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Absence of higher order corrections to the non-Abelian topological mass term
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We study the Yang-Mills-Chern-Simons theory systematically in an effort to generalize the Coleman-Hill
result to the non-Abelian case. We show that, while the Chern-Simons coefficient is in general gauge depen-
dent in a non-Abelian theory, it takes on a physical meaning in the axial gauge. Using the non-Abelian Ward
identities as well as the analyticity of the amplitudes in the momentum variables, we show that, in the axial
gauge, the Chern-Simons coefficient does not receive any quantum correction beyond one loop. This allows us
to deduce that the ratiom/g? is unrenormalized, in a non-Abelian theory, beyond one loop in any infrared
safe gauge. This is the appropriate generalization of the Coleman-Hill result to non-Abelian theories. Various
other interesting properties of the theory are also discussed.

DOI: 10.1103/PhysRevD.63.085015 PACS nuniderll.15.Tk

I. INTRODUCTION to the Chern-Simons coefficient at the two loop level, either
in the Abelian or in the non-Abelian theop$,5]. This pecu-

It is well known by now that, in odd space-time dimen- liarity was explained, for the Abelian theory, by Coleman
sions, one can add a topological term to the Lagrangian derand Hill, who showed that, in (2 1)-dimensional QED with
sity of a gauge field, in addition to the usual Yang-Mills or without a tree level Chern-Simons term, the Chern-
(Maxwell) term. Such a term is known as the Chern-Simonssimons coefficient does not receive any contribution beyond
term and a theory with a Chern-Simons term is conventiongpe loop at zero temperatuf@]. The proof of this result is
ally called a Chern-Simons theof¥,2]. In 2+1 dimensions,  quite elegant and essentially uses two key assumptions,
for example, the Chern-Simons term, in &u(N) gauge namely,(i) the Abelian Ward identity andi) the analyticity

theory, has the form of the amplitudes in the momenturfenergy-momentuin
variables. This result holds, in an Abelian theory, whenever
m g these assumptions are valid, but not otherwise
=— A3 g, Al+ = Fa0°AD AC . b and, . AU
Les € pw TN T3 v While the Coleman-Hill result explains the peculiarity of

the explicit two loop calculation in the Abelian theory, it
whereg represents the gauge coupling &%° stand for the  says nothing about the outcome of the calculation in the
structure constants of the group. The parametés known  non-Abelian theory. There are, in fact, several difficulties
as the Chern-Simons coefficigiat the tree levgland has the one faces in trying to extend the Coleman-Hill result to non-
dimensions of mass. In a theory with a Yang-Mills term for Abelian theories. First, unlike in an Abelian theory at zero
the gauge fields, it can be shown that the Chern-Simons tertemperature, without a tree level Chern-Simons term, infra-
provides a gauge invariant mass for the gauge fields. Suchrad divergences may be too sevéss we have already men-
mass term is absolutely crucial in the perturbative study of aioned. Second, even with a tree level Chern-Simons term in
pure Yang-Mills-Chern-Simons gauge theory, since withouthe non-Abelian theory, an arbitrary gauge choice may intro-
this term the infrared divergences in-2A dimensions are so duce spurious infrared divergences and, therefore, one must
severe that a perturbative expansion cannot be def?8l  carefully choose an infrared safe gal@e7] (again, this is

The Chern-Simons term violates discrete symmetries suchot a problem in the Abelian theoryFinally, in the non-

asP and T (although it respect€PT). In a gauge theory Abelian theory, the Chern-Simons coefficient is, in general,
with (matte) interactions which violate these symmetries, it gauge depender{in an Abelian theory, this coefficient is
is expected that a Chern-Simons term will be generated ajauge independentTherefore, an attempt to naively gener-
the quantum level, even if one is not present at the tree levellize the Coleman-Hill result is meaningless. On the other
Thus, for example, the mass term for a fermion, it 2 hand, it is known that, in a non-Abelian theory, the ratio
dimensions, is known to violate these symmetries and, cord7m/g® is gauge independent and has a physical signifi-
respondingly, it is known that a massive fermion interactingcance. Consequently, it makes sense to try and show that it is
with gauge fields generates a Chern-Simons term at the orthis ratio which gets no contribution beyond one loop in a
loop level[2]. Surprisingly, however, it was noted, through non-Abelian theory.
explicit calculations, that even though a Chern-Simons term In this paper, we show that this expectation, indeed,
is generated at the one loop, there is no radiative correctioholds. In particular, we show, much like the Coleman-Hill
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result in the Abelian theory, that {f) the Ward identities of where we have chosen, for simplicity, the Chern-Simons
the non-Abelian theory hold an(@) the amplitudes are ana- massm to be positive. The gauge field belongs to a matrix

lytic in the momentum(energy-momentuinvariables, then representation o8 U(N),

the ratio 4rm/g? does not receive any quantum correction

beyond one loop. The non-Abelian theory is clearly much A#=A2Ta.

more complicated than the Abelian counterpart and we prove

our result by working in the axial gauge, which is an infraredWith the generators of the group assumed to have the nor-
safe gauge. It is, of course, known that the Ward identities irfnalization

the axial gauge are much simpler, but we show that, in this 1

gauge, the Chern-Simons coefficient takes on a physical sig- trTaTh=— = b

nificance, although it is gauge dependent in general. In fact, 2

we show that the Chern-Simons coefficient, in the axial
gauge, receives no quantum correction bezyond one loop ar?d“d

this allows us to deduce that the ratiargh/g< is unaffected _ _

beyond one loop. A brief account of our main result has Frn=0uhs= 0y At OLA Al

already been publishe@] and here we describe the details This is a self-interacting theory and one can, of course, add
of our work along with many other interesting features of theto it interacting matter fields. However, we would restrict
analysis. ourselves, for simplicity, to the theory described by Eq,

The organization of our paper is as follows. In Sec. Il, wewnhich can be written with explicit internal symmetry indices
analyze the Yang-Mills-Chern-Simons theory in a covariantgs
gauge and show, using a Nielsen-like idenfRy10], that the
Chern-Simons coefficient is, in general, gauge dependent. In 1 m g
Sec. I, we define the theory in the axial gauge and discuss Liny="— ZF#V'aFZvJF EEW}\AZ AL+ §fabcA?f AXJ-
some of the special features of this gauge choice. From the 2)
Ward identities, in this gauge, we obtain a diagrammatic
representation for the Chern-Simons coefficient, which is The Lagrangian density, in E¢L), is invariant under the
quite useful in an all order proof. We also show that, in thisinfinitesimal SU(N) gauge transformations of the form
gauge, the Chern-Simons coefficient takes on a physical
meaning and derive a Nielsen-like identity to show that it is OAL(X) =D e(x)=0,e(x) +g[A, €]
independent ofi*, the choice of direction in the axial gauge.
In Sec. IV, we explicitly evaluate the Chern-Simons coeffi-
cient at one loop and show that it is independenn/ofas is
required from the Nielsen-like identity described in Sec. I
We compare our calculation with that in the Landau gauge i
[7] to bring out the gauge independent nature of the ratio AMHU—lA#U— —U—1aHU
47rm/g2. We also present an interpolating gauge that inter-
polates between the infrared safe Landau and axial gauges. . . . .
In Sec. V we prove the main result of our paper, namely thatig éﬁ%ﬂii‘g:?nnogseﬁ:% fr:;nige:o?)i/n\?atr%iod![\r/gtgtigc:c-
with the assumptions of Becchi-Rouet-Stora-Tyd®RST) i h b tant
invariance and analyticity of the amplitudes, the Chern- lon changes by a constan
Simons coefficient has no quantum correction beyond one
!oop in the axial gauge. W(_e deduce fro_m this that,_ ir_1 any $“U:f A3XLiny— Siny + 4Lm27.rw (3)
infrared safe gauge, the ratiomn/g? receives no radiative 2
correction beyond one loop. In Sec. VI, we study the pure
Chern-Simons theorgwithout a Yang-Mills term and show  where
that it has an additional vector supersymmetry in the axial
gauge(much like the one in the Landau gaug&he Ward 1
identities following from this, together with the usual Ward W= 24772
identities, show that this is a free theory. We present a brief

conclusion in Sec. VII. is an integer, known as the winding number of the gauge
transformation, and classifies the gauge transformations into
Il. GAUGE DEPENDENCE topologically distinct classes. When the winding number
) . ) . vanishes, the gauge transformations are conventionally
Let us consider the Yang-Mills-Chern-Simons theory inynown assmall gaugearansformations, while non-zero wind-
2+1 dimensions described by the Lagrangian densityng numbers lead ttarge gaugetransformations. It is clear
[2,7,11-13 from Eq. (3) that under asmall gaugetransformation, the
action is invariant, while underlarge gaugeransformation,
the action changes by a constant. In the path integral ap-
proach, it is quite clear that even though there is a shift in the

where e(x) is an infinitesimal matrix valued transformation
parameter. On the other hand, under a finite gauge transfor-
| mation

f d3xe*™ tru~19,UU"19,UU "9 U  (4)

1 2
cmvzitrFWFW—mtreﬂ“AM(avAﬁ?gAyAx) (1)
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action under darge gaugetransformation, the generating part coming from quantum corrections. Let us also note here
functional is invariant provided that, in this gauge, the tree level propagator for the gauge
field has the form
4m

g2

=n (5)

1 PPy
orp= 2 - 22
wheren is a positive integetbecause of our choice>0). P P

It is well known that the coefficient of the Chern-Simons pM|  épp,
term (which ismin the tree level in an Abelian theory, is a Time, 51+ (10
gauge independent quantity. It is related to the physically P (p%)

meaningful statistics parameter and, in fact, it is this coeffi- )
cient which does not receive quantum corrections beyond TO study the gauge dependence of the Chern-Simons co-
one |00p(pr0vided certain assumptions are Va"atcording eff|C|ent, let us add to the Lagrang|an the fO||0WIng source
to the Coleman-Hill result. In trying to extend this result to t€rms:
non-Abelian theories, one of the challenges we face, as men-
tioned in the Introduction, is that the Chern-Simons coeffi- Liotal= L+ Lsource (13)
cient is, in general, a gauge dependent quantity in a non-
Abelian theory. This is best seen from the following analysiswhere
involving a Nielsen-like identity9,10].

I__et us analyze the Che_rn-Simons the_o_ry in a general co- L:source:‘]'u'aAa+‘]aFa+i(;aCa_§l77a)+ K*ap ¢
variant gauge. Thus, adding a gauge fixing and ghost La- " K’

grangian density of the form 1 ch 1 —
+L2 _Efa ¢cPct +§HFaCa. (12
1 _
Lyi+ Lghos™= — 52(d,A*?)?+ 9*c?D ,c?
gf T mghost 26~ a Here, all the sources are the standard ones, introduced to
£ derive and study BRST identities, except for the last term

= FaFa_ Fa((gﬂAu,a)+3M§‘Dﬂca (6)  whose role will become clear shortly.
2 We note that, under a BRST transformatianié a space-

. . N . time independent anti-commuting paramgter
we can write the total Lagrangian density, in this gauge, to

be
5AZ= a)D#Ca
EZEinu+£gf+Eghost- (7
w

We note that we have introduced an auxiliary fiefd, to oct=— Efabccbcc
write the gauge fixing term, which helps close the algebra of
the BRST charges off shell. From the BRST identities for the — s
theory, in this gauge, one knows that the gauge fixing param- oc’=—wkF
eter, &, is not renormalized so that we can parametrize the
two point function of the full theory as oF2=0, (13

rv,abipy = §2b| (Y — prp2)[ ]+ the source terms are not invariant althougfs. In fact, we

I1#2%(p) = 67 (p#p*— n*"pH)[1+111(p)] obtain

1
+im€MVAP>\[1+H2(p)]_EP“pV- (8)

OLsource™ @

w.a ay_: . a _E abc.bAc
JHA(D %) —in 2f c’c

Here,I1,(p) andIl,(p) represent, respectively, the radiative 1
corrections to the parity conserving transverse part and the +iFap+ EHFaFa}. (14
parity violating part of the two point function. It is worth

noting from this that the Chern-Simons coefficient, at any . i L ) )
order, can be obtained from the two point function as Ma_1k|r_19 a f|§ld redefinition inside 'the path mtegral.whlch
coincides with a BRST transformation, then, we obtain, from

ST (0} g2 B i i b the invariance of the generating functional,
2(0)= 3P+ TTH(0))= o en 5T 2P) oo,

©) z=eW= f DAZDFaD@Dcaexp(i f d3xcma|)
We note that it ismﬁz(O) which represents the complete
Chern-Simons coefficient, witimII,(0) representing the the master identity
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OW 5°W ar or 8T

—=f d3xd3| I#3(x) ————— —=—f d3xd3y

3 SK™3(x) SH(y) 23 SAL(X) SK*3(x) SH(y)

— 5°W _ 5°W . ST 5T SF3(x) oI
—i7° () —; -1 7°(X) |. + - =—|.
SLAX)SH(Y)  8I3(x)SH(y) 5c3(x) SLAX)SH(y)  SH(Y) sci(x)
(15) (16)

In other words, this identity allows us to study the gauge
dependence of the effective action. This identity describes the gauge dependence of the effective

We can now make a Legendre transformatiaith re-  action and we can derive the gauge dependence of any one
spect to the usual sourcdé?,J? »?, %) and go to the ef- particle irreducible(1Pl) amplitude from this. In particular,

fective action and the identity above takes the form we note thafsee Eq.(9)]
|
Il1,(0) 1 a9 8T
TE - 6im(NE—1) " E 9P, oAL(P)SAN—P) |
1 d 8°r 8T

" 6im(NZ—1) “** 9P, | 5A%(p) 5A%(— p) SAP(0) SK P(0)H(0)

8T &°r 8°r 8T
+ a b a \.b + a b a \,b
SAL(P)SAX(—P) SAL(—P) K P(p)SH(0)  SA,(—p)SAN(P) SAL(P)SK™P(—p)sH(0)] _,
17
|
Here, we are supposed to also understand that all fields are ST
set to zero after evaluating the functional derivatives. 3 5 =52 5, A(p)+p.p"B(p)
There are several things to note from this. First, there are 9K**(P)dA,(—p)&H(0)

no tree level mixing terms of the formsﬂ'aH,!(”'aASH S +ieZ)‘p)\C(p)]. (18)
that the gauge dependence of the Chern-Simons coefficient

can only arise from radiative corrections. One can explicitlySubstituting this into the identit{17), we obtain

check at the one loop level and argue from symmetry argu- .
ments that radiative corrections cannot generate a vertex of dll,(0)
the formK#2H (for such a vertex, the color index cannot be 9€
saturategl Consequently, the first term on the right hand side

of Eq. (17) does not contribute. At one loop, a vertex of the The right-hand side can be evaluated order by order and, in
form K*3(p)AP(—p)H(0) is already generatedee Fig. 1L general, is not zero, showing that the Chern-Simons coeffi-

Therefore, let us parametrize such a vertex as cient, in a non-Abelian theory, is, in_general, gauge depen-
dent. We also note thah(0) is obtained from the vertex

K*2APH with all external momenta equal to zero. Conse-
quently, this has severe infrared divergences, and unless an
infrared safe gauge, like the Landau gauge, is chosen, the
identities cannot even be satisfied.

=2[1+1I,(0)]JA(O). (19

I1l. AXIAL GAUGE

In the previous section, we saw that the Chern-Simons
coefficient is, in general, gauge dependent. Therefore, this
naturally raises the question as to whether the Coleman-Hill
result can even be meaningfully generalized to non-Abelian

FIG. 1. One loop diagrams that can lead to a mixing of thetheories and, if so, in what manner. In this section, we will
sources. The wavy lines represent gauge fields, the solid line thehow that, in the axial gauge, the Chern-Simons coefficient
auxiliary field F2, and the dashed lines ghosts. has a physical significance and, therefore, this is possibly the
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FIG. 2. Diagrams, which can contribute to the ghost self-energy, K"

vanish because of E§24).

appropriate gauge in which to consider a generalization of

the Coleman-Hill analysis.

Let us consider a general axial galdd] described by a

gauge fixing and ghost Lagrangian density of the form

PHYSICAL REVIEW D 63 085015

K*?

1 a2 = FIG. 3. Diagrams, which can lead to the renormalization of the
Lgit Lgnos= — 2_§(”#AM) —cn*(D,,c%) K#2c? vertex, vanish because of E@4).
— gFaFa_ Fa(n,uAi)_Can,u(D#Ca). f d3X or oI _ or or
OAL(X) K#3(x)  6cq(x) 6L3(x)
(20
or
Here, n* represents an arbitrary direction. The theory de- +F(X) — ):0- (25
; oc(X)
scribed by
L= Liny+ Lyt + Lanost 21) The master identity is the same as in any other gauge. How

is infrared divergent in 2 1 dimensions, unlesé=0, and
we will study the theory in such a limiting gauge. Fér
=O,n2=n”n#:0 defines the light-cone gauge, whit€
=0 leads to the time-like axial gauge and so on.

The tree level propagator of the gauge field for an arbi

trary gauge fixing parameteris given by

b n,p,+n,p, Nn%p,p
D(0ab )y — NP, tn,p, uPv
mv (p) pz_mz 7];/,11 (np) (n‘p)z
n* 520
+ime,,, gp“p”. (22
(n-p)|  (n-p)?

From this, we obtain the tree level propagator, in the axial

gauge €=0), to be

b n,p,+n,p, Nn%p,p

D(®ab ) PPy uPv

wr (P) p2—m?| (n-p) (n-p)?
n)\

which can be trivially checked to be transverse ri6,
namely,

n“D{)*%(p)=0=DQ)*(p)n. (24)

ever, the constraints following from them, in the axial gauge,
are much simpler than, say, in a covariant gauge. For ex-
ample, looking at the structure of the ghost Lagrangian in
Eq. (20), we note that, in the axial gauge, the vertex describ-
ing the coupling of the ghosts to the gluons is proportional to
n*. Combined with Eq(24), this, then, implies that, in the

axial gauge, the ghost two point function, depicted in Fig. 2,
does not receive any quantum correction. As a result, in this
gauge, the ghost wave function renormalization is trivial:
Z5=1. (26)
Similarly, it also follows that, in this gauge, the ghost-gluon
interaction vertex is not renormalized, leading to
As a result, the standard relation following from the master

identity in Eq.(25), in a non-Abelian gauge theory, takes the
simple form

z, 7,
== Oor

—== Z,=27;. (28
Z: 7 1543

3

Here, we have denoted the wave function and the vertex
renormalizations for the gauge field &5 and Z; respec-
tively. This relation is reminiscent of the Ward identity in an
Abelian theory. Thus, in the axial gauge, the Ward identities
are simpler, much like in the Abelian theory. However, the
non-Abelian interactions still make the structure of any am-

This observation is quite significant as we will see shortlyplitude much more complex and rich.

(see Figs. 2 and)3

Let us note that the theory described by E2{l) is also
invariant under the BRST transformations of E43). Thus,
one can derive, as usuddy adding sources as in E¢l2)
except for the last sourgethe BRST identities for the
theory, which are derived from the master identity

Just as we see that the ghost wave function as well as the
ghost vertex renormalizations are trivial in the axial gauge, it
is equally straightforward to show that the source terms with
composite variations are not renormalized in the axial gauge
either (namely, vertices involving the sourc&s*? and L?
receive no quantum correction, as indicated in Fig.A% a
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result, the Ward identities following from the master identity in E2p) take a much simpler form in the axial gauge. For
example, it follows from Eq(25) that, forn=2,

T 5T
AL (P1)- - OAL 1 (Py-1) A, (pr) SKHn'3(—py) dc™(py)

Ef "I 8T
5Aal(p1> SOAT (i 1) AT (i) - - OAG, (P) 8K (= p) SAT (py) Scn(Py)

Recalling that the vertices with the sourd€4? do not get any quantum correction, this identity can also be rewritten in the
simple form
n—-1
P Lot (P1ye oo P) =ig 2 F8IGL 0n n (L PP P Piesy - Paer) (29)

i—13& 11

This is clearly a much simpler identity, relating successive vertex functions, than the identities one obtains, for example, in a
covariant gauge. Furthermore, let us note that taking the derivative with respgcaiml settingp,=0 in Eq.(29), we obtain
n—-1

: a2 Y
Lot an(Pay - Po0,0)=ig 2 F28f - ) (P1y - Pan). (30

P, 8188418y

The two point function in the full theory, in a generalized axial gau§e @), can be parametrized, consistent with the
BRST identities, as
2nH
p-n
p.U“_ ) p —

(n-p)

2V

PN

L1425(p) = 5% — ('~ pp")[ 1+ I13(p) ] +ime " p,[ 1+ IL(p)] + )

1
)Hs(p)— En”n”}
(31)

The self-energywhich, by definition, is the two point func- tion that the choice of an infrared safe gauge is crucial be-
tion without the tree level termgs clearly transverse with cause the Chern-Simons coefficient is related to the three
respect to momentum. Let us note that relati®1) must gluon amplitude with all external momenta vanishing.
hold for both parity conserving as well as parity violating In a non-Abelian Chern-Simons theory, as we have ar-
parts of the amplitudes separately. Thus, looking at the paritgued earlier, the ratio #m/g? represents a physical quan-
violating part of the three point amplitude, we obtdimote  tity. This is known to be true from the following facts,
that we have identified #*+aP=TT#-ab) namely, in the leading order in iy expansion(i) it is this
ratio which determines the dimensionality of the Chern-
N ’ Simons Hilbert spacgl5] and(ii) this ratio is related to the
€umlAbe =191 %, (;p =13 (p)l, o (323 coefficient of the Wess-Zumino-Witten-NovikodWVZWN)
action which represents the central charge of the correspond-
or ing current algebrd16]. It is also this ratio[see Eq.(5)]
which needs to be quantized ftarge gaugeinvariance of

1 the theory. In the full quantum theory, however, this ratio
b db vd
fé C[1+H2(0)]_ 6|mf ‘e €pvn (—),p ——I1* a(p)|p 0 Changes as
= ——¢€, k2 : 2 4mm [ 47m Z5\?( 4mm
gmg ! a0c(0.0.0 (325 772 — 772 ) :zm(—s) WZ ) (33)
9 0° /o 21\ g

This relation is quite crucial in that it relates the Chern-

Simons coefficient in the axial gauge, at any order, to the

parity violating part of the three gluon vertéxith vanishing  whereZ; andZ, are the wave function and the vertex renor-
momenta at the same order. Thus, one can give a diagrammalization constants for the gauge fig¢ls we have defined
matic representation for the Chern-Simons coefficient in theearliep, while Z,, represents the renormalization of the
axial gauge, which is very convenient for studying an allChern-Simons coefficient. By definition, of courgg,=[1
order proof of the generalization of the Coleman-Hill result +11,(0)], and since in the axial gauge we ha&g=2Z; [see

to non-Abelian theories. It is also clear from this identifica- Eq. (28)], it follows that
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47m
92

4m
( (34)

47m
7 =Zn 2 =[1+115(0)]

Kl»l:a HY

Since this is a physical quantity, it follows that, in the axial

gauge, the induced Chern-Simons coefficient takes on a FIG. 4. Diagram representing the possible mixing of the sources

physical meaning. K## and H”. The bold wavy line represents the complete gauge
In fact, let us next show that this expectation is indeedfield propagator. The diagram vanishes because of color identities.

true and that the Chern-Simons coefficient is independent of - ) ) )
n“ in the axial gauge. To prove this, let us add to our Lg-Where the restriction on the right-hand side stands for setting

grangian density the following source terms: all the field variables as well as momenta equal to zero.
It is easy to see that, to all orders in the quantum theory,
L — J— ,ap v
ﬁsource:J,L,aAZJrJaFaﬂ(naca_ can?) we cannot have a vertex of the forkt®H”. In fact, let us

recall that in the axial gauge the ghost propagator and the
ghost vertex do not renormalize. Similarly, just as we noted
that the vertices involving the sour¢&“? do not renormal-
ize, we can also show that the vertex involvid¢g does not
(39 renormalize in the quantum theory either. It follows from

+K#3D e+ L2

1 _
__ “fabcnab a
2fa ‘c CC) +H“caAM.

_ this that the only diagram that can give rise to a mixing of
Thus, defining the source&K*® andH” is as shown in Fig. 4. From the fact
Liotai= L+ Lsource that the vertexk“3A°cC is anti-symmetric in the internal
indices while the verte1#A3c® and the gauge propagator
we note that, under a BRST transformatisee Eq(13)], are symmetric in the internal symmetry indices, it follows
that this diagram vanishegAlternately, such a vertex, if it
B a A 1 abenb o existed, would involve a single internal index, which is im-
OLtotar= @| I4H(D %) —1977%| — §f cc possible to construct from the structures present in the
theory)
_ 9 totall Let us next analyze if a vertex of the forkr“2H”A} can
+iFan2+Hr——|. (36)  be generated in the quantum theory. To that extent, let us
an* note the following simple identity in the axial gauge:
Thus, as before, making a field redefinition inside the path J - i _ _
integral, which coincides with a BRST transformation, we a—D(—p)=—D(—p)F“(—p,0,p)D(—p) (39
can derive the equation which describes how the effective Pu 9
action changes witln*. Let us simply note the result here: where we have represented the ghost propagatd® tand
ol ST ST the ghost vertex bT without the internal symmetry indices
— == f d3p (remember that these do not receive any quantum correction
an* SAY(—p) SK™3(p) SHH(—p) and, therefore, coincide with their tree level fopmsamely,
SF¥(p) T 5ab

iD2°(p)=i6*"D(p)=

SHH(p) 8c3(—p) (n-p)
_ oI 5T . 37) Tp.,abC(_p,01p):fabcr‘,u,(_p,olp):gfabcnﬂ.
5c?(—p) SL%(p)dHA(—p)

The identity, in Eq(39), is reminiscent of the Abelian iden-

This is the master identity from which we obtain tity involving fermion lines; namely, it says that differentiat-
ing the ghost propagator is equivalent to introducing a pho-

P 3T ton line with zero momentum. Using these, as well as the
— | & T fact that the vertices involving K*# or aH# do not renor-
anP OA, 6A, 6AY D1 .Pp.Ps=0 malize, we note that the only diagrams which can generate a
vertex of the typeK*2H ”A’{ are as shown in Fig. 5. Evalu-
5T 5T ating these at zero external momenta, we obtain
= —€ v
M SAS SADSAS SAY SK 74 5HP i i
PN el 'h'! /V’)\ UM
ST ST ~f d*p[f2* 2 D(—p)D;, (P)Thipip (P, —P,O)D..5 (P)

[N

D1.Py.Pa=0 4 fad’a

+
a b d o,d P C i !~ ~ ~ Th!
5A,U,5AV5A(T (SK 5H 6A)\ fa bb D(_p)r)\(_p,o,p)D(_p)DZVb (p)] (40)

+ permutations (39 From Eg.(30), we note that we can write
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< XK

(@) (v)

FIG. 6. Diagrams which can contribute to the Chern-Simons
coefficient at one loop.

FIG. 5. Diagrams contributing to a vertex of the tﬁp%H”Af . d 8T _
The sum of the two diagrams vanishes. W KN na sAD SAC =0. (43)
M v A Py.py.P3=0
’ ror r (9
VA _ d . .. ..
Do ()T iy (p7_pv0)Di/cy(P)—'9fdbc—D 2(p). Namely, the Chern-Simons coefficient is independent of the

7Py (41  choice ofn* as was stated. This is consistent with our ob-

servation that the Chern-Simons coefficient takes on a physi-
Using this, as well as Eq39), the contribution of Fig. 5in  cal meaning in the axial gauge.
Eq. (40) can be simplified as

IV. ONE-LOOP CALCULATION

- 3| faa’a’ dba’ da’ In this section, let us check explicitly, at the one loop
f d p[f B(-p)(igf ) D v (P) level, that the Chern-Simons coefficient is independemt“of
as was shown, from general arguments, in the previous sec-
T Jd ~ - : e )
4+ faa’a’fa’bb (—ig)(—D(—p)) Da "b’ (p)} t|o_n. Let us recall that the Chern-Slm_ons _coefﬁClent, in the
d axial gauge, can be related to the parity violating part of the
3 three gluon amplitude with all external momenta vanishing.
:igfaa’a”fdba”f d3p—[f)(—p)Dda (p)]=0. At the one loop level, there are two such diagrams that
Py would contribute to the Chern-Simons coefficient—one is
(42) the triangle graph and the other involves the quartic interac-
tion vertex as shown in Figs(& and Gb). Let us first look
In other words, a vertex of the kind*2H ”A;) is not gener-  at the simpler of the two graphs, namely, the one involving
ated in the full quantum theory. It follows now that, in such the quartic interaction vertex. The contribution coming from
a case, Eq(38) leads to this diagram(contracted withe,,,,) can be written as

d3p ,V,V
165 = € f e (PIT (p=p ORI (T ™ (P = 0O

i d*p fdac iDdb’( ) F(O)}\VV)\( ~p.0.0)
= gf,w)\ (277)3 aplu »INT p 'b'be pv p, ’

f (2m)3 ap —[f9DY w(P)F(%A/bVC "Np,—p,0,0)]=0. 4

Here, we have used E¢41) as well as the fact that the tree action vertex vanishes. As we will see later, this property
level four point vertex is independent of momenta and hencgeneralizes in a simple manner to higher loops.

can be taken inside the differentiation. This shows that, of This analysis shows that the entire contribution, at one-
the two diagrams that can possibly contribute to the Chernloop level, to the Chern-Simons coefficient would come from
Simons term at the one loop, the one with the quartic interthe triangle diagram in Fig.(6). The triangle diagram can be
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simplified slightly by the use of the identity#1), but the evaluation is tedious and leads to the contribufidren contracted
W|th 6/'“/}\)

I?§’°)=—Ng3fab°f d3p 12im +i( 8im3p,, . 5imn, 4im*n, B 8im°n, )
b (2m)3[(p?—m*)? 9P\ (p?—m?)® (p*~m?)(n-p) (p’—m?)?*(n-p) (p’—m?)3(n-p)
d®p  12im 6 9°N
- 3¢abc — 3fabcl _ _~ | _ Y " fabc
Ng°f f(zﬂ)3(p2_m2)2 Ng>f ( 477) 69 47_rf : (45
|
It follows now from Eq.(32b) that, at one loop, D(O)ab(p): 52b B p,.A(p) - A L(—P)
wr p?—m?| " [p-A(P)]  [p-A(=p)]
g°N
m§0)= o —. (46) PP A(P)-A(—p)
[p-A(p)][p-A(=p)]
Alternately, the shift in the tree level Chern-Simons coeffi- +ime AN=p) }
cient, due to one-loop effects, is A p-A(=p)]
5*°p P,
¢? o AP AP (50
mII$)(0)= N (47)

The covariant gauge propagator would follow from this with
There are several things to note from this calculation. Firstthe choice
we see explicitly that the one-loop Chern-Simons coefficient
is independent ofi*, consistent with the proof of the earlier
section. Second, since the wave function and the vertex

renormalizations for the gauge field are identical in the axial ip~
gauge[see Eqs(28) and(34)], in this gauge, at one loop, A*(p)=— E
A7m @ Am while the propagator in the general axial gauge would follow
5 =——+N. (48)  from the choice
g ren g
In other words, this ratio shifts byl [of SU(N)] at one loop. A (p)= ﬁ
This is exactly what was also found from a calculation in the Jé

covariant Landau gaugZ], which re-confirms that this is
indeed a gauge independent quantity. From an algebraic
point of view, one can give a meaning to the one-loop shiftBut, in fact, we can have more interesting gauge choices
of the Chern-Simons coefficient as the product of spin withyith
the dual Coxeter number of the grol6,17).

Let us note here that, in general, if we choose a general
gauge fixing of the kind

1
A”(D)Z—J—E[iﬂp“ﬂl—ﬁ)n“]- (51

1
__ = a\2
Lyt= 2(A#AM) ' (49) Here B is an arbitrary parameter and we note that such a

choice of gauge allows us to interpolate between the covari-

ant and the axial gauges. Namely, whes 1, we have the
then the tree level propagator for the gauge field, in thisovariant gauge, whereas f@#=0, we have the general
gauge, can be determined to b&/ is assumed to be inde- axial gauge. The tree level propagator, in this interpolating
pendent of the gauge field gauge, takes the form
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Db ) = & ,_ PullBR A=) plifp,—(1=A)n,]
- p2—m?| *" [ipp?+(1-B)(n-p)] [iBp?—(1-B)(n-p)]
PP [iBp+(1—pB)n]-[iBp—(1-pB)n] ime [igp*—(1—pB)n")
[iBp%+(1—B)(n-p)1[i Bp>—(1—B)(n-p)] “Migp2—(1-B)(n-p)]
- 5*°¢p,up,
[iBp%+(1-B)(n-p)I[ip*—(1-B)(n-p)]

(52

For ¢=0, this provides an infrared safe gauge, which inter-amplitudes are analytic in the momentum variables. This,
polates between the Landau gauge and the axial gauge. Weerefore, would be the generalization of the Coleman-Hill
note that, following earlier discussions, we can write an identesult to non-Abelian gauge theories. It will follow from this
tity which will describe the8 dependence of various ampli- result that the ratio #m/g? has no quantum correction be-
tudes. Thus, adding a source Lagrangian density of the forrjond one loop in any gauge.
To simplify our proof, let us employ a compact notation

gsoume:y,aA;HaFwi(;aca_ga,?aH Ku,a(DMCa) where we treat the amplitudes as matrices in the Lorentz and
internal symmetry space. Thus, we defldigD, I'* andI"**
to represent respectively the complete two point function, the
propagator, the three point and the four point vertex func-
tions for the gauge fields. In this notation, then, we have

1
_ = fabccbcc

+ a
L 2

+H(g"c?—nkc?)A2

we can derive the master identity describing fhelepen-

dence of the effective action to be of the form I[Ib=-1, (54
g ST ST and, furthermore, when the momentum associated with the

— f d3xd3y free index vanishes, we can obtain, using this, from(86),

B SAL(X) SKH3(x) SH(y)
M=igd Il (553
. ST 5T SF3(x) oI
5c(x) SLA(x)SH(y)  OH(Y) sca(x) | or
(53) DI'*D=igD(4"I)D=igd"D. (55b)

While we have not done this, we believe that it is possible tdiere and in what follows¢" represents the derivative with
show from this that the ratio#m/g? is independent 0B, as ~ respect to the appropriate momentum and we have ignored

has been explicitly seen from the one loop calculation. ~ Writing out the explicit internal indices for simplicity.
(Namely, the internal symmetry factors simply come out of

the integrals and are not relevant to our proof as will become
evident shortly. We recognize Eq55) as the relation in Eq.

In this section, we will argue that, in the axial gauge, the(41) in our compact notation.
Chern-Simons coefficient receives no contribution beyond In analyzing the higher loop contributions to the Chern-
one loop, when themall gaugeWard identities hold and the Simons coefficient, let us note that there are two possible
classes of diagrams which are of interest and are shown in
Figs. 7 and 8. Let us look at the class of diagrams in Figs.
7(a) and 1b) with all external momenta vanishing. Here the
hatched vertices and the bold internal lines represent respec-
tively the three point vertices and the propagators, which

V. PROOF OF THE MAIN RESULT

(@) (v)

FIG. 7. A class of diagrams that can contribute to higher order
corrections of the Chern-Simons coefficient in the axial gauge. The
hatched vertices and the bold internal lines represent respectively
the three point vertices and the propagators which include all the FIG. 8. Second class of diagrams that can contribute to higher
corrections up tan-loop order. The cross-hatched vertex and theorder corrections of the Chern-Simons coefficient in the axial
cross-hatched blokself-energy in the internal propagator include gauge. Here, the diagram involves vertices and propagators of the
all the corrections up ton(+ 1)-loop order. full theory.
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include all the corrections up ta-loop order, withn  to contributions only at two loops and higher. Furthermore,
=0,1,2 .... Thecross-hatched vertex, on the other hand,from the definition given above, we can write, in the notation
includes all the corrections up to ¢ 1)-loop order, starting described earlier,
from one-loop(namely, it does not contain the tree level

term). Similarly, the cross-hatched loop in the internal propa-

gator stands for the self-energy, which includes all the cor-

rections up to §+1) loops (by definition, the self-energy

does not contain the tree level two point funchiowe will The contributions from the diagrams in Figs.a7 and

put an overbar, on these two factors, just to emphasize tha(b), when contracted witfz,,,, , would yield a part of the
they do not contain the tree level contribution. It is clear now(n+2)-loop corrections to the Chern-Simons term and take
that, by construction, the diagrams in Fig&)7and 7b) lead  the form

I =igd . (56)

| g;;)i)ab):Trf d3qe, \{[DI#DI"D(I*+T*DI) ] D+ cyclic)
=—ig® TrJ d3qe, ([ *Dd"TI(D T+ *DIN ] Y+ cyclic}

=—ig® Trf d3qe,,,\ [ (D TIDIT) " Y+ cyclic] =0 (57)

foralln=0,1,2 ... ,where the superscriph(+1) stands for indices, as is clear from E430). However, as we have em-
the order of the terms in the expression. Here, “Tr"” denotesphasized earlier, the internal symmetry factors are not very
the trace over the matrix indices in the Lorentz space and weelevant to the proof of our result.

have used the identities in Eq&4)—(56) in deriving Eq. With these, let us look at the class of graphs in Fig. 8,
(57). (There are also matrix indices associated with internalvith all external momenta vanishing. As opposed to the dia-
symmetry and these are not traced, but it is clear that they agrams in Fig. 7a) and 1b), here all the vertices and the
not relevant for our argumentWe note that, because of the propagators include corrections to all ordénamely, they

€ tensor, the factor inside the divergence in the integrandre the full vertices and propagators of the theowith the
picks out only parity violating terms in the amplitude, which use of Eqs(55b) and (58), the contraction of,,,, with the
converge sufficiently rapidly to zero ap—c. This shows amplitude in Fig. 8 yields

that all the higher loop contributions to the Chern-Simons

coefficient, coming from the class of diagrams in Fig&) 7

and 7b), vanish. |(8):Trf d*qe,,\DI'#DI'"

We can, similarly, show that all the contributions, to the
Chern-Simons coefficient, coming from the class of dia- o, 3 L A
grams in Fig. 8, identically vanish. We have already seen it =-9g TrJ d°qe, "D T
explicitly in our one-loop calculation in the previous section.
Here, we show that it is true for this class of diagrams at any
loop. Let us note that, from the identities in E§0), we can
also express the four point function with two external mo-
menta vanishing, in terms of the three point vertex with oneOnce again, the integrand in EG9) is sufficiently conver-
external momentum vanishing in the compact form(@é  gent(because it involves only the parity violating parts of the
momenta are incoming amplitudé so that the integral vanishes.

Since these are all the diagrams that can contribute to the
higher loop corrections of the Chern-Simons coefficient, we
have shown that, in a Yang-Mills-Chern-Simons theory, the
(58)  Chern-Simons coefficient, in the axial gauge, does not re-

ceive any correction beyond one loop order. In other words,
where, again, we have suppressed the internal indices and weuch like the proof in the Abelian theory, we have used the
follow the convention that the momenta associated with thenon-Abelian Ward identities in the axial gauge, together with
indicesv,\ of the four point vertex as well as that associatedthe analyticity of the amplitudes in momentum space, to
with the indexv of the three point vertex vanish. Written out show that the Chern-Simons coefficient has no quantum cor-
explicitly, the right hand side of Eq58) would involve two  rection beyond one loop in this gaug&e have explicitly
terms with different distributions of the internal symmetry checked that, in the axial gauge, the two loop corrections of

= —ngrf d*qo*(e,,\D'T'")=0. (59)

J
Ir'"\q,-q;0,0=ig|-——TI"(q,—q’;9—q") =igoIr”
e N a'=q
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the Chern-Simons coefficient do add up to zetn.theories lian case. It is worth remarking here that, in a recent paper

where these assumptions are valid, we will expect our proof22], it has been argued, using a generalization of the method

to hold true. On the other hand, if either of these assumptionsf holomorphy due to Seiberf23], that in a Yang-Mills

is violated, the proof is expected to break down, which istheory interacting with matter fieldsyithout a tree level

quite similar to the case in the Abelian theory. Thus, forChern-Simons terpthere is no higher loop renormalization

example, in an Abelian theory with charged massless paref the induced Chern-Simons coefficient. Our result, for the

ticles, infrared divergences invalidate the second assumptiocase with a tree level Chern-Simons term, is not covered by

[18]. Similarly, at finite temperature, it is known that the this analysis(as the authors of Ref22] specifically point

amplitudes are non-analytic in the energy-momentum variout) and, in fact, this case is physically more meaningful

ables[10] and, consequently, the Coleman-Hill result is since, without a tree level Chern-Simons term, a loop expan-

known to be violated in this cagd9]. sion of the theory may not exist because of severe infrared
It is worth discussing the implications of this result in divergences. In such a case, general formal arguments may

some detail. After all, we have already argued, in Sec. I, thabe invalidated by the infrared divergences of the perturbation

the Chern-Simons coefficient is, in general, gauge depertheory.

dent. Therefore, even if it has no higher loop corrections in

the axial gauge, this may not hold in other gauges. For ex- VI. PURE CHERN-SIMONS THEORY

ample, in Refs.[20,21], the non-Abelian Chern-Simons . _ . _ .

theory was investigated by the use of gauge invariant regu- In this section, we will study in detail the pure Chern-

larizations in covariant gauges, and it was argued that th&imons theory[24] (otherwise also known as the theory

higher order radiative corrections are finite. Let us note heré’]) in the infrared safe axial gauge and show that it is a free

that[see Eq(34) and the discussion théesince the Chern- theory. The pure Chern-Simons theory can be obtained from

Simons coefficient does not receive any higher loop correcthe Lagrangian density in Eq1) [or (2)] by dropping the

tion in the axial gauge, it implies that, in this gauge, the ratioYang-Mills term(namely, it is the theory in thev— o limit).

47m/g? also does not receive any higher loop correction It is well known that, in the Landau gauge, this theory is

On the other hand, as we have argued, this ratio is a gaudBvariant under a vector supersymmef8p], in addition to

independent quantity. Consequently, our result can also bée usual BRST symmetry of E¢L3). Namely, the Lagrang-

understood as saying that, in any infrared safe gauge, tHan density

ratio 47rm/g? does not receive any contribution beyond one

loop. This, in fact, is the appropriate generalization of the L= Tewaa 9 A2+ gfabcAbAc

Coleman-Hill result to non-Abelian theories. In particular, 2 ] v

we note from Eq(33) that, since in a non-axial type gauge a La i a

such as the Landau gaugg;#Zs, in such gauges, the —F(9,A"%) + d#c%(D ,c7%) (61)

Chern-Simons coefficientZ(,,) will be corrected at higher

loops, but in such a way that the ratiaréh/g? is unrenor-

malized beyond one loop.

is, of course, invariant under the BRST transformations of
Eq. (13), but it is also invariant under the transformations

Such a result has, of course, been expected and predicted SAC=¢,  €"oMc?
[5,7]. In fact, there is a plausibility argument for this, based mooomy
on thelarge gaugeinvariance of the theory in the following 5c3=0
way. The only dimensionless ratio, in this theorygfé4mm
where 4 is a simple normalization. Therefore, one can use 5C3= et AR
this as a perturbation parameter and write m
. oF%=¢€#(D ,c?). (62
4m 41m g? \"
9° - 9 ngo an(N) 47m (60 Heree* is a constant vector parameter of the transformations
ren

and is anti-commuting in nature. Furthermore, the generators
of these transformations satisfy a supersymmetry algebra,
with ag(N)=1 and, as we have seea;(N)=N. On the unlike the BRST charges which are nilpotent.

other hand, the invariance of the Chern-Simons theory under | et us next show that this supersymmetry is not particular
large gaugetransformations requires that this ratio be quan-to the Landau gauge only. It is easy to see that there is a
tized[see Eq.5)], both in the bare and in the renormalized vector supersymmetry in the axial gauge as well. Thus, the
theory (they do not have to be the same positive intgger Lagrangian density

Clearly, this is possible for arbitrary integers and color fac-

tors, only if the series, on the right-hand side of E@P), , 9. abenb

terminates after the second term, namely, only if there is no L= 56” XAi d, AR+ §fa AVAS
contribution in Eq.(60) beyond one loop. Our proof explic- .

itly verifies that this expectation is, indeed, true. However, it — Fa(nﬂAZ)—canM(D#ca) (63)

is important to recognize that our proof uses constraints com-
ing only from the behavior undesmall gaugeinvariance is invariant under the BRST transformations of Ef3) as
(and, of course, analyticitymuch like the proof in the Abe- well as the transformations
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SA%=€,,,,€"nc? 5T
G#V}\n)\ a b
_ 5T R 5T B
A= — erA P AT p)oFo(p)  aoA(—p)oci(p)
5= — Al (= P)SF°(p) c(—p)oci(p)

(66)

This immediately leads t&Z,,=1. Similarly, taking one
o ) . ) higher derivative, it is easy to show that the parity violating
In fact, it is quite easy to check that, in any linear, homogethree point vertex function is not renormalized either. In
neous infrared safe gauge, the theory develops an invarianegher words, the pure Chern-Simons theory is a free theory.
under a vector supersymmetry. These conclusions are valid provided one regularizes the
Let us analyze the pure Chern-Simons theory in the axiatheory such that all symmetries, including the vector super-
gauge. In such a case, there is the usual Ward identities fosymmetry, are maintained. We would like to note here that
lowing from the BRST invariance of Eq13). And as we such a conclusion was reached earlier from different points
have noted earlier, the structure of the theory leads to the factf view [7,26—2§. In particular, in Ref[26], it was shown
that, in the axial gauge, there is no wave function or vertexhrough a perturbative calculation in the pure Chern-Simons
renormalization for the ghosts. Let us note now that the newheory that the complete effective action in axial gauges is
vector supersymmetry will also lead to a Ward identity, fur-the three level action for certain cla_sses of gauge invariant
ther restricting the amplitudes. The master identity, follow-regulators. Here we have derived this result from purely al-
ing from the invariance of the theory under H4), takes ~9ebraic considerations.
the form[we note here that the derivation of this identity is
much simpler than the usual Ward identities because the Vil. CONCLUSION
transformations in Eq(64) are, in fact, linear and, conse- In this paper, we have studied in detail the question of
quently, we do not need additional sources in the Lagrangiahigher order corrections to the Chern-Simons coefficient in a
density] Yang-Mills-Chern-Simons theory. We have shown that the
Chern-Simons coefficient is, in general, a gauge dependent
quantity. However, it takes on a physical significance in the
J' d3xl e or axial gauge. Usindi) the Ward identities of the theory and
pvA SA%(X) (i) the analyticity of the amplitudes in the momentum vari-
ables, we have shown that, in the axial gauge, the Chern-
ST ST Simons coefficient does not receive any quantum correction
" aﬂca(x)+A2(x) = =0. (65 beyond one loop. This allows us to deduce that the ratio
SF(x) 6c%(x) 47rm/g?, in a non-Abelian theory, is not renormalized be-
yond one loop in any infrared safe gauge. This, therefore,
This, indeed, constrains the theory enormously. Combiningepresents the generalization of the Coleman-Hill result to a
with the facts that theFaAZ vertex, the ghost two point non-Abelian theory. Various other interesting properties of
vertex and the ghost interaction vertices are not renormafhe theory are also discussed.
ized, it immediately leads us to the result that the two point
and the three point functions for the gauge fields are not

SFa=etd,c?. (64)

c(x)n*
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