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We propose that little string theories in six dimensions are quasilocal quantum field theories. Such field
theories obey a modification of Wightman axioms which allows Wightman functiemsvacuum expectation
values of products of fundamental fields grow exponentially in momentum space. Wightman functions of
quasilocal fields inx-space violate microlocality at short distances. With additional assumptions about the
ultraviolet behavior of quasilocal fields, one can define approximately local observables associated with big
enough compact regions. The minimum size of such a region can be interpreted as the minimum distance
which observables can probe. We argue that for little string theories this distance is of the oM.
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[. INTRODUCTION a (supejconformal QFT, sincéM, the only scale in string
theory, is taken to infinity.

Poincareinvariant theories in six dimensions have been For reasons mentioned above, these superconformal QFTs
much studied in the past few years. One of the reasons is thaannot be obtained by perturbing a free field theory with a
they describg5+1)-dimensional branes which play an im- local operator and therefore are not associated to any La-
portant role is string dualities. In particular, the superconfor-grangian. But there are nonlocal theories l5dimensions
mal (2,0) theory describing several coincident M5-branes hagvhich flow to our SCFTs in the infrared: the so-called little
attracted a lot of attention. Another reason is that the venptring theorieLSTs). Little string theories first appeared in
existence of consistent nontrivial Poincangariant theories 8] where it was suggested that they describe M theory com-
in six dimensions came as a surprise. pactified onT_5. The precise definition of LSTs as decoupled

A standard strategy to construct a nontrivial field theory istheories on five branes goes as follo\@s One starts witiN

to take a free conformal theory and perturb it by a relevant oFOinCidIfnt tr):pei' lIA or het(;r_?tick five bran(;.-_s,_ as above, but
marginally relevant operator other than the mass term. Thiﬁw(?\sl;vlrr?"nitegéﬁr?elsmelxglg;r?cgvm:vearigﬁfltﬂge'\gS 'i?]'tg'lsé’iﬁfl’gﬁ_e
method works well in dimension four or lower, but it is easy ions. Its infrared limit valent t r%/h il s oo

to see that in higher dimensions free conformal theories d 2r:];or§ by o?eﬁnition th?siﬂgor?/eﬂows o (tehe SCSF_'I: o,f in-
not have interesting relevant or marginally relevant deforma;[erest The difficult part is arguing that the decoupling really
tions. Hence until a few years ago it was believed that non- :

trivial i field theories d t exist in di . occurs.
fivial quantum fie eores do not exist In GimensIons o) known nontrivial (2,0) and(1,0 superconformal theo-

higher than four. _ _ ries in six dimension arise as the infrared limit of little string
(2,0 and(1,0) superconformal field theorigSCFTS de-  heories. In each case the parent little string theory has the
scribing various fivebranes provided first examples 10 theame amount of supersymmetry, but does not have confor-
contrary[1-5]. Subsequently other related SCFTs in six di-ma| or superconformal symmetry. Starting from a slightly
mensions have been discovel&q7]. A common feature of different brane configuration, one can also construct little
all these constructions is that they require taking a certaigtring theories in six dimensions witti,1) supersymmetry
limit in string theory or M theory in which gravity and other [9]. According to Nahm’s classification of superconformal
bulk modes decouple from the fivebranes. In the simplestigebrag10], such a theory cannot flow to a nontrivial su-
case, one takeN coincident type IIA fivebranes dgXEg  perconformal theory in the infrared. Instead, at low energies
heterotic fivebranes and considers the limgi¢—0, Mg  (1,1) theories reduce tdl=2 d=6 super Yang-Mills theo-
—. Heregg is the string coupling at spatial infinity, and ries which are infrared-free.
M= 1/\/a' is the string scale. If gravity and the rest of the  The name “little string theory” has the following origin.
bulk modes decouple, while the degrees of freedom living orSince we did not senM to infinity when taking the decou-
the brane remain interacting, one expects that the brane dpting limit, it is natural to expect that the theory retains some
grees of freedom are described in this limit by a nontrivialstringy features. And indeed, one can argue that little string
Poincareinvariant theory. In all known cases the argumenttheories inherit from string theory such propertiesTagual-
for decoupling is indirect, and the structure of the Poincareity [9] and Hagedorn density of statgkl].
invariant theory is poorly understood. The property ofT duality in particular seems to imply that
Nevertheless, whenever one can argue decoupling in thitle string theories are not local quantum field theofigs-
limit gs—0,Mg¢— 0, it is believed that the Poincaiavariant  spite being Poincarmvariany. Intuition tells us that a quan-
theory is a local quantum field theof@FT); moreover, itis tum field theory always “knows” on which pseudo Rie-
mannian manifold it lives, whild duality means that a little
string theory on a torus of volum¥ is indistinguishable
*Email address: kapustin@ias.edu from a little string theory on a torus of volume\l/ (We
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make this argument more precise in Seg. Il. x-space analogue of this condition? The formal Fourier trans-
Since a common lore says that the local quantum fieldorm of F_ (p) is

theory framework is the only way to reconcile quantum me-

chanics, Poincarénvariance, and macrocausalitgee e.g. Z (xia)"

[12]), we seem to be facing a puzzle. As we explain below, F.(x)=2> n—|5(“)(x). 1)

the lore is incorrect if one is willing to sacrifice the notion of n=0 '

a strictly local observable. We will see that there is a Way t0rq a1y the value of this distribution on a test function

modify the axioms of quantum field theory so that it is im- £(x) is '

possible to construct observables whose support is a compac(t

set. In these theories local observables emerge only at dis- “ (Fia)"
tances much larger than a certain sdale F.(f)=> ' fM(0). 2
Nonlocal quantum field theories of this sort will be called n=0 I

quasilocal, since they violate causality only at distances o i )

shorter tharl. We conjecture that LSTs are quasilocal quan-7Or the distribution to be well-defined, this sum must con-
tum field theories witH being of orderyN/Mg. HereN is verge. This means tha_t the Qenvatlves‘miust not grow too
the number of five branes fast. In fact, if the serie$2) is convergent, then the Taylor

Quasilocal field theory is quite an old subjéste[13] for expansiop f.orf(x). around th'e poink=0 is convergent fgr
a review. It was extensively studied in 1960s and 1970s in|?<|<a.f8r|]m|flarly, i'JpViVSpCO”dS'der moﬂe”tf‘m'space. distribu-
attempts to deal with nonrenormalizable field theories. Thé!ons Of the forme and require that their Fourier trans-
main observation of the present paper is that the know

orm be well-defined, we will find that the Taylor expansion
properties of LSTs seem to fit perfectly into the framework 0" f(X) must converge fojx—b|<a. Hence, ifbis allowed
of quasilocal field theory.

to be arbitrary, then the test functions xspace must be
The link between quasilocal field theories and LSTs isreal-analytic. Moreover, they can be continued analytically

best seen from the holographic point of vig®4,15. Holo- ~ Off the real axis to a strip of widtl.

graphic approach makes it clear that little string theories, 1€ above arguments can be extended to the general
have properties very similar to those of local QFTs. In par_d-dlmenS|_on<'iI case. We will see that if d|str|but|ons_ grow
ticular, they have operatorg(p) which depend on the exponentially in momentum.space, the test functions in
6-momentump whose correlator$= Wightman functions x-space must be. real—analync. An operator smeared with
enjoy most of the usual properties. The only peculiarity ofsuch a test fu_nctlon is not a local observable. Furthermore,
LSTs is that these correlators seem to grow exponentially il?_he microlocality condition does not make any sense for such
momentum spacl5,16 (in local QFTs Wightman func- ields. Indeed, it says tha_t ffandg are test functions whose
tions grow at most as a powerA related fact is the expo- SUPPOrts are causally disconnected, the(f) and ¢(g)
nential growth of the density of states in LSTkL]. The Ccommute (or anticommutg This condition is empty for
importance of the exponential growth has been stressed asilocal theories, since there are no test functions whose
Aharony and BankgL1]. These authors pointed out that ex- SUPPOrts are causally disconnected. _ _
ponential growth means that truly local observables in LSTs Qne can nevgrtheless formulate a version of the mlcrol_o-
do not exist. Rather, if the Wightman functions grow ascality axiom which does make sense. To formulate this

exp(p), the minimal size the observables can probe is of"‘Xiom’ we first neeq tq dEfine approximately logaL.) ob-
-aﬁervables. The basic idea is to consider a sequence of test

growth of Wightman functions in momentum space is thefunctions{f,} which get more and more concentrated on a

defining property of LSTs. certain compact séfl. (The precise definition of what “con-

In this paper we elaborate on the point madélit] and centrated” means will be given laterThen we say t_hat ob-
clarify the extent to which observables in LSTs can be local-S€Tvablesp(f,) are approximately local, anid is their qua-
ized. We will see that the exponential growth of Green'sSisupport. Thus quasisupport is an attribute of a sequence of

functions in momentum space is characteristic of a OIuasnogbservables rather than of a single observable. The quasilo-

cal field theory. Itsx-space counterpart is the fact that cality axiom says that AL observables whose quasisupports

quasilocal fields are very singulébut well-definedl distri- '€ Space-like separated approximately comn{oteanti-
butions. The corresponding test functions are real-analyti€OMmute. This means that iM andN are space-like sepa-
and cannot have compact support. rated, andp(f,) and¢(g,) are sequences of AL observables

To appreciate the relation between the growth of distribuWith quasisupportd/ andN, respectively, then
tions in momentum space and the properties of test functions
in x-space, the following one-dimensional example is help- [4(1.),4(g,)]-—0 or [&(1,),¢(0,)]+ as v—ee.

ful. Suppose we want to regard the functidas(p) =e*2P 3

of one real variable as distributions on a suitable space of The quasilocality axiom ensures locality “in the large.”
test functions(Herea is a positive real numberlt is clear ~ Nonlocal QFTs which satisfy this axiom are called gquasilo-
that the space of test functions must include only functiongal. Our proposal is that LSTs are quasilocal field theories.
which decay faster thae~2P at infinity. For example, one The outline of the paper is as follows. In Sec. Il we sum-
could take the space of smooth functions which are bounderharize the known properties of little string theories and ar-
by a multiple ofe”(121+9)P for some positives. What is the  gue that they cannot be local QFTs. In Sec. Il we explain
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how the axioms of local quantum field theory should bethis exponential growth by making a multiplicative renor-
modified in order to incorporate Wightman functions which malization of operators in momentum space. However, it ap-
grow exponentially in momentum space and why this leadpears that the growth is common to all correlators and is
to violations of locality at short distances. In Sec. IV we related to the growth of the density of states, see property
discuss how to define approximately local observables if7). Multiplicative renormalization of fields is not sufficient
nonlocal theories. It turns out that nontrivial observables apto make higher-order COfre'atorS po'ynomia”y bounded, ex-
proximately localized on a compact ddtcan be defined for  cept in the case of a Gaussian thepry.

a special class of such theories, and onllifs big enough. Strictly speaking, Eq(6) has been established only for

The precise definition of “big enough” sets depends on thelarge N and for momenta in the rangdl./ N<p<M
.. . S St
reference frame. The minimal size of the support of an ObHowever, it is plausible that this growth continues for
servable sets the smallest distance which observables in 1y [see property7) below
s .

guasilocal theory can probe. We argue that for little string (5) Operators in LSTs obey the usual spin-statistics rela-
theories this distance is of ordgiN/Ms. In Sec. V we sug-  ion.

gest directions for future work. (6) In the infrared LSTs flow to local quantum field theo-
ries.
Il. PROPERTIES OF LITTLE STRING THEORIES (7) The density of states of an LST grows exponentially at
large energie$1l]. Equivalently, the entropy per unit vol-

Let us summarize what is known about LSTs in general.ume of the microcanonical ensemble is

(1) LSTs are quantum-mechanical theories. This means
that a state in LST is a ray in a Hilbert spa¢eand observ-
ables are self-adjoint linear operators\@nEven in ordinary eN
quantum field theory many important observablesergy, S~ M

H S
for example are unbounded operators which are only de-
fined on a dense subset ¥f Presumably the same is true
about observables in LSTs.

(2) LSTs are Poincaravariant, i.e. there is a unitary rep-
resentation of the Poincagroup acting orV. In particular,
there is a Hamiltoniar(the generator of time translations <MS/\/N' . 15 no—n
which is an unbounded self-adjoint operator on a dense sub-_ (8) An LST on a manifold of the forni™>""xT" where
set of V. Furthermore, this operator has nonnegative spec! 1S ann-dimensional torus with a flat metric is equivalent
trum. For all known LSTs this holds because they are super© (in general differentLST with the sameM on a mani-
symmetric. fold RX> "X T" [9]. Here T" is the dual torus. This means

(3) Among observables of LSTs there are operatorghat different little string theories are related Bydualities
#r(p) labeled by an irreducible finite-dimensional represen-when compactified on tori. For example, the LST of parallel
tation R of Spin(1,5) and the “momentum’pe R¥®[14].  type IIA 5-branes is mappedyba T duality to the LST of
These operators can be thought of as functionB'btvalued  parallel type IIA or IIB 5-branes, depending on whethes
in the tensor producEnd(V)®R. They are covariant with €ven or odd.
respect to the Poincagroup, i.e. for any element(A),a (9) Some further properties of LSTs are discusseidit-

e RS A e SQ(1,5), of the Poincargroup we have 19].
Property(8) is particularly striking. One’s first reaction is

U(a,A)pr(p)U(a,A) 1=€PaR(A) (A 'p). (4)  thata local quantum field theory cannot have duality, and
that only a string theory of some kind would fit the bill.

)

if the energy density is Iarge,e>M§. Consequently, the
canonical ensemble is defined only for temperatufes

(4) The Hilbert spaceV has a distinguished stat@ The former claim can be argued as follows. A local quan-
(vacuum which is Poincarénvariant. Vacuum expectation y,m field theory has local observables associated to compact
values sets. According to the microlocality axiom, these observables

commute at space-like separations. Thus by looking at the
structure of the algebra of observables one can reconstruct
W (py— ) una_mbiguogsly the causal structure of space-time, i.e. the
n(P17 P2, .- Pn-17Pn position of light-cones. In other words, one can reconstruct
(5) the conformal structure of space-time. Since in general a flat
) torus and its dual are not conformally equivalent, a local
appear to grow exponentially for large momenta. For exquantum field theory cannot havieduality.

(Q,¢r,(P) - - - PR (Pn)Q)~ (Pt ... +pp)

ample, the 2-point function seems to be growind k5,16 The claim that only a string theory can enjdyduality
also sounds plausible. However since the only string theory
W (p)~ex;{ CMSP> ©6) we know of is critical string theory, and there is no agree-
2 JIN ) ment on how to define “string theory in general,” this claim

is almost devoid of content. We will argue below that little
where N is the number of 5-branes, ardis a numerical string theories are a kind of quasilocal field theories which
constant of order 1(The authors of16] chose to remove do not have truly local observables.
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IIl. LITTLE STRING THEORIES AS QUASILOCAL FIELD entiré and positive, Jaffe defines a spaggwhich consists

THEORIES of all functions onRY which are infinitely-differentiable and
A. The space of test functions for which all the norms
In local quantum field theory fields are operator-valued 1E(pIl,= sup g(n||p||?)|D™(p)],

distributions[20]. This means that although the value of a p;lml=n

field at a point is not a well-defined observable, the field

smeared with a test functidine S is well-defined. Usuallys n=1.2,..., (9)

is taken to be the space of infinitely differentiable functions

which decay at infinity faster than any negative potte  are finite. Herem=(m,, ... ,my) is a polyindex, |m|

Schwartz spade The corresponding distributior(§e. con-  =3;m;, and||p|| is an arbitrary Euclidean norm oRY.

tinuous linear functionals in the standard topology®)rare  Loosely speaking, the finiteness of the norf@smeans that
called tempered distributions. Thus in local quantum fielda test functions and all its derivatives decay at infinity faster
theory local fields are operator-valued tempered distributhan 1¢(n||p||?) for any positiven. Despite appearancé%
tions. does not depend on the choice of the Euclidean norm, but it

The choice of the space of test functions seems like aloes depend on the rate of growthgift?) at infinity. If we
teChnica”ty, but in fact it has important phySical conse-define convergence Oég using the fam“y of normgg)’ it
quences. For example, since the Fourier transform of a fungecomes a complete countably normed space. It is easy to
tion f e S is again an element of [21], tempered distribu-  geq thaiS, is Lorenz-invariant. In addition, i§ satisfies
tions can grow at most as a polynomial in momentum space.

This implies that the correlators of local operators can grow g(nl|pl?)
at most as a power of momentum. If we want to accommo- = 7
date operators whose matrix elements grow faster than a g(n’[|pll?)
polynomial, one has to work with more singular distribu-

tions, which are defined on a smaller space of test functions.

In view of propertied4) and(7), it seems very likely that
Wightman functiongi.e. vacuum expectation valuesf op- _ ~
erators ¢r(p) in litle string theories grow exponentially ~ L€t us denote the Fourier transform 8f by Sy. We
with momenta. More precisely, by positivity of energy the think of Sy as the space of test functions in momentum
function W, (qy, . . . G,_1) vanishes when any of its argu- space, s, is the space of test-functlon.s space. The
ments is outside the forward light-cole. , but insideV? * space§§ can be gse_d to defmg quantum field theon(_as whose
. . ultraviolet behavior is more singular than that of Wightman
it appears ta be bounded by a multiple of QFTs. Their localizability properties depend on the rate of

exn(+1 + ., 8 growth of g at infinity.
Xt (lad [an-a1) ® A. Jaffe showed?22] that if the functiong satisfies

is an integrable function for alh

and sufficiently largen’, (10

the nuclear theorem hold&1].

w 2
where |q|=0?, and| is of order V\N/Mg. Clearly, such f logg(t )dt<oo (1)
functions are not tempered distributich@ur first task is to 0 1+t? '

find the right space of test functions which could be used to

smearW, . then the Fourier transform d§, contains many functions

A necessary requirement on the test functions is that thewith compact support, so that the microlocality axiom can be
be infinitely differentiable and decayed exponentially f@st  formulated in the usual manner. QFTs based on the sBace
momentum spage The former requirement is necessary if with g satisfying Eq.(11) are called strictly localizablg22].
we want the product of the field operator(x) and a poly-  Such QFTs have properties which are not very different from
nomial ofx to be well-defined. The latter requirement comesthe properties of Wightman QFTSs.
from the exponential growth of the Wightman functions in  Conversely, ifg does not satisfy Eq(l1), there are no
momentum space. We also want the space of test functiorfanctions with compact support among the test functions in
to be Lorenz-invariant. Finally, the space of test functionsx-space(except identical zeno For little string theories we
should to be sufficiently “nice.” As a minimum, we want it want to take
to be a complete countably normed space in which the
nuclear theorem holds, see €.80]. g(t)ze\f‘f_ (12)

A convenient class of spaces of test functions was defined
by Jaffe[22]. Given a functiorg(t),t e R, such thag(t?) is

2By an entire function orR™ we mean a real-analytic function
whose Taylor series has an infinite radius of convergence. An entire
L1t is tempting to call them ill-tempered distributions, but probably function can be analytically continued to a holomorphic function on
the name “distributions of exponential growth” is more suitable. C™.
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This choice ofg is dictated by the exponential growth of the T,={x+iy|x,ye RI"zi(y)eV, i=1,...n— 1}.
Wightman functiong8). With this choice ofg the test func- (14)
tions in momentum space decrease faster than any linear ex-

ponential, thus ensuring that the value of the WightmarHereV. is the forward light-cone ik?, and for any point

functional is well-defined on ang-tuple (X1, ... X)) € R we denotefi(x)=X;—Xi+1,i=1,...n
~ —1. The real points are on the boundary&f. The possi-
(fr,oofn)y fr e Sy bility of “analytic continuation” is a consequence positivity

of energy in local quantum field theory, sg0] for details.
Since the Condltlor(ll) is violated, the test functions in (Rea”y, “ana]ytic continuation” is S|mp|y the Lap|ace trans-
x-space cannot have compact support. In fact, one can shofgrm of momentum space Wightman functions which is
that the test functions iW-Space are entire. An entire func- well-defined because momentum space W|ghtman functions
tion which vanishes in an open set is identically zero; inyanish outside the forward light-conelf we apply com-
particular the SuppOI’t of any nontrivial entire function is the p|ex|f|ed Lorenz transformations to the forward tUﬁﬁ we

d
whole R®. get the so-called extended forward tug*'. By Lorenz-
. . . o invariance, the “analytic continuations” of Wightman func-
B. Analytic properties of Wightman functions in LSTs tionals are holomorphic in the extended forward t(2@].

In this section we discuss the analyticity properties ofNOW itis crucial thatZ;* includes real pointéusually called
Wightman functions in LSTs, assuming that LSTs are quanJost points Jost points form an open set which we will call
tum field theories based on the Jaffe sp&ewith g(t) the_Jost dom:_:tin. Wightman funptionals can be regarded as
—exp(/t). Our motivation is the following. Recall that in ©rdinary functions at all Jost points. When both
local QFTs Wightman functions obey certain symmetry
properties as a consequence of microlocality, and conversely (Xg, -
microlocality follows from these symmetry properties and
[20,23. One possible way to ensure locality of LSTs “in the
large” is to impose a similar symmetry requirement on their (Xgs oo Xis1oXiy o e Xn)

Wightman functions. However, before we do this, we need

to understand at which points the values of Wightman funchelong to the Jost domain, E(.3) admits a straightforward
tions are well-defined. After all, “Wightman functions” are interpretation.

really distributions, and pretty singular ones at that. Luckily, Which real points belong to the Jost domain? The answer
this problem was studied in detail in the literature on nonlo-it simple for a 2-point function:X;,x,) is a Jost point if and

cal field theories. Below we summarize some of this workonly if (x;—x,)?<0. Thus the 2-point Wightman function is
following [24]. analytic for space-like separated points. Equatib® sim-

In a local quantum field theory the microlocality axiom ply says thatw, is a symmetric function of its arguments
implies the permutation symmetry of Wightman functions, when its arguments are space-like separated. The situation
for the n-point functions is similar, except that the shape of

e X Xis1s - Xp)

Wh(X1, - Xi i1, oo Xn) the Jost domain is somewhat more complica@: it is not
=Wh(Xgs e Xt o Xis - e X)), (13)  sufficient to require that all vectoss —x; be space-like, one
should also require that every point in the convex hull of the
for (x;— X+ 1)2<0. (To simplify our discussion, we will re- points {;(X)=X;—X;1,i=0, ... n—1 be space-like. This

strict ourselves to bosonic fields her&ince “Wightman condition is also a necessary one fay ( . . . X,) to belong
functions” are not really functions, their values at points areto the Jost domain.

not well-defined in general, and the meaning of EQ3) One can provesee e.g[23]) that the permutation sym-
must be clarified. metry of Wightman functionals in the Jost domain is equiva-
One way to interpret Eq13) is to smear it with a product lent to microlocality, if the Wightman functionals are as-
of test functions sumed to be tempered.
After this brief review of the analytic properties of Wight-
f1(X0) o Fa(Xp) man functions in a local QFT, let us return to QFTs based on

. the spaceS, with g(t)=exp(/t). The analytic properties of
such that the supports f andf; ., are space-like separated. \yighiman functions in these theories were describd@4.
However this approach does not extend to QFTSs with entirg- 5 given Wightman function one can define the analogue

test functions. A more sophisticated interpretation of Ed.of the forward tubeé/, as the region in 9" where the Laplace

(13) makes use of the fact that at certain special points the. . L<torm of the momentum-space Wightman function is
values of Wightman functionals are well-defined. Recall tha

. . ell-defined. It turns out that this domain is given b
Wightman functionals can be regarded as boundary values })/\( g y
certain holomorphic fgnctianZO]. In other words, one can Un={x+iy|xe RI™yc UV( 7). (15)
define “analytic continuation” of then-point Wightman -

functional to complex values of its arguments, and this con-

tinuation is a holomorphic function in a certain open setHerel is a positive real numbery e R? is a unit time-like

7,C (9" 7. is called the forward tube and is given by vector, andV{'(7) is a domain ink9" given by
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V() ={(Xqy, ... Xn) eRd”|§i(x)~ ” states. Thus it is natural to suspect that in L$Tsbounded
from above by a quantity of ordefN/Mg. In other words,
—J(&(xX) - )P = 4(x)2>1, Vil (16)  LSTs are probably “more local” than a generic weakly

_ o _ ~quasilocal field theory. In Sec. IV we will argue that LSTs
The meaning of the above equation is easiest to see in theiisfy a stronger conditiofstrong quasilocalitywhich im-
frame wheren=(1,0). ThenV|(7) becomes plies weak quasilocality, boundednesslpfas well as the
existence of approximately local observables.

Vi) ={(xg, ... ,Xn)ERdn|§io(X)_|2i(X)|>|:Vi}-

(17) C. A sample 2-point function
Itis easy to see that for>0 the domairi4, is a proper subset ~ Let us illustrate the preceding discussion with a simple
of 7,,, and in the limitl—0 the two domains coincide. example of a 2-point function of a real scalar field. Poincare

The parametel can be different for different Wightman invariance and positivity of energy imply that the most gen-
functions and characterizes the nonlocality of a given Wighteral 2-point function in momentum space has the form
man function. Fol >0 the closure of4, does not include

real points, unlike in a local QFT. Thus Wightman functions W,(p)= 6(po) 8(p?) o(p?), (19
in X-space are not boundary values of holomorphic functions, i ) . _
in general. where the functiorr is positive and measurable(t) is the

As before, Lorenz invariance implies that the Wightmandensity of states times some form factor. In a local QFT
functions are analytic in the domalf£X" obtained by apply- €annot grow faster than a polynomial, but in a weakly
ing complexified Lorenz transformationsa . The Jost do-  duasilocal QFT we only require that(t) be bounded by
main is defined as the set of real pointsUgf. exp(\/t) for somel. In particular, we know that in LSTs the

It is of interest to determine the precise shape of the Jo{ensity of states grows like exg) with | of order VN/Ms.
domain in the nonlocal case. This has been dofj@4h It is If the form factor does not decrease exponentially, the func-
rather obvious that for>0 the “nonlocal” Jost domain is a tion o(t) will grow like exp(+t). Computation in[16,15

proper subset of the “local” Jost domain. For=2 the S€ems to support this conjecture. _ _
“nonlocal” Jost domain is given by As mentioned above, the Jost domain for a 2-point func-

tion is
(X1 —Xp)2< —12. (18
v (X1—%)2< —12. (20)

Forn>2 a natural guess for what a “nonlocal” Jost domain ] ) o o _

is the following. LetJ!, be the set of all pointge R"d such ~ The weak quasilocality condition is satisfied automatically,
that the convex hull of;(X), . .. .y 1(X) belongs to the becausaN,(x) is a function ofx? by Lorenz invariance.
hyperboloid2< —12. Forl—0 J' reduces to the “local” Given that the Wightman functional is a symmetric func-
Jost domain, and is a natural candidate to be the “nonlocalion of its arguments in the regiof20) essentially by virtue

Jost domain. This guess is incorrect. The actual shape of th%f Loren_z invariance, one may _ask how it can fa|! to be

“nonlocal” Jost domain is rather more complicated, §24] s_ymmetnc for aII_ space-like pomts._The answer is very

for details. For our purposes it is sufficient to know that theﬁ'mple' Iln a guars],nocal .theo|r2y<the nghztmgn tll_Jrr]‘Ct'on may

“nonlocal” Jost domain is a proper subset.ﬂf[24]. Since ave poles in the region- < (%17 Xp)"<0. us one

the closure of) does not contain any light-like separated needs a prescription how to treat these poles. The correct
n

. . ,, . .~ prescription involves factors like sgnft,), wherety,t,
points, the same is true about the “nonlocal” Jost domaln.are the time-like components of,x,. Such factors are

Th's means that n nonl_o_cal f'eld. theone_s Wightman fun?'Lorenz-invariant, but not symmetric under the exchange of
tions may have singularities outside the light-cone. We WI||X andx
see some examples of this below. 1 iy . . . .

. . . , To illustrate this point, let us consider the following

In view of the above, there is an obvious reformulation of imple example ii=4 borrowed from{24]. Set
the microlocality axiom which also makes sense for nonlocaP P P N '
field theories based on the spa&gg We simply requirgan- — et
ti)symmetry of Wightman functions in their “nonlocal” Jost 7= '
domains. We will call this symmetry requirement weak
quasilocality (strong quasilocality will be discussed in the
next section Nonlocal field theories whose Wightman func- o
tions satisfy the weak quasilocality axiom will be called Wz(z):f d*pe 'P?W,(p) (22
weakly quasilocal.

In a general weakly quasilocal field theokycan grow . . 212 . .
without bound as the order of the Wightman function in- converges in the region (1@)“>I". In this region we get
creases. Then the theory is nonlocal at all scales, if one stud- s
ies a sufficiently complicated Wightman function. In little W, (2)= 1 2_' 1 |+V1°+2

g | ) 5 »(2) YT I log .
string theories the exponential growth of Wightman func- 202(2+12) | 22 212 1= 12+ 22
tions is caused by the exponential growth of the density of (23

(21)

The Fourier integral
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If we formally continueW,(z) to real values of, we find a  compact sets which are “large” in some sense. Furthermore,
pole atz?=—1? and a branch point a?=0. The branch one should require that AL observables approximately com-
point at Z2=0 is usually present in a local quantum field mute (or anticommutgewhen their supports are space-like.

theory as well, but the pole at space-likis possible only in In the case of little string theories, we know for a fact that
a nonlocal theory. Because of this pole, the integral they flow to local quantum field theories in the infrared, so
understanding approximately local observables is of para-
4 mount importance.
J”n Z=0d ZWp(2)1(2) (4 The problem of defining AL observables in nonlocal field

theories was previously addressed2®,26,13. The present
is not well-defined. To derive the right prescription, we recallsection is our interpretation dfl3]. We assume that the
thatf(z) is an entire function, and replace the integral abovereader is reasonably comfortable with the notion of a topo-
by logical vector space. Readers with low tolerance for math
may skip this section on first reading; such readers should be
J d*2Wy(2)f(2). (25) Warngd that the discussion below touches on some important
Imz=7 physics of LSTs.
To define observables approximately localized on a
If #°>12, the integral is well-defined. Deforming the inte- closed seM CRY, it is natural to consider a sequence of test
gration contour back to the real subspace, we find the Prefunctions{ f,} which converges to zero in the open 88t M

scription for treating the pole in Eq23): in some sense. Then observabig& ,) should be regarded
as approximately localized iM, the approximation getting

1 . lim 1 (26) better asv increases. To define “convergence in an open
2412 o212+ 6277' set,” we need a topology(O) on the space of test functions

for each open sePCRY. The meaning of-(O) is the fol-
The latter distribution is Lorenz-invariant, but not invariant lowing: two test functions are “close” in the topology O)
underz— —z. if and only if they are “close” everywhere i©¥. We then

There is a well-known theoreiithe theorem about global say that a sequence of test functions is localized on a closed

nature of local commutativity, see e[@3]) which, roughly ~ setM if it is convergent to zero in the topologyg(R\M).
speaking, says that if the fieldantijcommute for large We will also say thatM is a quasisupport of the sequence
enough space-like separations, then tkayt)commute for  {f}.
all space-like separations. This statement, when rephrased in The main problem is how to choose the topologi€®).
terms of Wightman functions, is clearly invalid in the above A natural restriction on the choice of topologies is that if
example. The theorem about the global nature of local com&®,C ©,, thenr(0,) should be weaker than(0,). In other
mutativity does not apply because one of the assumptions iwords, if two functions are “close” or©,, they should be
its proof is that the Wightman functions are tempered distri<‘close” on ;. Another natural restriction is to require that

butions. 7(R") be the same as the original topology on the space of
test functions. Indeed, a sequerég} converging to zero in
IV. APPROXIMATELY LOCAL OBSERVABLES IN LSTS the topology7(R") should be regarded as approximating a

function which is identically zero. Then it is natural to re-
quire that¢(f,) converge to zero. Thus all fields must be
In the previous section we saw that operators in littlecontinuous functionals in the topology(R"). The original
string theories should be smeared with entire test functiongopology onSy has this property by definition, and in general
Since a nontrivial entire function cannot vanish in an openthere is no other natural topology with this property.
set, the corresponding observables are highly nonlocal. On What is the “original” topology onS,? One way to de-
the other hand, at low energies LSTs flow to local quantunfine it is to use the family of norm®) to define convergence
field theoried property(6)]. Thus the theories should be ap- on~Sg and then apply Fourier transform. We are going to use
proximately local at distances larger thaiN/Ms. As ex-  an equivalent definitiof21,13 which makes use of the fact
plained in the Introduction, the microlocality axiom is empty that all functions inSy can be analytically continued 1.
if only analytic test functions are allowed, so we need to findthe topology onSy can be specified by saying which se-
some replacement for it which would ensure the locality ofquences of functions converge to zero. We declare that a
LSTs “in the large.” sequencdf,} converges to zero in the topologyR"), if it

The weak quasilocality postulate discussed in the previzonyerges to zero uniformly in all sets of the form
ous section ensures that Wightman functions are symmetric

functions of their arguments when the arguments are far V,={x+iy|x,yeRY|[Imy||<a}, a>0. (27)
apart and space-like separated. However, in order to be able

to claim that a nonlocal theory flows to a local theory in the

infrared, one needs more than this. A local theory has locaDne can check that with this choice of topolo§ybecomes
observables associated to compact sets. If a nonlocal theoaycomplete countably normed Montel sp§2é)].

is approximately local in the infrared, there should be a way If we do not assume anything about the quasilocal theory
to define approximately loc#AL ) observables associated to in question, then the only natural choice fef®) seems to

A. General idea
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be the topology of uniform convergence in all sets of the {x+iy|x,yeRd,||Im y||n<|}_ (32
form

The crucial difference betwee“ﬁi] andsSy is that in the latter
case all test functions are entire, while in the former case
(28) they can only be continued into a strip of widtbff the real
; d—(d
This family of topologies satisfies both of the above requireSiic€ R C L. o o
Our basic space of test functiog is the direct limit of

ments. | |
However, despite appearances, this choice(df) does SPacesS,,/=1,2,.... Thestandard topology 01, is the

not really allow to define nontrivial observables associated t§oPology of uniform convergence in all sets of the form
compact sets. Indeed, consider a compactMseéind a se- _ p
quence of functions converging to zero in the topology Vi={x+iy|x,yeR%[[Imy||,<a}, O<a<l. (33
(R M). According to our definition, we say that such a L _ _
sequence of functions is localized &h However, it turns ~ The spaceS, is not Lorenz-invariant and so cannot be used
out that any such sequence actually converges uniformly t@s the basic space of test functions in a QFT. Nevertheless
zero everywherg(The proof of this fact is very simple and is these spaces play an important role in QFTs based on the
left as an exercise for the reader. See 458, Sec. 1.8, SpaceS;. Namely, one can show that any matrix element of
where a similar statement is proveifhis means that iMis  ¢(x) is a distribution onS, for somel and 7 [24,21. In
any compact closed set(R%\M) coincides with 7(RY). general] depends on the states between whigh) is sand-
Consequently, this family of topologies does not allow to tellwiched.
apart different compact sets &€, or even to tell apart a In order to define approximately local observables, we
compact set from the empty set. will require that all fields be well-defined operator-valued

The lesson here is that entire test functions are too smoattiistributions onS',] for somefixed land 5. Then by Lorenz-
to allow a sensible definition of quasisupport. invariance all fields are well-defined distributions S'],; for

all #.

Vo(O)={x+iy|xe O,yeRY||Imy||<a}, a>0.

B. Further constraints on the ultraviolet behavior of fields

To do better than this, we need to impose some additional ~ C. Definition and properties of approximately local
constraints on the high-energy behavior of fields. To moti- observables
vate these constraints, we first define a new space of test with this additional requirement it becomes possible to
functionsS',], where is a unit time-like vector anti>0 is  define AL observables associated to all compact sets of size
a numberS, consists of all infinitely differentiable functions Pigger tharl. More precisely, for any unit time-like vector

on RY all of whose derivatives decay faster than we can define a family of topologies,(O) which satisfies
all the requirements stated above. Thus possible definitions
exp(—!||pl[,)- (290  of localization are labeled by. It is tempting to interprety

as the 4-velocity of a reference frame. Then we have a dif-
Here||p||f7=2(p-77)2—p2 is a Euclidean norm oY asso- ferent notion of approximate localization for different

ciated with the vectom. The spacé',} was first introduced ~frames. o _
by Shilov[27] and studied in detail ifi21]. With a natural It is clear what the definition of topologies,(O) should

choice of topology~S',] becomes a complete countably be. We simply taker,(O) to be the topology of uniform

) = convergence on all sets of the form
normed Montel space, just likg, .

Obviously, ifl>1", then~S',7CNS',; . Thus for any fixeds, VI(0)={x+iy|xe O,ye R [[Imy||,<a,}, O<a<l.
we have an infinite decreasing sequence of spaces (34
E15E2 5335 (30) It is easy to see that both requirements on the fam(i)
2,050 ...

stated above are satisfied.

It is easy to see that our basic space of momentum-space test We need to check now that this new family of topologies
functionség is the intersection of all these spaces: allows to tell apart different compact setslii. This prob-

lem was addressed ii3]. These authors showed that the
31) family 7,(0) can tell apart a compact skt from the empty
set only if M is big enough. For example, &t be a ball

- d

Moreover, one can check that the standard topologhﬁgois Ba={xlx<R ’||X”’7S aj. (35

the direct limit of the standard topologies 8. If a<I, then it turns out that any sequence of functions lo-
The Fourier transform 0$',] will be denotedS',y. Accord-  calized onM converges uniformly to zero everywhere B

ing to[21], S',7 consists of functions which decay faster thanin other words, foa<!| 7(R%\ M) coincides with~(RY), and

any polynomial at infinity and can be continued analyticallythere are no nontrivial observables localizedMr13]. On

into a strip the other hand, i&=1, then the topologies(R*\M) and
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7(RY) are different, and there are nontrivial observables ap- [¢(m,X),p(m' X" )]=8(m—m")A,(x—x"), (38
proximately localized oM [26,13].

One can give a criterion which determines if the compactvhereA (x—x") is the commutator function of a free scalar
setM is “big enough.” The key mathematical input is the field of massm. In other words, for anyn the field ¢(m,Xx)
notion of the domain of holomorph28]. We say that an is a free scalar field of mass, and these fields commute for
open se) in Y is a domain of holomorphy if there exists a differentm’s. We define
functionf which is holomorphic i) and cannot be analyti- .
cally continued to a bigger open set. For any openXsefe ¢(X):f dm\/mdﬁm,x), (39)
define its domain of holomorph§)x as the smallest domain 0
of holomorphy containingK. If X is itself a domain of holo- o
morphy, theny= X, otherwise()y is strictly larger tharX. ~ Where o(t) is given by Eq.(21). Let ) be the common

Now let M be a compact set ii? and let us set vacuum for all¢(m,x). We define the Hilbert space of our
theory as a completion of the space spanned by the vectors
= [ d <.
X=Ucriylxe RAM [limyll, <ty @9 BIDB(E) . (10, (40

It may well happen thaf)y is the whole strip(32). In this  wheref; are suitable test functionsee beloy, andn runs
case M is too small, in the sense that the topologiesover all nonnegative integers.
7(R\M) and 7(R“) are equivalent. On the other hand, if  Obviously, the field(x) is Gaussian: all its-point func-
QO does not contain the whole stri82), then convergence tion are expressible as products of its 2-point function
in the topologyr(lR9\M) does not imply convergence in the W,(x—x") using Wick's theoremW,(x—x') is given by
topology 7(R?), and nontrivial observables associatedvto  the formulas(23),(25) and is a distribution oS, with g(t)
exist[26,13. =exp(yt). Thus we can tak&, with g(t)=exp(t) as our
D. The strong quasilocality axiom space of test functions. _ o
This Gaussian quasilocal theory is reminiscent of the toy

We have now defined the notion of AL observabléd- el discussed in Appendix C pE6]. The toy model is a
ferent for different reference framess discussed in Sec. I, gcglar field in #1 dimensions whose mass undergoes a

if a theory is approximately local at long distances, AL Ob-jump atx=0 but is otherwise free. This theory can be rein-
servables must approximately commute if their q“aSiSUpterpreted as a holographic dual of a certain quantum-
ports are space-like separated. More preciselyMe&ndN  echanical boundary theory living at=0. The boundary

be two closed sets which are space—like separated, and | eory has a single operat@(t) whose 2-point function
{1;,,} and{g,} be sequences of test functiofieom the space go\5 exponentially in the energy representation, and whose
S,) whose quasisupports aéandN respectively. Then the  pigher-order connected correlators vanish. Our Gaussian
strong quasilocality axiom states that QFT can be regarded as a higher-dimensional version of this

- boundary theory.
[&(f.).#(9,)]-—0 or [&(f,).¢(9,)].—0 as VH(3-7) The commutator

Nonlocal QFTs satisfying this axiom will be called Lo(x). (y)]=Wa(x=y) = Waly=x) 4D
“strongly quasilocal,” or simply “quasilocal.” in our theory does not vanish outside the light cone, as ex-

Our conjecture about the universality class of LSTs carplained in Sec. Ill C. Instead it has a contribution propor-
now be stated very concisely. We propose that LSTs ar@onal to
strongly quasilocal QFTs in six dimensions, witlof order
JN/M,. 8((x—y)?+1%)sgnxo—Yo).

It is shown in[13] that strong quasilocality implies weak ) . .
quasilocality. Furthermore, it can be shown that weakly Itis easy to see that the 2-point momentum-space Wight-
guasilocal QFTs obey the CPT and spin-statistics theoremman function(19) is well-defined as a distribution <ﬂ7 for
[24]. This agrees with what we know about LSTs. any 7. Since the theory is Gaussian, this immediately im-

With additional assumptions, such as the existence of alies that the same is true for all higher-point functions.
mass gap, one can also define a unit&yatrix in quasilo-  Hence the theory satisfies the strong quasilocality condition.
cal QFTs and prove Froissart-type bounds on the cross sec- For an example of an interacting weakly quasilocal QFT,
tions [29,13. However, LSTs do not have a mass gap, andsee[30].
consequently th&matrix is not well-defined in these theo-

ries. V. DISCUSSION

Hopefully, by relating little string theories to quasilocal
quantum field theories, we have clarified the nature of the

Let us give a simple example of a QFT which satisfies theformer, especially the degree to which observables in little
strong quasilocality axiom. Lep(m,x) be a one-parameter string theories can be localized. We argued that there are no
family of scalar fields satisfying the commutation relation strictly local observables in LSTs, but there are observables

E. An example of a quasilocal QFT
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which can be approximately localizédith arbitrary accu- simple enough. If this is the case, LSTs may provide some
racy) to regions whose size is bigger thafﬁ/MS. Thus insight into (2,0) and (1,0) superconformal field theories to
LSTs have a fundamental length scale which sets a limit onvhich they flow in the infrared.

the resolution which can be achieved by measuring physical If our proposal is correct, then (1,1) LSTs realize the old
observables. Somewhat unexpectedly, the notion of localizadea that a nonrenormalizable quantum field theory may arise
tion depends on the reference frame: observers in differersts the infrared limit of a quasilocal field theorylhis was
reference frames have different procedures for measuring aglie primary motivation for the study of quasilocal theories in
proximately local observables. This is achieved by introduc1960s and 1970slIndeed, consider a maximally supersym-
ing a different space of test functions for each referencanetric super-Yang-Mills theory in six dimensions with a
frame. simply-laced gauge group. Such a theory is nonrenormaliz-

We also suggested that LSTs obey the strong quasilocalitgble, and there seems to be no local quantum field theory
axiom which ensures that the theory is approximately local awhich flows to it in the infrared. However, it emerges as the
large distances. This axiom is a surrogate for the usual miinfrared limit of a certain quasilocal field theory, namely an
crolocality axiom and preserves most of the usual consekST with (1,1) supersymmetrySUSY) [9].
guences of microlocality QP T invariance and the spin- A more speculative proposal is to try to use quasilocal
statistics relatiop[24,13. field theories to model nonlocality arising in critical string

On general grounds, it appears very natural that littletheory. In particular, we have in mind applications to the
string theories do not have truly local observables. After all Hawking information loss paradox. One popular viewpoint is
interacting critical string field theory also appears to violatethat information escapes from the black hole with Hawking
locality [31,32. What is surprisingat least to the authpis  radiation, even though this apparently violates causality. One
that this nonlocality can be accommodated simply by choosmight suspect that large causality violations are related to a
ing a space of test functions different from the usualhuge Lorenz boost of the stationary observer at infinity rela-
Schwartz spacé. tive to the stationary observer at the stretched horizon. The

We saw that many known properties of little string theo-boost may “magnify” nonlocal effects inherent in string
ries fit into the framework of quasilocal field theory with theory(see[32] and references thergiriThere are some con-
~\/N/|v|s, One important feature which we have not ex- crete calculations in string field theory supporting this sce-
plained isT duality. T duality is related to the behavior of nario[31,32. If this scenario is correct, then stringy effects
little string theory at distances of orderM{. Presumably, can be large even when all curvature invariants are small.
only very special quasilocal field theories enjoy this prop-Perhaps quasilocal field theories on a curved background
erty. At any rate, the fact that observables in quasilocal fielcould provide a useful effective description of such situa-
theories cannot be localized to distances shorter than the futions. It is certainly suggestive that in quasilocal theories the
damental scale suggests tHatuality is not impossible for hotion of an approximately local observable only makes
field theories in this class. sense relative to a particular reference frame.

In this paper we have focused on the kinematics of LSTSs,
but of course one would like to understand their dynamics as
well. Since the usual definition of LSTs based on decoupling
in critical string theory is very implicit, this is a hard prob- | would like to thank Ofer Aharony, Korkut Bardakci, and
lem. Some progress in this direction has been madéir  Nati Seiberg for useful comments. This work was supported
19]. Our hope is that the ultraviolet behavior of LSTs is by a DOE grant DE-FG02-90ER4054442.

ACKNOWLEDGMENTS

[1] E. Witten, “Some comments on string dynamics,”
hep-th/9507121; Nucl. Phy&463 383(1996.

[12] S. Weinberg,The Quantum Theory of Fields. Vol. 1: Founda-
tions (Cambridge University Press, Cambridge, England,

[2] A. Strominger, Phys. Lett. B83 44 (1996. 1995. .
[3] 0.J. Ganor and A. Hanany, Nucl. Phyg474, 122 (1996. [13] V.Ya. Fainberg and M.A. Soloviev, Ann. Phy&N.Y.) 113
421 (1978.

[4] N. Seiberg and E. Witten, Nucl. PhyB471, 121 (1996.
[5] M.J. Duff, H. Lu, and C.N. Pope, Phys. Lett. 878 101
(1996.

[14] O. Aharony, M. Berkooz, D. Kutasov, and N. Seiberg, J. High
Energy Phys10, 004(1998.

[6] K. Intriligator, Nucl. Phys.B496, 177 (1997).

[7] 3.D. Blum and K. Intriligator, Nucl. Phy€3506, 199 (1997.

[8] M. Berkooz, M. Rozali, and N. Seiberg, Phys. Lett488 105
(1997.

[9] N. Seiberg, Phys. Lett. B08 98 (1997).

[10] W. Nahm, Nucl. PhysB135, 149 (1978.

[11] O. Aharony and T. Banks, J. High Energy PhyS, 016
(1999.

[15] A.W. Peet and J. Polchinski, Phys. Rev5B, 065011(1999.

[16] S. Minwalla and N. Seiberg, J. High Energy Phg&§ 007
(1999.

[17] O. Aharony and M. Berkooz, J. High Energy Phy€, 030
(1999.

[18] A. Giveon, D. Kutasov, and O. Pelc, J. High Energy PHG;.
035(1999.

[19] A. Giveon and D. Kutasov, J. High Energy Phyk), 034
(1999; 01, 023(2000.

086005-10



UNIVERSALITY CLASS OF LITTLE STRING THEORIES

[20] R.F. Streater and A.S. WightmaRCT, Spin And Statistics,
And All That(Addison-Wesley, Redwood City, CA, 1989

[21] I.M. Gelfand and G.E. ShilovGeneralized Functiong§Aca-
demic, New York/London, 1968Vol. 2.

[22] A. Jaffe, Phys. Revl58 1454(1967).

[23] N.N. Bogolyubov, A.A. Logunov, and I.T. Todorointroduc-
tion To Axiomatic Quantum Field TheofBenjamin, Reading,
MA, 1975). )

[24] M.Z. lofa and V.Ya. Fainberg, Zh.Ksp. Teor. Fiz56, 1644
(1969 [Sov. Phys. JETR9, 880(1969].

[25] M.A. Soloviev, Theor. Math. Phys7, 183 (1971); 20, 299
(1974.

PHYSICAL REVIEW D63 086005

[26] V.Ya. Fainberg and M.A. Soloviev, Commun. Math. Ph§&,
149 (1977.

[27] G.E. Shilov, Dokl. Akad. Nauk SSSR02, 893 (1955.

[28] L. Hormander An Introduction to Complex Analysis in Several
Variables(North-Holland, Amsterdam, 1990

[29] M.Z. lofa and V.Ya. Fainberg, Theor. Math. Phyk. 187
(1969.

[30] G.V. Efimov, Commun. Math. Phy$, 42 (1967.

[31] D.A. Lowe, L. Susskind, and J. Uglum, Phys. Lett3B7, 226
(1994).

[32] D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius, and J.
Uglum, Phys. Rev. 52, 6997(1995.

086005-11



