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We study the Yang-Mills-Chern-Simons theory systematically in an effort to generalize the Coleman-Hill
result to the non-Abelian case. We show that, while the Chern-Simons coefficient is in general gauge depen-
dent in a non-Abelian theory, it takes on a physical meaning in the axial gauge. Using the non-Abelian Ward
identities as well as the analyticity of the amplitudes in the momentum variables, we show that, in the axial
gauge, the Chern-Simons coefficient does not receive any quantum correction beyond one loop. This allows us
to deduce that the ratio 4pm/g2 is unrenormalized, in a non-Abelian theory, beyond one loop in any infrared
safe gauge. This is the appropriate generalization of the Coleman-Hill result to non-Abelian theories. Various
other interesting properties of the theory are also discussed.
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I. INTRODUCTION

It is well known by now that, in odd space-time dime
sions, one can add a topological term to the Lagrangian d
sity of a gauge field, in addition to the usual Yang-Mil
~Maxwell! term. Such a term is known as the Chern-Simo
term and a theory with a Chern-Simons term is conventi
ally called a Chern-Simons theory@1,2#. In 211 dimensions,
for example, the Chern-Simons term, in anSU(N) gauge
theory, has the form

LCS5
m

2
emnlAm

a S ]n Al
a1

g

3
f abcAn

b Al
c D

whereg represents the gauge coupling andf abc stand for the
structure constants of the group. The parameterm is known
as the Chern-Simons coefficient~at the tree level! and has the
dimensions of mass. In a theory with a Yang-Mills term f
the gauge fields, it can be shown that the Chern-Simons t
provides a gauge invariant mass for the gauge fields. Su
mass term is absolutely crucial in the perturbative study o
pure Yang-Mills-Chern-Simons gauge theory, since with
this term the infrared divergences in 211 dimensions are so
severe that a perturbative expansion cannot be defined@2,3#.

The Chern-Simons term violates discrete symmetries s
as P and T ~although it respectsCPT). In a gauge theory
with ~matter! interactions which violate these symmetries,
is expected that a Chern-Simons term will be generate
the quantum level, even if one is not present at the tree le
Thus, for example, the mass term for a fermion, in 211
dimensions, is known to violate these symmetries and,
respondingly, it is known that a massive fermion interact
with gauge fields generates a Chern-Simons term at the
loop level @2#. Surprisingly, however, it was noted, throug
explicit calculations, that even though a Chern-Simons te
is generated at the one loop, there is no radiative correc
0556-2821/2001/63~8!/085015~14!/$20.00 63 0850
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to the Chern-Simons coefficient at the two loop level, eith
in the Abelian or in the non-Abelian theory@4,5#. This pecu-
liarity was explained, for the Abelian theory, by Colema
and Hill, who showed that, in (211)-dimensional QED with
or without a tree level Chern-Simons term, the Che
Simons coefficient does not receive any contribution beyo
one loop at zero temperature@6#. The proof of this result is
quite elegant and essentially uses two key assumpti
namely,~i! the Abelian Ward identity and~ii ! the analyticity
of the amplitudes in the momentum~energy-momentum!
variables. This result holds, in an Abelian theory, whene
these assumptions are valid, but not otherwise.

While the Coleman-Hill result explains the peculiarity
the explicit two loop calculation in the Abelian theory,
says nothing about the outcome of the calculation in
non-Abelian theory. There are, in fact, several difficulti
one faces in trying to extend the Coleman-Hill result to no
Abelian theories. First, unlike in an Abelian theory at ze
temperature, without a tree level Chern-Simons term, in
red divergences may be too severe~as we have already men
tioned!. Second, even with a tree level Chern-Simons term
the non-Abelian theory, an arbitrary gauge choice may int
duce spurious infrared divergences and, therefore, one m
carefully choose an infrared safe gauge@2,7# ~again, this is
not a problem in the Abelian theory!. Finally, in the non-
Abelian theory, the Chern-Simons coefficient is, in gene
gauge dependent~in an Abelian theory, this coefficient is
gauge independent!. Therefore, an attempt to naively gene
alize the Coleman-Hill result is meaningless. On the ot
hand, it is known that, in a non-Abelian theory, the ra
4pm/g2 is gauge independent and has a physical sign
cance. Consequently, it makes sense to try and show that
this ratio which gets no contribution beyond one loop in
non-Abelian theory.

In this paper, we show that this expectation, inde
holds. In particular, we show, much like the Coleman-H
©2001 The American Physical Society15-1



-

on
c
ov
ed
s
th
s
ac
ia
a

a
ils
he

e
an

t.
us
t
ti
i

his
ic
is

e.
ffi

III
g
ti
e
g
a

rn
on
n

ur

xia

rd
rie

in
sit

ns
rix

nor-

add
ict

s

n
for-

ge
into
er
ally
-

ap-
the

F. T. BRANDT, ASHOK DAS, AND J. FRENKEL PHYSICAL REVIEW D63 085015
result in the Abelian theory, that if~i! the Ward identities of
the non-Abelian theory hold and~ii ! the amplitudes are ana
lytic in the momentum~energy-momentum! variables, then
the ratio 4pm/g2 does not receive any quantum correcti
beyond one loop. The non-Abelian theory is clearly mu
more complicated than the Abelian counterpart and we pr
our result by working in the axial gauge, which is an infrar
safe gauge. It is, of course, known that the Ward identitie
the axial gauge are much simpler, but we show that, in
gauge, the Chern-Simons coefficient takes on a physical
nificance, although it is gauge dependent in general. In f
we show that the Chern-Simons coefficient, in the ax
gauge, receives no quantum correction beyond one loop
this allows us to deduce that the ratio 4pm/g2 is unaffected
beyond one loop. A brief account of our main result h
already been published@8# and here we describe the deta
of our work along with many other interesting features of t
analysis.

The organization of our paper is as follows. In Sec. II, w
analyze the Yang-Mills-Chern-Simons theory in a covari
gauge and show, using a Nielsen-like identity@9,10#, that the
Chern-Simons coefficient is, in general, gauge dependen
Sec. III, we define the theory in the axial gauge and disc
some of the special features of this gauge choice. From
Ward identities, in this gauge, we obtain a diagramma
representation for the Chern-Simons coefficient, which
quite useful in an all order proof. We also show that, in t
gauge, the Chern-Simons coefficient takes on a phys
meaning and derive a Nielsen-like identity to show that it
independent ofnm, the choice of direction in the axial gaug
In Sec. IV, we explicitly evaluate the Chern-Simons coe
cient at one loop and show that it is independent ofnm as is
required from the Nielsen-like identity described in Sec.
We compare our calculation with that in the Landau gau
@7# to bring out the gauge independent nature of the ra
4pm/g2. We also present an interpolating gauge that int
polates between the infrared safe Landau and axial gau
In Sec. V we prove the main result of our paper, namely th
with the assumptions of Becchi-Rouet-Stora-Tyotin~BRST!
invariance and analyticity of the amplitudes, the Che
Simons coefficient has no quantum correction beyond
loop in the axial gauge. We deduce from this that, in a
infrared safe gauge, the ratio 4pm/g2 receives no radiative
correction beyond one loop. In Sec. VI, we study the p
Chern-Simons theory~without a Yang-Mills term! and show
that it has an additional vector supersymmetry in the a
gauge~much like the one in the Landau gauge!. The Ward
identities following from this, together with the usual Wa
identities, show that this is a free theory. We present a b
conclusion in Sec. VII.

II. GAUGE DEPENDENCE

Let us consider the Yang-Mills-Chern-Simons theory
211 dimensions described by the Lagrangian den
@2,7,11–13#

Linv5
1

2
tr FmnFmn2m tr emnlAmS ]n Al1

2g

3
An AlD ~1!
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where we have chosen, for simplicity, the Chern-Simo
massm to be positive. The gauge field belongs to a mat
representation ofSU(N),

Am5Am
a Ta,

with the generators of the group assumed to have the
malization

tr TaTb52
1

2
dab

and

Fmn5]mAn2]n Am1g@Am , An#.

This is a self-interacting theory and one can, of course,
to it interacting matter fields. However, we would restr
ourselves, for simplicity, to the theory described by Eq.~1!,
which can be written with explicit internal symmetry indice
as

Linv52
1

4
Fmn,aFmn

a 1
m

2
emnlAm

a S ]n Al
a1

g

3
f abcAn

b Al
c D .

~2!

The Lagrangian density, in Eq.~1!, is invariant under the
infinitesimalSU(N) gauge transformations of the form

dAm~x!5Dme~x!5]me~x!1g@Am ,e#

wheree(x) is an infinitesimal matrix valued transformatio
parameter. On the other hand, under a finite gauge trans
mation

Am→U21AmU2
i

g
U21]mU

the Lagrangian density changes by a total divergence~it is
the Chern-Simons term that is not invariant!, so that the ac-
tion changes by a constant

Sinv5E d3xLinv→Sinv1
4pm

g2
2pW ~3!

where

W5
1

24p2E d3xemnl trU21]mUU21]nUU21]lU ~4!

is an integer, known as the winding number of the gau
transformation, and classifies the gauge transformations
topologically distinct classes. When the winding numb
vanishes, the gauge transformations are convention
known assmall gaugetransformations, while non-zero wind
ing numbers lead tolarge gaugetransformations. It is clear
from Eq. ~3! that under asmall gaugetransformation, the
action is invariant, while under alarge gaugetransformation,
the action changes by a constant. In the path integral
proach, it is quite clear that even though there is a shift in
5-2
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ABSENCE OF HIGHER ORDER CORRECTIONS TO THE . . . PHYSICAL REVIEW D 63 085015
action under alarge gaugetransformation, the generatin
functional is invariant provided

4pm

g2
5n ~5!

wheren is a positive integer~because of our choicem.0).
It is well known that the coefficient of the Chern-Simo

term ~which ism in the tree level!, in an Abelian theory, is a
gauge independent quantity. It is related to the physic
meaningful statistics parameter and, in fact, it is this coe
cient which does not receive quantum corrections bey
one loop~provided certain assumptions are valid! according
to the Coleman-Hill result. In trying to extend this result
non-Abelian theories, one of the challenges we face, as m
tioned in the Introduction, is that the Chern-Simons coe
cient is, in general, a gauge dependent quantity in a n
Abelian theory. This is best seen from the following analy
involving a Nielsen-like identity@9,10#.

Let us analyze the Chern-Simons theory in a general
variant gauge. Thus, adding a gauge fixing and ghost
grangian density of the form

Lg f1Lghost52
1

2j
~]mAm,a!21]mc̄aDmca

5
j

2
FaFa2Fa~]mAm,a!1]mc̄aDmca ~6!

we can write the total Lagrangian density, in this gauge
be

L5Linv1Lg f1Lghost. ~7!

We note that we have introduced an auxiliary field,Fa, to
write the gauge fixing term, which helps close the algebra
the BRST charges off shell. From the BRST identities for
theory, in this gauge, one knows that the gauge fixing par
eter, j, is not renormalized so that we can parametrize
two point function of the full theory as

Pmn,ab~p!5dabF ~pmpn2hmnp2!@11P1~p!#

1 imemnlpl@11P2~p!#2
1

j
pmpnG . ~8!

Here,P1(p) andP2(p) represent, respectively, the radiativ
corrections to the parity conserving transverse part and
parity violating part of the two point function. It is worth
noting from this that the Chern-Simons coefficient, at a
order, can be obtained from the two point function as

dabP̄2~0!5dab
„11P2~0!…5

1

6im
emnl

]

]pl
Pmn,ab~p!up50 .

~9!

We note that it ismP̄2(0) which represents the comple
Chern-Simons coefficient, withmP2(0) representing the
08501
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part coming from quantum corrections. Let us also note h
that, in this gauge, the tree level propagator for the ga
field has the form

Dmn
(0)ab~p!5dabF 1

p22m2 H S hmn2
pmpn

p2 D
1 imemnl

pl

p2J 1
jpmpn

~p2!2 G . ~10!

To study the gauge dependence of the Chern-Simons
efficient, let us add to the Lagrangian the following sour
terms:

Ltotal5L1Lsource ~11!

where

Lsource5Jm,aAm
a 1JaFa1 i ~ h̄aca2 c̄aha!1Km,aDmca

1LaS 2
1

2
f abccbccD1

1

2
HFac̄a. ~12!

Here, all the sources are the standard ones, introduce
derive and study BRST identities, except for the last te
whose role will become clear shortly.

We note that, under a BRST transformation (v is a space-
time independent anti-commuting parameter!,

dAm
a 5vDmca

dca52
v

2
f abccbcc

d c̄a52vFa

dFa50, ~13!

the source terms are not invariant althoughL is. In fact, we
obtain

dLsource5vFJm,a~Dmca!2 i h̄aS 2
1

2
f abccbccD

1 iF aha1
1

2
HFaFaG . ~14!

Making a field redefinition inside the path integral whic
coincides with a BRST transformation, then, we obtain, fro
the invariance of the generating functional,

Z5eiW5E DAm
a DFaDc̄aDca expS i E d3xLtotalD

the master identity
5-3



g
tive
one

,

F. T. BRANDT, ASHOK DAS, AND J. FRENKEL PHYSICAL REVIEW D63 085015
]W

]j
5E d3xd3yS Jm,a~x!

d2W

dKm,a~x!dH~y!

2 i h̄a~x!
d2W

dLa~x!dH~y!
2 i

d2W

dJa~x!dH~y!
ha~x!D .

~15!

In other words, this identity allows us to study the gau
dependence of the effective action.

We can now make a Legendre transformation~with re-
spect to the usual sourcesJm,a,Ja,ha,h̄a) and go to the ef-
fective action and the identity above takes the form
a

a

ie
itl
gu
x
e

id
he

the
t

08501
e

]G

]j
52E d3xd3yS dG

dAm
a ~x!

d2G

dKm,a~x!dH~y!

1
dG

dca~x!

d2G

dLa~x!dH~y!
2

dFa~x!

dH~y!

dG

d c̄a~x!
D .

~16!

This identity describes the gauge dependence of the effec
action and we can derive the gauge dependence of any
particle irreducible~1PI! amplitude from this. In particular
we note that@see Eq.~9!#
]P̄2~0!

]j
5

1

6im~N221!
emnr

]

]j

]

]pr

d2G

dAm
a ~p!dAn

a~2p!
U

p50

52
1

6im~N221!
emnr

]

]pr
F d3G

dAm
a ~p!dAn

a~2p!dAl
b~0!

d2G

dKl,b~0!dH~0!

1
d2G

dAm
a ~p!dAl

b~2p!

d3G

dAn
a~2p!dKl,b~p!dH~0!

1
d2G

dAn
a~2p!dAl

b~p!

d3G

dAm
a ~p!dKl,b~2p!dH~0!

G
p50

.

~17!
, in
ffi-

en-

e-
s an
the
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ient
the
Here, we are supposed to also understand that all fields
set to zero after evaluating the functional derivatives.

There are several things to note from this. First, there
no tree level mixing terms of the formsKm,aH,Km,aAn

bH so
that the gauge dependence of the Chern-Simons coeffic
can only arise from radiative corrections. One can explic
check at the one loop level and argue from symmetry ar
ments that radiative corrections cannot generate a verte
the formKm,aH ~for such a vertex, the color index cannot b
saturated!. Consequently, the first term on the right hand s
of Eq. ~17! does not contribute. At one loop, a vertex of t
form Km,a(p)An

b(2p)H(0) is already generated~see Fig. 1!.
Therefore, let us parametrize such a vertex as

FIG. 1. One loop diagrams that can lead to a mixing of
sources. The wavy lines represent gauge fields, the solid line
auxiliary field Fa, and the dashed lines ghosts.
re

re

nt
y
-
of

e

d3G

dKm,a~p!dAn
b~2p!dH~0!

U5dab@dm
n A~p!1pmpnB~p!

1 i em
nlplC~p!#. ~18!

Substituting this into the identity~17!, we obtain

]P̄2~0!

]j
52@11P2~0!#A~0!. ~19!

The right-hand side can be evaluated order by order and
general, is not zero, showing that the Chern-Simons coe
cient, in a non-Abelian theory, is, in general, gauge dep
dent. We also note thatA(0) is obtained from the vertex
Km,aAn

bH with all external momenta equal to zero. Cons
quently, this has severe infrared divergences, and unles
infrared safe gauge, like the Landau gauge, is chosen,
identities cannot even be satisfied.

III. AXIAL GAUGE

In the previous section, we saw that the Chern-Simo
coefficient is, in general, gauge dependent. Therefore,
naturally raises the question as to whether the Coleman-
result can even be meaningfully generalized to non-Abe
theories and, if so, in what manner. In this section, we w
show that, in the axial gauge, the Chern-Simons coeffic
has a physical significance and, therefore, this is possibly

he
5-4
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appropriate gauge in which to consider a generalization
the Coleman-Hill analysis.

Let us consider a general axial gauge@14# described by a
gauge fixing and ghost Lagrangian density of the form

Lg f1Lghost52
1

2j
~nmAm

a !22 c̄anm~Dmca!

5
j

2
FaFa2Fa~nmAm

a !2 c̄anm~Dmca!.

~20!

Here, nm represents an arbitrary direction. The theory d
scribed by

L5Linv1Lg f1Lghost ~21!

is infrared divergent in 211 dimensions, unlessj50, and
we will study the theory in such a limiting gauge. Forj
50,n25nmnm50 defines the light-cone gauge, whilen2

>0 leads to the time-like axial gauge and so on.
The tree level propagator of the gauge field for an ar

trary gauge fixing parameterj is given by

Dmn
(0)ab~p!5

dab

p22m2 Fhmn2
nmpn1nnpm

~n•p!
1

n2pmpn

~n•p!2

1 imemnl

nl

~n•p!G1
dabjpmpn

~n•p!2
. ~22!

From this, we obtain the tree level propagator, in the ax
gauge (j50), to be

Dmn
(0)ab~p!5

dab

p22m2 Fhmn2
nmpn1nnpm

~n•p!
1

n2pmpn

~n•p!2

1 imemnl

nl

~n•p!G ~23!

which can be trivially checked to be transverse tonm,
namely,

nmDmn
(0)ab~p!505Dmn

(0)ab~p!nn. ~24!

This observation is quite significant as we will see shor
~see Figs. 2 and 3!.

Let us note that the theory described by Eq.~21! is also
invariant under the BRST transformations of Eq.~13!. Thus,
one can derive, as usual@by adding sources as in Eq.~12!
except for the last source#, the BRST identities for the
theory, which are derived from the master identity

FIG. 2. Diagrams, which can contribute to the ghost self-ene
vanish because of Eq.~24!.
08501
of

-

i-

l

E d3xS dG

dAm
a ~x!

dG

dKm,a~x!
2

dG

dca~x!

dG

dLa~x!

1Fa~x!
dG

d c̄a~x!
D 50. ~25!

The master identity is the same as in any other gauge. H
ever, the constraints following from them, in the axial gaug
are much simpler than, say, in a covariant gauge. For
ample, looking at the structure of the ghost Lagrangian
Eq. ~20!, we note that, in the axial gauge, the vertex descr
ing the coupling of the ghosts to the gluons is proportiona
nm. Combined with Eq.~24!, this, then, implies that, in the
axial gauge, the ghost two point function, depicted in Fig.
does not receive any quantum correction. As a result, in
gauge, the ghost wave function renormalization is trivial:

Z̃351. ~26!

Similarly, it also follows that, in this gauge, the ghost-gluo
interaction vertex is not renormalized, leading to

Z̃151. ~27!

As a result, the standard relation following from the mas
identity in Eq.~25!, in a non-Abelian gauge theory, takes th
simple form

Z1

Z3
5

Z̃1

Z̃3

or Z15Z3 . ~28!

Here, we have denoted the wave function and the ve
renormalizations for the gauge field byZ3 and Z1 respec-
tively. This relation is reminiscent of the Ward identity in a
Abelian theory. Thus, in the axial gauge, the Ward identit
are simpler, much like in the Abelian theory. However, t
non-Abelian interactions still make the structure of any a
plitude much more complex and rich.

Just as we see that the ghost wave function as well as
ghost vertex renormalizations are trivial in the axial gauge
is equally straightforward to show that the source terms w
composite variations are not renormalized in the axial ga
either ~namely, vertices involving the sourcesKm,a and La

receive no quantum correction, as indicated in Fig. 3!. As a

y,

FIG. 3. Diagrams, which can lead to the renormalization of
Km,aca vertex, vanish because of Eq.~24!.
5-5
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result, the Ward identities following from the master identity in Eq.~25! take a much simpler form in the axial gauge. F
example, it follows from Eq.~25! that, forn>2,

dnG

dAm1

a1 ~p1!•••dAmn21

an21 ~pn21!dAmn

a ~pn!

d2G

dKmn ,a~2pn!dcan~pn!

52 (
i 51

n21 E d3p
dn21G

dAm1

a1 ~p1!•••dAm i 21

ai 21 ~pi 21!dAm i 11

ai 11 ~pi 11!•••dAmn

a ~p!

d3G

dKmn,a~2p!dAm i

ai ~pi !dcan~pn!
.

Recalling that the vertices with the sourcesKm,a do not get any quantum correction, this identity can also be rewritten in
simple form

pn,mn
Ga1•••an

m1 . . . mn~p1 ,•••,pn!5 ig (
i 51

n21

f aaianGa1 . . . ai 21aai 11 . . . an21

m1 . . . mn21 ~p1 , . . . ,pi 21 ,pi1pn ,pi 11 , . . . ,pn21!. ~29!

This is clearly a much simpler identity, relating successive vertex functions, than the identities one obtains, for exam
covariant gauge. Furthermore, let us note that taking the derivative with respect topn and settingpn50 in Eq.~29!, we obtain

Ga1•••an

m1•••mn~p1 , . . . ,pn21,0!5 ig (
i 51

n21

f aaian
]

]pi ,mn

Ga1•••ai 21aai 11•••an21

m1•••mn21 ~p1 , . . . ,pn21!. ~30!

The two point function in the full theory, in a generalized axial gauge (jÞ0), can be parametrized, consistent with t
BRST identities, as

Pmn,ab~p!5dabF2~hmn2pmpn!@11P1~p!#1 imemnlpl@11P2~p!#1S pm2
p2nm

~n•p! D S pn2
p2nn

~n•p! DP3~p!2
1

j
nmnnG .

~31!
-
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n
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The self-energy~which, by definition, is the two point func
tion without the tree level terms! is clearly transverse with
respect to momentum. Let us note that relation~31! must
hold for both parity conserving as well as parity violatin
parts of the amplitudes separately. Thus, looking at the pa
violating part of the three point amplitude, we obtain~note
that we have identifiedGmn,ab5Pmn,ab)

emnlGabc
mnl5 ig f dbcemnl

]

]pl
Pmn,ad~p!up50 ~32a!

or

f abc@11P2~0!#5
1

6im
f dbcemnl

]

]pl
Pmn,da~p!up50

5
1

6mg
emnlGabc

mnl~0,0,0!. ~32b!

This relation is quite crucial in that it relates the Cher
Simons coefficient in the axial gauge, at any order, to
parity violating part of the three gluon vertex~with vanishing
momenta! at the same order. Thus, one can give a diagra
matic representation for the Chern-Simons coefficient in
axial gauge, which is very convenient for studying an
order proof of the generalization of the Coleman-Hill res
to non-Abelian theories. It is also clear from this identific
08501
ty

-
e

-
e
l
t
-

tion that the choice of an infrared safe gauge is crucial
cause the Chern-Simons coefficient is related to the th
gluon amplitude with all external momenta vanishing.

In a non-Abelian Chern-Simons theory, as we have
gued earlier, the ratio 4pm/g2 represents a physical quan
tity. This is known to be true from the following facts
namely, in the leading order in 1/m expansion,~i! it is this
ratio which determines the dimensionality of the Che
Simons Hilbert space@15# and~ii ! this ratio is related to the
coefficient of the Wess-Zumino-Witten-Novikov~WZWN!
action which represents the central charge of the corresp
ing current algebra@16#. It is also this ratio@see Eq.~5!#
which needs to be quantized forlarge gaugeinvariance of
the theory. In the full quantum theory, however, this ra
changes as

4pm

g2
→S 4pm

g2 D
ren

5ZmS Z3

Z1
D 2S 4pm

g2 D ~33!

whereZ3 andZ1 are the wave function and the vertex reno
malization constants for the gauge field~as we have defined
earlier!, while Zm represents the renormalization of th
Chern-Simons coefficient. By definition, of course,Zm5@1
1P2(0)#, and since in the axial gauge we haveZ15Z3 @see
Eq. ~28!#, it follows that
5-6
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S 4pm

g2 D
ren

5ZmS 4pm

g2 D 5@11P2~0!#S 4pm

g2 D . ~34!

Since this is a physical quantity, it follows that, in the ax
gauge, the induced Chern-Simons coefficient takes o
physical meaning.

In fact, let us next show that this expectation is inde
true and that the Chern-Simons coefficient is independen
nm in the axial gauge. To prove this, let us add to our L
grangian density the following source terms:

Lsource5Jm,aAm
a 1JaFa1 i ~ h̄aca2 c̄aha!

1Km,aDmca1LaS 2
1

2
f abccbccD1Hmc̄aAm

a .

~35!

Thus, defining

Ltotal5L1Lsource

we note that, under a BRST transformation@see Eq.~13!#,

dLtotal5vFJm,a~Dmca!2 i h̄aS 2
1

2
f abccbccD

1 iF aha1Hm
]L total

]nm G . ~36!

Thus, as before, making a field redefinition inside the p
integral, which coincides with a BRST transformation, w
can derive the equation which describes how the effec
action changes withnm. Let us simply note the result here

]G

]nm
52E d3pF dG

dAn
a~2p!

d2G

dKn,a~p!dHm~2p!

1
dFa~p!

dHm~p!

dG

d c̄a~2p!

2
dG

dca~2p!

d2G

dLa~p!dHm~2p!
G . ~37!

This is the master identity from which we obtain

]

]nr S emnl

d3G

dAm
a dAn

bdAl
c D

p1 ,p2 ,p350

52emnlF d4G

dAm
a dAn

bdAl
cdAs

d

d2G

dKs,ddHr

1
d3G

dAm
a dAn

bdAs
d

d3G

dKs,ddHrdAl
c G

p1 ,p2 ,p350

1permutations ~38!
08501
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where the restriction on the right-hand side stands for set
all the field variables as well as momenta equal to zero.

It is easy to see that, to all orders in the quantum theo
we cannot have a vertex of the formKm,aHn. In fact, let us
recall that in the axial gauge the ghost propagator and
ghost vertex do not renormalize. Similarly, just as we no
that the vertices involving the sourceKm,a do not renormal-
ize, we can also show that the vertex involvingHm does not
renormalize in the quantum theory either. It follows fro
this that the only diagram that can give rise to a mixing
the sourcesKm,a andHn is as shown in Fig. 4. From the fac
that the vertexKm,aAn

bcc is anti-symmetric in the interna
indices while the vertexHmAn

acb and the gauge propagato
are symmetric in the internal symmetry indices, it follow
that this diagram vanishes.~Alternately, such a vertex, if it
existed, would involve a single internal index, which is im
possible to construct from the structures present in
theory.!

Let us next analyze if a vertex of the formKm,aHnAl
b can

be generated in the quantum theory. To that extent, le
note the following simple identity in the axial gauge:

]

]pm
D̃~2p!5

i

g
D̃~2p!G̃m~2p,0,p!D̃~2p! ~39!

where we have represented the ghost propagator byD̃ and
the ghost vertex byG̃ without the internal symmetry indice
~remember that these do not receive any quantum correc
and, therefore, coincide with their tree level forms!, namely,

iD̃ ab~p!5 idabD̃~p!5
dab

~n•p!

G̃m,abc~2p,0,p!5 f abcG̃m~2p,0,p!5g fabcnm.

The identity, in Eq.~39!, is reminiscent of the Abelian iden
tity involving fermion lines; namely, it says that differentia
ing the ghost propagator is equivalent to introducing a p
ton line with zero momentum. Using these, as well as
fact that the vertices involving aKm,a or a Hm do not renor-
malize, we note that the only diagrams which can genera
vertex of the typeKm,aHnAl

b are as shown in Fig. 5. Evalu
ating these at zero external momenta, we obtain

;E d3p@ f aa8a9D̃~2p!Dmm8
a8b8~p!Gb8b9b

m8n8l
~p,2p,0!Dn8n

b9a9~p!

1 f aa8a9 f a9bb8D̃~2p!G̃l~2p,0,p!D̃~2p!Dmn
a8b8~p!]. ~40!

From Eq.~30!, we note that we can write

FIG. 4. Diagram representing the possible mixing of the sour
Km,a and Hn. The bold wavy line represents the complete gau
field propagator. The diagram vanishes because of color identi
5-7
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Dmm8
aa8 ~p!Ga8c8b

m8n8l
~p,2p,0!Dn8n

c8c
~p!5 ig f dbc

]

]pl
Dmn

da~p!.

~41!

Using this, as well as Eq.~39!, the contribution of Fig. 5 in
Eq. ~40! can be simplified as

;E d3pF f aa8a9D̃~2p!~ ig f dba9!
]

]pl
Dmn

da8~p!

1 f aa8a9 f a9bb8~2 ig !S ]

]pl
D̃~2p! DDmn

a8b8~p!G
5 ig f aa8a9 f dba9E d3p

]

]pl
@D̃~2p!Dmn

da8~p!#50.

~42!

In other words, a vertex of the kindKm,aHnAl
b is not gener-

ated in the full quantum theory. It follows now that, in su
a case, Eq.~38! leads to

FIG. 5. Diagrams contributing to a vertex of the typeKm
a HnAl

b .
The sum of the two diagrams vanishes.
e
nc
, o
rn

te

08501
]

]nr S emnl

d3G

dAm
a dAn

bdAl
c D

p1 ,p2 ,p350

50. ~43!

Namely, the Chern-Simons coefficient is independent of
choice ofnm as was stated. This is consistent with our o
servation that the Chern-Simons coefficient takes on a ph
cal meaning in the axial gauge.

IV. ONE-LOOP CALCULATION

In this section, let us check explicitly, at the one loo
level, that the Chern-Simons coefficient is independent ofnm

as was shown, from general arguments, in the previous
tion. Let us recall that the Chern-Simons coefficient, in t
axial gauge, can be related to the parity violating part of
three gluon amplitude with all external momenta vanishin
At the one loop level, there are two such diagrams t
would contribute to the Chern-Simons coefficient—one
the triangle graph and the other involves the quartic inter
tion vertex as shown in Figs. 6~a! and 6~b!. Let us first look
at the simpler of the two graphs, namely, the one involv
the quartic interaction vertex. The contribution coming fro
this diagram~contracted withemnl) can be written as

FIG. 6. Diagrams which can contribute to the Chern-Simo
coefficient at one loop.
I (6b)
abc 5emnlE d3p

~2p!3
Dn8m8

(0)b8a8~p!Ga8a9a
(0)m8m9m

~p,2p,0!Dm9l8
(0)a9c8~p!Gc8b8bc

(0)l8n8nl
~p,2p,0,0!

5 igemnlE d3p

~2p!3
f dac8S ]

]pm
Dn8l8

db8 ~p! DGc8b8bc
(0)l8n8nl

~p,2p,0,0!

5 igE d3p

~2p!3

]

]pm
@ f dac8Dn8l8

db8 ~p!Gc8b8bc
(0)l8n8nl

~p,2p,0,0!#50. ~44!
rty

ne-
m

e

Here, we have used Eq.~41! as well as the fact that the tre
level four point vertex is independent of momenta and he
can be taken inside the differentiation. This shows that
the two diagrams that can possibly contribute to the Che
Simons term at the one loop, the one with the quartic in
e
f
-

r-

action vertex vanishes. As we will see later, this prope
generalizes in a simple manner to higher loops.

This analysis shows that the entire contribution, at o
loop level, to the Chern-Simons coefficient would come fro
the triangle diagram in Fig. 6~a!. The triangle diagram can b
5-8
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simplified slightly by the use of the identity~41!, but the evaluation is tedious and leads to the contribution~when contracted
with emnl)

I (6a)
abc 52Ng3f abcE d3p

~2p!3 F 12im

~p22m2!2
1

]

]pm
S 8im3pm

~p22m2!3
1

5imnm

~p22m2!~n•p!
2

4im3nm

~p22m2!2~n•p!
2

8im5nm

~p22m2!3~n•p!
D G

52Ng3f abcE d3p

~2p!3

12im

~p22m2!2
52Ng3f abcS 2

6

4p D56g
g2N

4p
f abc. ~45!
ffi
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It follows now from Eq.~32b! that, at one loop,

P2
(1)~0!5

g2N

4pm
. ~46!

Alternately, the shift in the tree level Chern-Simons coe
cient, due to one-loop effects, is

mP2
(1)~0!5

g2

4p
N. ~47!

There are several things to note from this calculation. Fi
we see explicitly that the one-loop Chern-Simons coeffici
is independent ofnm, consistent with the proof of the earlie
section. Second, since the wave function and the ve
renormalizations for the gauge field are identical in the ax
gauge@see Eqs.~28! and ~34!#, in this gauge, at one loop,

S 4pm

g2 D
ren

(1)

5
4pm

g2
1N. ~48!

In other words, this ratio shifts byN @of SU(N)] at one loop.
This is exactly what was also found from a calculation in t
covariant Landau gauge@7#, which re-confirms that this is
indeed a gauge independent quantity. From an algeb
point of view, one can give a meaning to the one-loop s
of the Chern-Simons coefficient as the product of spin w
the dual Coxeter number of the group@16,17#.

Let us note here that, in general, if we choose a gen
gauge fixing of the kind

Lg f52
1

2
~LmAm

a !2, ~49!

then the tree level propagator for the gauge field, in t
gauge, can be determined to be (Lm is assumed to be inde
pendent of the gauge field!
08501
-

t,
t

x
l
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h
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s

Dmn
(0)ab~p!5

dab

p22m2 Fhmn2
pmLn~p!

@p•L~p!#
2

pnLm~2p!

@p•L~2p!#

1
pmpnL~p!•L~2p!

@p•L~p!#@p•L~2p!#

1 imemnl

Ll~2p!

@p•L~2p!#G
1

dabpmpn

@p•L~p!#@p•L~2p!#
. ~50!

The covariant gauge propagator would follow from this w
the choice

Lm~p!52
ipm

Aj

while the propagator in the general axial gauge would foll
from the choice

Lm~p!5
nm

Aj
.

But, in fact, we can have more interesting gauge choi
with

Lm~p!52
1

Aj
@ ibpm1~12b!nm#. ~51!

Here b is an arbitrary parameter and we note that suc
choice of gauge allows us to interpolate between the cov
ant and the axial gauges. Namely, whenb51, we have the
covariant gauge, whereas forb50, we have the genera
axial gauge. The tree level propagator, in this interpolat
gauge, takes the form
5-9
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Dmn
(0)ab~p!5

dab

p22m2 Fhmn2
pm@ ibpn1~12b!nn#

@ ibp21~12b!~n•p!#
2

pn@ ibpm2~12b!nn#

@ ibp22~12b!~n•p!#

1
pmpn@ ibp1~12b!n#•@ ibp2~12b!n#

@ ibp21~12b!~n•p!#@ ibp22~12b!~n•p!#
1 imemnl

@ ibpl2~12b!nl!

@ ibp22~12b!~n•p!#
G

2
dabjpmpn

@ ibp21~12b!~n•p!#@ ibp22~12b!~n•p!#
. ~52!
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For j50, this provides an infrared safe gauge, which int
polates between the Landau gauge and the axial gauge
note that, following earlier discussions, we can write an id
tity which will describe theb dependence of various ampl
tudes. Thus, adding a source Lagrangian density of the f

Lsource5Jm,aAm
a 1JaFa1 i ~ h̄aca2 c̄aha!1Km,a~Dmca!

1LaS 2
1

2
f abccbccD1H~]mc̄a2nmc̄a!Am

a

we can derive the master identity describing theb depen-
dence of the effective action to be of the form

]G

]b
52E d3xd3yS dG

dAm
a ~x!

d2G

dKm,a~x!dH~y!

1
dG

dca~x!

d2G

dLa~x!dH~y!
2

dFa~x!

dH~y!

dG

d c̄a~x!
D .

~53!

While we have not done this, we believe that it is possible
show from this that the ratio 4pm/g2 is independent ofb, as
has been explicitly seen from the one loop calculation.

V. PROOF OF THE MAIN RESULT

In this section, we will argue that, in the axial gauge, t
Chern-Simons coefficient receives no contribution beyo
one loop, when thesmall gaugeWard identities hold and the

FIG. 7. A class of diagrams that can contribute to higher or
corrections of the Chern-Simons coefficient in the axial gauge.
hatched vertices and the bold internal lines represent respect
the three point vertices and the propagators which include all
corrections up ton-loop order. The cross-hatched vertex and t
cross-hatched blob~self-energy! in the internal propagator includ
all the corrections up to (n11)-loop order.
08501
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amplitudes are analytic in the momentum variables. Th
therefore, would be the generalization of the Coleman-H
result to non-Abelian gauge theories. It will follow from th
result that the ratio 4pm/g2 has no quantum correction be
yond one loop in any gauge.

To simplify our proof, let us employ a compact notatio
where we treat the amplitudes as matrices in the Lorentz
internal symmetry space. Thus, we defineP, D, Gl andGnl

to represent respectively the complete two point function,
propagator, the three point and the four point vertex fu
tions for the gauge fields. In this notation, then, we have

PD521, ~54!

and, furthermore, when the momentum associated with
free index vanishes, we can obtain, using this, from Eq.~30!,

Gl5 ig]lP ~55a!

or

DGlD5 igD~]lP!D5 ig]lD. ~55b!

Here and in what follows,]l represents the derivative wit
respect to the appropriate momentum and we have igno
writing out the explicit internal indices for simplicity
~Namely, the internal symmetry factors simply come out
the integrals and are not relevant to our proof as will beco
evident shortly.! We recognize Eq.~55! as the relation in Eq.
~41! in our compact notation.

In analyzing the higher loop contributions to the Cher
Simons coefficient, let us note that there are two poss
classes of diagrams which are of interest and are show
Figs. 7 and 8. Let us look at the class of diagrams in Fi
7~a! and 7~b! with all external momenta vanishing. Here th
hatched vertices and the bold internal lines represent res
tively the three point vertices and the propagators, wh

r
e
ly
e FIG. 8. Second class of diagrams that can contribute to hig
order corrections of the Chern-Simons coefficient in the ax
gauge. Here, the diagram involves vertices and propagators o
full theory.
5-10
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include all the corrections up ton-loop order, with n
50,1,2, . . . . The cross-hatched vertex, on the other han
includes all the corrections up to (n11)-loop order, starting
from one-loop~namely, it does not contain the tree lev
term!. Similarly, the cross-hatched loop in the internal prop
gator stands for the self-energy, which includes all the c
rections up to (n11) loops ~by definition, the self-energy
does not contain the tree level two point function!. We will
put an overbar, on these two factors, just to emphasize
they do not contain the tree level contribution. It is clear n
that, by construction, the diagrams in Figs. 7~a! and 7~b! lead
te
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to contributions only at two loops and higher. Furthermo
from the definition given above, we can write, in the notati
described earlier,

Ḡl5 ig]lP̄. ~56!

The contributions from the diagrams in Figs. 7~a! and
7~b!, when contracted withemnl , would yield a part of the
(n12)-loop corrections to the Chern-Simons term and ta
the form
I (7a)1(7b)
(n12) 5TrE d3qemnl$@DGmDGnD~ Ḡl1GlDP̄!# (n11)1cyclic%

52 ig3 TrE d3qemnl$@]mD]nP~D]lP̄1]lDP̄!# (n11)1cyclic%

52 ig3 TrE d3qemnl@]l~]mD]nPDP̄!(n11)1cyclic#50 ~57!
-
ery

8,
ia-

e

he

the
we
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re-
ds,
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ith
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cor-

of
for all n50,1,2, . . . ,where the superscript (n11) stands for
the order of the terms in the expression. Here, ‘‘Tr’’ deno
the trace over the matrix indices in the Lorentz space and
have used the identities in Eqs.~54!–~56! in deriving Eq.
~57!. ~There are also matrix indices associated with inter
symmetry and these are not traced, but it is clear that they
not relevant for our argument.! We note that, because of th
e tensor, the factor inside the divergence in the integra
picks out only parity violating terms in the amplitude, whic
converge sufficiently rapidly to zero asq→`. This shows
that all the higher loop contributions to the Chern-Simo
coefficient, coming from the class of diagrams in Figs. 7~a!
and 7~b!, vanish.

We can, similarly, show that all the contributions, to t
Chern-Simons coefficient, coming from the class of d
grams in Fig. 8, identically vanish. We have already see
explicitly in our one-loop calculation in the previous sectio
Here, we show that it is true for this class of diagrams at a
loop. Let us note that, from the identities in Eq.~30!, we can
also express the four point function with two external m
menta vanishing, in terms of the three point vertex with o
external momentum vanishing in the compact form, as~all
momenta are incoming!

Gnl~q,2q;0,0!5 igF ]

]ql
Gn~q,2q8;q2q8!G

q85q

[ ig]lGn

~58!

where, again, we have suppressed the internal indices an
follow the convention that the momenta associated with
indicesn,l of the four point vertex as well as that associat
with the indexn of the three point vertex vanish. Written ou
explicitly, the right hand side of Eq.~58! would involve two
terms with different distributions of the internal symmet
s
e
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e

we
e

indices, as is clear from Eq.~30!. However, as we have em
phasized earlier, the internal symmetry factors are not v
relevant to the proof of our result.

With these, let us look at the class of graphs in Fig.
with all external momenta vanishing. As opposed to the d
grams in Fig. 7~a! and 7~b!, here all the vertices and th
propagators include corrections to all orders~namely, they
are the full vertices and propagators of the theory!. With the
use of Eqs.~55b! and ~58!, the contraction ofemnl with the
amplitude in Fig. 8 yields

I (8)5TrE d3qemnlDGmDGnl

52g2 TrE d3qemnl]mD]lGn

52g2 TrE d3q]m~emnlD]lGn!50. ~59!

Once again, the integrand in Eq.~59! is sufficiently conver-
gent~because it involves only the parity violating parts of t
amplitude! so that the integral vanishes.

Since these are all the diagrams that can contribute to
higher loop corrections of the Chern-Simons coefficient,
have shown that, in a Yang-Mills-Chern-Simons theory,
Chern-Simons coefficient, in the axial gauge, does not
ceive any correction beyond one loop order. In other wor
much like the proof in the Abelian theory, we have used
non-Abelian Ward identities in the axial gauge, together w
the analyticity of the amplitudes in momentum space,
show that the Chern-Simons coefficient has no quantum
rection beyond one loop in this gauge.~We have explicitly
checked that, in the axial gauge, the two loop corrections
5-11
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the Chern-Simons coefficient do add up to zero.! In theories
where these assumptions are valid, we will expect our pr
to hold true. On the other hand, if either of these assumpt
is violated, the proof is expected to break down, which
quite similar to the case in the Abelian theory. Thus,
example, in an Abelian theory with charged massless p
ticles, infrared divergences invalidate the second assump
@18#. Similarly, at finite temperature, it is known that th
amplitudes are non-analytic in the energy-momentum v
ables @10# and, consequently, the Coleman-Hill result
known to be violated in this case@19#.

It is worth discussing the implications of this result
some detail. After all, we have already argued, in Sec. II, t
the Chern-Simons coefficient is, in general, gauge dep
dent. Therefore, even if it has no higher loop corrections
the axial gauge, this may not hold in other gauges. For
ample, in Refs.@20,21#, the non-Abelian Chern-Simon
theory was investigated by the use of gauge invariant re
larizations in covariant gauges, and it was argued that
higher order radiative corrections are finite. Let us note h
that @see Eq.~34! and the discussion there#, since the Chern-
Simons coefficient does not receive any higher loop corr
tion in the axial gauge, it implies that, in this gauge, the ra
4pm/g2 also does not receive any higher loop correctio
On the other hand, as we have argued, this ratio is a ga
independent quantity. Consequently, our result can also
understood as saying that, in any infrared safe gauge,
ratio 4pm/g2 does not receive any contribution beyond o
loop. This, in fact, is the appropriate generalization of t
Coleman-Hill result to non-Abelian theories. In particula
we note from Eq.~33! that, since in a non-axial type gaug
such as the Landau gauge,Z1ÞZ3, in such gauges, the
Chern-Simons coefficient (Zm) will be corrected at higher
loops, but in such a way that the ratio 4pm/g2 is unrenor-
malized beyond one loop.

Such a result has, of course, been expected and pred
@5,7#. In fact, there is a plausibility argument for this, bas
on thelarge gaugeinvariance of the theory in the following
way. The only dimensionless ratio, in this theory, isg2/4pm
where 4p is a simple normalization. Therefore, one can u
this as a perturbation parameter and write

S 4pm

g2 D
ren

5
4pm

g2 (
n50

`

an~N!S g2

4pmD n

~60!

with a0(N)51 and, as we have seen,a1(N)5N. On the
other hand, the invariance of the Chern-Simons theory un
large gaugetransformations requires that this ratio be qua
tized @see Eq.~5!#, both in the bare and in the renormalize
theory ~they do not have to be the same positive intege!.
Clearly, this is possible for arbitrary integers and color fa
tors, only if the series, on the right-hand side of Eq.~60!,
terminates after the second term, namely, only if there is
contribution in Eq.~60! beyond one loop. Our proof explic
itly verifies that this expectation is, indeed, true. However
is important to recognize that our proof uses constraints c
ing only from the behavior undersmall gaugeinvariance
~and, of course, analyticity! much like the proof in the Abe-
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lian case. It is worth remarking here that, in a recent pa
@22#, it has been argued, using a generalization of the met
of holomorphy due to Seiberg@23#, that in a Yang-Mills
theory interacting with matter fields,without a tree level
Chern-Simons term, there is no higher loop renormalizatio
of the induced Chern-Simons coefficient. Our result, for
case with a tree level Chern-Simons term, is not covered
this analysis~as the authors of Ref.@22# specifically point
out! and, in fact, this case is physically more meaning
since, without a tree level Chern-Simons term, a loop exp
sion of the theory may not exist because of severe infra
divergences. In such a case, general formal arguments
be invalidated by the infrared divergences of the perturba
theory.

VI. PURE CHERN-SIMONS THEORY

In this section, we will study in detail the pure Cher
Simons theory@24# ~otherwise also known as thee theory
@7#! in the infrared safe axial gauge and show that it is a f
theory. The pure Chern-Simons theory can be obtained f
the Lagrangian density in Eq.~1! @or ~2!# by dropping the
Yang-Mills term~namely, it is the theory in them→` limit !.
It is well known that, in the Landau gauge, this theory
invariant under a vector supersymmetry@25#, in addition to
the usual BRST symmetry of Eq.~13!. Namely, the Lagrang-
ian density

L5
m

2
emnlAm

a S ]nAl
a1

g

3
f abcAn

bAl
c D

2Fa~]mAma!1]mc̄a~Dmca! ~61!

is, of course, invariant under the BRST transformations
Eq. ~13!, but it is also invariant under the transformations

dAm
a 5emnlen]lca

dca50

d c̄a5emAm
a

dFa5em~Dmca!. ~62!

Hereem is a constant vector parameter of the transformati
and is anti-commuting in nature. Furthermore, the genera
of these transformations satisfy a supersymmetry alge
unlike the BRST charges which are nilpotent.

Let us next show that this supersymmetry is not particu
to the Landau gauge only. It is easy to see that there
vector supersymmetry in the axial gauge as well. Thus,
Lagrangian density

L5
m

2
emnlAm

a S ]n Al
a1

g

3
f abcAn

b Al
c D

2Fa~nmAm
a !2 c̄anm~Dmca! ~63!

is invariant under the BRST transformations of Eq.~13! as
well as the transformations
5-12
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dAm
a 5emnlennlca

dca50

d c̄a52emAm
a

dFa5em]mca. ~64!

In fact, it is quite easy to check that, in any linear, homog
neous infrared safe gauge, the theory develops an invari
under a vector supersymmetry.

Let us analyze the pure Chern-Simons theory in the a
gauge. In such a case, there is the usual Ward identities
lowing from the BRST invariance of Eq.~13!. And as we
have noted earlier, the structure of the theory leads to the
that, in the axial gauge, there is no wave function or ver
renormalization for the ghosts. Let us note now that the n
vector supersymmetry will also lead to a Ward identity, fu
ther restricting the amplitudes. The master identity, follo
ing from the invariance of the theory under Eq.~64!, takes
the form @we note here that the derivation of this identity
much simpler than the usual Ward identities because
transformations in Eq.~64! are, in fact, linear and, conse
quently, we do not need additional sources in the Lagrang
density#

E d3xS emnl

dG

dAn
a~x!

ca~x!nl

2
dG

dFa~x!
]mca~x!1Am

a ~x!
dG

d c̄a~x!
D 50. ~65!

This, indeed, constrains the theory enormously. Combin
with the facts that theFaAm

a vertex, the ghost two poin
vertex and the ghost interaction vertices are not renorm
ized, it immediately leads us to the result that the two po
and the three point functions for the gauge fields are
renormalized either. For example, taking derivative of E
~65! with respect tod2/dAm

a dcb ~index m being summed!
and setting all fields to zero, we obtain, in momentum spa
08501
-
ce

al
l-

ct
x
w
-
-

e

n

g

l-
t
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e,

emnlnl
d2G

dAm
a ~2p!dAn

b~p!

1 ipm

d2G

dAm
a ~2p!dFb~p!

23
d2G

d c̄a~2p!dcb~p!
50.

~66!

This immediately leads toZm51. Similarly, taking one
higher derivative, it is easy to show that the parity violati
three point vertex function is not renormalized either.
other words, the pure Chern-Simons theory is a free the
These conclusions are valid provided one regularizes
theory such that all symmetries, including the vector sup
symmetry, are maintained. We would like to note here t
such a conclusion was reached earlier from different po
of view @7,26–28#. In particular, in Ref.@26#, it was shown
through a perturbative calculation in the pure Chern-Sim
theory that the complete effective action in axial gauges
the three level action for certain classes of gauge invar
regulators. Here we have derived this result from purely
gebraic considerations.

VII. CONCLUSION

In this paper, we have studied in detail the question
higher order corrections to the Chern-Simons coefficient i
Yang-Mills-Chern-Simons theory. We have shown that t
Chern-Simons coefficient is, in general, a gauge depen
quantity. However, it takes on a physical significance in
axial gauge. Using~i! the Ward identities of the theory an
~ii ! the analyticity of the amplitudes in the momentum va
ables, we have shown that, in the axial gauge, the Ch
Simons coefficient does not receive any quantum correc
beyond one loop. This allows us to deduce that the ra
4pm/g2, in a non-Abelian theory, is not renormalized b
yond one loop in any infrared safe gauge. This, therefo
represents the generalization of the Coleman-Hill result t
non-Abelian theory. Various other interesting properties
the theory are also discussed.
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