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Approximate decoherence of histories and ’t Hooft’s deterministic quantum theory
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In the decoherent histories approach to quantum theory, sets of histories are said to be decoherent when the
decoherence functional, measuring interference between pairs of histories, is exactly diagonal. In realistic
situations, however, only approximate diagonality is ever achieved, raising the question of what approximate
decoherence actually means and how it is related to exact decoherence. This paper explores the possibility that
an exactly decoherent set of histories may be constructed from an approximate set by small distortions of the
operators characterizing the histories. In particular, for the case of histories of positions and momenta, this is
achieved by doubling the set of operators and then finding, among this enlarged set, new position and mo-
mentum operators that commute, and so decohere exactly, and which are ‘‘close’’ to the original operators.
Two derivations are given: one in terms of the decoherence functional, the second in terms of Wigner func-
tions. The enlarged, exactly decoherent theory has the same classical dynamics as the original one, and
coincides with the so-called deterministic quantum theories of the type recently studied by ’t Hooft. These
results suggest that the comparison of standard and deterministic quantum theories may provide an alternative
method of characterizing emergent classicality. A side product is the surprising result that histories of momenta
in the quantum Brownian motion model~for the free particle in the high-temperature limit! are exactly
decoherent.

DOI: 10.1103/PhysRevD.63.085013 PACS number~s!: 03.65.Yz, 03.65.Ta, 04.60.2m
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I. INTRODUCTION

How close to classical mechanics can quantum mecha
be? One of the main aims of the decoherent histories
proach is to demonstrate the emergence of classical mec
ics as an effective theory, starting from the assumption
quantum mechanics is the exact underlying theory@1–5#. In
such studies, the effective classical theory almost alw
emerges in an approximate way, rarely exact. The main
son for this is that decoherence, the destruction of quan
interference, is almost always approximate. What does
proximate decoherence mean? What is the nature of the
tories that approximately decoherent histories are an appr
mation to?

The aim of this paper is to explore the idea that appro
mate decoherence of histories can be turned into exact d
herence by suitable ‘‘small’’ modifications of the operato
characterizing the histories. In particular, histories charac
ized by fixed values of coordinates and momentax,p are
rendered exactly decoherent by replacingx,p with new coor-
dinates and momentaX,P, which commute. This replace
ment, we show, is a valid approximation provided that
original histories are approximately decoherent. The n
theory in terms of the commuting variablesX,Phas the same
form as the so-called deterministic quantum theories of
type recently studied by ’t Hooft in the context of quantu
gravity @6#.

To set up the problem in more detail, we briefly revie
the decoherent histories approach@1–4,7,8#. In the decoher-
ent histories approach to quantum theory, probabilities
assigned to histories of a closed system via the formula

p~a1 ,a2 ,...,an!

5Tr @Pan
~ tn!...Pa1

~ t1!rPa1
~ t1!...Pan

~ tn!#.

~1.1!
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The projection operatorsPa characterized the different alter
natives describing the histories at each moment of time.
projectors satisfy

(
a

Pa51, PaPb5dabPa ~1.2!

and the projectors appearing in Eq.~1.1! are, in the Heisen-
berg picture,

Pak
~ tk!5eiH ~ tk2t0!Pak

e2 iH ~ tk2t0! ~1.3!

Probabilities can be assigned to histories, if and only if,
histories in the set obey the condition of consistency, wh
is that

ReD~aI ,aI 8!50 ~1.4!

for aI ÞaI 8. Here aI denotes the stringa1 ,...,an and
D(aI ,aI 8) is the decoherence functional

D~aI ,aI 8!5Tr@Pan
~ tn!...Pa1

~ t1!rPa
18
~ t1!...Pa

n8
~ tn!#.

~1.5!

Loosely speaking, the decoherence functional measures
amount of interference between pairs of histories. It is o
served in numerous examples involving physical mec
nisms for decoherence that the imaginary part of the de
herence functional often also vanishes when the real
vanishes, and it is therefore of interest to consider the str
ger condition of decoherence,

D~aI ,aI 8!50 ~1.6!

for aI ÞaI 8. This condition may be shown to be related to t
existence of record projectors, which may be added to
©2001 The American Physical Society13-1
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very end of the string of projectors that are perfectly cor
lated with the earlier alternativesa1 ,...,an , and are related
to the physical process of information storage@4,9#.

In its application to physical interesting situations, the
fore, one of the first aims of the approach is to find out h
the decoherence condition~1.6! may come to be satisfied
This is often accomplished, for example, by coupling t
system of interest to an environment and then tracing out
environment. Or more generally, by some kind of coar
graining procedure. However, as indicated earlier, it is
most universally observed in such situations that the co
tion ~1.6! is only satisfied approximately, not exactly. Th
degree to which this condition is satisfied can be except
ally good, by any standards~see Refs.@10,11#, for example!,
but it is still nevertheless approximate. Although to wo
with approximate decoherence seems very reasonable p
cally, from a more rigorous point of view it leaves a gra
area in the formalism, since it is not clear what the appro
mately decoherent histories are an approximation to, if a
thing @12#. It would be highly desirable to find a more con
trolled way of moving between approximate and ex
decoherence.

As stated above, we shall show that there is a clos
related theory that is exactly decoherent and which, un
certain circumstances, approximately coincides in its pre
tions with the approximately decoherent theory.

We start with the observation that the generic lack
decoherence of histories is due to the fact that operator
different times generally do not commute. In the case
histories characterized by projections onto positions, p
tions at different times can be completely expressed in te
of p̂ andx̂ at the initial time, so the nondecoherence is due
noncommutativity of the basic canonical pair. Histories ch
acterized by operators that do commute at different times
exactly decoherent, as may be seen from Eq.~1.6!. ~Histories
of conserved quantities are important examples of this t
@13#.!

We now recall a very old result due to von Neuman
concerning the noncommuting pair,p̂,x̂. Von Neumann
showed that it is possible to find a new pair of operato
p̂8, x̂8, say, which do commute, and which are in some se
‘‘close’’ to the original pair @14#. The key issue is then to
explain what is meant by ‘‘close.’’ This is obviously a rath
subtle issue. Every interesting quantum effect can be tra
back to noncommuting operators, so clearly there will
many situations in which this replacement is a very po
approximation. The point, of course, is that the measure
closeness depends on the context. We are primarily in
ested in situations that are almost classical anyway, an
that case there is a chance that such an approximation
be good.

This suggests the following approach to approximate
coherence. We start with a decoherence functional tha
approximately diagonal. We replace the operators with co
muting operators, thereby achieving exact diagonality. T
degree of closeness is then measured by the amount tha
probabilities for the histories change on replacing the or
nal operators with the commuting operators. We expect
change to be small when the original set of histories
08501
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approximately decoherent. Of course,anyset of histories can
be made exactly decoherent in this way. The point, howe
is that we expect only histories that are approximately de
herent in the first place will undergo a small change in th
probabilities through this procedure. Sets of histories that
not, by any reasonable standard, close to being decohe
will suffer a large change in their probabilities.

The von Neumann method above is one way of obtain
a commuting set of operators, and there are probably m
ways of achieving similar results. Here, we will use a diffe
ent method, which is perhaps easier and more physic
insightful, but is also perhaps more radical in that involv
changing the fundamental theory one is quantizing. Supp
we start with a noncommuting canonical pair,p̂,x̂, for a
single particle in one dimension, so

@ x̂,p̂#5 i\. ~1.7!

Denote this systemA, and now adjoin to it an auxiliary sys
tem, denotedB, identical toA, with canonical pair,k̂,ŷ, and
consider the variables

X̂5 x̂1 ŷ, Q̂5
1

2
~ x̂2 ŷ!, K̂5

1

2
~ p̂1 k̂!, P̂5 p̂2 k̂.

~1.8!

We now have the commutation relations

@Q̂,P̂#5 i\, @X̂,K̂#5 i\. ~1.9!

All other commutators are zero, and in particular, we n
that

@X̂,P̂#50. ~1.10!

Classically, we could sety505k identically, soX5x and
P5p. Quantum mechanically, we cannot do this, but we c
see how close we can get. Suppose we put systemB in a
minimum uncertainty state witĥŷ&505^k̂&. Then

^X̂&5^x̂&, ^P̂&5^ p̂& ~1.11!

but the higher moments ofŷ and k̂ are nonzero. This indi-
cates that the pairp̂,x̂ are equal to the commuting pairP̂,X̂
up to ‘‘quantum fluctuations.’’ More precisely, a measure
the degree of closeness is indicated by the relations

^~X̂2 x̂!2&^~ P̂2 p̂!2&5^ ŷ2&^k̂2&5
\2

4
, ~1.12!

The issue is then to determine to what extent and under w
conditions these fluctuations are significant. Clearly they w
be significant when quantum-mechanical effects are imp
tant, but it is reasonable suppose that they won’t be sign
cant close to the classical regime.

To use this scheme in the decoherent histories approa
is useful to write down an action for the extended system
that we can use path integrals. Recall that what we ultima
need to get decoherence of position histories is that posit
at different times need to commute. We therefore require
3-2
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APPROXIMATE DECOHERENCE OF HISTORIES AND ’t . . . PHYSICAL REVIEW D 63 085013
the noncommuting operatorsx̂t and x̂ at different times are
distorted into commuting operatorsX̂t ,X̂, which will guar-
antee exact decoherence. Since, in any reasonable dyna

X̂t is a function ofẊ̂ andX̂, the relationship between veloc
ties and momenta~so far unspecified! must be such tha

@ Ẋ̂,X̂#50. With the standard action, we would haveK
5mẊ, sinceK is defined to be the conjugate toX, but this
clearly will not work since@K̂,X̂#Þ0. We must instead ar
range thatP5mẊ. It is easily seen that this is achieve
using that action

S5E dtF1

2
mẋ22

1

2
mẏ2G5E dt mẊQ̇ ~1.13!

~in the free particle case!. The classical solution forX in the
free particle case is

Xt5X1tẊ5X1
Pt

m
, ~1.14!

On quantization, this implies that@X̂t ,X̂#50 as required.
The action for the new variablesX andQ has the form of

the action for the deterministic quantum theory~DQT! dis-
cussed by ’t Hooft@6#. For the more general case of a pa
ticle in a potential, this action is

S5E dt@mQ̇Ẋ2QV8~X!#, ~1.15!

This produces the classical equations of motion

mẌ1V8~X!50 ~1.16!

and therefore gives the same classical dynamics as the u
action. But the quantum theory will generally be quite d
ferent, since there are twice as many variables. Furtherm
there is a price to pay in that the Hamiltonian for this theo
is unbounded below, although there is some chance that
problem may be rectified by fixing the quantum state of
auxiliary systemB. Nevertheless, this theory does have pro
erties to recommend it for the purposes of this paper; i
exactly decoherent, and its classical dynamics coincides
the dynamics of the original theory.

The work of ’t Hooft concerns the possibility that th
deterministic quantum theory is a new fundamental theo
replacing the standard one@6#. The reproduction of quanti
zationlike effects~in particular, discrete spectra! is argued to
arise from dissipative effects in the underlying classi
theory @6,15#, making use of the fact that the basic acti
~1.15! is readily modified to include dissipation at a fund
mental level,

S5E dt@mQ̇Ẋ22mgQẊ2QV8~X!#. ~1.17!

The present paper is not primarily concerned with promot
this point of view, but rather, with finding what sort of mat
ematical statements one can make about the relationship
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however, contribute to ’t Hooft’s program, in that they sho
in detail how the predictions of standard quantum theory a
deterministic quantum theory become indistinguishable
the classical regime is approached.

The results of this paper are basically simple and in so
ways almost obvious: DQT reproduces classical predicti
exactly, and standard quantum theory reproduces clas
predictions approximately when approximate decohere
holds, hence it is no surprise that the two theories appro
mately coincide. The main task of this paper, however, is
show in detail exactly how this works out.

In Sec. II we discuss the quantization of systems
scribed by the action~1.15!. We show that histories ofX are
exactly decoherent and that the predictions of the theory m
be arranged to coincideexactly with those of the classica
theory.

In Sec. III, we discuss the standard picture of approxim
decoherence of histories of a simple linear system, with
coherence provided by coupling to a thermal environmen

The main result of this paper is contained in Sec. I
where we repeat the analysis of Sec. III but with the addit
of an identical auxiliary system with the wrong sign actio
We verify that histories ofX5x1y are exactly decoherent
as in Sec. II, but here complicated by the presence of
environment. Most importantly, the environment ensures t
the exactly decoherent deterministic theory makes pre
tions that are indeed very close to the predictions of
standard theory with approximate decoherence.

In Sec. V, we give an alternative account of the results
Sec. IV, working with the Wigner function rather than th
decoherent histories approach. We show that the Wig
function of the DQT is a good approximation to the Wign
function of the standard quantum theory approach if ther
an environment present. The role of the environment in b
Secs. IV and V is seen to be, through its fluctuations,
smear out the positions and momenta so that the distinc
betweenx,p andX,P becomes insignificant.

In Sec. VI, we consider a different issue related to t
general theme of exact decoherence. This is the observa
that there is, in fact, an exactly decoherent set of histo
already buried in the standard approach, in the much-stu
quantum Brownian motion model. Namely, histories of m
menta in this model are exactly decoherent~for the free par-
ticle with a high-temperature environment!. This is a differ-
ent sort of exact decoherence, since it is related to t
momentum conservation of the system coupled to the e
ronment, but it does not seem to have been noticed pr
ously.

In Sec. VII we briefly consider the question of how th
scheme may extend to quantum systems not described
simple canonical pair obeying Eq.~1.7!. We summarize and
conclude in Sec. VIII.

II. DETERMINISTIC QUANTUM THEORIES

We now consider the quantization of the DQT describ
by the action~1.15!. The Hamiltonian is
3-3
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H5
1

m
PK1QV8~X!, ~2.1!

where recall we have the fundamental commutation relati

@Q̂,P̂#5 i\, @X̂,K̂#5 i\. ~2.2!

Since@X̂,P̂#50, we may quantize using a representation
which the wave functions depend onX and P, C̃

5C̃(X,P). @Note one could instead work with the commu
ing pair Q̂,K̂ and work in a representation in whichC
5C(Q,K).# We therefore make the replacements,

Q̂5 i\
]

]P
, K̂52 i\

]

]X
. ~2.3!

Hence the Schro¨dinger equation is

i\
]

]t
C̃~X,P,t !5S 2

i\

m
P

]

]X
1 i\V8~X!

]

]PD C̃~X,P,t !.

~2.4!

The factors ofi and\ drop out, giving the Scho¨dinger equa-
tion a totally classical form:

]

]t
C̃~X,P,t !5S 2

P

m

]

]X
1V8~X!

]

]PD C̃~X,P,t !.

~2.5!

This is a classical Liouville equation~although note that the
wave function is not necessarily real!. The solution is

C̃~X,P,t !5C̃~X2t ,P2t,0!, ~2.6!

whereX2t ,P2t are the~backwards evolved! classical solu-
tions with initial dataX,P.

We now see why the quantum theory of this system m
be called deterministic. First of all, since@X̂,P̂#50, we may
choose initial states that are arbitrarily concentrated in botP
and X. Secondly, there is no wave-packet spreading in
dynamics~2.6!, and the states therefore remain arbitrar
peaked inP and X. There is therefore no obstruction to a
signing definite values toX andP for all times. There is also
no possibility of interference because interference ar
from wave-packet spreading. Because of these properties
predictions of this quantum theory may be arranged toex-
actly coincide with the classical theory. Much of the abo
has already been noted by ’t Hooft@6#.

In the decoherent histories approach, these features en
that the histories of fixedX are exactly decoherent, not su
prisingly. We briefly sketch the proof of this using a pat
integral representation of the decoherence functional. It
08501
s

y

e

s
the

ure

D~a,a8!5E
aI
DX~ t !E

aI 8
DX8~ t !E DQ~ t !DQ8~ t !

3expS i

\
S@X,Q#2

i

\
S@X8,Q8# D

3C0~X0 ,Q0!C0* ~X08 ,Q08!. ~2.7!

The sum is over pairs of pathsX(t),Q(t) andX8(t),Q8(t),
whereX(t),X8(t) are constrained to pass through a series
gates denoted bya,a8 ~described in more detail in Sec. III!,
andQ(t),Q8(t) are unrestricted. The paths meet at the fin
point t5t f , hence

Xf5Xf8 , Qf5Qf8 , ~2.8!

After an integration by parts, the action~1.15! may be writ-
ten

S@X,Q#52E dt Q@mẌ1V8~X!#1mQfẊf2mQ0Ẋ0

~2.9!

and similarly,

S@X8,Q8#52E dt Q8@mẌ81V8~X8!#1mQfẊf82mQ08Ẋ08 ,

~2.10!

where the final conditions~2.8! have been used. Now con
sider the functional integral overQ. In a time-slicing defini-
tion of this path integral, we may split the functional integr
into an integral of the initial valuesQ0 ,Q08 , the final value
Qf5Qf8 , and the values on the interior slices. TheQ(t) and
Q8(t) in the integrands in Eqs.~2.9! and ~2.10!, sit on the
interior slices only, and integrating them out pulls dow
delta functions on the equations of motion. Furthermore,
integral over Qf5Qf8 pulls down a delta functiond(Ẋf

2Ẋf8). Hence, we obtain

D~a,a8!5E
aI
DX~ t !E

aI 8
DX8~ t !E dQ0dQ08d@mẌ2V8~X!#

3d@mẌ82V8~X8!#d~Ẋf82Ẋf !

3expS im

\
~Q08Ẋ082Q0Ẋ0! D

3C0~X0 ,Q0!C0* ~X08 ,Q08!. ~2.11!

Because of the delta functions on the equations of mot
the sums over pathsX(t) andX8(t) take contributions only
from histories satisfying the classical equations of motio
But we also have the final conditionXf5Xf8 , together with

the delta function in Eq.~2.11!, which ensures thatẊf

5Ẋf8 . ThereforeX(t) and X8(t) satisfy the same second
order equation and the same final conditions. It follows t
X(t)5X8(t) in this path integral and therefore there is exa
decoherence.
3-4
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The integral overQ0 andQ08 performs a Fourier transfor
mation of the initial wave function to the representati
C̃(X,P) used earlier,

C̃~X,P!5E dQ e2~ i /\!PQC~X,Q!, ~2.12!

and we find that the probabilities for the histories are giv
by

p~a!5E
a
DX~ t !d@mẌ1V8~X!#uC̃~X0 ,mẊ0!u2,

~2.13!

This is precisely the expected result for a classical determ
istic theory with probability for initial conditions given by
uC̃(X,P)u2.

Finally, it is of interest to compare the initial phase-spa
distribution uC̃(X,P)u2 with the Wigner function, which of-
ten crops up in this sort of decoherence functional calcu
tion @4,16#. The Wigner function is defined in terms of th
wave functionC(X,Q) by @17#

W~K,X,P,Q!5
1

~2p\!2 E dj1dj2

3exp@2~ i /\!Kj12~ i /\!Pj2#

3CS X1
1

2
j1 ,Q1

1

2
j2D

3C* S X2
1

2
j1 ,Q2

1

2
j2D . ~2.14!

Inserting the expression forC(X,Q) in terms of its Fourier
transformC̃(X,P) @the inverse of Eq.~2.12!#, it is easily
shown that the reduced Wigner functionW̃(X,P) is

W̃~X,P!5E dK dQ W~K,X,P,Q!5uC̃~X,P!u2,

~2.15!

which is the intuitively expected result.

III. APPROXIMATE DECOHERENCE IN THE STANDARD
PICTURE

We now briefly review the approximate decoherence
position histories in standard quantum theory~SQT!. We
consider a single particle in a potentialV(x) linearly coupled
to a large environment of harmonic oscillators in an init
thermal state with temperatureTA . The action for this sys-
tem is
08501
n

n-

e

-

f

l

S@x,qn#5E dtF1

2
mẋ22V~x!G

1(
n
E dtF1

2
mnq̇n

22
1

2
mnvn

2qn
22cnqnxG

~3.1!

and the Hamiltonian is

H5
p2

2m
1V~x!1(

n
F pn

2

2m
1

1

2
mnvn

2qn
21cnqnxG .

~3.2!

This model, the quantum Brownian motion model, has be
considered many times elsewhere@18–20#, especially in the
context of decoherence@21# ~see also the older related wor
Ref. @22#!. We will describe it only in outline, quoting re
quired results where necessary.

After tracing out the environment variables, the decoh
ence functional is

D~aI ,aI 8!5E Dx~ t !Dx8~ t !)
k51

n

Y@x~ tk!2 x̄k#Y@x8~ tk!2 x̄k8#

3expS i

\ E
0

t

dtF1

2
mẋ22V~x!

2
1

2
mẋ821V~x8!G D

3F@x~ t !,x8~ t !#rA~x0 ,x08!. ~3.3!

Here, we useaI to denote the stringx̄1 ,x̄2 ,...x̄n . The win-
dow functionsY restrict the paths to pass through gates
width D centerd about pointsx̄1 ,x̄2 ,... attimes t1 ,t2 ...tn in
a total time interval@0,t#. The only leftover of the environ-
ment is the influence functional

F@x~ t !,x8~ t !#5expS i

\
W@x~ t !,x8~ t !# D , ~3.4!

whereW@x(t),x8(t)# is the Feynman-Vernon influence func
tional phase

W@x~ t !,x8~ t !#52E
0

t

dtE
0

t

ds@x~ t !2x8~ t !#h~ t2s!

3@x~s!1x8~s!#

1 i E
0

t

dtE
0

t

ds@x~ t !2x8~ t !#

3n~ t2s!@x~s!2x8~s!#. ~3.5!

Full details of the kernelsh andn may be found elsewhere
@18,19,23,24#. They are in general nonlocal in time, but sim
plify enormously in the Fokker-Planck limit~high tempera-
ture and a continuum of oscillators with a high-frequen
cutoff! in which,
3-5
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W52E
0

t

dt mg~x2x8!~ ẋ1 ẋ8!2E
0

t

dt dv2~x22x82!

1
2MgkTA

\
i E

0

t

dt~x2x8!2. ~3.6!

In what follows, to make the exposition clearer, we w
work entirely in this limit. @It is readily verified that the
following calculations can be carried out with the fully ge
eral form ~3.5!, but the expressions are much more cumb
some.#

From Eq. ~3.6! one can see that the real part
W@x(t),x8(t)# contributes a dissipative part to the effecti
equations of motion, and also a renormalizationdv2 to the
frequency. We shall assume that the latter has been abso
into the potentialV(x). The imaginary part produces th
decoherence, since it suppresses differing values ofx andx8.
Since the projectors coarse grain the paths into region
size D, distinct histories haveux2x8u greater thanD. The
condition for approximate decoherence is therefore loos
given by

2mgkTAtD2@\2, ~3.7!

and hence is satisfied for sufficiently large temperature.
imaginary part ofW@x(t),x8(t)# also produces fluctuation
about the effective classical equations of motion.

Given approximate decoherence, we may take the p
abilities for histories to be given, to a good approximatio
by the diagonal elements of the decoherence functional.
resulting expression is most easily evaluated using the
and difference coordinates,

j5x2x8, u5
1

2
~x1x8! ~3.8!

and we obtain for the probabilities for histories,

p~aI !5E Du~ t !Dj~ t !)
k51

n

YFu~ tk!1
1

2
j~ tk!2 x̄kG

3YFu~ tk!2
1

2
j~ tk!2 x̄kG

3expH i

\ E dtFmu̇j̇22mgu̇j2VS u1
1

2
j D

1VS u2
1

2
j D G J expS 2

2mgkTA

\2 E dtj2D
3rAS u01

1

2
j0 ,u02

1

2
j0D , ~3.9!

Consider the functional integral overj. It is Gaussian excep
for the appearance ofj in the window functionsY and in the
potentialV. However, the contribution fromj is very tightly
concentrated aroundj50. We there expect to be able to dro
thej terms in the window functions, in comparison tou, and
also to use a smallj approximation in the potential
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VS u1
1

2
j D2VS u2

1

2
j D5jV8~u!1

1

24
j3V-~u!1¯ .

~3.10!

Dropping the orderj3 term~shown here only for compariso
with later results!, the integral in the imaginary part of th
exponential may be integrated by parts yielding

2E dt j@mü12mgu̇1V8~u!#2u̇0j0 , ~3.11!

where we have used the fact thatx5x8 at the final time so
j f50. In a skeletonized version of the path integral, the
tegrand in Eq.~3.11! does not involvej0 , only the values of
j on the internal time slices. The integral overj0 with the
boundary term from Eq.~3.11! therefore effectively performs
the Wigner transformation of the initial density matrix,

W~p,u0!5
1

2p\ E dj0 e2~ i /\!pj0 rAS u01
1

2
j0 ,u02

1

2
j0D .

~3.12!

And carrying out thej integration on the internal times slice
as well, we therefore obtain

p~aI !5E Du~ t !)
k51

n

Y@u~ tk!2 x̄k#

3expS 2
1

8mgkTA
E dt@mü12mgu̇1V8~u!#2D

3W~mu̇0 ,u0!. ~3.13!

This is the desired result, a simple expression for the pr
ability for histories of positions. It is peaked about classic
evolution with dissipation, with thermal fluctuations abo
that motion, and with the initial data weighted by the Wign
function of the initial state.~The Wigner function is not al-
ways positive, but a closer analysis of this sort of express
@16# reveals that the Wigner function is effectively smear
in such a way that it is positive.!

Equation ~3.13! was derived under essentially one a
proximation: that the contribution from paths with large va
ues ofj5x2x8 could be neglected. This meant first, that t
approximate decoherence could be taken as essentially e
Secondly, that we could drop thej terms in the window
functions in Eq.~3.9! and the higher powers ofj in the
expansion of the potential~3.10!, so that we could carry ou
the j integration.

IV. COMPARISON WITH THE EXACTLY DECOHERENT
DETERMINISTIC QUANTUM THEORY

The formula ~3.13! bears a close resemblance to E
~2.13!, the probabilities for histories in the exactly decohe
ent DQT. There are, however, three differences. First,
~3.13! has dissipation in the equations of motion but E
~2.13! does not; this is easily fixed by the trivial generaliz
tion of Eq. ~2.13! to the case of the dissipative action~1.17!.
Second, Eq.~2.13! has a delta-function peak about the equ
3-6



k,
m
,
e

r

.

e
s-

th
co

t
e
e
o

fir
o
he
a

si
a

rie
ne
o
p
io
to

tion

re-
that

it
iron-
ht
co-
tem
in-

om
ble

ed-
sis

nd

vi-
as
all
the

but
lic-
ith

re

t
,

nc-
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tion of motion, while Eq.~3.13! has only a Gaussian pea
due to the thermal fluctuations. This Gaussian peak beco
sharper as the mass of the particle increases. Moreover
difference between the two types of peaks will not be notic
if the width of the projections in Eq.~3.13! are much greate
than the width of the Gaussian, Third, Eq.~3.13! has a~not
necessarily positive! Wigner function weighting its initial
conditions, while Eq.~2.13! has a positive weight function
But given that the fluctuations tend to smearW so as to be
positive anyway~as will be discussed at greater length b
low!, for a wide variety of initial states it ought to be po
sible to choose an initial state in Eq.~2.13! to give essentially
the same results as Eq.~3.13!.

Of the above differences, the most important one is
delta function versus the Gaussian peak. We therefore
clude that as long as the particle is sufficiently massive
substantially resist the effects of thermal fluctuations, the
actly decoherent DQT of Sec. II approximately reproduc
the probabilities of the approximately decoherent histories
standard quantum theory described above. This is our
result on the closeness of DQT and standard quantum the

The above result applies, however, only to the case w
the mass of the particle is sufficiently large to resist therm
fluctuations. It does not apply to the case where there
approximate decoherence but the fluctuations about clas
deterministic behavior are not small, as in the case of sm
mass. The most general effective theories emerging from
underlying quantum theory are classical stochastic theo
perhaps with large fluctuations. We therefore need to ge
alize our comparison of DQT and standard quantum the
to this case, and this turns out to be somewhat more com
cated. It requires comparing the quantum Brownian mot
model of Sec. III to a DQT including an environment
provide fluctuations.

We have seen for a simple linear system with actionS@x#,
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a closely related DQT may be constructed using the ac
S5S@x#2S@y# and by focusing on the variableX5x1y.
The coupling to an environment, as in Eq.~3.1!, requires a
reconsideration of the question of how to construct the
lated DQT. On the basis of what we have seen so far—
the DQT is obtained by doubling what we already have—
seems natural to double up both the system and the env
ment. While this in fact turns out to be correct, one mig
wonder whether it would be possible to obtain exact de
herence by the simpler procedure of doubling the sys
alone. As we shall see, however, the dissipative terms
duced by the environmental interactions prevent this fr
working properly. We therefore do indeed need to dou
both system and environment.

One can imagine a number of different ways of proce
ing at this point. For example, one could extend the analy
of Sec. II to include coupling to a thermal environment a
then repeat the steps leading to Eq.~2.13!. This would, how-
ever, involve getting into unnecessary detail about the en
ronment dynamics and initial state. We will instead stay
close as possible to the calculation of Sec. III, in which
the environment dynamics are concisely summarized in
influence functional.

Consider therefore the same calculation as in Sec. III
with both system and environment doubled up. For simp
ity, we first concentrate on the case of a linear system w
V(x)5(1/2)mv2x2. We therefore consider systemA with
coordinatesx coupled to its environment with temperatu
TA , as before, with the auxiliary systemB and its environ-
ment, with temperatureTB ~which, we shall see, does no
have to be the same asTA!. Following the general scheme
we consider histories specified by fixed values ofX5x1y.
After tracing out both environments, the decoherence fu
tional is
ce

q.
D~aI ,aI 8!5E Dx~ t !Dx8~ t !Dy~ t !Dy8~ t !)
k51

n

Y@x~ tk!1y~ tk!2 x̄k#Y@x8~ tk!1y8~ tk!2 x̄k8#

3expS i

\E dtF1

2
mẋ22

1

2
mv2x22

1

2
mẋ821

1

2
mv2x82G D

3expS i

\E dtF2
1

2
mẏ21

1

2
mv2y21

1

2
mẏ822

1

2
mv2y82G D

3FA@x~ t !,x8~ t !#FB* @y~ t !,y8~ t !#rA~x0 ,x08!rB~y0 ,y08! ~4.1!

~where the effect of the wrong sign action in the auxiliary systemB effectively gives the complex conjugate of the influen
functional!. We will confirm that this is exactly decoherent and compute the probabilities for histories. Note that Eq.~4.1! and
the corresponding approximately decoherent expression~3.3! are almost identical: if the projections in Eq.~4.1! were onto
values ofx,x8, rather thanX5x1y andX85x81y8, then all they,y.8 terms could be entirely integrated out yielding E
~3.3!.

The path integral is most easily evaluated by changing variables from~x,y! to ~X,y! ~and similarly for the primed variables!.
3-7
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In these coordinates, and writing out the influence functional explicitly, it reads

D~aI ,aI 8!5E DX~ t !DX8~ t !Dy~ t !Dy8~ t !)
k51

n

Y@X~ tk!2 x̄k#Y@X8~ tk!2 x̄k8#

3expS i

\ E dtF1

2
mẊ22

1

2
mv2X22

1

2
mẊ821

1

2
mv2X82G DexpS i

\ E dt@2mẏẊ1mv2yX1mẏ8Ẋ82mv2y8X8# D
3expS i

\ E dt@2mg~X2X8!~Ẋ1Ẋ8!1mg~y2y8!~Ẋ1Ẋ8!1mg~ ẏ1 ẏ8!~X2X8!# D
3expS 2

2mgkTA

\2 E dt~X2X82y1y8!22
2mgkTB

\2 E dt~y2y8!2D rA~X02y0 ,X082y08!rB~y0 ,y08!. ~4.2!
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Recall that in Sec. II, exact decoherence in the determin
model was obtained as a result of the action being linea
one of the variables, hence yielding a delta function on in
gration. In this case, note that the exponent is linear in
variabley1y8. So introduce new coordinates

Y5
1

2
~y1y8!, v5y2y8 ~4.3!

and note that

yX2y8X85Y~X2X8!1
1

2
v~X1X8!. ~4.4!

The y terms in the second and third exponential in Eq.~4.2!
therefore become

E dt@2mẏẊ1mv2yX1mẏ8Ẋ82mv2y8X81mg~y2y8!

3~Ẋ1Ẋ8!1mg~ ẏ1 ẏ8!~X2X8!#

5E dtF2mẎ~Ẋ2Ẋ8!2
1

2
mv̇~Ẋ1Ẋ8!

1mv2Y~X2X8!1
1

2
mv2v~X1X8!

1mgv~Ẋ1Ẋ8!12mgẎ~X2X8!G . ~4.5!

As advertized, the exponential in the path integral is n
entirely linear inY, and, after an integration by parts in E
~4.5!, Y may be integrated out on the interior slices to p
duce a delta function on configurations satisfying the eq
tion

Ẍ2Ẍ822g~Ẋ2Ẋ8!1v2~X2X8!50. ~4.6!

This is the antidamped dissipative equation forX2X8, but
this does not matter since it is not the effective equation
motion ~derived below!. The integration by parts in Eq.~4.5!
also produces the boundary terms
08501
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f

2@mY~Ẋ2Ẋ8!12mgY~X2X8!#0
t . ~4.7!

As in Sec. II, the integration overYf produces a delta func
tion enforcingẊf5Ẋf8 , and since we also haveXf5Xf8 , the
solution to Eq.~4.6! is thereforeX(t)5X8(t) identically, for
all t. We therefore have exact decoherence, as expecte
follows that the other boundary terms in Eq.~4.7! vanish
~since they are proportional toX2X8!.

We may now compute the probabilities for histories. W
X(t)5X8(t) throughout, we now have

p~aI !5E DX~ t !Dv~ t !dy0 dy0)
k51

n

Y@X~ tk!2 x̄k#

3expS i

\ E dt@2mv̇Ẋ12mgvẊ1mv2vX# D
3expS 2

2mgk~TA1TB!

\2 E dtv2D
3rA~X02y0 ,X02y08!rB~y0 ,y08!. ~4.8!

Thev integral may now be carried out, and, noting that the
is also a boundary term coming from the integration by pa
of the mv̇Ẋ term, we get

p~aI !5E DX~ t !)
k51

n

Y@X~ tk!2 x̄k#

3expS 2
m

8gkT8
E dt@Ẍ12gẊ1v2X#2D

3E dy0 dy08 exp@~ i /\!m~y02y08!Ẋ0#

3rA~X02y0 ,X02y08!rB~y0 ,y08!. ~4.9!

whereT85TA1TB . Now consider the last part of this ex
pression, they0 ,y08 integral involving the initial state. We
now chooserB to be the ground state of the harmonic osc
3-8
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lator. If we also lety0→2y0 , y08→2y08 , followed by the
transformation,y0→y02X0 and y08→y082X0 , then this in-
tegral becomes

E dy0 dy08 expS 2
i

\
m~y02y08!Ẋ02

~y02X0!2

4s2

2
~y082X0!2

4s2 D rA~y0 ,y08!. ~4.10!

This is clearly just the average of the initial staterA in a
coherent stateup,q& with p5mẊ0 ,q5X0 . Hence the final
expression is

p~aI !5E DX~ t !)
k51

n

Y@X~ tk!2 x̄k#

3expS 2
m

8gkT8
E dt@Ẍ12gẊ1v2X#2D

3^mẊ0 ,X0urAumẊ0 ,X0&. ~4.11!

This is the desired result: the probability for histories ofX for
the exactly decoherent deterministic theory with an envir
ment.

The main issue now is to compare this result with E
~3.13! derived using standard quantum theory under the c
ditions of approximate decoherence. Equation~4.11! is
clearly a much better approximation to Eq.~3.13! than Eq.
~2.13! was. Equation~4.11! has the desired dissipation ter
@although here it comes from the environment, and not fr
the action~1.17!#. Most importantly it has thermal fluctua
tions. The temperature in Eq.~4.11! is T85TA1TB , versus a
temperatureTA in Eq. ~3.13!, but this difference is clearly
negligible if we chooseTB!TA .

The only significant difference between Eqs.~4.11! and
~3.13! is the appearance of the explicitly positive weight
initial data, ^p,qurAup,q&, in Eq. ~4.11!, versus the Wigner
function W(p,q) in Eq. ~3.13!. The two objects are, how
ever, close.̂ p,qurAup,q& is readily shown to be equal to th
Wigner function ofrA but smeared over an\-sized region of
phase space. Moreover, the subsequent evolution of the
tem renders the difference between these two objects n
gible, since the thermal fluctuations produce a smearing
phase space that becomes much greater than\ on a very
short time scale@25,26#. The probabilities of the DQT and
the approximately decoherent standard quantum theory
therefore very close.

The physical picture is as follows. We have propos
switching from noncommuting operatorsx̂,p̂ to commuting
onesX̂,P̂ differing from the original ones by ‘‘quantum fluc
tuations.’’ The key point is that in the presence of the en
ronment, the system also suffers thermal fluctuations that
typically much larger than the quantum fluctuations inX̂

2 x̂ and P̂2 p̂. The difference between the two sets of o
erators is therefore negligible, and we may reasonably c
sider the two theories as ‘‘close.’’
08501
-

.
n-

ys-
li-
in

re

d

-
re

-
n-

We now consider some finer points of this derivatio
Consider first the issue of why we need to include the en
ronment of the auxiliary systemB. As stated, this has to do
with the dissipative term. The question is what would happ
if we drop the environment ofB? It is easy to see that drop
ping the fluctuation term forB’s environment does no harm
In fact it improves things, since it is the same as settingTB
50, so we no longer need the conditionTA@TB . On the
other hand, dropping the dissipative terms forB is equivalent
to including a term proportional to

mg~y2y8!~ ẏ1 ẏ8!52mgvẎ ~4.12!

in the exponent in Eq.~4.2!. On carrying out the integra
over Y, this produces a term proportional tov on the right-
hand side of Eq.~4.6!. The key point now is that the solutio
to this equation is no longerX(t)5X8(t) identically. There-
fore exact decoherence is destroyed. Hence the presen
the dissipative term is required.

A possible difficulty of having to include a second env
ronment is that its effects may become significant at l
temperatures. We have concentrated here on the h
temperature regime, but in standard quantum theory ther
some decoherence at low temperatures, including zero t
perature~although this does not seem to have been very
tensively studied in the literature@9,27#!. @At low tempera-
tures note also that the fully nonlocal form of the influen
functional~3.5! must be used.# In this regime it becomes les
obvious that the DQT is close to the predictions of SQT.

At all temperatures, standard quantum theory, after
proximate decoherence, is approximately equivalent to
classical but stochastic theory@described by Eq.~3.13! for
example#, consisting of deterministic evolution according
classical equations of motion with dissipation, with therm
fluctuations about that motion. This description is still go
even if the fluctuations are not small. The DQT also leads
a description in terms of fluctuations about determinis
evolution, but the presence oftwo environments means tha
the fluctuations are not the same in general as the fluc
tions in the SQT case—they are larger, as evidence by
presence of the temperatureTA1TB in Eq. ~4.11!. They are
approximately the same ifTA@TB , but they will be different
if both TA andTB are the same order of magnitude. Henc
SQT and the DQT are generally not approximately the sa
in their predictions for low-temperature environments, sin
the fluctuations in the DQT case are significantly larger.

At least, that is the conclusion on the basis of the a
proach of this section, involving doubled environments.
does not rule out the possibility that another type of DQ
might approximately reproduce the predictions of stand
quantum theory at low temperatures. Indeed, if the mas
the particle is very large, Eq.~2.13! with a dissipative term
will do the job moderately well~as discussed at the begin
ning of this section!. Still, the analysis of this paper leave
space for a more thorough discussion of the connection
tween DQT and SQT in the low-temperature regime.

Finally, consider the case of nonlinear systems. Whe
more general potential is present, we need to replace
potential terms inS@x#2S@y# with (x2y)V8(x1y) @to co-
3-9
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incide with the action~1.15!#. This means of course that th
systemsA and B are now coupled whereas previously th
were not. It is readily shown that the analysis goes throug
a very similar way with a termV8(X) in the final result
~4.11! in place ofmv2X. General potentials are fully treate
in the alternative formulation in the next section.

V. A WIGNER FUNCTION FORMULATION

We have examined the relationship between SQT
DQT by comparing the probabilities for histories of the tw
theories, when SQT is approximately decoherent. This
leaves, however, a certain amount of vagueness in a s
ment about the relationship between approximate and e
decoherence, since the probabilities from SQT are still o
approximately defined due to imperfect decoherence. A p
haps more precise way of comparing the predictions of s
dard quantum theory with the deterministic one is to co
pare the density operator of standard quantum theory w
the reduced density operator of DQT after the extra variab
~K,Q, etc.! have been traced out. This we now do. We will
fact work with the Wigner function@17#, rather than the den
sity operator, but this is essentially the same since they
related by a simple Fourier transform.

The systemA plus its environment has Hamiltonian~3.2!
and is described by a Wigner functionW(p,x,pn ,qn) obey-
ing the equation

]W

]t
5$H,W%1DW, ~5.1!

where$ % is the usual Poisson bracket andD is an operator
acting on phase space,

D5 (
n51

`
~21!n

22n

1

~2n11!!

d2n11V~x!

dx2n11

]2n11

]p2n11 . ~5.2!

Explicitly,

]W

]t
52

p

m

]W

]x
1V8~x!

]W

]p
1DW1(

n
F2

pn

mn

]W

]qn

1mnvn
2qn

]W

]pn
1cnx

]W

]pn
1cnqn

]W

]p G . ~5.3!

This equation describes the exact dynamics of the systeA
coupled to its environment. Assuming a factored initial st
between system and environment, and with a thermal in
state with temperatureTA for the environment, the environ
ment coordinates may be traced out, and an equation fo
reduced Wigner function for the system onlyW̄(x,p) may be
derived. This is in general a non-Markovian equation, wh
explicit form is only readily obtained for linear system
@24,28#. But in the Fokker-Planck limit~used in the previous
section! it has the form
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]W̄

]t
52

p

m

]W̄

]x
1V8~x!

]W̄

]p
12

]

]p
~pW̄!

12mgkTA

]2W̄

]p2 1DW̄. ~5.4!

It is well-known that the diffusion term spreads out th
Wigner function so that the higher derivative termsDW̄ may
be neglected@29,30#. Furthermore, the Wigner function als
becomes positive after a very short time@25#. It may there-
fore be regarded, approximately, as a classical phase-s
distribution function. This is the usual account of the a
proximate emergence of classical behavior using the Wig
function or density operator, paralleling the discussion
Sec. III.

We now compare this to the Wigner function descripti
of the deterministic quantum theory, which we know to
exactly decoherent, paralleling the derivation of Sec. IV. T
action for the deterministic theory coupled to an environm
is

S5E dt@mQ̇Ẋ2QV8~X!#1(
n
E dt@mnQ̇nẊn

2mnvn
2QnXn2cnQnX2cnXnQ#, ~5.5!

where the coordinates are related to the coordinatesx,y, etc.,
by

X5x1y, Q5
1

2
~x2y!, Xn5qn1q̃n ,

Qn5
1

2
~qn2q̃n!. ~5.6!

In the linear case, the action~5.5! is of the form

S5S@x,qn#2S@y,q̃n#. ~5.7!

The Hamiltonian is

H5
1

m
PK1QV8~X!1(

n
F 1

mn
PnKn1mnvn

2QnXn

1cnQnX1cnXnQG , ~5.8!

wherePn ,Kn are the momenta conjugate toQn ,Xn respec-
tively. The Wigner function for this systemW
5W(K,X,P,Q,Kn ,Xn ,Pn ,Qn) obeys the evolution equa
tion
3-10
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]W

]t
52

K

m

]W

]Q
2

P

m

]W

]X
1V8~X!

]W

]P
1QV9~X!

]W

]K
1D̃W

1(
n

F2
Kn

mn

]W

]Qn
2

Pn

mn

]W

]Xn
1mnvn

2Xn

]W

]Pn

1mnvn
2Qn

]W

]Kn
G1(

n
cnFX

]W

]Pn
1Q

]W

]Kn

1Xn

]W

]P
1Qn

]W

]K G . ~5.9!

Here, D̃ is a modified phase-space operator, appropriate
the fact that the potential isQV8(X); hence,

D̃5Q(
n51

`
~21!n

22n

1

~2n11!!

d2n12V~X!

dX2n12

]2n11

]K2n11 .

~5.10!

This is the exact quantum dynamics of the determinis
quantum system coupled to an environment. It is exa
decoherent in terms of histories specified by fixed values
P, X, Pn , andXn . It is subject to the initial conditions tha
in terms of the original systemsA,B, and their environments
the initial state completely factors:

W5WA~p,x!WB~k,y!WAE~pn ,qn!WBE~ p̃n ,q̃n!.
~5.11!

As in the previous section, the auxiliary systemB is chosen
to be in a minimum uncertainty state. The environments oA
andB are chosen to be in thermal states, but withTA@TB .

To compare with the standard quantum theory res
~5.3! and~5.4!, we integrate out the variables,K, Q, Kn , and
Qn . Tracing the Wigner equation@to derive Eqs.~5.4! from
~5.3!, for example# is usually a nontrivial operation@28#.
However, the fact that we not tracing out canonical pa
appears to make it essentially trivial, and it is easily seen
the resulting Wigner functionW̃(X,P,Xn ,Pn) obeys the
evolution equation

]W̃

]t
52

P

m

]W̃

]X
1V8~X!

]W̃

]P
1(

n
F2

Pn

mn

]W̃

]Xn

1mnvn
2Xn

]W̃

]Pn
1cnX

]W̃

]Pn
1cnXn

]W̃

]P
G , ~5.12!

The evolution equations~5.12! and~5.3! are the same, excep
for the termDW in Eq. ~5.3! @where note that the analogou
term in Eq.~5.9! dropped out whenK was integrated over#.
In the absence of the environmental terms, the presenc
DW would substantially modify the dynamics in Eq.~5.3! in
comparison to Eq.~5.12!. However, as stated, after tracin
out the environment in Eq.~5.3! to yield Eq. ~5.4!, the dif-
fusive effects induced in the evolution ofW make the con-
tribution of this term negligible. Moreover, tracing out th
environment in the DQT of Eq.~5.12! leads to an equation o
the form ~5.4! without the termDW, and with the tempera
ture TA replaced byTA1TB . The two evolution equations
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are therefore approximately the same forTB!TA . We may
therefore say the following: the dynamics described by E
~5.3! and ~5.12! will be essentially identical with respect t
coarse grainings, asking questions only about the variableX
andP. @We have phrased the statement in this way, in ter
of Eqs. ~5.12! and ~5.3!, rather than Eq.~5.4! since the
former are exact equations whereas Eq.~5.4! holds only in
the Fokker-Planck limit.#

Given identical dynamics, the comparison of the two s
tems then reduces to comparison of the initial states. In
SQT result, Eq.~5.4!, the initial state is the Wigner function
WA(p,x). In the corresponding DQT equation@Eq. ~5.12!
with environment traced out#, by contrast, the initial state is
the reduced Wigner function,

W̃~P,X!5E dQ dK W~K,X,P,Q!

5E dQ dK WA~p,x!WB~k,y!. ~5.13!

This is written most usefully by changing variables fro
X,P,Q,Kto X,P,y,k, where, from Eq.~5.6!, we have

Q5
1

2
X2y, K5P1k, p5P1k, x5X2y.

~5.14!

It follows that

W̃~P,X!5E dy dk WA~P1k,X2y!WB~k,y!.

~5.15!

SinceWB is a minimum uncertainty state, this is a Wign
function smeared over an\-size region of phase space, as
Eq. ~4.11! ~and is positive!. We are therefore now comparin
the smeared Wigner functionW̃(P,X), which solves the
environment-traced version of Eq.~5.12! to the Wigner func-
tion of the SQT,WA(p,x). These will generally be different
but as stated in Sec. IV, the environment comes to
rescue—under evolution according to an equation of
form ~4.4!, thermal fluctuations rapidly overtake the quantu
ones, and the difference between the smeared and unsm
Wigner functions is negligible.

We therefore have an independent proof of the appro
mate equivalence of SQT and the DQT under the conditi
of approximate decoherence.

VI. EXACT DECOHERENCE OF MOMENTA IN THE
QUANTUM BROWNIAN MOTION MODEL OF SQT

We now produce an example of a situation in stand
quantum theory, which does in fact exhibit exact decoh
ence, without having to resort to the DQT of the previo
sections. The example is histories of momenta in the qu
tum Brownian motion model, for a free particle in th
Fokker-Planck limit. It is in some ways a curious and path
logical example, but it does not appear to have been not
before, and is perhaps of interest in relation to the disc
3-11
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sions of the previous sections.
We first consider the form of the decoherence functio

for a system-environment model with, for simplicity, proje
tors at two moments of time. It is

D~a1 ,a2ua18 ,a2!5Tr~Pa2
K0

t @Pa1
rPa

18
# !. ~6.1!

Here, the environment has been traced out, so the proje
and the trace refer to the system only. The evolution oper
K0

t refers to reduced system dynamics described by the M
ter equation whose Wigner transform is Eq.~4.4!, that is, its
solution is

r t5K0
t @r0#, ~6.2!

It is also useful to introduce a backwards time evoluti
operatorK̃0

t , defined by

Tr~AK0
t @r0# !5Tr~K̃0

t @A#r0! ~6.3!

~this is not the inverse ofK0
t since the evolution is not uni

tary!. In terms of it, the decoherence functional may be w
ten,

D~a1 ,a2ua18 ,a2!5Tr~K̃0
t @Pa2

#Pa1
rPa

18
!. ~6.4!

Backwards evolution may also be described by a Ma
equation whose Wigner transform is similar to the usual o
@Eq. ~4.4!#, but the unitary and dissipative terms have t
opposite sign@we consider only the caseV(x)50 here#. The
decoherence term produces the same effect in either dire
in time.

By way of a digression, from Eq.~6.4! we can see why
decoherence of position histories is produced by essent
the same mechanism that diagonalizes the density matrix
projectorPa2

starts out diagonal inx and remains approxi

mately diagonal inx under evolution byK̃0
t , hence when

acted on by position projectorsPa1
,Pa

18
it gives approximate

diagonality of the decoherence functional.
After these preliminaries, we turn to the case in which

projectors in Eq.~6.4! are onto ranges of momenta. We sh
show that diagonality inp is exactly preserved byK̃0

t , for the
case of the free particle coupled to an environment in
Fokker-Planck limit. To see this, consider first the Wign
representation of the Master equation in this case. It is

]W

]t
52

p

m

]W

]x
12g

]

]p
~pW!12mgkT

]2W

]p2 . ~6.5!

The important property of this equation is the now followin
if W is a solution to this equation, with initial conditionW0 ,
then ]W/]x is also a solution, with initial condition
]W0 /]x. Translated back into density operator langua
this means that ifr t is a solution to the Master equation wit
initial conditionr0 , then@r t ,p̂# is also a solution with initial
condition @r0 ,p̂#, so

@r t ,p̂#5K0
t @@r0 ,p̂##. ~6.6!
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This may also be written

@K0
t @r0#,p̂#5K0

t @@r0 ,p̂## ~6.7!

or better,

eiap̂K0
t @r0#e2 iap̂5K0

t @eiap̂r0e2 iap̂# ~6.8!

for any real constanta.
Now suppose that@r0 ,p̂#50, which is equivalent to the

statement thatr0 is diagonal in p. Then it follows that
@r t ,p̂#50 for all t. This means that the evolution operat
K̃0

t preserves diagonality in momenta. It follows immediate
from this that the decoherence functional~6.4! with projec-
tors onto momenta will beexactlydiagonal.

Equation~6.8! shows that the exact decoherence of m
menta comes from a translational invariance visible in
path-integral representation ofK0

t @essentially Eq.~3.3! with-
out the projectors, with zero potential, and in the Fokk
Planck limit#; it is invariant underx→x1a,y→y1a. Fur-
thermore it is broken by the frequency renormalization te
in Eq. ~3.6!, but we have here assumed that the renormali
frequency is set to zero, along with the potential. This is
rather unnatural, and for this reason this property is an
physical feature perhaps only of pedagogical value. It u
mately traces back to the conservation of momentum of
entire system@as long as the system environment coupling
of the form (x2qn)2 in Eq. ~3.1!#.

The equivalent Langevin description also gives some
sight. The momenta, in this description, obeys the equat

ṗ1gp5h~ t !,

whereh(t) is the usual Gaussian white noise. The importa
point is that this equation is first order, sopt is a function of
p, but not of ṗ, so we expect in the quantum theory th
@ p̂t ,p̂#50, and therefore their histories will be exactly dec
herent.

On the other hand, while the density matrix~and indeed
any other evolving operator! will remain exactly diagonal in
momenta, the distribution of momentar(p,p) will generally
spread. We therefore have the perhaps surprising situatio
a quantity that suffers fluctuations but is still exactly dec
herent. The free particle without an environment is clea
exactly decoherent in momentum. Furthermore the distri
tion of momentum does not spread for the free particle.
coupling to an environment in such a way that the total~sys-
tem plus environment! momentum is conserved, one mig
expect to get only approximate decoherence of the sys
momentum, since system momentum alone is no longer
actly conserved. The surprise is that in a certain regime
this model~the Fokker-Planck limit!, the decoherence of mo
mentum remains exact, the environment making its mar
only on the momentum fluctuations, which now do spre
This emphasises the fact that the evolution of@ p̂,r# ~which
controls decoherence! and the evolution ofr(p,p) or (Dp)2

~which controls fluctuations! can really be quite different.
As stated, this example is in many ways a curiosity, bu

illustrates some interesting points. And in the hunt for the
3-12
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ries, which are exactly decoherent, it is surely worth not
the places in which it was already lying under our noses

VII. A GENERAL APPROACH?

We now turn to the question of how the construction d
scribed may be extended to quantum systems, which are
described by a single simple canonical pair satisfying
~1.7!, but instead by a more complicated algebra. Spin s
tems, for example, are not described by Eq.~1.7!. While we
do not have a comprehensive answer to this, the followin
an indication of how one might proceed.

Suppose we have a quantum theory described by, a s
operatorsAk ,k51,2 . . . obeying a closed algebra, whe
@Ak ,Aj #Þ0 in general.~The case described so far hasA1
5p,A25x,A351.! The equations of motion are

Ȧk5 i @H,Ak#5 f k~A1 ,A2 ,...! ~7.1!

for some HamiltonianH5H(A1 ,A2 ,...), and theabove re-
lation defines the functionf k . Suppose we consider the d
coherence functional for histories specified by fixed valu
of Ak . SinceAk at different times will generally not com
mute, the histories will generally not be decoherent.

Now consider a second theory described by a set of c
muting operatorsBk , with canonical momentaPk . Suppose
that at the classical level, they have the Poisson bracke
lations,

$Bk ,Bj%50, $Bk ,Pj%5dk j , $Pk ,Pj%50. ~7.2!

Now define the Hamiltonian to be

H5(
k

Pk f k~B1 ,B2 ...!, ~7.3!

where f k is the function defined in Eq.~7.1!. Then the clas-
sical equations of motion forBk are

Ḃk5$Bk ,H%5 f k~B1 ,B2 ,...!, ~7.4!

On quantization~and with attention to operator ordering!, we
thus obtain a set of commuting operatorsBk , which obey the
same equations of motion as the original set of operatorsAk .
This means that histories of fixedBk will be exactly deco-
herent. Furthermore, in the expression for the probabili
for histories~1.1!, the probabilities for histories ofAk andBk
will be almost the same function of the operators, differing
the form of the initial state, and in the fact that the trace
the case of theBk operators is over a Hilbert space twice
large. Of course, these differences may be substantial so
does not prove anything in terms of the closeness of the
theories, but the above shows that the question of the dyn
ics is straightforward. A more detailed description of t
relationship betweenAk andBk is required for further analy-
sis, and this is perhaps best carried out with specific
amples. This will be pursued elsewhere.
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VIII. SUMMARY AND DISCUSSION

A. Summary

We have shown in a variety of ways that approxima
decoherence of histories of a system with canonical pairp,x
may be turned into exact decoherence by doubling the
bert space and switching to the classically equivalent v
ablesP5p2k,X5x1y, where the auxiliary variablesk,y
are in a minimum uncertainty state. Any nondecoherent
of histories may be made decoherent in this way, but
point is that the change in the probabilities~or the Wigner
function! is small for histories that are already approximate
decoherent. The role of the environment in this scheme
that, by giving the original system thermal fluctuations,
provides a kind of ‘‘smoke screen’’ rendering the shift fro
p,x to P,X undetectable.

B. An alternative approach to emergent classicality?

The approach described here might be regarded as gi
an alternative approach to emergent classicality. Stand
demonstrations of approximate classicality involve comp
ing the predictions of classical and quantum mechanics
given situation. Although this comparison is often clear
tuitively, at a more fundamental level the issue is perha
clouded by the fact that classical and quantum mechanics
theories of different types: how can one measure the ‘‘d
tance’’ between them? Here, however, in considering de
ministic quantum theories we are essentially writing down
quantum theory whose predictions are exactly the same
given classical theory. To check for emergent classicality
then compare standard quantum theory with the determin
quantum theory. Since the theories are the same type
thing—quantum theories—it is clearer how they may
compared. One may compare the density operators pred
by the two theories, for example.

Although this conceptual advantage is admittedly mi
mal, there could also be a practical advantage. The deco
ence functional is in general rather complicated to calcula
in comparison to Wigner functions and density operators
a degree that presents problems in some areas of int
~such as the study of histories of hydrodynamic variab
@31#!. The results of this paper suggest that a test for appr
mate decoherence of histories consists quite simply of c
paring the Wigner functions~or density operators! of stan-
dard quantum theory and a suitably chosen determini
quantum theory.

C. Other approaches to approximate decoherence

There are undoubtedly many other ways of investigat
the connection between approximate and exact decohere
and it would certainly be of interest to explore these. He
we have adopted the device of doubling the set of dynam
variables, and employed a fundamentally different action
would be of particular interest to see whether one co
avoid this in a simple way. For example, the commuti
position and momentum operators of von Neumann,
scribed in the Introduction, appear to hold the possibility
3-13
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moving from noncommuting to commuting operators wit
out having to change the underlying dynamics or the num
of dynamical variables.

One of the difficulties of the present scheme is that
Hamiltonian of the auxiliary system has wrong sign, lead
to the possibility of negative energies, although it is not cl
that this undesirable feature must arise in this context.
example, exactly conserved quantities are exactly deco
ent, and also the model of Sec. VI gave exact decohere
without negative energies.

An alternative scheme, similar to the present one, wh
avoids negative energies, is to add an identical auxiliary s
tem with the correct sign for the Hamiltonian, but work wi
complex canonical variable@32#. So we define

X̂5 x̂1 i ŷ , P̂5 p̂1 i k̂, ~8.1!

which clearly satisfy@X̂,P̂#50. The total Hamiltonian for a
linear system is then

H5
1

2m
P̂†P̂1

1

2
mv2X̂†X̂, ~8.2!

which is positive. The difficulty with this approach~although
not obviously unsurmountable! is that now one is faced with
the issue of interpreting position and momentum opera
with an imaginary part.
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These examples and their problems cause one to wo
whether all attempts to distort approximate decoherence
exact decoherence in a reasonably general way~i.e., not just
for special initial states! will encounter features that are dif
ficult to accept. We might expect difficulties because we
in a sense trying to rewrite quantum theory in essentia
classical terms, and this is well-known to lead to problem
Another example of this is the Wigner function represen
tion, which gives a deterministic evolution equation close
the classical one for a phase-space distribution function,
it is not always positive and so cannot be directly interpre
as a true probability distribution. Then there is the Boh
theory approach to quantum theory, which gives a direct
terpretation of the wave function in terms of trajectories, b
is explicitly nonlocal. The extent to which quantum theo
cannot be interpreted in classical terms is elegantly sum
rized in the Bell inequalities~and other related results!. This
raises the question of whether inequalities of the Bell ty
have something to say about the degree to which deco
ence may be made exact. These and other issues wi
explored elsewhere.
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