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Gauging the SU„2… Skyrme model
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In this paper the SU~2! Skyrme model will be reformulated as a gauge theory and the hidden symmetry will
be investigated and explored in the energy spectrum computation. To this end we propose a constraint con-
version scheme, based on the symplectic framework with the introduction of Wess-Zumino terms in an
unambiguous way. It is a positive feature not present in the Batalin-Fradkin-Fradkina-Tyutin constraint con-
version. Dirac’s procedure for the first-class constraints is employed to quantize this gauge-invariant nonlinear
system and the energy spectrum is computed. The result shows the power of the symplectic gauge-invariant
formalism when compared with other constraint conversion procedures present in the literature.
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I. INTRODUCTION

We unveil the hidden symmetry of the SU~2! Skyrme
model@1# lying in the original phase space. It is a concepti
not yet investigated. This hidden symmetry will be inves
gated using the symplectic gauge-invariant formalism. T
technique, developed by us in this paper, reformulates n
invariant models as gauge-invariant theories.

The SU~2! Skyrme model is an effective theory that d
scribes the weakly interacting mesons in the chiral limit
sulting from the more fundamental theory for strong inter
tions ~QCD! in the limit when the number of colorsNc is
taken very large. The collective semiclassical approach@2,3#
leads to the isospin quantum corrections to baryon pro
ties. This process reduces the SU~2! Skyrme model to that of
a nonrelativistic particle constrained over a sphere, a w
known second-class problem@4,5#.

The quantization of nonlinear constrained systems i
serious physical question that has been intensively stu
over some decades by many authors@6–9#. However, some
problems remain. For example, in the light of the Dir
Hamiltonian formalism @10#, these models have field
dependent brackets identified as quantum commutators
established by quantum mechanics, the quantum opera
must be symmetrized adopting an ordering scheme. S
there are different acceptable prescriptions to construc
Hermitian operator, some of them may lead to differe
physical values, characterizing an operator ordering amb
ity.

Recently, an alternative approach, based on the refor
lation of a nonlinear model as a gauge-invariant the
@11–14#, has been explored and some success has
achieved. In these papers, Wess-Zumino~WZ! variables
were introduced in the theory, as suggested by Faddeev@15#,
following different constraint-conversion methods@16,17#.

In pioneer papers, two of us developed the reduced-SU~2!
Skyrme model as a gauge-invariant theory using the Bata
Fradkin-Fradkina-Tyutin~BFFT! formalism @18,19#. These
works inspired many authors@20–22# to investigate the
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gauge-invariant version for the Skyrme model using differ
procedures. In these gauge-invariant formalisms, based
the Dirac’s framework, the second-class constraints w
converted into first-class ones with the introduction of t
WZ variables. This process is affected by an ambiguity pr
lem as shown in Ref.@13#. To overcome this kind of prob-
lem, we propose to use gauge-invariant formalisms t
eliminate this arbitrariness. For example, the gauge-unfix
Hamiltonian formalism@23,24#. This formalism considers
half ~in the case of bosonic system! of total second-class
constraints as gauge fixing terms while the remaining o
form a subset that satisfies a first-class algebra. Howe
this scheme is restrained to treat systems with even num
of second-class constraints. In view of this, it is imperative
propose a new approach to carry out the gauge-invarian
formulation, namely, the symplectic gauge-invariant form
ism. It is one of the main goals of this paper.

To prove that the symplectic gauge-invariant formalis
does not change the physical contents originally presen
the second-class reduced-SU~2! Skyrme model, the energy
spectrum will be explicitly computed. The result shows th
this model may be described, in the same phase-space c
dinates, by both gauge invariant and noninvariant desc
tions.

To make this paper self-consistent, it was organized
follows. In Sec. II, we shall review the semiclassical expa
sion of the Skyrme’s collective rotational mode. Reducti
to a nonlinear quantum mechanical model depending exp
itly on the time-dependent collective variables satisfying
spherical constraint is performed. In Sec. III, the symplec
gauge-invariant formalism will be systematized, emphas
ing the main steps and advantages. In Sec. IV, we shall
close the hidden symmetry for the reduced-SU~2! Skyrme
model. To this end, this model will be reformulated as
gauge theory via symplectic gauge-invariant method and
infinitesimal gauge transformation will be computed. In S
V, the gauge invariant system will be quantized employi
Dirac’s first-class procedure, and the energy spectrum wil
computed. In the Appendix, an alternative approach base
the gauge-unfixing Hamiltonian method@23,24# is shown to
lead to canonically equivalent results. The last section is
served to discuss the physical meaning of our findings
gether with our final comments and conclusions.
©2001 The American Physical Society18-1
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II. THE REDUCED-SU „2… SKYRME MODEL

The Skyrme model describes baryons and their inte
tions through soliton solution of the nonlinear sigma mod
type Lagrangian given by

L5E d3xF2
Fp

2

16
Tr ~]mU ]uU1!

1
1

32e2 Tr@U1 ]mU,U1 ]nU#2G , ~1!

whereFp is the pion decay constant,e is a dimensionless
parameter, andU is a SU~2! matrix. The collective semiclas
sical expansion@2# is performed just substitutingU(xm) by
U(xm)5A(t)U(r )A1(t) in ~1!, whereA is a SU~2! matrix,
we obtain

L52M1lTr@]0A ]0A21#, ~2!

where

M5
Fp

e
I 1 ~3!

and

l5
1

e3Fp
I 2 ~4!

are the soliton mass and the moment of inertia, respectiv
andI 1 ,I 2 are adimensional values depending on the class
solution of the model.A is a SU~2! matrix that can be written
asA5a01 ia•t, wheret i are the Pauli matrices, and sati
fies the constraint relation

T15aiai21'0, i 50,1,2,3. ~5!

Then, the Lagrangian~2! can be read as a function of theai
as

L52M12lȧi ȧi . ~6!

Calculating the canonical momenta

p i5
]L

]ȧi

54lȧi , ~7!

and using the Legendre transformation, the canonical Ha
tonian is computed as

Hc5p i ȧi2L5M12lȧi ȧi5M1
1

8l (
i 50

3

p ip i . ~8!

A typical polynomial wave function, 1/N( l )(a11 ia2) l

5upolynomial&, is an eigenvector of the Hamiltonian~8!.
This wave function is also eigenvector of the spin and is
pin operators, written in @3# as Jk5 1

2 (a0pk2akp0
2eklmalpm) and I k5 1

2 (akp02a0pk2eklmalpm).
08501
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Constructing the total Hamiltonian and imposing that t
constraint has no time evolution@10#, we get a new con-
straint

T25aip i'0. ~9!

We observe that no further constraints are generated via
iterative procedure becauseT1 andT2 are second-class con
straints. The matrix elements of their Poisson brackets re

Dab5$Ta ,Tb%522eabaiai , a,b51,2, ~10!

where eab is the antisymmetric tensor normalized ase12
52e12521.

III. SYMPLECTIC GAUGE-INVARIANT FORMALISM

In the literature there are several schemes to reformu
noninvariant models as gauge theories. Recently, so
constraint-conversion formalisms, based on Dirac’s meth
@10#, were developed following Faddeev’s idea of phas
space extension with the introduction of auxiliary variab
@15#. Among them, the BFFT@16# and the iterative@17#
methods were powerful enough to be successfully applie
a great number of important physical models. Although th
techniques share the same conceptual basis@15# and follow
Dirac’s framework@10#, these constraint-conversion metho
were implemented following different directions. Histor
cally, both BFFT and the iterative methods were applied
deal with linear systems such as chiral gauge theories@17,25#
in order to eliminate the gauge anomaly that hampers
quantization process. In spite of the great success achie
by these methods, they have an ambiguity problem@13#. This
problem naturally arises when the second-class constrai
converted into a first-class one with the introduction of W
variables. Due to this, the constraint conversion process
become a hard task@13#. In this section, we reformulate non
invariant systems as gauge theories using a technique th
not affected by this ambiguity problem. This technique fo
lows Faddeev’s suggestion@15# and is set up on a contem
porary framework to handle noninvariant model, namely,
symplectic formalism@26,27#.

In order to systematize the symplectic gauge-invari
formalism, we consider a general noninvariant mechan
model whose dynamics is governed by a Lagrang
L(ai ,ȧi ,t) ~with i 51,2, . . . ,N), where ai and ȧi are the
space and velocity variables, respectively. Notice that
model does not lead to lost generality or physical conte
Following the symplectic method the Lagrangian is writt
in its first-order form as

L (0)5Aa
(0)j̇a

(0)2V(0), ~11!

whereja
(0)(ai ,pi) ~with a51,2, . . . ,2N) are the symplectic

variables,Aa
(0) are the one-form canonical momenta, (0) i

dicates that it is the zeroth-iterative Lagrangian andV(0) is
the symplectic potential. Then the symplectic tensor, defi
as
8-2
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f ab
(0)5

]Ab
(0)

]ja
(0)

2
]Aa

(0)

]jb
(0)

~12!

is computed. Since this symplectic matrix is singular, it ha
zero-mode (n (0)) that generates a new constraint when co
tracted with the gradient of potential: namely,

V (0)5na
(0) ]V(0)

]ja
(0)

. ~13!

Through a Lagrange multiplierh, this constraint is intro-
duced into the zeroth-iterative Lagrangian~11!, generating
the next one,

L (1)5Aa
(0)j̇a

(0)2V(0)1ḣV (0),
~14!

5Aa
(1)j̇a

(1)2V(1),

where

V(1)5V(0)uV(0)50 ,

ja
(1)5~ja

(0) ,h!, ~15!

Aa
(1)5Aa

(0)1h
]V (0)

]ja
(0)

.

The first-iterative symplectic tensor is computed as

f ab
(1)5

]Ab
(1)

]ja
(1)

2
]Aa

(1)

]jb
(1)

. ~16!

Since this tensor is nonsingular, the iterative process s
and Dirac’s brackets among the phase-space variables
obtained from the inverse matrix (f ab

(1))21. On the contrary,
the tensor is singular and a new constraint arises, indica
that the iterative process goes on.

After this brief review, the symplectic gauge-invaria
formalism will be systematized. It starts with the introdu
tion of an extra term dependent on the original and W
variable,G(ai ,pi ,u), into the first-order Lagrangian. Thi
extra term, expands as

G~ai ,pi ,u!5 (
n50

`

G (n)~ai ,pi ,u!, ~17!

whereG (n)(ai ,pi ,u) is a term of ordern in u, satisfies the
boundary condition

G~ai ,pi ,u50!5G (n50)~ai ,pi ,u50!50. ~18!

The symplectic variables were extended to also contain
WZ variablej̃ ã

(1)
5(ja

(0) ,h,u) ~with ã51,2, . . . ,2N12) and
the first-iterative symplectic potential becomes

Ṽ(n)
(1)~ai ,pi ,u!5V(1)~ai ,pi !2 (

n50

`

G (n)~ai ,pi ,u!. ~19!
08501
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For n50, we have

Ṽ(n50)
(1) ~ai ,pi ,u!5V(1)~ai ,pi !. ~20!

Subsequently, we impose that the symplectic tensor (f (1)) is
a singular matrix with the corresponding zero-mode

ñ ã
(1)

5~ na
(1) 1! , ~21!

as the generator of gauge symmetry. Due to this, the cor
tion termsG (n)(ai ,pi ,u) in order ofu can be explicitly com-
puted. Contracting the zero-mode (ñ ã

(1)) with the gradient of

potential Ṽ(n)
(1)(ai ,pi ,h,u) and imposing that no more con

straint is generated, a general differential equation is
tained, that reads as

ñ ã
(1) ]Ṽ(n)

(1)~ai ,pi ,u!

]j̃ã
(1) 50, ~22!

na
(1) ]V(1)~ai ,pi !

]ja
(1)

2 (
n50

`
]G (n)~ai ,pi ,u!

]u
50,

which allows us to compute all correction terms in order
u. For linear correction term, we have

na
(1)

]V(n50)
(1) ~ai ,pi !

]ja
(1)

2
]G (n51)~ai ,pi ,u!

]u
50. ~23!

For quadratic correction term, we get

ñ ã
(1) ]V(n51)

(1) ~ai ,pi ,u!

]j̃ã
(1) 2

]G (n52)~ai ,pi ,u!

]u
50. ~24!

From these equations, a recursive equation forn>1 is pro-
posed as

ñ ã
(1) ]V(n21)

(1) ~ai ,pi ,u!

]j̃ã
(1) 2

]G (n)~ai ,pi ,u!

]u
50, ~25!

which allows us to compute each correction term in order
u. This iterative process is successively repeated until
~22! becomes identically null, consequently, the extra te
G(ai ,pi ,u) is obtained explicitly. Then, the gauge-invaria
Hamiltonian, identified as being the symplectic potential,
obtained as

H̃~ai ,pi ,u!5V(n)
(1)~ai ,pi ,u!5V(1)~ai ,pi !1G~ai ,pi ,u!,

~26!

and the zero-modeñ ã
(1) is identified as being the generator

an infinitesimal gauge transformation, given by

dj̃ã5«ñã
(1) , ~27!

where« is an infinitesimal time-dependent parameter.
In the next section, we reformulate the SU~2! Skyrme

model as a gauge theory that recently has been intensi
8-3
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studied in the literature from many points of view@9,18–
20,22#, using the symplectic gauge-invariant process.

IV. EMBEDDING THE SU „2… SKYRME MODEL

In this section, the hidden symmetry of the reduced SU~2!
Skyrme model will be disclosed enlarging the phase sp
with the introduction of the Wess-Zumino variable via sym
plectic gauge-invariant formalism. To put this work in a co
rect perspective, we first apply the symplectic method to
original second-class model that allows us to show
second-class nature of the model and also to obtain the u
Dirac’s brackets. Later, we unveil the hidden gauge symm
try of the model.

In order to implement the symplectic method, the origin
second-order Lagrangian in the velocity, given in Eq.~6!, is
reduced to a first-order form, namely,

L (0)5p i ȧi2M2
1

8l
p ip i1h~aiai21!, ~28!

where the index (0) indicates the zeroth-iterative Lagra
ian, and the Lagrange multiplier (h) enforces the spherica
constraint~5! into the theory. Then the symplectic tenso
defined as

f ab5
]Ab

]ja 2
]Aa

]jb , ~29!

must be computed. The zeroth-iterative symplectic variab
are ja

(0)5(aj ,p j ,h) and the corresponding one-form c
nonical momenta are given by

Aai

(0)5p i ,

Ap i

(0)5Al
(0)50. ~30!

Then, the zeroth-iterative symplectic tensor is

f (0)5S 0 2d i j 0

d i j 0 0

0 0 0
D . ~31!

This matrix is obviously singular, thus, it has a zero-mod

v (0)5S 0

0

1
D , ~32!

which generates the following constraint:

V15va
(0) ]V(0)

]Aa
(0)

,

~33!
5aiai21,

where the zeroth-iterative potentialV(0) is given as
08501
e

e
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V(0)5M1
1

8l
p ip i2h~aiai21!. ~34!

Bringing back the constraintV1 into the canonical sector o
the first-order Lagrangian by means of a Lagrange multip
r, we get the first-iterative LagrangianL (1), namely,

L (1)5p i ȧi1~aiai21!ṙ2M2
1

8l
p ip i , ~35!

where h→ ṙ. Therefore, the symplectic variables becom
ja

(1)5(aj ,p j ,r) with the following one-form canonical mo
menta:

Aai

(1)5p i ,

Ap i

(1)50, ~36!

Ar
(1)5aiai21.

The corresponding matrixf (1) is

f (1)5S 0 2d i j 2ai

d i j 0 0

22ai 0 0
D , ~37!

which is singular. The corresponding zero-mode is

v (1)5S 0

ai

1/2
D , ~38!

which generates the following constraint:

V25va
(1) ]V(1)

]Aa
(1)

5aip i'0, ~39!

where

V(1)51M1
1

8l
p ip i . ~40!

The twice-iterated Lagrangian, obtained after includi
the constraint~39! into the Lagrangian~35! through a
Lagrange multiplierz, reads

L (2)5p i ȧi1~aiai21!ṙ1aip i ż2V(2), ~41!

with V(2)5V(1). The enlarged symplectic variables areja
(2)

5(aj ,p j ,r,z). The new one-form canonical momenta ar

Aai

(2)5p i ,

Ap i

(2)50,

Ar
(2)5aiai21,

Az
(2)5aip i ,
8-4
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and the corresponding matrixf (2) is

f (2)5S 0 2d i j 2ai p i

d i j 0 0 ai

22ai 0 0 0

2p i 2ai 0 0

D , ~42!

which is a nonsingular matrix. The inverse off (2) gives the
usual Dirac brackets among the physical variables obta
in a straightforward calculation. This means that the SU~2!
Skyrme model is not a gauge-invariant theory.

At this stage we are ready to implement our proposal
order to disclose the hidden symmetry present on
reduced-SU~2! Skyrme model via symplectic gauge
invariant formalism, the original phase space will be e
tended with the introduction of an extra functionG depend-
ing on the original phase-space variables and the
variableu, defined as

G~ai ,p i ,u!5 (
n50

`

G (n), ~43!

which satisfies the boundary condition

G~ai ,p i ,u50!5G (0)50. ~44!

Introducing the new termG into the Lagrangian~35!, we
have

L̃ (1)5p i ȧi1~aiai21!ṙ2M2
1

8l
p ip i1G~ai ,p i ,u!.

~45!

The enlarged symplectic variables arej̃a
(1)5(aj ,p j ,r,u)

with the following one-form canonical momenta

Ãai

(1)5p i ,

Ãp i

(1)50,

~46!

Ãr
(1)5aiai21,

Ãu
(1)50.

Then, we compute the matrixf̃ (1) as

f̃ (1)5S 0 2d i j 2ai 0

d i j 0 0 0

22ai 0 0 0

0 0 0 0

D , ~47!

which is obviously singular. Consequently, it has the follo
ing zero-mode
08501
d

n
e

-

Z

-

v (1)5S 0

ai

1/2

1

D . ~48!

Imposing that no more constraint is generated by this z
mode (v (1)), the first-order correction term inu, G (1), is
determined after an integration process, namely,

G (1)~ai ,p i ,u!5
1

4l
~aip i !u. ~49!

Bringing back this expression into Eq.~45!, the new La-
grangian is obtained as

L̃ (1)5p i ȧi1~aiai21!ṙ2M2
1

8l
p ip i1

1

4l
~aip i !u,

~50!

which is not yet a gauge-invariant Lagrangian because
zero-modev (1) still generates a new constraint that reads

va
(1) ]V(1)

]ja
51

1

4l
ai

2u. ~51!

It indicates that it is necessary to obtain the remaining c
rection termsG (n) in order of u. It is achieved by just im-
posing that the zero-mode does not generate more constr
It allows us to determine the second-order correction te
G (2) given by

va
(1) ]V(1)

]ja
5

1

4l
ai

2u1
]G (2)

]u
50,

G (2)52
1

8l
ai

2u. ~52!

Bringing this result into the first-order Lagrangian~50!, we
obtain

L̃ (1)5p i ȧi1~aiai21!ṙ2M2
1

8l
p ip i1

1

4l
~aip i !u

2
1

8l
ai

2u. ~53!

The zero-modev (1) does not produce a new constraint, co
sequently, the model has a symmetry and it is the gener
of an infinitesimal gauge transformation. Due to this, all c
rection termsG (n) with n>3 are null.

At this moment, we are interested to recover the invari
second-order Lagrangian from its first-order form given
Eq. ~53!. To this end, the canonical momenta must be elim
nated from the Lagrangian~53!. From the equation of motion
for p i , the canonical momenta are computed as

p i54lȧi1aiu. ~54!

Inserting this result into the first-order Lagrangian, given
8-5
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L̃ (0)5p i ȧi1~aiai21!h2M2
1

8l
p ip i1

1

4l
~aip i !u

2
1

8l
ai

2u2, ~55!

the second-order Lagrangian is obtained as

L̃52M12lȧi
21~aiȧi !u1~aiai21!h, ~56!

with the corresponding gauge-invariant Hamiltonian

H̃5M1
1

8l
p ip i2

1

4l
~aip i !u1

1

8l
ai

2u22h~aiai21!.

~57!

By construction, both Lagrangian~56! and Hamiltonian~57!
are gauge invariant.

To make this work self-consistent the infinitesimal gau
transformation will be determined using the symplec
method. To this end, we start with the first-order Lagrang
~53! in terms of the symplectic variablesj̃a

(1)

5(aj ,p j ,r,u), that generates the singular symplectic m
trix ~47! with the zero-mode~48!. This zero-mode is identi-
fied as being the generator of the infinitesimal gauge tra
formationdj̃a

(1)5«v (1), given by

dai50,

dp i5«ai ,

dh5
1

2
«̇, ~h→ ṙ ! ~58!

du5«. ~59!

Note that both Hamiltonian and Lagrangian are invariant
der this transformation. Similar results were also obtained
the literature using different methods based on Dirac’s c
straint idea@11,12,18–21#. However, these methods are a
fected by some ambiguity problems that naturally arise w
it is necessary to obtain the second-class constraints and
determine how they will be converted to first-class ones
occurs when the phase space is extended with the intro
tion of the WZ variables. In our procedure, this problem do
not arise, consequently, the arbitrariety disappears. T
completes one of the main goals of this paper.

Henceforth we are interested to disclose the hidden s
metry of the reduced-SU~2! Skyrme model and obtain bot
Hamiltonian and Lagrangian in terms of the original coor
nates (ai ,p i). To this end, we will obtain the set of con
straints of the invariant model described by the Lagrang
~56! and Hamiltonian~57!. Indeed, the model has two con
straint chains, namely,

f15ph ,

f25aiai21, ~60!

and
08501
e

n
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w15pu ,

w25aip i2ai
2u, ~61!

wherepu is the canonical momentum conjugated to the W
variableu. The Dirac matrix is singular, however, there a
nonvanishing Poisson brackets among some constraints
dicating that there are both second-class and first-class
straints. It is solved by splitting up the second-class c
straints from the first-class ones through the constra
combination. The set of first-class constraints is

x15ph ,

x25aiai2122pu , ~62!

while the set of second-class constraints is

x15pu ,

x15aip i2ai
2u. ~63!

Since the second-class constraints are assumed in a s
way, and using the Maskawa-Nakajima theorem@28#,
Dirac’s brackets are worked out as

$ai ,ai%50,

$ai ,pi%5d i j ,

$pi ,pi%50, ~64!

as well as the Hamiltonian,

H̃5M1
1

8l
p ip i2

1

8l

~aip i !
2

aiai
2h~aiai21!

5M1
1

8l
p iM i j p j2h~aiai21!, ~65!

where

Mi j 5d i j 2
aiaj

ak
2

~66!

is a singular matrix. We can show thatH̃, Eq. ~65!, satisfies
the first-class property

$T1 ,H̃%50. ~67!

Due to this the first-class constraint (T1) is the generator of
the gauge symmetry. The infinitesimal gauge transforma
is computed as

dai5«$ai ,T1%50,

dp i5«$p i ,T1%5«ai , ~68!

where« is an infinitesimal time-dependent parameter. It
easy to verify that the Hamiltonian~65! is invariant under
these transformations becauseai are eigenvectors of the
8-6
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phase space metric (Mi j ) with eigenvalue null. It reproduce
the result discussed in the Appendix using the gau
unfixing Hamiltonian formalism.

V. THE SPECTRUM OF THE HAMILTONIAN

In this section, we will derive the SU~2! Skyrmion energy
levels. Normally, these results were employed to obtain
baryon static properties@2,3#. In this first-class theory the
quantization is performed following Dirac’s first-class pr
scription @10# by just imposing that the physical wave fun
tions are annihilated by the first-class operator constraint
reads as

juc&phys50. ~69!

The physical states that satisfy~69! are

uc&phys5
1

V
d~aiai21! upolynomial&, ~70!

where V is the normalization factor andupolynomial&
51/N( l )(a11 ia2) l . The corresponding quantum Hami
tonian is

H̃2M1
1

8l
p iM i j p j2h~aiai21!. ~71!

Thus, in order to obtain the spectrum of the theory, we t
the scalar product,phyŝ cuH̃uc&phys, which is the mean
value of the first-class Hamiltonian. We begin calculating
scalar product, given by

phyŝ cuH̃uc&phys5^polynomialu
1

V2E dai d~aiai21! H̃

3d~aiai21!upolynomial&. ~72!

Integrating overai , we obtain

phyŝ cuH̃uc&phys5^polynomialuM

1
1

8l
@p ip i2~aip i !

2#upolynomial&.

~73!

Here we would like to comment that the regularization
delta function squaredd(aiai21)2 is performed using the
delta relation, (2p)2d(0)5 limk→0*d2x eik•x5*d2x5V.
Then, we use the parameterV as the normalization factor
The Hamiltonian operator inside the kets, Eq.~73!, can be
rewritten as

phyŝ cuH̃uc&phys5^polynomialuM

1
1

8l
@pk•pk#upolynomial&, ~74!

wherepk5pk2ak(ajp j ). The operatorpk describes a free
particle and their representations on the collective coo
natesak are
08501
-

e

at

e

e

f

i-

pk52 i
]

]ak
. ~75!

The algebraic expression ofpk lead to ordering problems in
the first-class Hamiltonian operatorH̃. We adopt the well-
known Weyl ordering prescription@29# to symmetrize thepk

expression, and consequentlyH̃. We count all possible ran
dom orders ofp i andak . Then, the symmetrized expressio
for pk are

@pk#sym5
1

6i
~6]k2akai] i2ak] iai2aiak] i

2ai] iak2] iakai2] iaiak!

5
1

i S ]k2akai] i2
5

2
akD , ~76!

leading to the symmetrized first-class Hamiltonian opera

@H̃#sym5M1
1

8l F2] j] j1
1

2 S OpOp12Op1
5

4D G ,
~77!

where Op is defined asOp[ai] i . Putting the expression
~77! in the mean value~74! we obtain the energy levels as

El5phyŝ cuH̃uc&phys5M1
1

8l F l ~ l 12!1
5

4G . ~78!

We would like to comment that the last expression, Eq.~78!,
matches the result obtained in Ref.@9#, where the SU~2!
Skyrme model was quantized via second-class Dira
method. It becomes an interesting point since this extra t
plays an important role in the energy Skyrmion spectr
@20#. It can be shown by just observing in Eq.~78! that the
value of the soliton mass~M! Eq. ~3!, and the inertia momen
(l) Eq. ~4! are determined using the nucleon~l51! and the
delta ~l52! masses as input parameters. Consequently,
values ofFp , e, and the remaining phenomenological resu
can be predicted. Then, it is clear that an extra term, resul
from a second- or first-class quantization scheme toge
with a symmetrization procedure can modify the spectr
and, therefore, the physical values predicted by the Sky
model. In the context of the non-Abelian and Abelian BFF
formalisms~used by two of us in early papers@18,19#! the
extra constant term in the energy formula Eq.~78! does not
match that obtained in the second-class formalism@9#.

VI. FINAL DISCUSSIONS

In this paper, we propose a gauge-invariant formali
that is not affected by an ambiguity problem related to
introduction of the WZ variables. This formalism was sy
tematized and applied on the reduced-SU~2! Skyrme model.
The hidden symmetry living in the original phase space w
8-7
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investigated which is an unexpected result for a second-c
system. Afterward, this invariant model was quantized e
ploying Dirac’s first-class procedure. Using the Weyl ord
ing prescription to symmetrize the operators, we obtain
exactly the same energy spectrum when compared with
reduced second-class Skyrme model. It is an important
ture that does not occur when the BFFT method is u
@18–20#. We believe that the arbitrary algebra in the e
tended model, induced by the introduction of the We
Zumino variables, leads to the discrepancy between the fi
and the second-class Skyrmion energy spectrum. In view
this, different constraint conversion schemes introduce
tinct modifications in the energy spectrum@18–20# and, con-
sequently, change the phenomenological results, as discu
in Sec. V.

Our results prove that the SU~2! Skyrme model has also
gauge invariant description@on the original phase-space c
ordinates (ai ,pi)] dynamically equivalent to the usua
second-class treatment. It seems important since our sch
does not affect the baryon phenomenology initially predic
by the second-class model, in opposition to another gau
invariant formalism@18–22#. Thus, the symplectic gauge
invariant formalism leads to a more elegant and simplifi
first-class Hamiltonian structure than the Abelian and n
Abelian BFFT cases.
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APPENDIX

1. The gauge-unfixing formalism for the reduced SU„2…
Skyrme model

The main idea of the gauge unfixing procedure is to c
sider half of the total second-class constraints as gauge fi
terms while the remaining ones are the gauge symmetry
erators@24,30#. Here, the gauge-unfixing Hamiltonian fo
malism will be applied to the reduced-SU~2! Skyrme model
reviewed in Sec. II. We start redefining the constraintT1
5aiai21 as

j5C21T1 , ~A1!

whereC is

C5$T1 ,T2%52aiai52. ~A2!

Then the total Hamiltonian is written as

H5M1
1

8l
p ip i1h1j1h2T2 , ~A3!

whereh1 andh2 are the Lagrange multipliers that enforc
the constraintsj andT2 into the Hamiltonian. Imposing tha
the constraintsj andc are conserved on time, the Lagran
multipliers are obtained as
08501
ss
-
-
d
he
a-
d

-
-
t-

of
s-

sed

me
d
e-

d
-

-
ng
n-

h15
1

4l
p ip i , ~A4!

h252
1

4l
aip i . ~A5!

Substituting Eq.~A4! and Eq.~A5! in the total Hamiltonian
given in Eq.~A3!, we get

H5M1
1

8l
p ip i2

1

4l
~aip i !

2. ~A6!

Then, we are ready to derive the gauge-invariant Ham
tonian using the formula@24# given by

H̃5H2c$j,H%1
1

2!
c2

ˆj,$j,H%‰

2
1

3!
c3$j,ˆj,$j,H%‰%1•••. ~A7!

The right-hand terms$j,H% and ˆj,$j,H%‰ are computed,

$j,H%52
1

4l
aip i , ~A8!

ˆj,$j,H%‰52
1

4l
. ~A9!

From Eq. ~A9! we note that the terms in~A7!,
$j,ˆj,$j,H%‰%, and the remaining higher orders are ze
Then, the invariant Hamiltonian reads

H̃5M1
1

8l
p ip i2

1

8l
~aip i !

2,

5M1
1

8l
p i M̄ i j p j , ~A10!

where

M̄ i j 5d i j 2aiaj ~A11!

is a singular matrix. We can show thatH̃, Eq. ~A10!, satis-
fies the first-class property

$j,H̃%50. ~A12!

Due to this the first-class constraint (j) is the generator of
the gauge symmetry. The infinitesimal gauge transformati
are computed as

dai5«$ai ,j%50,
~A13!

dp i5«$p i ,j%5«ai ,

where« is an infinitesimal time-dependent parameter. It
8-8
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easy to verify that the Hamiltonian~A10! is invariant under
these transformations becauseai are eigenvectors of the
phase space metric (M̄ i j ) with eigenvalues null.

To complete this section, we would like to remark that t
algebraic expression for the first-class Hamiltonian, E
~A10!, is more simple than obtained via the Abelian a
c.
.

08501
.

non-Abelian BFFT formalism as shown by two of us in Re
@18,19#. In the context of Abelian formalism@18#, the first-
class Hamiltonian has a geometrical series form, while in
non-Abelian formalism@19,20# the first-class Hamiltonian
has a finite number of terms, but this algebraic formula
large.
y
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