes from the reg
near y* and expandingf (y)' f (y* )1 f 8(y* )(y2y* ) we
again get the area law behavior, i.e. the relation~5.9!. An
analogous result is found when one switches on the dep
dence of the background metric on the parameterb @37#.
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