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Gauging the SU?2) Skyrme model
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In this paper the S[2) Skyrme model will be reformulated as a gauge theory and the hidden symmetry will
be investigated and explored in the energy spectrum computation. To this end we propose a constraint con-
version scheme, based on the symplectic framework with the introduction of Wess-Zumino terms in an
unambiguous way. It is a positive feature not present in the Batalin-Fradkin-Fradkina-Tyutin constraint con-
version. Dirac’s procedure for the first-class constraints is employed to quantize this gauge-invariant nonlinear
system and the energy spectrum is computed. The result shows the power of the symplectic gauge-invariant
formalism when compared with other constraint conversion procedures present in the literature.
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[. INTRODUCTION gauge-invariant version for the Skyrme model using different
procedures. In these gauge-invariant formalisms, based on
We unveil the hidden symmetry of the 8) Skyrme the Dirac’'s framework, the second-class constraints were
model[1] lying in the original phase space. It is a conceptionconverted into first-class ones with the introduction of the
not yet investigated. This hidden symmetry will be investi- WZ variables. This process is affected by an ambiguity prob-
gated using the symplectic gauge-invariant formalism. Thidem as shown in Ref.13]. To overcome this kind of prob-
technique, developed by us in this paper, reformulates norlem, we propose to use gauge-invariant formalisms that
invariant models as gauge-invariant theories. eliminate this arbitrariness. For example, the gauge-unfixing
The SU2) Skyrme model is an effective theory that de- Hamiltonian formalism[23,24). This formalism considers
scribes the weakly interacting mesons in the chiral limit re-nhgjf (in the case of bosonic systerof total second-class
sulting from the more fundamental theory for strong interac-constraints as gauge fixing terms while the remaining ones
tions (QCD) in the limit Whe_n the nL_lmbEF_ of colo; IS form a subset that satisfies a first-class algebra. However,
taken very large. The collective semiclassical apprd@cBl s scheme is restrained to treat systems with even numbers
leads to the isospin quantum corrections to baryon propetss second-class constraints. In view of this, it is imperative to

ties. This process reQuces the(SpSkyrme model to that of propose a new approach to carry out the gauge-invariant re-
a nonrelativistic particle constrained over a sphere, a wellz

known second-class problefd 5. formula_ltlon, namely, thg symplectic gauge-mvarlant formal-
o . . . Ism. It is one of the main goals of this paper.
The quantization of nonlinear constrained systems is a To orove that th molecti invariant formalism
serious physical question that has been intensively studie 0 prove that the symplectic gauge-invariant formails

over some decades by many authi@s9]. However, some oes not change the physical contents originally present in
problems remain. For example, in the light of the Diracth€ second-class reduced-@W Skyrme model, the energy

Hamiltonian formalism [10], these models have field- spectrum will be explicitly com_puted. The result shows that
dependent brackets identified as quantum commutators. A§is model may be described, in the same phase-space coor-
established by quantum mechanics, the quantum operatofénates, by both gauge invariant and noninvariant descrip-
must be symmetrized adopting an ordering scheme. Sincé¢ons.
there are different acceptable prescriptions to construct a To make this paper self-consistent, it was organized as
Hermitian operator, some of them may lead to differentfollows. In Sec. Il, we shall review the semiclassical expan-
physical values, characterizing an operator ordering ambigusion of the Skyrme’s collective rotational mode. Reduction
ity. to a nonlinear quantum mechanical model depending explic-
Recently, an alternative approach, based on the reformutly on the time-dependent collective variables satisfying a
lation of a nonlinear model as a gauge-invariant theoryspherical constraint is performed. In Sec. lll, the symplectic
[11-14, has been explored and some success has beegmauge-invariant formalism will be systematized, emphasiz-
achieved. In these papers, Wess-ZumifwZ) variables ing the main steps and advantages. In Sec. IV, we shall dis-
were introduced in the theory, as suggested by Faddesly  close the hidden symmetry for the reducedt®USkyrme
following different constraint-conversion methofdss,17). model. To this end, this model will be reformulated as a
In pioneer papers, two of us developed the reduce®5U gauge theory via symplectic gauge-invariant method and the
Skyrme model as a gauge-invariant theory using the Batalininfinitesimal gauge transformation will be computed. In Sec.
Fradkin-Fradkina-TyutinBFFT) formalism[18,19. These V, the gauge invariant system will be quantized employing
works inspired many authorf20-22 to investigate the Dirac’s first-class procedure, and the energy spectrum will be
computed. In the Appendix, an alternative approach based on
the gauge-unfixing Hamiltonian meth§a3,24] is shown to

*Email address: jorge@fisica.ufjf.br lead to canonically equivalent results. The last section is re-
"Email address: wilson@fisica.ufjf.br served to discuss the physical meaning of our findings to-
*Email address: cneves@fisica.ufif.br gether with our final comments and conclusions.
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Il. THE REDUCED-SU (2) SKYRME MODEL

The Skyrme model describes baryons and their intera

C
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Constructing the total Hamiltonian and imposing that the
constraint has no time evolutiofi0], we get a new con-
straint

tions through soliton solution of the nonlinear sigma model-

type Lagrangian given by

sz d3x
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whereF . is the pion decay constarg,is a dimensionless

parameter, antll is a SU2) matrix. The collective semiclas-

sical expansiorf2] is performed just substituting (x*) by
U(x*)=A(t)U(r)A*(t) in (1), whereA is a SU2) matrix,
we obtain

L=—M+ATr[doA doA™ 1], (2)
where
M= F”| 3
=% 3
and
A= ! [ 4
- e3F 2 ( )

T2=ai7ri%0. (9)

We observe that no further constraints are generated via this

iterative procedure becau3g andT, are second-class con-

straints. The matrix elements of their Poisson brackets read
AaB:{Ta,TB}:_ZfaBaiai y a,,8=1,2, (10)

where €, is the antisymmetric tensor normalized ag

12
=—e“=-1.

IIl. SYMPLECTIC GAUGE-INVARIANT FORMALISM

In the literature there are several schemes to reformulate
noninvariant models as gauge theories. Recently, some
constraint-conversion formalisms, based on Dirac’'s method
[10], were developed following Faddeev's idea of phase-
space extension with the introduction of auxiliary variables
[15]. Among them, the BFFT16] and the iterative[17]
methods were powerful enough to be successfully applied to
a great number of important physical models. Although these
technigues share the same conceptual Hd&kand follow
Dirac’s frameworl 10], these constraint-conversion methods
were implemented following different directions. Histori-
cally, both BFFT and the iterative methods were applied to

are the soliton mass and the moment of inertia, respectivelyleal with linear systems such as chiral gauge the¢tie25
andl,,l, are adimensional values depending on the classicdn order to eliminate the gauge anomaly that hampers the

solution of the modelA is a SU2) matrix that can be written

quantization process. In spite of the great success achieved

asA=ay+ia- 7, wherer, are the Pauli matrices, and satis- Py these methods, they have an ambiguity prodl&&}. This

fies the constraint relation

T,=aa—-1~0, i=0,1,23. (5

Then, the Lagrangiaf®) can be read as a function of the
as

L=—M+2Aéiéi. (6)
Calculating the canonical momenta
m=—=4\3a;, 7)
ﬂai

problem naturally arises when the second-class constraint is
converted into a first-class one with the introduction of WZ
variables. Due to this, the constraint conversion process may
become a hard tagk 3]. In this section, we reformulate non-
invariant systems as gauge theories using a technique that is
not affected by this ambiguity problem. This technique fol-
lows Faddeev’'s suggestidi5] and is set up on a contem-
porary framework to handle noninvariant model, namely, the
symplectic formalisni26,27).

In order to systematize the symplectic gauge-invariant
formalism, we consider a general noninvariant mechanical
model whose dynamics is governed by a Lagrangian
L(a,a;,t) (with i=1,2,...N), wherea; and a; are the
space and velocity variables, respectively. Notice that this

and using the Legendre transformation, the canonical Hamilmodel does not lead to lost generality or physical content.

tonian is computed as

3

He=ma—L=M+2\aa=M+ =—

an 2 ®)

i .

A typical polynomial wave function, N(l)(a;+ia,)'
=|polynomia), is an eigenvector of the Hamiltoniai8).

Following the symplectic method the Lagrangian is written
in its first-order form as

LO=AOFO)_\/©), (11)

where é%(a;,p;) (with «=1,2,...,N) are the symplectic
variables A(”) are the one-form canonical momenta, (0) in-

This wave function is also eigenvector of the spin and isosdicates that it is the zeroth-iterative Lagrangian af® is

pin operators, written in[3] as J.=3(agm—axmo
_ 1
— €im@ Tm) and =3 (amo— Ao Tk~ Eximd Tm)-

the symplectic potential. Then the symplectic tensor, defined
as
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o aAg’) IA© Forn=0, we have
fa/3= ag(O) B ag(O) (12 V/E) _ (1)
a B in=0)(@i,Pi, 0)=Vi(a;,pp). (20

is computed. Since this symplectic matrix is singular, it has asubsequently, we impose that the symplectic tensd?)(is
zero-mode (%)) that generates a new constraint when con-a singular matrix with the corresponding zero-mode
tracted with the gradient of potential: namely, i .

W= 1), (1)

aVv(©)
0)_ (0 .
QO=, PN (13  asthe generator of gauge symmetry. Due to this, the correc-

tion termsgG ("(a; ,p; , 6) in order of @ can be explicitly com-
Through a Lagrange multiplier, this constraint is intro- puted. Contracting the zero-mode%()) with the gradient of
duced into the zeroth-iterative Lagrangiéhl), generating potentialvgﬁ))(ai .pi»7,6) and imposing that no more con-

the next one, straint is generated, a general differential equation is ob-

tained, that r
LOZAOFO_yO 4 500 ained, that reads as

14 ~ 1y Vid(a;,pi,0)
D, - N o @
where L "
1 o (1) av( )(ai !pi) ag(n)(ai ' Pi 1‘9)_
VB =vO)|0)_g, Va n & a6 e
&ga n=0
(1) — ( £(0) . . .
£/ = (&), (19 \which allows us to compute all correction terms in order of
6. For linear correction term, we have
W a0, I
= + . =
Ad =Aa"t 7 9€0) 1) NV oy(@; ,pi) _t?g(n Y(a;,pi,0) —0. (23
Va e 6 '
The first-iterative symplectic tensor is computed as “
For quadratic correction term, we get
W AR oAl
A= T - (16) ~n VR (ai,pi,0)  9G("=2(a ,p;, 0
2ED gD =) No=1)(&.Pi,0) (ai,pi ):0_ (24

@ O'fég,l) a0

Since this tensor is nonsingular, the iterative process stops “
and Dirac's brackets among the phase-space variables aFeom these equations, a recursive equationnterl is pro-
obtained from the inverse matrix({)) . On the contrary, posed as
the tensor is singular and a new constraint arises, indicating
that the iterative process goes on. _ o ~ 1y V& 1@ ,p;,0) 96" (ai,pi,0)

After this brief review, the symplectic gauge-invariant v D 70 =0, (29
formalism will be systematized. It starts with the introduc- a
tion of an extra term dependent on the original and W
variable, G(a; ,p;,0), into the first-order Lagrangian. This
extra term, expands as

Z\Nhich allows us to compute each correction term in order of
0. This iterative process is successively repeated until Eq.
(22) becomes identically null, consequently, the extra term

% G(a;,p;,0) is obtained explicitly. Then, the gauge-invariant
G(a;,pi,0)=>, GM(a;,pi,0), (17) Ham_iltonian, identified as being the symplectic potential, is
n=0 obtained as

whereG"(a;,p; ,6) is a term of orden in ¢, satisfies the 7y 0. 9)=V(a,,p;,0)=VD(a, ,p;) +G(a;,p;.0),
boundary condition ™ (26)

p =0)=c("=0(g. p. H=0)= ~
G(a;,pi,6=0)=G"""(a;,p;,#=0)=0. (18) andthezero—mode&l) is identified as being the generator of

The symplectic variables were extended to also contain th@n infinitesimal gauge transformation, given by
wz variable2§1)= (&9, 5,60) (with @=1,2,...,N+2) and S m e
the first-iterative symplectic potential becomes “ a’

(27)

w wheree is an infinitesimal time-dependent parameter.
v%(ai i, 0)=VD(a,,p,)— E G™M(a;,p;,6). (19 In the next section, we reformulate the &V Sk_yrme_
n=0 model as a gauge theory that recently has been intensively
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studied in the literature from many points of vig®,18— o 1
20,27, using the symplectic gauge-invariant process. vVO=M+ gy M~ n(@ai—1). (34
IV. EMBEDDING THE SU (2) SKYRME MODEL Bringing back the constrairf@, into the canonical sector of

the first-order Lagrangian by means of a Lagrange multiplier

In this section, the hidden symmetry of the reduced3U g we get the first-iterative Lagrangidri?), namely,

Skyrme model will be disclosed enlarging the phase spac
with the introduction of the Wess-Zumino variable via sym- L . ) 1
plectic gauge-invariant formalism. To put this work in a cor- LW=ma;+(aja—1)p—M R (35
rect perspective, we first apply the symplectic method to the
original second-class model that allows us to show tth ere p—p. Therefore, the symplectic variables become
second-class nature of the model and also to obtain the usugﬂ) : ' : :
: . . =(a;,;,p) with the following one-form canonical mo-
Dirac’s brackets. Later, we unveil the hidden gauge symmez¢ (_ i7P) g
menta:
try of the model.
In order to implement the symplectic method, the original AL =7
second-order Lagrangian in the velocity, given in H), is &

reduced to a first-order form, namely, (1) _
Am =0, (36)

(0) . L (1)
L :Wiai_M_a’ﬂiWi‘f‘?‘](aiai_l), (28) Ap =aiai_1.
. . 1) .
where the index (0) indicates the zeroth-iterative Lagrang:rhe corresponding matri™ s

ian, and tr(1e) Lagrange multiplierpj enforces the spherical 0 -8 2a
constraint(5) into the theory. Then the symplectic tensor, 1
defined as f={ 4 0 0 (37)
—-2a3 O 0
dAg A,
b= Gga GgP (290 which is singular. The corresponding zero-mode is
must be computed. The zeroth-iterative symplectic variables 0
are &Y= (a;,mj,n) and the corresponding one-form ca- o= a [, (38)
nonical momenta are given by 1/2
AD=m, which generates the following constraint:
(0)— A(0)— v
A =A=0. (30 Q=vg) A - am=0, (39
Then, the zeroth-iterative symplectic tensor is
where
0 —-¢6; O 1
fO=(s5, 0 0. (31) v<1>=+|v|+5mm. (40)
0 0 O

The twice-iterated Lagrangian, obtained after including
This matrix is obviously singular, thus, it has a zero-mode the constraint(39) into the Lagrangian(35) through a
Lagrange multiplierZ, reads

0
v@=| 0], (32) L®O=ma+(ajg—1)p+am¢—V®, (41)
1 with V@ =Vv®)_ The enlarged symplectic variables af@’

. ) ) =(aj,mj,p,{). The new one-form canonical momenta are
which generates the following constraint:

Ag)= i,
(0) '
12020)%, A =0
oA, i '
(33 )
:aiai_l, Ap :aiai_l,
where the zeroth-iterative potentid(® is given as AP =am,
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and the corresponding matrfX? is 0
0 -8 2a m p@= 3‘2 _ (48)
(@) Sii 0 0 a @2 )
— 24, 0 0 0’
-7 —a 0 0 Imposing that no more constraint is generated by this zero

mode @), the first-order correction term id, G, is

which is a nonsingular matrix. The inverse i) gives the ~ determined after an integration process, namely,
usual Dirac brackets among the physical variables obtained 1
in a straightforward calculation. This means that the(3U GW(a, ,m,60)= —(am) 0. (49)
Skyrme model is not a gauge-invariant theory. 4N

At this stage we are ready to implement our proposal. |
order to disclose the hidden symmetry present on th
reduced-S(2) Skyrme model via symplectic gauge-
invariant formalism, the original phase space will be ex-
tended with the introduction of an extra functi@depend- LO=maj+(aja—1)p—M
ing on the original phase-space variables and the WZ
variable 6, defined as

ringing back this expression into E45), the new La-
grangian is obtained as

1
’7Ti7Ti+—(ai7Ti)0,

1
8\ 4\
(50)
which is not yet a gauge-invariant Lagrangian because the
zero-modev ™V still generates a new constraint that reads as

oo

G(aj,m,0)= 2> G, (43
n=0
A 1
v =+ ot (51)
which satisfies the boundary condition I€a A
G(a ,a=0)=g(°>=o. (44) It indicates that it is necessary to obtain the remaining cor-

rection termsG (™ in order of 6. It is achieved by just im-
posing that the zero-mode does not generate more constraint.

Introducing the new ternG into the Lagrangiar(35), we It allows us to determine the second-order correction term

have g(2) given by
~ : : 1 v 1 9G @
(G 9 — M —— 1 7 .
LY=ma+(aa—1)p—M ax mim+G(a,m,0). v&l) e :Kaize—l— 20 =0,
(45)
) ) ~ g(2)—_i 2p (52
The enlarged symplectic variables a&"”=(a;,m;,p,6) =g at
with the following one-form canonical momenta
Bringing this result into the first-order Lagrangi@b0), we
Agil): i, obtain
=) . . 1 1
AD—o, L =mai+(agi—1)p—M—grmmi+ (im0
(46) 1
= 2
AlV=a;a;—1, —gnaif (53
A=0. The zero-mode M) does not produce a new constraint, con-

sequently, the model has a symmetry and it is the generator
of an infinitesimal gauge transformation. Due to this, all cor-
rection termsg (" with n=3 are null.

At this moment, we are interested to recover the invariant

Then, we compute the matri) as

0 —d; 23 0 second-order Lagrangian from its first-order form given in
=) Sij 0 0 O Eqg. (53). To this end, the canonical momenta must be elimi-
=1 2a. 0 o ol (47) nated from the Lagrangia®3). From the equation of motion

' for 7r;, the canonical momenta are computed as
0 0 0 O
m=4\a;+a;6. (54)
which is obviously singular. Consequently, it has the follow-
ing zero-mode Inserting this result into the first-order Lagrangian, given by

085018-5



J. ANANIAS NETO, C. NEVES, AND W. OLIVEIRA PHYSICAL REVIEW D63 085018

~ . 1 1 Q1=1g,
L(O):Wiai+(aiai—1)7]_M_ﬁ’ﬂiﬂ'i‘f' K(aim)ﬁ
@,=a;m—alo, (62)
1
—ﬁaizé’z. (55  wherem, is the canonical momentum conjugated to the WZ
variable #. The Dirac matrix is singular, however, there are
the second-order Lagrangian is obtained as nonvanishing Poisson brackets among some constraints, in-
dicating that there are both second-class and first-class con-
L=—M+2rxa?+(aa) 0+ (aa—1)7, (56)  straints. It is solved by splitting up the second-class con-
straints from the first-class ones through the constraints
with the corresponding gauge-invariant Hamiltonian combination. The set of first-class constraints is
~ 1 1 1 =
2 X1= Ty,
H:M‘f'ﬁﬂi’ﬂi_ﬁ(ai’ﬂi)a"r‘aai 02—7;(aiai—1). K
(57) X2=aja—1-2my, (62)

By construction, both Lagrangia®6) and Hamiltonian57) ~ While the set of second-class constraints is
are gauge invariant.

To make this work self-consistent the infinitesimal gauge X1= g,
transformation will be determined using the symplectic
method. To this end, we start with the first-order Lagrangian

(53) in terms of the symplectic variables¢; Since the second-class constraints are assumed in a strong

=(aj,mj,p,0), that generates the singular symplectic ma-yay and using the Maskawa-Nakajima theordi28],
trix (47) with the zero-mod€48). This zero-mode is identi- pirac’s brackets are worked out as

fied as being the generator of the infinitesimal gauge trans-

X1=a;m—a’o. (63)

formation §&Y=¢gv ™), given by {ai,a}=0,

0a;=0, {ai.pi}= 9,

om=eaq, {pi,pi}=0, (64)

1. ) as well as the Hamiltonian,
on=15e, (n—p) (58
AeM+ — L (am)* (aa—1)
= ST o —n(aa—
So=¢. (59) anTTeN ay
P : : . 1

Note that both Hamiltonian and Lagrangian are invariant un- =M+ o My — m(aia— 1), (65)
der this transformation. Similar results were also obtained in A
the literature using different methods based on Dirac’s con-
straint idea[11,12,18—2] However, these methods are af- Where
fected by some ambiguity problems that naturally arise when

it is necessary to obtain the second-class constraints and then M =8 — aigj
determine how they will be converted to first-class ones. It v
occurs when the phase space is extended with the introduc-
tion of the WZ variables. In our procedure, this problem doess a singular matrix. We can show thidt Eq. (65), satisfies
not arise, consequently, the arbitrariety disappears. Thige first-class property
completes one of the main goals of this paper.

Henceforth we are interested to disclose the hidden sym- {Tl,ﬁ}=0. (67)
metry of the reduced-S@) Skyrme model and obtain both
Hamiltonian and Lagrangian in terms of the original coordi-Due to this the first-class constraint4) is the generator of
nates @;,;). To this end, we will obtain the set of con- the gauge symmetry. The infinitesimal gauge transformation
straints of the invariant model described by the Lagrangiaris computed as
(56) and Hamiltonian(57). Indeed, the model has two con-

22 (66)

straint chains, namely, daj=e{a;,T1}=0,
br1=y, om=e{m Ti}=eaq;, (68)
dr=a;a,—1, (60) wheree is an infinitesimal time-dependent parameter. It is
easy to verify that the Hamiltonia(65) is invariant under
and these transformations becauag are eigenvectors of the
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phase space metrid\j;;) with eigenvalue null. It reproduces 9
the result discussed in the Appendix using the gauge- M=l (79
unfixing Hamiltonian formalism. k

The algebraic expression pf, lead to ordering problems in

_ _ _ _ _ the first-class Hamiltonian operatét. We adopt the well-
In this section, we will derive the S@) Skyrmion energy  known Weyl ordering prescriptiof29] to symmetrize the,

levels. Normally, these results were employed to obtain th%xpression, and consequenﬁw We count all possible ran-

baryop s?atic. propertief2,3]. In this fir§t-clas§ theory the - 4o orders ofr; anda,. Then, the symmetrized expressions
quantization is performed following Dirac’s first-class pre- ¢, D, are

scription[10] by just imposing that the physical wave func-
tions are annihilated by the first-class operator constraint that
reads as

V. THE SPECTRUM OF THE HAMILTONIAN

1
[pk]sym:a(6ak_ @ d; — aKd;a; — a;axd;
§|l//>phys:0- (69

The physical states that satisf§9) are

—a;diax— diq@; — dia;ay)

1 5
==\ e~ &didi— 58

: (76)

1
|'r/’>phys:v5(aiai_ 1) |po|ynomiab, (70)

where V is the normalization factor andpolynomia) leading to the symmetrized first-class Hamiltonian operator

=1/N(l)(a;+ia,)". The corresponding quantum Hamil- 1
tonian Is [H]sym: M+ —

1 5
BN —d;d;+ > OpOp+20p+Z

- 1 !
H=M+ o miMjjm— n(aia— 1), (1) ”

where Op is defined afOp=a;d;. Putting the expression

Thus, in order to obtain thg spectrum of the theory, we tak<?77) in the mean valué74) we obtain the energy levels as
the scalar productyny{#|H[#)pnys, Which is the mean

value of the first-class Hamiltonian. We begin calculating the 1
scalar product, given by Ei=phyd Y| H| W) phys= M + ax

5
I(+2)+ 7). (78)

~ ) 1 ~
pys #1H|#)pnys= (polynomiall WJ da o(ag—1)H We would like to comment that the last expression, E8),

_ matches the result obtained in R¢f], where the S(P)
X &(a;a;— 1)|polynomial). (720 Skyrme model was quantized via second-class Dirac’s
method. It becomes an interesting point since this extra term
plays an important role in the energy Skyrmion spectrum
[20]. It can be shown by just observing in EF.8) that the
value of the soliton mas#) Eq. (3), and the inertia moment
1 5 ) (\) Eq. (4) are determined using the nucledr-1) and the
+ gy [mimi—(@im) 1[polynomial). delta (I=2) masses as input parameters. Consequently, the
values ofF ., e, and the remaining phenomenological results
(73)  can be predicted. Then, it is clear that an extra term, resulting
from a second- or first-class quantization scheme together
with a symmetrization procedure can modify the spectrum
and, therefore, the physical values predicted by the Skyrme
model. In the context of the non-Abelian and Abelian BFFT
formalisms(used by two of us in early papef$8,19) the
extra constant term in the energy formula EG8) does not
match that obtained in the second-class formali9m

Integrating over;, we obtain

onys ¥ ¥) phys= (polynomia| M

Here we would like to comment that the regularization of
delta function squared(a;a;—1)? is performed using the
delta relation, (2r)?6(0)=lim,_ofd?x €% *=[d?x=V.
Then, we use the parameteras the normalization factor.
The Hamiltonian operator inside the kets, E@3), can be
rewritten as

phys< ¢| i:' | ¢>phys: (polynomial| M
VI. FINAL DISCUSSIONS

1
+ gx [P Pillpolynomial), - (74) In this paper, we propose a gauge-invariant formalism
that is not affected by an ambiguity problem related to the
wherep,= m,—ay(a;m;). The operatorr, describes a free introduction of the WZ variables. This formalism was sys-
particle and their representations on the collective coorditematized and applied on the reducedt®Uskyrme model.
natesa, are The hidden symmetry living in the original phase space was
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investigated which is an unexpected result for a second-class 1

system. Afterward, this invariant model was quantized em- M= gy T (A4)
ploying Dirac’s first-class procedure. Using the Weyl order-

ing prescription to symmetrize the operators, we obtained 1

exactly the same energy spectrum when compared with the o= — —
reduced second-class Skyrme model. It is an important fea- 4N
ture that does not occur when the BFFT method is used o ) o
[18-20. We believe that the arbitrary algebra in the eX_S_ubstl_tutlng Eq(A4) and Eqg.(A5) in the total Hamiltonian
tended model, induced by the introduction of the Wessdiven in Eq.(A3), we get
Zumino variables, leads to the discrepancy between the first-
and the second-class Skyrmion energy spectrum. In view of H
this, different constraint conversion schemes introduce dis-
tinct modifications in the energy spectrdd8-2Q and, con-
sequently, change the phenomenological results, as discussé@en, we are ready to derive the gauge-invariant Hamil-
in Sec. V. tonian using the formul§24] given by

Our results prove that the $2) Skyrme model has also a
gauge invariant descriptidion the original phase-space co-
ordinates &;,p;)] dynamically equivalent to the usual
second-class treatment. It seems important since our scheme 1
does not affect the baryon phenomenology initially predicted _ 3 o
by the second-class model, in opposition to another gauge- 3! PRELEAEHI T (A7)
invariant formalism[18—22. Thus, the symplectic gauge-
invariant formalism leads to a more elegant and simplifiedThe right-hand term$¢,H} and{¢,{¢,H}} are computed,
first-class Hamiltonian structure than the Abelian and non-

a; ;. (AS)

1 1 )
:M‘f‘ﬁ’ﬂiﬂi_ﬁ(ai’ﬂi) . (A6)

~ 1
H=H—y{&HH+ o7 e (6 H)

Abelian BFFT cases. 1
{ng}:_Kaiﬂ-i! (A8)
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APPENDIX Then, the invariant Hamiltonian reads

1. The gauge-unfixing formalism for the reduced S(R)

Skyrme model ~ 1 1
Y H=M+ gomim = g(@m)?,

The main idea of the gauge unfixing procedure is to con-

sider half of the total second-class constraints as gauge fixing 1
terms while the remaining ones are the gauge symmetry gen- =M+ ax i Mi; 7, (A10)
erators[24,30. Here, the gauge-unfixing Hamiltonian for-
malism will be applied to the reduced-8) Skyrme model where
reviewed in Sec. Il. We start redefining the constraint
=a;a,—1 as —
Mij=5ij—aiaj (All)
E=Cc i1y, (A1)
is a singular matrix. We can show thidt Eq. (A10), satis-
whereC is fies the first-class property
C={T,,To}=2a;3,=2. (A2) {¢,A1=0. (A12)
Then the total Hamiltonian is written as Due to this the first-class constraing)(is the generator of
1 the gauge symmetry. The infinitesimal gauge transformations
H=M + e bt T, (A3) are computed as
da;=¢#{a; £} =0,
where 7, and 7, are the Lagrange multipliers that enforces (A13)
the constraintg and T, into the Hamiltonian. Imposing that dmi=¢e{m & =¢q;,
the constraintg and ¢ are conserved on time, the Lagrange
multipliers are obtained as wheree is an infinitesimal time-dependent parameter. It is
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easy to verify that the HamiltoniafA10) is invariant under non-Abelian BFFT formalism as shown by two of us in Ref.
these transformations becauag are eigenvectors of the [18,19. In the context of Abelian formalisfil8], the first-
phase space metrict\T(ij) with eigenvalues null. class Hamiltonian has a geometrical series form, while in the

To complete this section, we would like to remark that thenon-Abelian formalism[19,20 the first-class Hamiltonian
algebraic expression for the first-class Hamiltonian, Eghas a finite number of terms, but this algebraic formula is
(A10), is more simple than obtained via the Abelian andlarge.
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