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Symmetry nonrestoration in a Gross-Neveu model with a random chemical potential
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We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with a random
chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as well asZ2

chiral symmetry. At high temperature theZ2 chiral symmetry is always restored. In three dimensions the
initially spontaneously broken charge conjugation symmetry is not restored at high temperature, irrespective of
the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry
undergoes a quantum phase transition from a symmetric state~for weak disorder! to a broken state~for strong
disorder! as the disorder strength is varied. For any given value of disorder strength, the high-temperature
behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two
dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high tempera-
ture.

DOI: 10.1103/PhysRevD.63.085014 PACS number~s!: 11.10.Kk, 05.40.2a, 11.10.Wx, 11.30.Er
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I. INTRODUCTION

Intuitively, when heated, a system with initially broke
symmetry will recover its symmetry because thermal fluct
tions are able to overcome potential barriers. But a coun
example was noticed by Weinberg@1#: For the four-
dimensional O(N)3O(N) scalarf4 model, he showed tha
the system can remain in the broken phase even at arbitr
high temperature. This phenomenon is called inverse s
metry breaking or symmetry nonrestoration~SNR!, depend-
ing on whether the system was in a symmetric or a bro
phase at zero temperature.

Since Weinberg’s observation, SNR has been a subjec
academic curiosity or a candidate for the resolution of c
mological problems caused by topological defects such
monopoles and domain walls~see Ref.@2# for a review!.
According to Bajc’s classification@2#, there are three classe
of SNR mechanisms in field theory:~i! a prototype case suc
as the two-scalar model@1,3,4#, ~ii ! flat directions in super-
symmetric theories@5#, and ~iii ! large charge density~or
chemical potential! @6,7#. Here we restrict ourselves to clas
~iii !.

If a large enough charge cannot be stored in therm
excited modes at high temperature, it must reside in
vacuum, and this is a sign of SNR. In field theory, a sca
field ~order-parameter field! gets a positive mass term b
thermal effects, but a negative one by the effects due to
chemical potential. For a fixed charge~i.e., in the canonical
formalism!, the chemical potential is temperature depende
In this case, if the effect of the chemical potential on t
mass exceeds the thermal effects at sufficiently high t
perature, the scalar field acquires a nonzero vacuum ex
tation value~i.e., SNR! @6#.

However, in an open system of the model which does
belong to class~i! or ~ii !, the symmetry may always be re
stored at high temperature. In the grand canonical formali
0556-2821/2001/63~8!/085014~8!/$20.00 63 0850
-
r-

ily
-

n

of
-
s

ly
e
r

e

t.

-
c-

t

,

the chemical potential and the temperature are indepen
parameters and so the thermal effect on the mass alw
surpasses the effect of the chemical potential at sufficie
high temperature, for a fixed chemical potential. For e
ample, consider the Gross-Neveu~GN! model @8–11# with
chiral symmetry. At finite chemical potential the initiall
spontaneously broken chiral symmetry is always restore
high temperature@12,13#.

In order to find a new kind of SNR in four-fermion mod
els, we will extend the GN model at finite chemical potent
to a disordered model with random chemical potential. R
cently, disordered nonrelativistic Dirac fermions in two sp
tial dimensions have been studied in relation to the inte
quantum Hall transition@14#. Pure fermions exhibit such a
transition as the value of the mass is tuned through zero,
its universality class is different from the one observed
actual experiments. Usually three types of~static! disorder
are considered for a more realistic model: the random ga
potential, random chemical potential, and random mass.

Motivated by the SNR mechanism~iii !, we introduce the
~relativistic! GN model with random chemical potential i
Sec. II. If the chemical potential has a Gaussian distribut
at each site, our model is equivalent to the four-fermi

model with two kinds of four-fermion interaction, (C̄C)2

and (C̄g0C)2 @see Eq.~3!#, and has charge conjugatio
symmetry in addition toZ2 chiral symmetry. We discuss th
physical implications of a new four-fermion interactio

(C̄g0C)2 at the classical level. In Sec. III we examine th
behavior of these symmetries as the temperature or diso
strength is varied using the 1/N expansion in three and two
dimensions. WhileZ2 chiral symmetry is always restored a
high temperature, the charge conjugation symmetry exhi
SNR. In addition, we check the validity of the mean fie
approximation~the leading approximation in the 1/N expan-
sion! in two dimensions. In Sec. IV the fundamental orig
©2001 The American Physical Society14-1
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SEOK-IN HONG AND JOHN B. KOGUT PHYSICAL REVIEW D63 085014
of SNR for charge conjugation symmetry is discussed c
ceptually at the quantum level. Our conclusions are p
sented in Sec. V.

II. GROSS-NEVEU MODEL WITH RANDOM
CHEMICAL POTENTIAL

The Euclidean Lagrangian of the GN model at fin
chemical potentialm is given by

L5C̄~]”1mg0!C2
g2

2N
~C̄C!2, ~1!

whereg2(.0) is the coupling constant of the four-fermio

interaction (C̄C)2 and N is the number of flavors of the
Dirac fermionC. The g matrices are 434 and Hermitian.
Let us consider the system under the influence of a rand
chemical potentialr(x) with the Gaussian distribution
exp@2*ddx(N/2R2)r2# at each site whereR2 (.0) is the
strength of disorder andd the dimension of the Euclidea
space. The Gaussian noise@15# is characterized by correla
tion functions

^r~x!&50, ^r~x!r~x8!&5
R2

N
dd~x2x8!, ~2!

where averages are taken at fixedC.
After integrating out the random chemical potential, o

model is equivalent to the four-fermion model

L5C̄]”C2
1

2N
@g2~C̄C!21R2~C̄g0C!2#, ~3!

with Z2 chiral symmetry $C→g5C, C̄→2C̄g5% and

charge conjugation symmetry$C→CC̄T, C̄→2CTC†%.
Here the matrixC satisfiesC†C51, C†gmC52gm

T . Under

charge conjugation,C̄C and C̄g0C transform toC̄C and

2C̄g0C, respectively. Hence, the Lagrangian, Eq.~1!, with
definite chemical potentialm does not possess charge con
gation symmetry~i.e., fermion-antifermion symmetry!. Note
that in Eq.~3! the chemical potential term does not appe
explicitly.

We will study the GN model with random chemical p
tential by the leading approximation of the 1/N expansion in
three and two dimensions. To easily incorporate the 1/N ex-
pansion, let us rewrite it by introducing a scalar auxilia
field s(x) that can be interpreted as a random mass wit
Gaussian distribution:

L5C̄~]”1s1rg0!C1
N

2g2
s21

N

2R2
r2. ~4!

If we derive this Lagrangian from Eq.~3!, the random
chemical potentialr(x) plays the role of another scalar au
iliary field. TheZ2 chiral symmetry and the charge conjug
08501
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tion symmetry are now expressed as$C→g5C,C̄→
2C̄g5 ,s→2s% and $C→CC̄T,C̄→2CTC†,r→2r%,
respectively.

To grasp the characteristic features of the GN model w
random chemical potential, let us consider the physi
implications of the last term proportional t
2R2(charge density)2 in the equivalent four-fermion model
Eq. ~3!, at the classical level. Contrary to the usual elect
statics~in the limit of the large photon mass!, this term im-
plies an attractive interaction between the same kinds
charges and a repulsive one between different kinds
charges. Since the classical Lagrangian, Eq.~3!, has a charge
conjugation symmetry, fermions and antifermions can clu
in the system with equal probability. By diffusions of th
charges and repulsive forces between different kinds
charges, however, only one kind of charge~i.e., only fermi-
ons or only antifermions! remains in the system and the o
posite kind of charge is expelled to the outside of the sys
~i.e., reservior! because our system is an open syste
Charge separation occurs between our system and the
servior, which does not necessarily cause a breakdown
translational invariance of the system. It will be shown
Sec. III that this qualitative result from the classical Lagran
ian, Eq.~3!, is the case at zero and high temperature in th
and two dimensions except for the two-dimensional syst
with R2 small. The accumulation of only one kind of charg
in the system leads to the spontaneous breaking of the ch
conjugation symmetry. In order to obtain more reliable
sults the model, Eq.~3!, should be studied by a nonperturb
tive method such as the 1/N expansion at the quantum leve
Such an analysis by the Lagrangian, Eq.~4!, will reveal in
Sec. III that the two-dimensional theory withR2 small is in a
symmetric phase of the charge conjugation symmetry an
the same numbers of fermions and antifermions exist in
system.

On the other hand, the GN model is a relativistic model
superconductivity. Moreover, the attractive interaction b
tween the same kinds of charges in the last term of Eq.~3! is
similar to the BCS theory of superconductivity where t
interaction between charges is mediated by phonons. In
Lagrangian, Eq.~4!, two scalar auxiliary fields may be inter
preted as phonon fields corresponding to lattice vibratio
The contact four-fermion interactions imply the limit of th
large phonon masses which is guaranteed in the largN
limit. This is the reason why the kinetic terms for phono
fields s andr are suppressed in Eq.~4!.

III. BEHAVIOR OF Z2 CHIRAL SYMMETRY
AND CHARGE CONJUGATION SYMMETRY

AT ZERO AND HIGH TEMPERATURE

For finite-temperature field theory we adopt th
imaginary-time formalism. At inverse temperatu
b(5T21), the fermion fields are antiperiodic onRd21

3@0,b#, while the scalar auxiliary fields are periodic. Let u
introduce the notation
4-2
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E
p

(T)

[T (
n52`

` E dd21p

~2p!d21
,

E
p

(0)

[E ddp

~2p!d
.

Integrating out the fermion fields in the partition function f
Eq. ~4! we obtain the effective action for the auxiliary field
s and r. In order to investigate the vacuum structure w
need to find the finite-temperature effective poten
VT(s,r) by taking s and r as constant fields: To leadin
order in the 1/N expansion,

VT~s,r!

N
5

s2

2g2
1

r2

2R2
22E

p

(T)

ln@~p02 ir!21p21s2#,

~5!

wherep05(2n11)p/b[vn (n5 integer) at nonzero tem
perature. Note that the effect of the chemical potentialr is to
shift the energy by2 ir.

To evaluate the integration in Eq.~5!, we need some
mathematical formulas. By the standard method of cont
integration@16#,

T (
n52`

`
1

~vn2 ir!21s2

5
1

2usu F12
1

11eb(usu1uru)
2

1

11eb(usu2uru)G ,

~6!

T (
n52`

`
vn2 ir

~vn2 ir!21s2

5 irT (
n52`

` vn
22~s22r2!

~vn
21s22r2!21~2rvn!2

5
i

2 F sinh~b r!

cosh~bs!1cosh~br!G . ~7!

When the GN model is studied in the canonical formali
~i.e., with a fixed charge! @17#, similar calculations appea
with imaginary chemical potential. In this case a regulat
factor of the form eivnt is needed in evaluating the summ
tion in Eq. ~7! and ensures a finite result in the limitt→0
after the Matsubara sum has been performed. By using
~6! and ~7!, we obtain

T (
n52`

`

ln@~vn2 ir!21s2#

5T$ ln 21 ln@cosh~bs!1cosh~br!#%, ~8!

where thez-function regularization was used to determi
the field-independent constant. At zero temperature, th
formulas reduce to
08501
l

r

g
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E dp0

2p

1

~p02 ir!21s2
5

u~ usu2uru!
2usu

, ~9!

E dp0

2p

p02 ir

~p02 ir!21s2
5

i

2
sgn~r!u~ uru2usu!,

~10!

E dp0

2p
ln@~p02 ir!21s2#5max~ usu,uru!.

~11!

Using Eqs.~6!, ~7! andEs[Ap21s2, we have

]

]s S VT

N D5
s

g2
22sE dd21p

~2p!d21

1

Es

3F12
1

11eb(Es1r)
2

1

11eb(Es2r)G , ~12!

]

]r S VT

N D5
r

R2
22 sinh~br!

3E dd21p

~2p!d21

1

cosh~bEs!1cosh~br!
.

~13!

To renormalize the effective potentialVT(s,r) to leading
order in the 1/N expansion let us consider the GN model
zero temperature and in the absence of the random chem
potential because the effects of temperature and cons
chemical potential do not change the ultraviolet behav
@18#. Define 1/G2[1/g221/gc

2 , with

1

gc
2
[4E ddp

~2p!d

1

p2
.

In 2,d,4, the GN model is in the broken phase of theZ2
chiral symmetry for negativeG2, corresponding to strong
coupling (g2.gc

2) in the cutoff regularization, while it is in
the symmetric phase forG2>0, corresponding to weak cou
pling (0,g2<gc

2). In particular, in two dimensions, theZ2

chiral symmetry of the GN model must be broken no mat
how we choose the couplingg2 @9#. In the broken phase,

1

g2
54E ddp

~2p!d

1

p21M2
, ~14!

where M5u^s&u (.0) is the dynamically generated fe
mion mass at zero temperature.

From now on, we will adopt dimensional regularizatio
whereG2 is equal to the regularizedg2.

A. Three dimensions

In this case, renormalization is not needed to leading
der of the 1/N expansion~in dimensional regularization!. By
4-3
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making use of Eq.~11!, we can find the zero-temperatu
effective potentialV0(s,r) directly:

V0~s,r!

N
5

s2

2G2
1

r2

2R2
2

1

6p

3@max3~ usu,uru!23s2 max~ usu,uru!#,

~15!

where 1/G252M /p for broken Z2 chiral symmetry. The
gap equations have four kinds of solution (usu,uru): ~i! (0,0),
~ii ! (M ,0), ~iii ! (0,2p/R2), and ~iv! „AM (M22p/R2),M ….
The solution~iv! exists only forM.2p/R2 and corresponds
to saddle points. Figure 1 shows the zero-temperature e
tive potential as a function ofs/M andr/M , for brokenZ2
chiral symmetry.^r&50 is metastable, irrespective of th
values of G2 and R2. For uru.usu, however,V0(s,r) is
unbounded from below due to the2uru3/(6p) term, which
indicates breaking of the charge conjugation symmetry. T
result stems from the fact that the term2uru3/(6p) arising
from quantum effects surpasses the effect of the probab
distribution @r2/(2R2)# for large uru.

At finite temperature, using Eqs.~6!, ~7! and dimensional
regularization, we obtain

E
p

(T) 1

~vn2 ir!21Es
2

52
1

4pb
$busu1 ln@112e2busu cosh~br!

1e22busu#%, ~16!

FIG. 1. The zero-temperature effective potentialV0 /(NM3) in
three dimensions as a function ofs/M andr/M for R2M510, in
the case of theZ2 chiral symmetry breaking (G2M52p).
08501
c-
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E
p

(T) vn2 ir

~vn2 ir!21Es
2

52
i sgn~r!

4pb2 Fbusu lnS 11eb(usu1uru)

11eb(usu2uru)D
1Li2~2eb(usu1uru)!2Li2~2eb(usu2uru)!G . ~17!

Here the polylogarithm Lin(z) is defined ~for n.0) as
Li n(z)5(k51

` zk/kn ~see Ref. @19# for useful properties!.
From these formulas, the finite-temperature effective pot
tial VT(s,r) is given by

VT~s,r!

N
5

s2

2G2
1

r2

2R2
2

s3

3p
1

1

pb3
@Li3~2eb(s1r)!

1Li3~2eb(s2r)!2bs$Li2~2eb(s1r)!

1Li2~2eb(s2r)!%#, ~18!

up to a field-independent constant. At sufficiently high te
perature,

VT~s,r!

N
'S ln 2

p DT~s22r2!. ~19!

While the initially spontaneously brokenZ2 chiral symmetry
is restored at high temperature, charge conjugation symm
is not. Hence our model exhibits nonrestoration of cha
conjugation symmetry irrespective of the values ofG2 and
R2. We may interpret this phenomenon as an inverse s
metry breaking becausêr&50 is metastable at zero tem
perature. Intuitively, SNR is related to the tachyonlike b
havior of the random chemical potential@see Eqs.~19! and
~24!#. In the quantum correction term of Eq.~5! the chemical
potential acts as a negative mass term (2r2) contrary to the
usual positive mass term (s2). From a different point of
view, we will discuss the origin of SNR conceptually in Se
IV.

B. Two dimensions

For dimensional regularization, we work in 21e dimen-
sions. In terms of the fermion massM, the zero-temperature
effective potential is given by
V0~s,r!

N
5

s2

2p F2112 lnS max~ usu,uru!1Amax2~ usu,uru!2s2

M D G
1

r2

2R2
2

uru
p

Amax2~ usu,uru!2s2, ~20!
4-4
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where Eqs.~11! and ~14! were used. Unlike in three dimen
sions, for largeuru the effect of the probability distribution
@r2/(2R2)# is comparable to the last term ('2r2/p) in Eq.
~20! arising from quantum effects. The charge conjugat
symmetry can be controlled by the strength of disorderR2.
The system is in the symmetric state for 0,R2,p/2, while
in the broken state forR2.p/2. Fermions and antifermion
are equally probable in the symmetric state (^r&50), but
only fermions ~or antifermions! are allowed in the broken
state (̂ r&56`). Our system suffers from a quantum pha
transition atR25p/2 ([Rc

2). The gap equations have solu
tions (usu,uru): ~i! (0,0), ~ii ! (M ,0), and ~iii !
@A(2R22p)/(2R21p)M ,2R2M /(2R21p)# for R2ÞRc

2 ,
and~i! (0,;uru) and~ii ! (M ,0) for R25Rc

2 . The solution~iii !
exists only for R2.Rc

2 and corresponds to saddle poin
Figure 2 shows the zero-temperature effective potential
function of s/M andr/M in ~a! the symmetric and~b! the
broken phase for the charge conjugation symmetry.

To examine the high-temperature (b→0) behavior, let us

introduce the dimensionless quantitiesṼT5b2VT , s̃

5bs, r̃5br, M̃5bM . We want to expand the finite

temperature effective potential ins̃ and r̃ at high tempera-

ture ~i.e., for smalls̃ and r̃). In terms of the dimensionles
quantities, Eqs.~12! and ~13! are reduced to

FIG. 2. The zero-temperature effective potentialV0 /(NM2) in
two dimensions as a function ofs/M andr/M , for ~a! R251 and
~b! R2510.
08501
n

.
a

]

]s̃
S ṼT

N
D 5

2s̃

p F lnS us̃u

M̃
D 1E

0

`

dx
1

Ax21s̃2

3S 1

11e
Ax21s̃21 r̃

1
1

11e
Ax21s̃22 r̃D G

5
2s̃

p F H lnS p

M̃
D 2g1O~ s̃2!J

1H 7z~3!

4p2
1O~ s̃2!J r̃21O~ r̃4!G , ~21!

]

]r̃
S ṼT

N
D 5 r̃F 1

R2
2

2 sinh~ r̃ !

pr̃

3E
0

`

dx
1

cosh~Ax21s̃2!1cosh~ r̃ !
G

5 r̃F 1

R2
2

2

p
1H 7z~3!

2p3
1O~ r̃2!J s̃2

1O~ s̃4!G . ~22!

To obtain the O(r̃0) term in the brackets of Eq.~21! we used
the integration formula@20# for small s̃2:

E
0

`

dx
1

Ax21s̃2~11e
Ax21s̃2

!
52

1

2
F lnS us̃u

p
D 1g

1O~ s̃2!G . ~23!

Integrating Eqs.~21! and ~22!, at sufficiently high tempera-
ture, we obtain

VT~s,r!

N
5

1

p F lnS pT

M D2gGs21
1

2 S 1

R2
2

2

p D r2

1
7z~3!

4p3T2
s2r21•••, ~24!

up to a field-independent constant. Since the O(s̃0) term in
the brackets of Eq.~22! is exact,VT(s,r) has no term higher
than ther2 term that consists ofr fields only. At high tem-
perature, theZ2 chiral symmetry is always restored. How
ever, the behavior of the charge conjugation symmetry is
same as that at zero temperature. Hence, charge conjug
symmetry is not restored at high temperature, forR2.Rc

2 .
Until now in order to find the effective potentialVT(s,r)

we have used the mean field approximation~MFA! by taking
s and r as constant fields. This corresponds to the lead
approximation in the 1/N expansion where thes andr loops
4-5
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~i.e., the fluctuations of thes andr fields! are not included.
Let us check the validity of our calculations. In the largeN
limit the MFA is good, while for large but finiteN it may fail
due to the contribution from kinks in two dimension
@21,22#.

At first consider the case of the usual two-dimensio
GN model ~without the random chemical potential! where
the MFA predicts a wrong critical temperatureT0 (Þ0)
@21#. For 0<T,T0 the MFA effective potential is the
double well with two degenerate minima atM (T) and
2M (T), the solutions of the gap equation. As a result
quantum tunneling between two degenerate minima, the
tem has kink solutions alternating betweenM (T) and
2M (T). They have higher energies than the constant s
tions M (T) and 2M (T). The Helmholtz free energyF is
related to the internal energyU and the entropyS by F5U
2TS. SinceF5U at zero temperature, the constant soluti
is favored and the MFA is expected to be valid. If we co
sider the contribution from kinks explicitly, we find the av
erage~or blocking! potential @23# which has a plateau be
tweenM @[M (0)# and2M @21#. Even in the presence of a
arbitrarily small external field this potential is tilted to favo
M or 2M . Hence the contribution from kinks does n
change the physics materially and the MFA is qualitativ
valid at zero temperature. For 0,T,T0 the number of kink
configurations is sufficiently large to gain enough entro
and so their probability is overwhelming. Since the region
s5M (T) will, on the average, have the same weight
those ofs52M (T), we have^s&50, which indicates the
breakdown of the MFA. ForT>T0 the system is in the sym
metric phase@M (T)50# in the MFA and thus has no kink
solutions. Consequently, for the two-dimensional GN mo
the MFA is good only at zero and high temperatureT
>T0) and, by the formation of kinks, the true critical tem
perature turns out to be zero.

Now let us examine the validity of the MFA for the two
dimensional GN model with the random chemical potent
Eq. ~3! or ~4!. For the purpose of the present paper we c
sider only the cases of zero and sufficiently high tempe
ture. At zero temperature the MFA effective potent
V0(s,r) has degenerate minima at (usu,uru): (M ,0) for 0
,R2<Rc

2 and (0,̀ ) for R2.Rc
2 @see Figs. 2~a! and 2~b!#.

Hence for 0,R2<Rc
2 our system may have kink solution

for s alternating betweenM and2M , but no kinks forr. In
this case the situation is similar to that of the usual G
model in the previous paragraph. Thus it is expected that
MFA is good at zero temperature and for 0,R2<Rc

2 . For
R2.Rc

2 the MFA effective potential is unbounded from b
low and there is no tunneling between two degener
ground states because of an infinitely high barrier. Sos and
r do not have kink solutions. At sufficiently high temper
ture thes and r fields are decoupled from each other
VT(s,r) and can be treated separately. By restoration of
Z2 chiral symmetry in the MFA,s has no kink solutions,
irrespective of the value of the disorder strength. For
,R2,Rc

2 the charge conjugation symmetry is preserved
the MFA and so there are no kinks forr. For R2.Rc

2 the
situation is the same as that at zero temperature. ForR2
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5Rc
2 the MFA effective potential forr vanishes. AsR2 is

tuned throughRc
2 , the charge conjugation symmetry unde

goes a first-order phase transition from the symmetric ph
(^r&50) to the broken phase (^r&5` or 2`), following
positive or negative values of^r& according to the value o
^r& in the broken phase. So it is reasonable to assume thr
has no kink solution atR25Rc

2 . As a result, the MFA is
reliable at zero and high temperature for all values of
disorder strength.

IV. ORIGIN OF CHARGE CONJUGATION SYMMETRY
NONRESTORATION

In this section we discuss the mechanism of SNR for
charge conjugation symmetry conceptually at the quan
level. For convenience sets50 in Eqs.~4! and ~5! because
SNR is the effect of the random chemical potential. That

we neglect the four-fermion interaction (C̄C)2 and consider
the system of free massless Dirac fermions in the presenc
the random chemical potential. To leading order in the 1N
expansion the finite-temperature effective poten
VT(0,r)/N consists of two parts:~i! a term from probability
distribution @r2/(2R2)[PR(r)# and ~ii ! the grand free en-
ergy ~or grand potential! for free massless Dirac fermions a
constant chemical potentialr @[VT(r)#.

So it is essential to conceptually determine the value
the chemical potential thatVT(r) favors. By the symmetry
of VT(r) we can restrict ourselves to the positive chemi
potential without loss of generality. At first, consider the ca
of zero temperature. According to Fermi-Dirac statistics, f
mions fill all the energy levels to the Fermi energ
(5chemical potential! and antifermions are suppresse
Hence, the larger chemical potential, the larger charge~num-
ber! density (5 fermion number density2antifermion num-
ber density!. This result is retained at nonzero temperatu
Since the grand free energy density is minus the pres
@24#, it is a decreasing function of the~positive! charge den-
sity. Consequently, the large charge density~i.e., large
chemical potential! is preferred and, for all temperature
VT(r) is minimized at large chemical potential (uru→`).
This implies SNR for the charge conjugation symmetry
the open system of free massless Dirac fermions. Moreo
we can guess the functional form ofVT(r) by dimensional
analysis: At zero temperature,V0(r)}2urud in d dimen-
sions. At sufficiently high temperature,VT(r)}2Tr2

1O(r4/T) in three dimensions and VT(r)}2r2

1O(r4/T2) in two dimensions, up to a field-independe
constant. These qualitative results can be checked expli
from Eqs.~15!, ~19!, ~20!, and~24!.

Now let us consider the contributionPR(r) from the
probability distribution of the random chemical potential.
three dimensions, for largeuru, VT(r) exceedsPR(r) at
zero and sufficiently high temperature, irrespective of
value of the disorder strength. Therefore, the initially spo
taneously broken charge conjugation symmetry is not
stored at high temperature. In two dimensionsPR(r) is com-
parable toVT(r). The probability distribution of the random
chemical potential for weak disorder~smallR2) is dominated
4-6
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at r50 and charge conjugation symmetry is preserved
zero and high temperature. However, for strong disor
~large R2) all values of the chemical potential have sm
probability density and so the fate of the charge conjuga
symmetry is determined byVT(r). Thus, in this case, the
initially spontaneously broken charge conjugation symme
is not restored at high temperature.

V. CONCLUSIONS

In the present paper we examined the symmetry beha
of the Gross-Neveu model with random chemical poten
which is equivalent to the four-fermion model, Eq.~3!. We
used the leading approximation in the 1/N expansion~i.e.,
the mean field approximation!. Our model has charge conju
gation symmetry as well asZ2 chiral symmetry. The initially
spontaneously brokenZ2 chiral symmetry is always restore
at high temperature. In three dimensions, the charge co
gation symmetry that is broken spontaneously at zero t
perature is not restored at high temperature, irrespectiv
the value of the disorder strengthR2. In two dimensions, at
zero temperature, the charge conjugation symmetry is
broken spontaneously for weak disorder@0,R2,Rc

2

(5p/2)#, but broken for strong disorder (R2.Rc
2). There-

fore, our system exhibits a quantum phase transition atR2

5Rc
2 as the value ofR2 is varied. For any given value ofR2

the high-temperature behavior of the charge conjuga
symmetry is the same as its zero-temperature beha
th
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Hence charge conjugation symmetry remains broken at h
temperature~i.e., symmetry nonrestoration! for R2.Rc

2 . By
examining the existence of kink solutions we checked t
the mean field approximation is reliable even in two dime
sions at zero and high temperature.

In addition, we discussed our results on charge conju
tion symmetry nonrestoration conceptually, after neglect

the four-fermion interaction (C̄C)2 for convenience becaus
symmetry nonrestoration is the effect of the random che
cal potential. The behavior of charge conjugation symme
is determined by competition between two terms in t
finite-temperature effective potential:~i! the termr2/(2R2)
from the Gaussian distribution for the chemical potentiar
that favors the symmetric phase (^r&50) and~ii ! the grand
free energy for free massless Dirac fermions which fav
the broken phase (u^r&u→`).

As further work, it would be worthwhile to perform next
to-leading order calculations and consider a non-Gaus
distribution for the random chemical potential.
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