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Universality class of little string theories
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We propose that little string theories in six dimensions are quasilocal quantum field theories. Such field
theories obey a modification of Wightman axioms which allows Wightman functions~i.e. vacuum expectation
values of products of fundamental fields! to grow exponentially in momentum space. Wightman functions of
quasilocal fields inx-space violate microlocality at short distances. With additional assumptions about the
ultraviolet behavior of quasilocal fields, one can define approximately local observables associated with big
enough compact regions. The minimum size of such a region can be interpreted as the minimum distance
which observables can probe. We argue that for little string theories this distance is of the order ofAN/Ms .
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I. INTRODUCTION

Poincare´-invariant theories in six dimensions have be
much studied in the past few years. One of the reasons is
they describe~511!-dimensional branes which play an im
portant role is string dualities. In particular, the superconf
mal ~2,0! theory describing several coincident M5-branes h
attracted a lot of attention. Another reason is that the v
existence of consistent nontrivial Poincare´-invariant theories
in six dimensions came as a surprise.

A standard strategy to construct a nontrivial field theory
to take a free conformal theory and perturb it by a relevan
marginally relevant operator other than the mass term. T
method works well in dimension four or lower, but it is ea
to see that in higher dimensions free conformal theories
not have interesting relevant or marginally relevant deform
tions. Hence until a few years ago it was believed that n
trivial quantum field theories do not exist in dimensio
higher than four.

~2,0! and~1,0! superconformal field theories~SCFTs! de-
scribing various fivebranes provided first examples to
contrary@1–5#. Subsequently other related SCFTs in six
mensions have been discovered@6,7#. A common feature of
all these constructions is that they require taking a cer
limit in string theory or M theory in which gravity and othe
bulk modes decouple from the fivebranes. In the simp
case, one takesN coincident type IIA fivebranes orE83E8
heterotic fivebranes and considers the limitgs→0, Ms
→`. Here gs is the string coupling at spatial infinity, an
Ms51/Aa8 is the string scale. If gravity and the rest of th
bulk modes decouple, while the degrees of freedom living
the brane remain interacting, one expects that the brane
grees of freedom are described in this limit by a nontriv
Poincare´-invariant theory. In all known cases the argume
for decoupling is indirect, and the structure of the Poinca´-
invariant theory is poorly understood.

Nevertheless, whenever one can argue decoupling in
limit gs→0,Ms→`, it is believed that the Poincare´-invariant
theory is a local quantum field theory~QFT!; moreover, it is
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a ~super!conformal QFT, sinceMs , the only scale in string
theory, is taken to infinity.

For reasons mentioned above, these superconformal Q
cannot be obtained by perturbing a free field theory with
local operator and therefore are not associated to any
grangian. But there are nonlocal theories in 511 dimensions
which flow to our SCFTs in the infrared: the so-called litt
string theories~LSTs!. Little string theories first appeared i
@8# where it was suggested that they describe M theory co
pactified onT5. The precise definition of LSTs as decouple
theories on five branes goes as follows@9#. One starts withN
coincident type IIA or heterotic five branes, as above,
now takes the limitgs→0 while keepingMs finite. Suppose
this limit defines a Poincare´-invariant theory in 511 dimen-
sions. Its infrared limit is equivalent to the limitMs→`,
therefore by definition this theory flows to the SCFT of i
terest. The difficult part is arguing that the decoupling rea
occurs.

All known nontrivial ~2,0! and~1,0! superconformal theo-
ries in six dimension arise as the infrared limit of little strin
theories. In each case the parent little string theory has
same amount of supersymmetry, but does not have con
mal or superconformal symmetry. Starting from a sligh
different brane configuration, one can also construct li
string theories in six dimensions with~1,1! supersymmetry
@9#. According to Nahm’s classification of superconform
algebras@10#, such a theory cannot flow to a nontrivial su
perconformal theory in the infrared. Instead, at low energ
~1,1! theories reduce toN52 d56 super Yang-Mills theo-
ries which are infrared-free.

The name ‘‘little string theory’’ has the following origin
Since we did not sendMs to infinity when taking the decou
pling limit, it is natural to expect that the theory retains som
stringy features. And indeed, one can argue that little str
theories inherit from string theory such properties asT dual-
ity @9# and Hagedorn density of states@11#.

The property ofT duality in particular seems to imply tha
little string theories are not local quantum field theories~de-
spite being Poincare´-invariant!. Intuition tells us that a quan
tum field theory always ‘‘knows’’ on which pseudo Rie
mannian manifold it lives, whileT duality means that a little
string theory on a torus of volumeV is indistinguishable
from a little string theory on a torus of volume 1/V. ~We
©2001 The American Physical Society05-1
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make this argument more precise in Sec. II.!
Since a common lore says that the local quantum fi

theory framework is the only way to reconcile quantum m
chanics, Poincare´ invariance, and macrocausality~see e.g.
@12#!, we seem to be facing a puzzle. As we explain belo
the lore is incorrect if one is willing to sacrifice the notion
a strictly local observable. We will see that there is a way
modify the axioms of quantum field theory so that it is im
possible to construct observables whose support is a com
set. In these theories local observables emerge only at
tances much larger than a certain scalel.

Nonlocal quantum field theories of this sort will be calle
quasilocal, since they violate causality only at distan
shorter thanl. We conjecture that LSTs are quasilocal qua
tum field theories withl being of orderAN/Ms . HereN is
the number of five branes.

Quasilocal field theory is quite an old subject~see@13# for
a review!. It was extensively studied in 1960s and 1970s
attempts to deal with nonrenormalizable field theories. T
main observation of the present paper is that the kno
properties of LSTs seem to fit perfectly into the framewo
of quasilocal field theory.

The link between quasilocal field theories and LSTs
best seen from the holographic point of view@14,15#. Holo-
graphic approach makes it clear that little string theor
have properties very similar to those of local QFTs. In p
ticular, they have operatorsf(p) which depend on the
6-momentump whose correlators~5 Wightman functions!
enjoy most of the usual properties. The only peculiarity
LSTs is that these correlators seem to grow exponentiall
momentum space@15,16# ~in local QFTs Wightman func-
tions grow at most as a power!. A related fact is the expo
nential growth of the density of states in LSTs@11#. The
importance of the exponential growth has been stresse
Aharony and Banks@11#. These authors pointed out that e
ponential growth means that truly local observables in LS
do not exist. Rather, if the Wightman functions grow
exp(lp), the minimal size the observables can probe is
order l. Aharony and Banks suggested that the exponen
growth of Wightman functions in momentum space is t
defining property of LSTs.

In this paper we elaborate on the point made in@11# and
clarify the extent to which observables in LSTs can be loc
ized. We will see that the exponential growth of Green
functions in momentum space is characteristic of a quas
cal field theory. Itsx-space counterpart is the fact th
quasilocal fields are very singular~but well-defined! distri-
butions. The corresponding test functions are real-anal
and cannot have compact support.

To appreciate the relation between the growth of distri
tions in momentum space and the properties of test funct
in x-space, the following one-dimensional example is he
ful. Suppose we want to regard the functionsF̃6(p)5e6ap

of one real variablep as distributions on a suitable space
test functions.~Herea is a positive real number.! It is clear
that the space of test functions must include only functio
which decay faster thane2uaup at infinity. For example, one
could take the space of smooth functions which are boun
by a multiple ofe2(uau1d)p for some positived. What is the
08600
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x-space analogue of this condition? The formal Fourier tra
form of F̃6(p) is

F6~x!5 (
n50

`
~6 ia !n

n!
d (n)~x!. ~1!

Formally, the value of this distribution on a test functio
f (x) is

F6~ f !5 (
n50

`
~7 ia !n

n!
f (n)~0!. ~2!

For the distribution to be well-defined, this sum must co
verge. This means that the derivatives off must not grow too
fast. In fact, if the series~2! is convergent, then the Taylo
expansion forf (x) around the pointx50 is convergent for
uxu,a. Similarly, if we consider momentum-space distrib
tions of the formeibp6ap and require that their Fourier trans
form be well-defined, we will find that the Taylor expansio
for f (x) must converge forux2bu,a. Hence, ifb is allowed
to be arbitrary, then the test functions inx-space must be
real-analytic. Moreover, they can be continued analytica
off the real axis to a strip of widtha.

The above arguments can be extended to the gen
d-dimensional case. We will see that if distributions gro
exponentially in momentum space, the test functions
x-space must be real-analytic. An operator smeared w
such a test function is not a local observable. Furtherm
the microlocality condition does not make any sense for s
fields. Indeed, it says that iff andg are test functions whose
supports are causally disconnected, thenf( f ) and f(g)
commute ~or anticommute!. This condition is empty for
quasilocal theories, since there are no test functions wh
supports are causally disconnected.

One can nevertheless formulate a version of the micro
cality axiom which does make sense. To formulate t
axiom, we first need to define approximately local~AL ! ob-
servables. The basic idea is to consider a sequence of
functions$ f n% which get more and more concentrated on
certain compact setM. ~The precise definition of what ‘‘con-
centrated’’ means will be given later.! Then we say that ob-
servablesf( f n) are approximately local, andM is their qua-
sisupport. Thus quasisupport is an attribute of a sequenc
observables rather than of a single observable. The qua
cality axiom says that AL observables whose quasisupp
are space-like separated approximately commute~or anti-
commute!. This means that ifM andN are space-like sepa
rated, andf( f n) andf(gn) are sequences of AL observable
with quasisupportsM andN, respectively, then

@f~ f n!,f~gn!#2→0 or @f~ f n!,f~gn!#1 as n→`.
~3!

The quasilocality axiom ensures locality ‘‘in the large.
Nonlocal QFTs which satisfy this axiom are called quasi
cal. Our proposal is that LSTs are quasilocal field theorie

The outline of the paper is as follows. In Sec. II we su
marize the known properties of little string theories and
gue that they cannot be local QFTs. In Sec. III we expl
5-2
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UNIVERSALITY CLASS OF LITTLE STRING THEORIES PHYSICAL REVIEW D63 086005
how the axioms of local quantum field theory should
modified in order to incorporate Wightman functions whi
grow exponentially in momentum space and why this le
to violations of locality at short distances. In Sec. IV w
discuss how to define approximately local observables
nonlocal theories. It turns out that nontrivial observables
proximately localized on a compact setM can be defined for
a special class of such theories, and only ifM is big enough.
The precise definition of ‘‘big enough’’ sets depends on
reference frame. The minimal size of the support of an
servable sets the smallest distance which observables
quasilocal theory can probe. We argue that for little str
theories this distance is of orderAN/Ms . In Sec. V we sug-
gest directions for future work.

II. PROPERTIES OF LITTLE STRING THEORIES

Let us summarize what is known about LSTs in gener
~1! LSTs are quantum-mechanical theories. This me

that a state in LST is a ray in a Hilbert spaceV, and observ-
ables are self-adjoint linear operators onV. Even in ordinary
quantum field theory many important observables~energy,
for example! are unbounded operators which are only d
fined on a dense subset ofV. Presumably the same is tru
about observables in LSTs.

~2! LSTs are Poincare´-invariant, i.e. there is a unitary rep
resentation of the Poincare´ group acting onV. In particular,
there is a Hamiltonian~the generator of time translations!
which is an unbounded self-adjoint operator on a dense
set of V. Furthermore, this operator has nonnegative sp
trum. For all known LSTs this holds because they are sup
symmetric.

~3! Among observables of LSTs there are operat
fR(p) labeled by an irreducible finite-dimensional represe
tation R of Spin(1,5) and the ‘‘momentum’’pPR1,5 @14#.
These operators can be thought of as functions onR1,5 valued
in the tensor productEnd(V) ^ R. They are covariant with
respect to the Poincare´ group, i.e. for any element (a,L),a
PR1,5,LPSO(1,5), of the Poincare´ group we have

U~a,L!fR~p!U~a,L!215eipaR~L!f~L21p!. ~4!

~4! The Hilbert spaceV has a distinguished stateV
~vacuum! which is Poincare´-invariant. Vacuum expectation
values

~V,fR1
~p! . . . fRn

~pn!V!;d6~p11 . . . 1pn!

3W̃n~p12p2 , . . . ,pn212pn!

~5!

appear to grow exponentially for large momenta. For
ample, the 2-point function seems to be growing as@15,16#

W̃2~p!;expS cMsp

AN
D , ~6!

where N is the number of 5-branes, andc is a numerical
constant of order 1.~The authors of@16# chose to remove
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this exponential growth by making a multiplicative reno
malization of operators in momentum space. However, it
pears that the growth is common to all correlators and
related to the growth of the density of states, see prop
~7!. Multiplicative renormalization of fields is not sufficien
to make higher-order correlators polynomially bounded,
cept in the case of a Gaussian theory.!

Strictly speaking, Eq.~6! has been established only fo
large N and for momenta in the rangeMs /AN!p!Ms .
However, it is plausible that this growth continues forp
@Ms @see property~7! below#.

~5! Operators in LSTs obey the usual spin-statistics re
tion.

~6! In the infrared LSTs flow to local quantum field theo
ries.

~7! The density of states of an LST grows exponentially
large energies@11#. Equivalently, the entropy per unit vol
ume of the microcanonical ensemble is

s;
eAN

Ms
~7!

if the energy densitye is large,e@Ms
6 . Consequently, the

canonical ensemble is defined only for temperaturesT
,Ms /AN.

~8! An LST on a manifold of the formR1,52n3Tn where
Tn is ann-dimensional torus with a flat metric is equivale
to a ~in general different! LST with the sameMs on a mani-
fold R1,52n3T̂n @9#. Here T̂n is the dual torus. This mean
that different little string theories are related byT dualities
when compactified on tori. For example, the LST of para
type IIA 5-branes is mapped by a T duality to the LST of
parallel type IIA or IIB 5-branes, depending on whethern is
even or odd.

~9! Some further properties of LSTs are discussed in@17–
19#.

Property~8! is particularly striking. One’s first reaction i
that a local quantum field theory cannot have aT duality, and
that only a string theory of some kind would fit the bill.

The former claim can be argued as follows. A local qua
tum field theory has local observables associated to com
sets. According to the microlocality axiom, these observab
commute at space-like separations. Thus by looking at
structure of the algebra of observables one can recons
unambiguously the causal structure of space-time, i.e.
position of light-cones. In other words, one can reconstr
the conformal structure of space-time. Since in general a
torus and its dual are not conformally equivalent, a lo
quantum field theory cannot haveT duality.

The claim that only a string theory can enjoyT duality
also sounds plausible. However since the only string the
we know of is critical string theory, and there is no agre
ment on how to define ‘‘string theory in general,’’ this claim
is almost devoid of content. We will argue below that litt
string theories are a kind of quasilocal field theories wh
do not have truly local observables.
5-3
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III. LITTLE STRING THEORIES AS QUASILOCAL FIELD
THEORIES

A. The space of test functions

In local quantum field theory fields are operator-valu
distributions@20#. This means that although the value of
field at a point is not a well-defined observable, the fie
smeared with a test functionf PS is well-defined. UsuallyS
is taken to be the space of infinitely differentiable functio
which decay at infinity faster than any negative power~the
Schwartz space!. The corresponding distributions~i.e. con-
tinuous linear functionals in the standard topology onS) are
called tempered distributions. Thus in local quantum fi
theory local fields are operator-valued tempered distri
tions.

The choice of the space of test functions seems lik
technicality, but in fact it has important physical cons
quences. For example, since the Fourier transform of a fu
tion f PS is again an element ofS @21#, tempered distribu-
tions can grow at most as a polynomial in momentum spa
This implies that the correlators of local operators can gr
at most as a power of momentum. If we want to accomm
date operators whose matrix elements grow faster tha
polynomial, one has to work with more singular distrib
tions, which are defined on a smaller space of test functio

In view of properties~4! and~7!, it seems very likely that
Wightman functions~i.e. vacuum expectation values! of op-
eratorsfR(p) in little string theories grow exponentiall
with momenta. More precisely, by positivity of energy th

function W̃n(q1 , . . . ,qn21) vanishes when any of its argu
ments is outside the forward light-coneV1 , but insideV1

n21

it appears to be bounded by a multiple of

exp„1 l ~ uq1u1 . . . uqn21u!…, ~8!

where uqu5Aq2, and l is of order AN/Ms . Clearly, such
functions are not tempered distributions.1 Our first task is to
find the right space of test functions which could be used

smearW̃n .
A necessary requirement on the test functions is that t

be infinitely differentiable and decayed exponentially fast~in
momentum space!. The former requirement is necessary
we want the product of the field operatorfR(x) and a poly-
nomial ofx to be well-defined. The latter requirement com
from the exponential growth of the Wightman functions
momentum space. We also want the space of test funct
to be Lorenz-invariant. Finally, the space of test functio
should to be sufficiently ‘‘nice.’’ As a minimum, we want
to be a complete countably normed space in which
nuclear theorem holds, see e.g.@20#.

A convenient class of spaces of test functions was defi
by Jaffe@22#. Given a functiong(t),tPR, such thatg(t2) is

1It is tempting to call them ill-tempered distributions, but probab
the name ‘‘distributions of exponential growth’’ is more suitable
08600
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entire2 and positive, Jaffe defines a spaceS̃g which consists
of all functions onRd which are infinitely-differentiable and
for which all the norms

uu f ~p!uun5 sup
p;umu<n

g~nuupuu2!uDmf ~p!u,

n51,2, . . . , ~9!

are finite. Here m5(m1 , . . . ,md) is a polyindex, umu
5( imi , and uupuu is an arbitrary Euclidean norm onRd.
Loosely speaking, the finiteness of the norms~9! means that
a test functions and all its derivatives decay at infinity fas
than 1/g(nuupuu2) for any positiven. Despite appearances,S̃g
does not depend on the choice of the Euclidean norm, b
does depend on the rate of growth ofg(t2) at infinity. If we
define convergence onS̃g using the family of norms~9!, it
becomes a complete countably normed space. It is eas
see thatS̃g is Lorenz-invariant. In addition, ifg satisfies

g~nuupuu2!

g~n8uupuu2!
is an integrable function for alln

and sufficiently largen8, ~10!

the nuclear theorem holds@21#.
Let us denote the Fourier transform ofS̃g by Sg . We

think of S̃g as the space of test functions in momentu
space, soSg is the space of test-functions inx-space. The
spacesSg can be used to define quantum field theories wh
ultraviolet behavior is more singular than that of Wightm
QFTs. Their localizability properties depend on the rate
growth of g at infinity.

A. Jaffe showed@22# that if the functiong satisfies

E
0

` logg~ t2!

11t2
dt,`, ~11!

then the Fourier transform ofS̃g contains many functions
with compact support, so that the microlocality axiom can
formulated in the usual manner. QFTs based on the spacSg
with g satisfying Eq.~11! are called strictly localizable@22#.
Such QFTs have properties which are not very different fr
the properties of Wightman QFTs.

Conversely, ifg does not satisfy Eq.~11!, there are no
functions with compact support among the test functions
x-space~except identical zero!. For little string theories we
want to take

g~ t !5eAt. ~12!

2By an entire function onRm we mean a real-analytic function
whose Taylor series has an infinite radius of convergence. An en
function can be analytically continued to a holomorphic function
Cm.
5-4
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UNIVERSALITY CLASS OF LITTLE STRING THEORIES PHYSICAL REVIEW D63 086005
This choice ofg is dictated by the exponential growth of th
Wightman functions~8!. With this choice ofg the test func-
tions in momentum space decrease faster than any linea
ponential, thus ensuring that the value of the Wightm
functional is well-defined on anyn-tuple

~ f 1 , . . . ,f n!, f 1 , . . . ,f nPS̃g .

Since the condition~11! is violated, the test functions in
x-space cannot have compact support. In fact, one can s
that the test functions inx-space are entire. An entire func
tion which vanishes in an open set is identically zero;
particular the support of any nontrivial entire function is t
whole Rd.

B. Analytic properties of Wightman functions in LSTs

In this section we discuss the analyticity properties
Wightman functions in LSTs, assuming that LSTs are qu
tum field theories based on the Jaffe spaceSg with g(t)
5exp(At). Our motivation is the following. Recall that in
local QFTs Wightman functions obey certain symme
properties as a consequence of microlocality, and conver
microlocality follows from these symmetry propertie
@20,23#. One possible way to ensure locality of LSTs ‘‘in th
large’’ is to impose a similar symmetry requirement on th
Wightman functions. However, before we do this, we ne
to understand at which points the values of Wightman fu
tions are well-defined. After all, ‘‘Wightman functions’’ ar
really distributions, and pretty singular ones at that. Luck
this problem was studied in detail in the literature on non
cal field theories. Below we summarize some of this wo
following @24#.

In a local quantum field theory the microlocality axio
implies the permutation symmetry of Wightman functions

Wn~x1 , . . . ,xi ,xi 11 , . . . ,xn!

5Wn~x1 , . . . ,xi 11 ,xi , . . . ,xn!, ~13!

for (xi2xi 11)2,0. ~To simplify our discussion, we will re-
strict ourselves to bosonic fields here.! Since ‘‘Wightman
functions’’ are not really functions, their values at points a
not well-defined in general, and the meaning of Eq.~13!
must be clarified.

One way to interpret Eq.~13! is to smear it with a produc
of test functions

f 1~x1! . . . f n~xn!

such that the supports off i and f i 11 are space-like separate
However this approach does not extend to QFTs with en
test functions. A more sophisticated interpretation of E
~13! makes use of the fact that at certain special points
values of Wightman functionals are well-defined. Recall t
Wightman functionals can be regarded as boundary value
certain holomorphic functions@20#. In other words, one can
define ‘‘analytic continuation’’ of then-point Wightman
functional to complex values of its arguments, and this c
tinuation is a holomorphic function in a certain open s
Tn,Cdn. Tn is called the forward tube and is given by
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Tn5$x1 iy ux,yPRdn;z i~y!PV1 ,i 51, . . . ,n21%.
~14!

HereV1 is the forward light-cone inRd, and for any point
(x1 , . . . ,xn)PRdn we denotez i(x)5xi2xi 11 ,i 51, . . . ,n
21. The real points are on the boundary ofTn . The possi-
bility of ‘‘analytic continuation’’ is a consequence positivit
of energy in local quantum field theory, see@20# for details.
~Really, ‘‘analytic continuation’’ is simply the Laplace trans
form of momentum space Wightman functions which
well-defined because momentum space Wightman funct
vanish outside the forward light-cone.! If we apply com-
plexified Lorenz transformations to the forward tubeTn , we
get the so-called extended forward tubeT n

ext . By Lorenz-
invariance, the ‘‘analytic continuations’’ of Wightman func
tionals are holomorphic in the extended forward tube@20#.
Now it is crucial thatT n

ext includes real points~usually called
Jost points!. Jost points form an open set which we will ca
the Jost domain. Wightman functionals can be regarded
ordinary functions at all Jost points. When both

~x1 , . . . ,xi ,xi 11 , . . . ,xn!

and

~x1 , . . . ,xi 11 ,xi , . . . ,xn!

belong to the Jost domain, Eq.~13! admits a straightforward
interpretation.

Which real points belong to the Jost domain? The ans
it simple for a 2-point function: (x1 ,x2) is a Jost point if and
only if (x12x2)2,0. Thus the 2-point Wightman function i
analytic for space-like separated points. Equation~13! sim-
ply says thatW2 is a symmetric function of its argument
when its arguments are space-like separated. The situa
for the n-point functions is similar, except that the shape
the Jost domain is somewhat more complicated@20#: it is not
sufficient to require that all vectorsxi2xj be space-like, one
should also require that every point in the convex hull of t
points z i(x)5xi2xi 11 ,i 50, . . . ,n21 be space-like. This
condition is also a necessary one for (x1 , . . . ,xn) to belong
to the Jost domain.

One can prove~see e.g.@23#! that the permutation sym
metry of Wightman functionals in the Jost domain is equiv
lent to microlocality, if the Wightman functionals are a
sumed to be tempered.

After this brief review of the analytic properties of Wigh
man functions in a local QFT, let us return to QFTs based
the spaceSg with g(t)5exp(At). The analytic properties o
Wightman functions in these theories were described in@24#.
For a given Wightman function one can define the analo
of the forward tubeUn as the region inCdn where the Laplace
transform of the momentum-space Wightman function
well-defined. It turns out that this domain is given by

Un5$x1 iy uxPRdn;yPø
h

Vl
n~h!%. ~15!

Here l is a positive real number,hPRd is a unit time-like
vector, andVl

n(h) is a domain inRdn given by
5-5
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Vl
n~h!5$~x1 , . . . ,xn!PRdnuz i~x!•h

2A„z i~x!•h…22z i~x!2. l ,; i %. ~16!

The meaning of the above equation is easiest to see in
frame whereh5(1,0W ). ThenVl

n(h) becomes

Vl
n~h!5$~x1 , . . . ,xn!PRdnuz i0~x!2uzW i~x!u. l ,; i %.

~17!

It is easy to see that forl .0 the domainUn is a proper subse
of Tn , and in the limitl→0 the two domains coincide.

The parameterl can be different for different Wightman
functions and characterizes the nonlocality of a given Wig
man function. Forl .0 the closure ofUn does not include
real points, unlike in a local QFT. Thus Wightman functio
in x-space are not boundary values of holomorphic functio
in general.

As before, Lorenz invariance implies that the Wightm
functions are analytic in the domainU n

ext obtained by apply-
ing complexified Lorenz transformations toUn . The Jost do-
main is defined as the set of real points ofU n

ext .
It is of interest to determine the precise shape of the J

domain in the nonlocal case. This has been done in@24#. It is
rather obvious that forl .0 the ‘‘nonlocal’’ Jost domain is a
proper subset of the ‘‘local’’ Jost domain. Forn52 the
‘‘nonlocal’’ Jost domain is given by

~x12x2!2,2 l 2. ~18!

For n.2 a natural guess for what a ‘‘nonlocal’’ Jost doma
is the following. LetJn

l be the set of all pointsxPRnd such
that the convex hull ofz1(x), . . . ,zn21(x) belongs to the
hyperboloidz2,2 l 2. For l→0 Jn

l reduces to the ‘‘local’’
Jost domain, and is a natural candidate to be the ‘‘nonloc
Jost domain. This guess is incorrect. The actual shape o
‘‘nonlocal’’ Jost domain is rather more complicated, see@24#
for details. For our purposes it is sufficient to know that t
‘‘nonlocal’’ Jost domain is a proper subset ofJn

l @24#. Since
the closure ofJn

l does not contain any light-like separate
points, the same is true about the ‘‘nonlocal’’ Jost doma
This means that in nonlocal field theories Wightman fun
tions may have singularities outside the light-cone. We w
see some examples of this below.

In view of the above, there is an obvious reformulation
the microlocality axiom which also makes sense for nonlo
field theories based on the spaceSg . We simply require~an-
ti!symmetry of Wightman functions in their ‘‘nonlocal’’ Jos
domains. We will call this symmetry requirement we
quasilocality ~strong quasilocality will be discussed in th
next section!. Nonlocal field theories whose Wightman fun
tions satisfy the weak quasilocality axiom will be calle
weakly quasilocal.

In a general weakly quasilocal field theoryl can grow
without bound as the order of the Wightman function
creases. Then the theory is nonlocal at all scales, if one s
ies a sufficiently complicated Wightman function. In litt
string theories the exponential growth of Wightman fun
tions is caused by the exponential growth of the density
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states. Thus it is natural to suspect that in LSTsl is bounded
from above by a quantity of orderAN/Ms . In other words,
LSTs are probably ‘‘more local’’ than a generic weak
quasilocal field theory. In Sec. IV we will argue that LST
satisfy a stronger condition~strong quasilocality! which im-
plies weak quasilocality, boundedness ofl, as well as the
existence of approximately local observables.

C. A sample 2-point function

Let us illustrate the preceding discussion with a sim
example of a 2-point function of a real scalar field. Poinca´-
invariance and positivity of energy imply that the most ge
eral 2-point function in momentum space has the form

W̃2~p!5u~p0!u~p2!s~p2!, ~19!

where the functions is positive and measurable.s(t) is the
density of states times some form factor. In a local QFTs
cannot grow faster than a polynomial, but in a weak
quasilocal QFT we only require thats(t) be bounded by
exp(lAt) for somel. In particular, we know that in LSTs the
density of states grows like exp(lE) with l of orderAN/Ms .
If the form factor does not decrease exponentially, the fu
tion s(t) will grow like exp(lAt). Computation in@16,15#
seems to support this conjecture.

As mentioned above, the Jost domain for a 2-point fu
tion is

~x12x2!2,2 l 2. ~20!

The weak quasilocality condition is satisfied automatica
becauseW2(x) is a function ofx2 by Lorenz invariance.

Given that the Wightman functional is a symmetric fun
tion of its arguments in the region~20! essentially by virtue
of Lorenz invariance, one may ask how it can fail to
symmetric for all space-like points. The answer is ve
simple. In a quasilocal theory the Wightman function m
have poles in the region2 l 2<(x12x2)2,0. Thus one
needs a prescription how to treat these poles. The cor
prescription involves factors like sgn(t12t2), where t1 ,t2
are the time-like components ofx1 ,x2. Such factors are
Lorenz-invariant, but not symmetric under the exchange
x1 andx2.

To illustrate this point, let us consider the followin
simple example ind54 borrowed from@24#. Set

s5elAt/At. ~21!

The Fourier integral

W2~z!5E d4pe2 ipzW̃2~p! ~22!

converges in the region (Imz)2. l 2. In this region we get

W2~z!5
1

2p2~z21 l 2!
H 2l

z2
1

1

Az21 l 2
log

l 1Al 21z2

l 2Al 21z2J .

~23!
5-6
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If we formally continueW2(z) to real values ofz, we find a
pole at z252 l 2 and a branch point atz250. The branch
point at z250 is usually present in a local quantum fie
theory as well, but the pole at space-likez is possible only in
a nonlocal theory. Because of this pole, the integral

E
Im z50

d4zW2~z! f ~z! ~24!

is not well-defined. To derive the right prescription, we rec
that f (z) is an entire function, and replace the integral abo
by

E
Im z5h

d4zW2~z! f ~z!. ~25!

If h2. l 2, the integral is well-defined. Deforming the inte
gration contour back to the real subspace, we find the
scription for treating the pole in Eq.~23!:

1

z21 l 2
→ lim

e→0

1

z21 l 21 i ezh
. ~26!

The latter distribution is Lorenz-invariant, but not invaria
underz→2z.

There is a well-known theorem~the theorem about globa
nature of local commutativity, see e.g.@23#! which, roughly
speaking, says that if the fields~anti!commute for large
enough space-like separations, then they~anti!commute for
all space-like separations. This statement, when rephrase
terms of Wightman functions, is clearly invalid in the abo
example. The theorem about the global nature of local co
mutativity does not apply because one of the assumption
its proof is that the Wightman functions are tempered dis
butions.

IV. APPROXIMATELY LOCAL OBSERVABLES IN LSTS

A. General idea

In the previous section we saw that operators in lit
string theories should be smeared with entire test functio
Since a nontrivial entire function cannot vanish in an op
set, the corresponding observables are highly nonlocal.
the other hand, at low energies LSTs flow to local quant
field theories@property~6!#. Thus the theories should be a
proximately local at distances larger thanAN/Ms . As ex-
plained in the Introduction, the microlocality axiom is emp
if only analytic test functions are allowed, so we need to fi
some replacement for it which would ensure the locality
LSTs ‘‘in the large.’’

The weak quasilocality postulate discussed in the pre
ous section ensures that Wightman functions are symm
functions of their arguments when the arguments are
apart and space-like separated. However, in order to be
to claim that a nonlocal theory flows to a local theory in t
infrared, one needs more than this. A local theory has lo
observables associated to compact sets. If a nonlocal th
is approximately local in the infrared, there should be a w
to define approximately local~AL ! observables associated
08600
l
e

e-

in

-
in

i-

s.
n
n

d
f

i-
ric
r
le

al
ry

y

compact sets which are ‘‘large’’ in some sense. Furthermo
one should require that AL observables approximately co
mute ~or anticommute! when their supports are space-like

In the case of little string theories, we know for a fact th
they flow to local quantum field theories in the infrared,
understanding approximately local observables is of pa
mount importance.

The problem of defining AL observables in nonlocal fie
theories was previously addressed in@25,26,13#. The present
section is our interpretation of@13#. We assume that the
reader is reasonably comfortable with the notion of a to
logical vector space. Readers with low tolerance for m
may skip this section on first reading; such readers should
warned that the discussion below touches on some impor
physics of LSTs.

To define observables approximately localized on
closed setM,Rd, it is natural to consider a sequence of te
functions$ f n% which converges to zero in the open setRd\M
in some sense. Then observablesf( f n) should be regarded
as approximately localized inM, the approximation getting
better asn increases. To define ‘‘convergence in an op
set,’’ we need a topologyt(O) on the space of test function
for each open setO,Rd. The meaning oft(O) is the fol-
lowing: two test functions are ‘‘close’’ in the topologyt(O)
if and only if they are ‘‘close’’ everywhere inO. We then
say that a sequence of test functions is localized on a clo
set M if it is convergent to zero in the topologyt(Rd\M ).
We will also say thatM is a quasisupport of the sequen
$ f n%.

The main problem is how to choose the topologiest(O).
A natural restriction on the choice of topologies is that
O1,O2, thent(O1) should be weaker thant(O2). In other
words, if two functions are ‘‘close’’ onO2, they should be
‘‘close’’ on O1. Another natural restriction is to require tha
t(Rn) be the same as the original topology on the space
test functions. Indeed, a sequence$ f n% converging to zero in
the topologyt(Rn) should be regarded as approximating
function which is identically zero. Then it is natural to re
quire thatf( f n) converge to zero. Thus all fields must b
continuous functionals in the topologyt(Rn). The original
topology onSg has this property by definition, and in gener
there is no other natural topology with this property.

What is the ‘‘original’’ topology onSg? One way to de-
fine it is to use the family of norms~9! to define convergence
on S̃g and then apply Fourier transform. We are going to u
an equivalent definition@21,13# which makes use of the fac
that all functions inSg can be analytically continued toCd.
The topology onSg can be specified by saying which s
quences of functions converge to zero. We declare tha
sequence$ f n% converges to zero in the topologyt(Rn), if it
converges to zero uniformly in all sets of the form

Va5$x1 iy ux,yPRd,uuIm yuu<a%, a.0. ~27!

One can check that with this choice of topologySg becomes
a complete countably normed Montel space@21#.

If we do not assume anything about the quasilocal the
in question, then the only natural choice fort(O) seems to
5-7



he

re

t

gy
a

y
s

el

oo

n
t
te

s

ly

t

an
lly

se

ed
less
the
of

we
d

to
size

ions

dif-
t

es

e

lo-

ANTON KAPUSTIN PHYSICAL REVIEW D 63 086005
be the topology of uniform convergence in all sets of t
form

Va~O!5$x1 iy uxPO,yPRd,uuIm yuu<a%, a.0.
~28!

This family of topologies satisfies both of the above requi
ments.

However, despite appearances, this choice oft(O) does
not really allow to define nontrivial observables associated
compact sets. Indeed, consider a compact setM, and a se-
quence of functions converging to zero in the topolo
t(Rd\M ). According to our definition, we say that such
sequence of functions is localized onM. However, it turns
out that any such sequence actually converges uniforml
zero everywhere.~The proof of this fact is very simple and i
left as an exercise for the reader. See also@13#, Sec. 1.8,
where a similar statement is proven.! This means that ifM is
any compact closed set,t(Rd\M ) coincides witht(Rd).
Consequently, this family of topologies does not allow to t
apart different compact sets ofRd, or even to tell apart a
compact set from the empty set.

The lesson here is that entire test functions are too sm
to allow a sensible definition of quasisupport.

B. Further constraints on the ultraviolet behavior of fields

To do better than this, we need to impose some additio
constraints on the high-energy behavior of fields. To mo
vate these constraints, we first define a new space of
functionsS̃h

l , whereh is a unit time-like vector andl .0 is

a number.S̃h
l consists of all infinitely differentiable function

on Rd all of whose derivatives decay faster than

exp~2 l uupuuh!. ~29!

Here uupuuh
252(p•h)22p2 is a Euclidean norm onRd asso-

ciated with the vectorh. The spaceS̃h
l was first introduced

by Shilov @27# and studied in detail in@21#. With a natural
choice of topology S̃h

l becomes a complete countab

normed Montel space, just likeS̃g .

Obviously, if l . l 8, thenS̃h
l ,S̃h

l 8 . Thus for any fixedh,
we have an infinite decreasing sequence of spaces

S̃h
1.S̃h

2.S̃h
3. . . . . ~30!

It is easy to see that our basic space of momentum-space
functionsS̃g is the intersection of all these spaces:

S̃g5 ù
l 51,2, . . .

S̃h
l . ~31!

Moreover, one can check that the standard topology onS̃g is
the direct limit of the standard topologies onS̃h

l .

The Fourier transform ofS̃h
l will be denotedSh

l . Accord-
ing to @21#, Sh

l consists of functions which decay faster th
any polynomial at infinity and can be continued analytica
into a strip
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$x1 iy ux,yPRd,uuIm yuuh, l %. ~32!

The crucial difference betweenSh
l andSg is that in the latter

case all test functions are entire, while in the former ca
they can only be continued into a strip of widthl off the real
slice Rd,Cd.

Our basic space of test functionsSg is the direct limit of
spacesSh

l ,l 51,2, . . . . Thestandard topology onSh
l is the

topology of uniform convergence in all sets of the form

Va
h5$x1 iy ux,yPRd,uuIm yuuh<a%, 0,a, l . ~33!

The spaceSh
l is not Lorenz-invariant and so cannot be us

as the basic space of test functions in a QFT. Neverthe
these spaces play an important role in QFTs based on
spaceSg . Namely, one can show that any matrix element
f(x) is a distribution onSh

l for some l and h @24,21#. In
general,l depends on the states between whichf(x) is sand-
wiched.

In order to define approximately local observables,
will require that all fields be well-defined operator-value
distributions onSh

l for somefixed l andh. Then by Lorenz-
invariance all fields are well-defined distributions onSh

l for
all h.

C. Definition and properties of approximately local
observables

With this additional requirement it becomes possible
define AL observables associated to all compact sets of
bigger thanl. More precisely, for any unit time-like vectorh
we can define a family of topologiesth(O) which satisfies
all the requirements stated above. Thus possible definit
of localization are labeled byh. It is tempting to interpreth
as the 4-velocity of a reference frame. Then we have a
ferent notion of approximate localization for differen
frames.

It is clear what the definition of topologiesth(O) should
be. We simply taketh(O) to be the topology of uniform
convergence on all sets of the form

Va
h~O!5$x1 iy uxPO,yPRd,uuIm yuuh<a,%, 0,a, l .

~34!

It is easy to see that both requirements on the familyt(O)
stated above are satisfied.

We need to check now that this new family of topologi
allows to tell apart different compact sets inRd. This prob-
lem was addressed in@13#. These authors showed that th
family th(O) can tell apart a compact setM from the empty
set only if M is big enough. For example, letM be a ball

Ba5$xuxPRd,uuxuuh<a%. ~35!

If a, l , then it turns out that any sequence of functions
calized onM converges uniformly to zero everywhere onRd.
In other words, fora, l t(Rd\M ) coincides witht(Rd), and
there are no nontrivial observables localized onM @13#. On
the other hand, ifa> l , then the topologiest(Rd\M ) and
5-8
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t(Rd) are different, and there are nontrivial observables
proximately localized onM @26,13#.

One can give a criterion which determines if the comp
set M is ‘‘big enough.’’ The key mathematical input is th
notion of the domain of holomorphy@28#. We say that an
open setV in Cd is a domain of holomorphy if there exists
function f which is holomorphic inV and cannot be analyti
cally continued to a bigger open set. For any open setX we
define its domain of holomorphyVX as the smallest domai
of holomorphy containingX. If X is itself a domain of holo-
morphy, thenVX5X, otherwiseVX is strictly larger thanX.
Now let M be a compact set inRd and let us set

X5$x1 iy uxPRd\M ,uuIm yuuh, l %. ~36!

It may well happen thatVX is the whole strip~32!. In this
case M is too small, in the sense that the topologi
t(Rd\M ) and t(Rd) are equivalent. On the other hand,
VX does not contain the whole strip~32!, then convergence
in the topologyt(Rd\M ) does not imply convergence in th
topology t(Rd), and nontrivial observables associated toM
exist @26,13#.

D. The strong quasilocality axiom

We have now defined the notion of AL observables~dif-
ferent for different reference frames!. As discussed in Sec. I
if a theory is approximately local at long distances, AL o
servables must approximately commute if their quasis
ports are space-like separated. More precisely, letM and N
be two closed sets which are space-like separated, an
$ f n% and$gn% be sequences of test functions~from the space
Sh

l ) whose quasisupports areM andN respectively. Then the
strong quasilocality axiom states that

@f~ f n!,f~gn!#2→0 or @f~ f n!,f~gn!#1→0 as n→`.
~37!

Nonlocal QFTs satisfying this axiom will be calle
‘‘strongly quasilocal,’’ or simply ‘‘quasilocal.’’

Our conjecture about the universality class of LSTs c
now be stated very concisely. We propose that LSTs
strongly quasilocal QFTs in six dimensions, withl of order
AN/Ms .

It is shown in@13# that strong quasilocality implies wea
quasilocality. Furthermore, it can be shown that wea
quasilocal QFTs obey the CPT and spin-statistics theor
@24#. This agrees with what we know about LSTs.

With additional assumptions, such as the existence o
mass gap, one can also define a unitaryS-matrix in quasilo-
cal QFTs and prove Froissart-type bounds on the cross
tions @29,13#. However, LSTs do not have a mass gap, a
consequently theS-matrix is not well-defined in these theo
ries.

E. An example of a quasilocal QFT

Let us give a simple example of a QFT which satisfies
strong quasilocality axiom. Letf(m,x) be a one-paramete
family of scalar fields satisfying the commutation relation
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@f~m,x!,f~m8,x8!#5d~m2m8!Dm~x2x8!, ~38!

whereDm(x2x8) is the commutator function of a free scal
field of massm. In other words, for anym the fieldf(m,x)
is a free scalar field of massm, and these fields commute fo
different m’s. We define

f~x!5E
0

`

dmAs~m2!f~m,x!, ~39!

where s(t) is given by Eq.~21!. Let V be the common
vacuum for allf(m,x). We define the Hilbert space of ou
theory as a completion of the space spanned by the vec

f~ f 1!f~ f 2! . . . f~ f n!V, ~40!

where f i are suitable test functions~see below!, andn runs
over all nonnegative integers.

Obviously, the fieldf(x) is Gaussian: all itsn-point func-
tion are expressible as products of its 2-point functi
W2(x2x8) using Wick’s theorem.W2(x2x8) is given by
the formulas~23!,~25! and is a distribution onSg with g(t)
5exp(At). Thus we can takeSg with g(t)5exp(At) as our
space of test functions.

This Gaussian quasilocal theory is reminiscent of the
model discussed in Appendix C of@16#. The toy model is a
scalar field in 111 dimensions whose mass undergoes
jump atx50 but is otherwise free. This theory can be rei
terpreted as a holographic dual of a certain quantu
mechanical boundary theory living atx50. The boundary
theory has a single operatorO(t) whose 2-point function
grows exponentially in the energy representation, and wh
higher-order connected correlators vanish. Our Gaus
QFT can be regarded as a higher-dimensional version of
boundary theory.

The commutator

@f~x!,f~y!#5W2~x2y!2W2~y2x! ~41!

in our theory does not vanish outside the light cone, as
plained in Sec. III C. Instead it has a contribution propo
tional to

d„~x2y!21 l 2
…sgn~x02y0!.

It is easy to see that the 2-point momentum-space Wig
man function~19! is well-defined as a distribution onS̃h

l for
any h. Since the theory is Gaussian, this immediately i
plies that the same is true for all higher-point function
Hence the theory satisfies the strong quasilocality condit

For an example of an interacting weakly quasilocal QF
see@30#.

V. DISCUSSION

Hopefully, by relating little string theories to quasiloc
quantum field theories, we have clarified the nature of
former, especially the degree to which observables in li
string theories can be localized. We argued that there ar
strictly local observables in LSTs, but there are observab
5-9
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which can be approximately localized~with arbitrary accu-
racy! to regions whose size is bigger thanAN/Ms . Thus
LSTs have a fundamental length scale which sets a limit
the resolution which can be achieved by measuring phys
observables. Somewhat unexpectedly, the notion of loca
tion depends on the reference frame: observers in diffe
reference frames have different procedures for measuring
proximately local observables. This is achieved by introd
ing a different space of test functions for each refere
frame.

We also suggested that LSTs obey the strong quasiloc
axiom which ensures that the theory is approximately loca
large distances. This axiom is a surrogate for the usual
crolocality axiom and preserves most of the usual con
quences of microlocality (CPT invariance and the spin
statistics relation! @24,13#.

On general grounds, it appears very natural that li
string theories do not have truly local observables. After
interacting critical string field theory also appears to viola
locality @31,32#. What is surprising~at least to the author! is
that this nonlocality can be accommodated simply by cho
ing a space of test functions different from the usu
Schwartz spaceS.

We saw that many known properties of little string the
ries fit into the framework of quasilocal field theory withl
;AN/Ms . One important feature which we have not e
plained isT duality. T duality is related to the behavior o
little string theory at distances of order 1/Ms . Presumably,
only very special quasilocal field theories enjoy this pro
erty. At any rate, the fact that observables in quasilocal fi
theories cannot be localized to distances shorter than the
damental scale suggests thatT duality is not impossible for
field theories in this class.

In this paper we have focused on the kinematics of LS
but of course one would like to understand their dynamics
well. Since the usual definition of LSTs based on decoupl
in critical string theory is very implicit, this is a hard prob
lem. Some progress in this direction has been made in@17–
19#. Our hope is that the ultraviolet behavior of LSTs
,’’
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simple enough. If this is the case, LSTs may provide so
insight into (2,0) and (1,0) superconformal field theories
which they flow in the infrared.

If our proposal is correct, then (1,1) LSTs realize the o
idea that a nonrenormalizable quantum field theory may a
as the infrared limit of a quasilocal field theory.~This was
the primary motivation for the study of quasilocal theories
1960s and 1970s.! Indeed, consider a maximally supersym
metric super-Yang-Mills theory in six dimensions with
simply-laced gauge group. Such a theory is nonrenorma
able, and there seems to be no local quantum field the
which flows to it in the infrared. However, it emerges as t
infrared limit of a certain quasilocal field theory, namely a
LST with ~1,1! supersymmetry~SUSY! @9#.

A more speculative proposal is to try to use quasilo
field theories to model nonlocality arising in critical strin
theory. In particular, we have in mind applications to t
Hawking information loss paradox. One popular viewpoint
that information escapes from the black hole with Hawki
radiation, even though this apparently violates causality. O
might suspect that large causality violations are related t
huge Lorenz boost of the stationary observer at infinity re
tive to the stationary observer at the stretched horizon.
boost may ‘‘magnify’’ nonlocal effects inherent in strin
theory~see@32# and references therein!. There are some con
crete calculations in string field theory supporting this s
nario @31,32#. If this scenario is correct, then stringy effec
can be large even when all curvature invariants are sm
Perhaps quasilocal field theories on a curved backgro
could provide a useful effective description of such situ
tions. It is certainly suggestive that in quasilocal theories
notion of an approximately local observable only mak
sense relative to a particular reference frame.
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