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Symmetry nonrestoration in a Gross-Neveu model with a random chemical potential

Seok-In Hong
Loomis Laboratory of Physics, University of lllinois at Urbana-Champaign, 1110 West Green Street, Urbana, lllinois 61801-3080
and Department of Science Education, Inchon National University of Education, Inchon, 407-753, Korea

John B. Kogut
Loomis Laboratory of Physics, University of lllinois at Urbana-Champaign, 1110 West Green Street, Urbana, lllinois 61801-3080
(Received 26 July 2000; published 23 March 2001

We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with a random
chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as #ell as
chiral symmetry. At high temperature tl® chiral symmetry is always restored. In three dimensions the
initially spontaneously broken charge conjugation symmetry is not restored at high temperature, irrespective of
the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry
undergoes a quantum phase transition from a symmetric (ftateveak disorderto a broken statéfor strong
disordej as the disorder strength is varied. For any given value of disorder strength, the high-temperature
behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two
dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high tempera-
ture.
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[. INTRODUCTION the chemical potential and the temperature are independent
parameters and so the thermal effect on the mass always
Intuitively, when heated, a system with initially broken surpasses the effect of the chemical potential at sufficiently
symmetry will recover its symmetry because thermal fluctuahigh temperature, for a fixed chemical potential. For ex-
tions are able to overcome potential barriers. But a counterample, consider the Gross-NevedN) model[8—11] with
example was noticed by Weinberpl]: For the four- chiral symmetry. At finite chemical potential the initially
dimensional OK) x O(N) scalar¢* model, he showed that spontaneously broken chiral symmetry is always restored at
the system can remain in the broken phase even at arbitrarilyigh temperatur¢12,13].
high temperature. This phenomenon is called inverse sym- In order to find a new kind of SNR in four-fermion mod-
metry breaking or symmetry nonrestorati®NR), depend- els, we will extend the GN model at finite chemical potential
ing on whether the system was in a symmetric or a brokeito a disordered model with random chemical potential. Re-
phase at zero temperature. cently, disordered nonrelativistic Dirac fermions in two spa-
Since Weinberg's observation, SNR has been a subject dfal dimensions have been studied in relation to the integer
academic curiosity or a candidate for the resolution of cosquantum Hall transitiod14]. Pure fermions exhibit such a
mological problems caused by topological defects such agansition as the value of the mass is tuned through zero, but
monopoles and domain wallsee Ref[2] for a review. its universality class is different from the one observed in
According to Bajc’s classificatiof2], there are three classes actual experiments. Usually three types(sfatig disorder
of SNR mechanisms in field theor§i) a prototype case such are considered for a more realistic model: the random gauge
as the two-scalar modé¢l, 3,4, (i) flat directions in super- potential, random chemical potential, and random mass.

symmetric theorie5], and (iii) large charge densityor Motivated by the SNR mechanisiii), we introduce the
chemical potential[6,7]. Here we restrict ourselves to class (relativistio GN model with random chemical potential in
(iii ). Sec. Il. If the chemical potential has a Gaussian distribution

If a large enough charge cannot be stored in thermallyt each site, our model is equivalent to the four-fermion

excited modes at high temperature, it must reside in thenodel with two kinds of four-fermion interaction,‘l_l(\lf)z
vacuum, and this is a sign of SNR. In field theory, a scalar

field (order-parameter fiejJdgets a positive mass term by and pro\y)z [s_e_e Eq.(3)],_and has charge cpnjugatlon
thermal effects, but a negative one by the effects due to theymmetry in a_ddlpon t&, chiral symmetry. We d[scuss t_he
chemical potential. For a fixed chargee., in the canonical Physical implications of a new four-fermion interaction
formalism), the chemical potential is temperature dependent(¥ y,¥)? at the classical level. In Sec. Ill we examine the
In this case, if the effect of the chemical potential on thebehavior of these symmetries as the temperature or disorder
mass exceeds the thermal effects at sufficiently high temstrength is varied using theN/expansion in three and two
perature, the scalar field acquires a nonzero vacuum expedimensions. Whil&Z, chiral symmetry is always restored at
tation value(i.e., SNR [6]. high temperature, the charge conjugation symmetry exhibits
However, in an open system of the model which does noSNR. In addition, we check the validity of the mean field
belong to clasgi) or (i), the symmetry may always be re- approximation(the leading approximation in theN/expan-
stored at high temperature. In the grand canonical formalisnsion) in two dimensions. In Sec. IV the fundamental origin
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of SNR for charge conjugation symmetry is discussed congjq, symmetry are now expressed 48— ys¥ v,
ceptually at the quantum level. Our conclusions are pre- — — = Tt >
sented in Sec. V. ~¥y5,0—~—0} and {¥-C¥ ', W—-¥'Cl,p——p},

respectively.

To grasp the characteristic features of the GN model with
random chemical potential, let us consider the physical
implications of the last term proportional to
The Euclidean Lagrangian of the GN model at finite — R?(charge density)in the equivalent four-fermion model,

Il. GROSS-NEVEU MODEL WITH RANDOM
CHEMICAL POTENTIAL

chemical potential is given by Eg. (3), at the classical level. Contrary to the usual electro-
statics(in the limit of the large photon magsthis term im-

— 9> — 5 plies an attractive interaction between the same kinds of

EZW(&J“M?’O)‘I'_W(\I’\I’) ' 1) charges and a repulsive one between different kinds of

charges. Since the classical Lagrangian, By.has a charge
whereg?(>0) is the coupling constant of the four-fermion conjugation symmetry, fermions and antifermions can clump
int tion @2 and N is th b . ¢ th in the system with equal probability. By diffusions of the
interaction (P¥) an IS the number of Tliavors ot he charges and repulsive forces between different kinds of

Dirac fermion¥. The v matrices are X4 and Hermitian. : . )
Let us consider the system under the influence of a randon%harges’ however, only one kind of chaige., only fermi-

chemical potentialp(x) with the Gaussian distribution ons or qnly antlferm|o_r‘)srema|ns in the systgm and the op-
exi] — [d%(N/2R2) p2] at each site wherd? (>0) is the posite kind of charge is expelled to the outside of the system

strength of disorder and the dimension of the Euclidean (i.e., reservior because our system is an open system.

space. The Gaussian noikts] is characterized by correla- CNarge separation occurs between our system and the re-
tion functions servior, which does not necessarily cause a breakdown of

translational invariance of the system. It will be shown in
R2 Sec. Ill that this qualitative result from the classical Lagrang-
(p(x))=0, <p(X)p(X')>=W 8(x—x"), (2) ian, Eq.(3), is the case at zero and high temperature in three
and two dimensions except for the two-dimensional system
with R? small. The accumulation of only one kind of charge
in the system leads to the spontaneous breaking of the charge
conjugation symmetry. In order to obtain more reliable re-
sults the model, E(3), should be studied by a nonperturba-
tive method such as theN/expansion at the quantum level.
— 1 — — . : . ;
L=VH¥ — ——[g2(PTP)2+ RV y,¥)?], (3)  Such an analysis by the Lagrangian, &4, will reveal in
2N Sec. Il that the two-dimensional theory wiRf small is in a
o o symmetric phase of the charge conjugation symmetry and so
with Z, chiral symmetry {¥—ys¥, ¥——W¥y5} and the same numbers of fermions and antifermions exist in the
charge conjugation symmetfiy —CWT, ¥ —pTct}. ~ system. _ o
Here the matrixC satisfiesC'C=1, CTyMC= _ leL. Under On the othgr_hand, the GN model is a r.elat|.V|st|c m_odel of
, L= — — superconductivity. Moreover, the attractive interaction be-
charge conjugation and W yo W transform toWW and  yyeen the same kinds of charges in the last term of(Bjs
—WVy,V, respectively. Hence, the Lagrangian, Ef, with  similar to the BCS theory of superconductivity where the
definite chemical potentigk does not possess charge conju-interaction between charges is mediated by phonons. In the
gation symmetry(i.e., fermion-antifermion symmetyyNote  Lagrangian, Eq(4), two scalar auxiliary fields may be inter-
that in Eq.(3) the chemical potential term does not appearpreted as phonon fields corresponding to lattice vibrations.
explicitly. The contact four-fermion interactions imply the limit of the
We will study the GN model with random chemical po- large phonon masses which is guaranteed in the latge
tential by the leading approximation of theNléxpansion in  |imit. This is the reason why the kinetic terms for phonon
three and two dimensions. To easily incorporate thé @X-  fields o andp are suppressed in E¢4).
pansion, let us rewrite it by introducing a scalar auxiliary
field o(x) that can be interpreted as a random mass with a

where averages are taken at fixéd
After integrating out the random chemical potential, our
model is equivalent to the four-fermion model

Gaussian distribution: Ill. BEHAVIOR OF Z, CHIRAL SYMMETRY
AND CHARGE CONJUGATION SYMMETRY
— N N AT ZERO AND HIGH TEMPERATURE
L=V (d+o+pyy)V+ —20'2+ —2p2. (4) o .
29 2R For finite-temperature field theory we adopt the

imaginary-time  formalism. At inverse temperature
If we derive this Lagrangian from Eq(3), the random B(=T 1), the fermion fields are antiperiodic oR9™*
chemical potentiab(x) plays the role of another scalar aux- X[0,8], while the scalar auxiliary fields are periodic. Let us
iliary field. TheZ, chiral symmetry and the charge conjuga- introduce the notation
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fm_ i fdd‘_lp dpo 1 _0(al=1pD) ©
p n=—o (2’7T)d_l, 2m (Po—ip)%+o? 2o ,
(C) f dpo  Po—ip [
—— ——————===sgr(p)6(|p| —|al),
f f 2 27 (py—ip)ito? 2 ar(p) 6(|p|—|o|
(10)
Integrating out the fermion fields in the partition function for
Eq. (4) we obtain the effective action for the auxiliary fields Po T
o and p. In order to investigate the vacuum structure we 5 INL(Po—ip)*+o*]=max|a],|p]).
need to find the finite-temperature effective potential (11)
V+(o,p) by taking o and p as constant fields: To leading _
order in the 1N expansion, Using Egs.(6), (7) andE,=p?+ a7, we have
d-1
Vi(o,p) o  p? (T) o, (VT T f d'p 1
N :2_92+ﬁ_2f nl(po=1p)™+p"+ o7, o\ V=g 2] e iE,
5
©) 1
wherepy=(2n+1)7/B=w, (n=integer) at nonzero tem- X|1- 1+ BE+0) - 1+ eBEn) |’ (12
perature. Note that the effect of the chemical potentie to
shift the energy by-ip. g [V
To evaluate the integration in Eg¢5), we need some —(—T>=£—25inr{ﬂp)
mathematical formulas. By the standard method of contour dp\ N 2
integration[16],
¢ 1 (27)91 cosh BE,,) +costi Bp)
== (w,—ip)%+o? (13
1 1- 1 B 1 To renormalize the effective potentdk(o,p) to leading
20| 1+ eBUal+lo) 1 4 gBlal=lpD |’ order in the 1N expansion let us consider the GN model at

zero temperature and in the absence of the random chemical
(6) potential because the effects of temperature and constant
chemical potential do not change the ultraviolet behavior

oo

wp—ip [18]. Define 1G2=1/g?—1/g2, with
n=—oo —ip)2+o?
(0n=ip)"+ o 1 4J dp 1
w2 2_ 2 5= o
—ipT E —lormed) g2 ) (2m9p?

=== (wh+o?—p?)2+ (2pw,)? .
In 2<d<4, the GN model is in the broken phase of the

i sinh(B p) chiral symmetry for negativés?, corresponding to strong
2 cosi{ Bo)+cosh Bp) |’ (7) coupling @?>g?) in the cutoff regularization, while it is in
the symmetric phase f@8?=0, corresponding to weak cou-
When the GN model is studied in the canonical formalismpling (0<g?<gZ). In particular, in two dimensions, th&,
(i.e., with a fixed charge[17], similar calculations appear chiral symmetry of the GN model must be broken no matter
with imaginary chemical potential. In this case a regulatinghow we choose the couplingf [9]. In the broken phase,
factor of the form &n” is needed in evaluating the summa-

tion in Eq. (7) and ensures a finite result in the limit-0 1 d%p 1
after the Matsubara sum has been performed. By using Egs. E: f (2m)1 —p2+ M2’ (14)
(6) and(7), we obtain

where M=|(g)| (>0) is the dynamically generated fer-

TS In[(w,—ip)2+a?] mion mass at zero temperature. . o
From now on, we will adopt dimensional regularization,

whereG? is equal to the regularizeg?.
=T{In2+In[cosi Bo) +cosHBp)]}, (8)

where thel-function regularization was used to determine
the field-independent constant. At zero temperature, these In this case, renormalization is not needed to leading or-
formulas reduce to der of the 1IN expansion(in dimensional regularizationBy

A. Three dimensions
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Vo/(NM?)

FIG. 1. The zero-temperature effective potentigl/ (NM?) in
three dimensions as a function efM and p/M for R2M =10, in
the case of th&, chiral symmetry breaking@®M = — ).

making use of Eq(11), we can find the zero-temperature

effective potentiaVy(o,p) directly:
Volap) _ o0®  p* 1
N 262 2Rr? 67
x[max(|o],|p]) —30? max|al,|p])],

(15

where 1G?=—M/ for brokenZ, chiral symmetry. The

gap equations have four kinds of solutider|,|p|): (i) (0,0),
(i) (M,0), (i) (0,2/R?), and (iv) (VM (M —27/R?),M).

PHYSICAL REVIEW D63 085014
f(T) w,—ip
p (w,—ip)?+E2

_isgr(p)
477,82

BlalIn

1+ eBlal+leD
1+ eB(al=lel)

+|_i2(_eﬁ(rr+|p))_|_i2(_el3(|0|Ipl))l_ (17)

Here the polylogarithm Liz) is defined (for »>0) as
Li(2)=2y_,Zk” (see Ref.[19] for useful properties
From these formulas, the finite-temperature effective poten-
tial V(o ,p) is given by
2 2 3
Vilop) o P70 L et
N 2G? 2R? 37 g3

+Lig(— €27 P) — Bo{Liy(—eflorr))

+Lip(—eflommy}, (18

up to a field-independent constant. At sufficiently high tem-
perature,

vT(a,m%(ln_z)T( ,

N o?—p?). (19)

. . . 2
The solution(iv) exists only forM>27/R" and corresponds il the initially spontaneously brokegy, chiral symmetry
to saddle points. Figure 1 shows the zero-temperature effe¢s astored at high temperature, charge conjugation symmetry

tive potential as a function af/M andp/M, for brokenzZ,

is not. Hence our model exhibits nonrestoration of charge

chiral symmetry.{p)=0 is metastable, irrespective of the conjugation symmetry irrespective of the valuesG# and

values of G2 and R2. For |p|>|a]|, however,Vy(o,p) is
unbounded from below due to the|p|3/(67) term, which

R2. We may interpret this phenomenon as an inverse sym-
metry breaking becausg)=0 is metastable at zero tem-

indicates breaking of the charge conjugation symmetry. Thigerature. Intuitively, SNR is related to the tachyonlike be-

result stems from the fact that the tera|p|3/(61) arising

from quantum effects surpasses the effect of the probabilit)(

distribution[ p?/(2R?)] for large|p|.
At finite temperature, using Eq&), (7) and dimensional
regularization, we obtain

J’(T) 1
p (wn—ip)?+E2

1
- W{BM +In[1+2e Alol cosh Bp)

max(|o],| p|) + Vmax(|o],|pl) — o®

havior of the random chemical potentjaee Eqs(19) and
24)]. In the quantum correction term of E¢) the chemical
potential acts as a negative mass terapf) contrary to the
usual positive mass termof). From a different point of
view, we will discuss the origin of SNR conceptually in Sec.
V.

B. Two dimensions

For dimensional regularization, we work in+2 dimen-
sions. In terms of the fermion mad4 the zero-temperature
effective potential is given by

: |

— —vmax(|al.[p]) - o?,

+e 2Rl (16)
|
Vo(oup) _ o[
N 2x n
ol
2RZ2 w

(20
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where Eqgs(11) and(14) were used. Unlike in three dimen-
sions, for larggp| the effect of the probability distribution
[p%/(2R?)] is comparable to the last term=(— p?/ ) in Eq.

(20) arising from quantum effects. The charge conjugation

symmetry can be controlled by the strength of disorigér
The system is in the symmetric state fox &< /2, while
in the broken state foR?>> 7/2. Fermions and antifermions
are equally probable in the symmetric statg)=0), but
only fermions(or antifermion$ are allowed in the broken

state (p)= *=). Our system suffers from a quantum phase
transition atR?>=7/2 (= Rﬁ). The gap equations have solu-

tions (ol,lp)): () (0,0), (i) (M,0), and (iii)
[V(2R?—7)/(2R?+ m)M,2R?M/(2R?+ 7)] for R®#RZ,
and(i) (0.¥|p|) and(ii) (M,0) for R?=R2. The solutioiii )

exists only forR>>R2 and corresponds to saddle points.
Figure 2 shows the zero-temperature effective potential as a

function of /M andp/M in (a) the symmetric andb) the
broken phase for the charge conjugation symmetry.
To examine the high-temperatur8--0) behavior, let us

introduce the dimensionless quantitie¥;=B%Vs, o
=Bo, p=Bp, M=BM. We want to expand the finite-
temperature effective potential ! andp at high tempera-

ture (i.e., for smallo- andp). In terms of the dimensionless
guantities, Eqs(12) and(13) are reduced to

O
’x’ii’"n’%
R 17
L7
7

AANANNNY

8
¢ KRR
\\v\\\\\“\\‘:\\\“
N

Vo/(NM?)

FIG. 2. The zero-temperature effective poteniigl/ (NM?) in
two dimensions as a function of/ M andp/M, for (a) R?=1 and
(b) R2=10.
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% 1
+J dX——=
0

VX2 + 2

o [\ 25 (|5
—\|\/=—|In| =
do\ N m M
( 1 1
X
1+e

+ ==
1+e X2+(r2p)]
w
[In(:
M

) { 74(3)
472

1 2sinhp)

mp

X2+ a%+p

20

m

= —y+0(c?)

+0(0?)  p>+0(pYH|, (2D

o 1
X | dx
fo cosh \/x2+52)+cosh7))]

1 2 {7{(3)
+

~2
278 7

+0(p?)

(22

To obtain the Of°) term in the brackets of E421) we used
the integration formul&20] for small o-2:

1 1

dx — =
fo W+ (1+ere’y 2

+0(d?)|. (23

Integrating Eqs(21) and (22), at sufficiently high tempera-
ture, we obtain

Vi(o,p) 1 T , 11 2|,
B v e G =l
703
T TP 2

up to a field-independent constant. Since ther®)(term in
the brackets of Eq22) is exact,V1(o,p) has no term higher
than thep? term that consists o fields only. At high tem-
perature, theZ, chiral symmetry is always restored. How-
ever, the behavior of the charge conjugation symmetry is the
same as that at zero temperature. Hence, charge conjugation
symmetry is not restored at high temperature, Rér RE.

Until now in order to find the effective potentigh(o,p)
we have used the mean field approximatibtA) by taking
o andp as constant fields. This corresponds to the leading
approximation in the M expansion where the andp loops
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(i.e., the fluctuations of the- andp fields) are not included. =R? the MFA effective potential fop vanishes. AsR? is
Let us check the validity of our calculations. In the lafge tuned throughR?Z, the charge conjugation symmetry under-
limit the MFA is good, while for large but finit&l it may fail  goes a first-order phase transition from the symmetric phase
due to the contribution from kinks in two dimensions ((p)=0) to the broken phase(g)= or —=), following
[21,22. positive or negative values dp) according to the value of

At first consider the case of the usual two-dimensionak/p) in the broken phase. So it is reasonable to assumethat
GN model (without the random chemical potenjiabhere  has no kink solution aR2=R§. As a result, the MFA is
the MFA predicts a wrong critical temperatuiigy (#0) reliable at zero and high temperature for all values of the
[21]. For O<T<T, the MFA effective potential is the disorder strength.
double well with two degenerate minima &i(T) and
—M(T), the solutions of the gap equation. As a result of
guantum tunneling between two degenerate minima, the sys-
tem has kink solutions alternating betwedvi(T) and

—M(T). They have higher energies than the constant solu- |n this section we discuss the mechanism of SNR for the
tions M(T) and —M(T). The Helmholtz free energ¥ is  charge conjugation symmetry conceptually at the quantum
related to the internal enerdy and the entropysby F=U |evel. For convenience set=0 in Eqgs.(4) and(5) because

—TS. SinceF=U at zero temperature, the constant solutiongNR s the effect of the random chemical potential. That is,
is favored and the MFA is expected to be valid. If we con-

sider the contribution from kinks explicitly, we find the av-
erage(or blocking potential[23] which has a plateau be-
tweenM[=M(0)] and— M [21]. Even in the presence of an
arbitrarily small external field this potential is tilted to favor
M or —M. Hence the contribution from kinks does not

change the physics materially and the MFA is qualitativelyer (or grand potentialfor free massless Dirac fermions at
valid at zero temperature. FOKOT <T, the number of kink gytorg P e
constant chemical potential [=Q+(p)].

configurations is sufficiently large to gain enough entropy So it is essential to conceptually determine the value of

and so their probability is overwhelming. Since the region of, . .
o=M(T) will, on the average, have the same weight asthe chemical potential thd®(p) favors. By the symmetry

those ofo=—M(T), we have(o)=0, which indicates the of QT(_p) we can restrict oursel_ves to _the positive chemical
breakdown of the M'FA FOF=T. the ’system is in the sym potential without loss of generality. At first, consider the case
. =T, -

metric phasd M (T)=0] in the MFA and thus has no kink of zero temperature. According to Fermi-Dirac statistics, fer-

solutions. Consequently, for the two-dimensional GN modef“_Ions f'.” allthe ~energy Ieyels t'o the Fermi energy

the MFA is good only at zero and high temperatuf® ( (=chemical potential a_md antlfe_rmlons are suppressed.
: : o Hence, the larger chemical potential, the larger changen-

=Ty) and, by the formation of kinks, the true critical tem- o . . . .

perature turns out to be zero. ben density (= fermion number density antifermion num-

Now let us examine the validity of the MFA for the two- ber density. This result is retained at nonzero temperature.

dimensional GN model with the random chemical potential,smce. t_he grand free energy density IS minus the pressure
Eq. (3) or (4). For the purpose of the present paper we Con_[24], it is a decreasing function of tHgositive charge den-
sider only the cases of zero and sufficiently high tempera-s'ty' Consequently, the large charge densite., large

ture. At zero temperature the MFA effective potential Chem'cal pc_)t(_en_tlal is preferred anc_i, for all temperatures,
- } Q+(p) is minimized at large chemical potentidlp(— ).
Vo(o,p) has degenerate minima dtof,|p|): (M,0) for O hie impli tor the ch : ; _
“R2<R2 and (0z) for R2>R? [see Figs. @) and 2b)] This implies SNR for the charge cqnjugatlon symmetry in
c 5 L c C - the open system of free massless Dirac fermions. Moreover,
Hence for 0<R*<R; our system may have kink solutions

. . we can guess the functional form &f+(p) by dimensional
for o alternating betweeM and — M, but no kinks forp. In

X AR analysis: At zero temperatur€)o(p)=—|p|® in d dimen-
this case the S|tl_Jat|on is similar to th_at_ of the usual GNsions. At sufficiently high temperatureQ;(p)e—Tp?
model in the previous paragraph. Thus it is expected that the. O(p¥T) in three dimensions and Q+(p)x—p?

MFA 'S good at zero temperature and for®<RZ. For +0(p*/T?) in two dimensions, up to a field-independent
R?>R? the MFA effective potential is unbounded from be- constant. These qualitative results can be checked explicitly
low and there is no tunneling between two degeneratgom Egs.(15), (19), (20), and (24).

ground states because of an infinitely high barrier oSand Now let us consider the contributioRr(p) from the

p do not have kink solutions. At sufficiently high tempera- probability distribution of the random chemical potential. In
ture theo and p fields are decoupled from each other in three dimensions, for larglp|, Q1(p) exceedsPg(p) at
V1(o,p) and can be treated separately. By restoration of theero and sufficiently high temperature, irrespective of the
Z, chiral symmetry in the MFAo has no kink solutions, value of the disorder strength. Therefore, the initially spon-
irrespective of the value of the disorder strength. For Otaneously broken charge conjugation symmetry is not re-
<R2?<R? the charge conjugation symmetry is preserved instored at high temperature. In two dimensiéhg p) is com-

the MFA and so there are no kinks fpr For R>>R? the  parable to)+(p). The probability distribution of the random
situation is the same as that at zero temperature. Rfor chemical potential for weak disordesmallR?) is dominated

IV. ORIGIN OF CHARGE CONJUGATION SYMMETRY
NONRESTORATION

we neglect the four-fermion interactiol(")? and consider

the system of free massless Dirac fermions in the presence of
the random chemical potential. To leading order in thg 1/
expansion the finite-temperature effective potential
V+1(0,0)/N consists of two partsi) a term from probability
distribution [ p?/(2R?)=Pg(p)] and (i) the grand free en-
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at p=0 and charge conjugation symmetry is preserved aHence charge conjugation symmetry remains broken at high
zero and high temperature. However, for strong disordetemperaturdi.e., symmetry nonrestoratipior R>>R2 . By
(large R?) all values of the chemical potential have small examining the existence of kink solutions we checked that
probability density and so the fate of the charge conjugationhe mean field approximation is reliable even in two dimen-

symmetry is determined b{){(p). Thus, in this case, the

initially spontaneously broken charge conjugation symmetry

is not restored at high temperature.

V. CONCLUSIONS

sions at zero and high temperature.
In addition, we discussed our results on charge conjuga-
tion symmetry nonrestoration conceptually, after neglecting

the four-fermion interaction® ¥)? for convenience because
symmetry nonrestoration is the effect of the random chemi-

In the present paper we examined the symmetry behavicﬁal potential. The behavior of charge conjugation symmetry

of the Gross-Neveu model with random chemical potential
which is equivalent to the four-fermion model, E§). We
used the leading approximation in theNléxpansion(i.e.,
the mean field approximatipnOur model has charge conju-
gation symmetry as well a3, chiral symmetry. The initially

spontaneously broken, chiral symmetry is always restored

at high temperature. In three dimensions, the charge conju- X ! ) .
mio-leading order calculations and consider a non-Gaussian

gation symmetry that is broken spontaneously at zero te

|s determined by competition between two terms in the
finite-temperature effective potentidl) the termp?/(2R?)
from the Gaussian distribution for the chemical potengial
that favors the symmetric phasépf=0) and(ii) the grand
free energy for free massless Dirac fermions which favors
the broken phasé{p)|— ).

As further work, it would be worthwhile to perform next-

perature is not restored at high temperature, irrespective dfistribution for the random chemical potential.

the value of the disorder strengRf. In two dimensions, at

zero temperature, the charge conjugation symmetry is not

broken spontaneously for weak disord¢p<R?< R§
(=/2)], but broken for strong disordeiR¢> Rﬁ). There-
fore, our system exhibits a quantum phase transitioR%at
= Rg as the value oR? is varied. For any given value &t
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