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Approximate decoherence of histories and 't Hooft’'s deterministic quantum theory
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In the decoherent histories approach to quantum theory, sets of histories are said to be decoherent when the
decoherence functional, measuring interference between pairs of histories, is exactly diagonal. In realistic
situations, however, only approximate diagonality is ever achieved, raising the question of what approximate
decoherence actually means and how it is related to exact decoherence. This paper explores the possibility that
an exactly decoherent set of histories may be constructed from an approximate set by small distortions of the
operators characterizing the histories. In particular, for the case of histories of positions and momenta, this is
achieved by doubling the set of operators and then finding, among this enlarged set, new position and mo-
mentum operators that commute, and so decohere exactly, and which are “close” to the original operators.
Two derivations are given: one in terms of the decoherence functional, the second in terms of Wigner func-
tions. The enlarged, exactly decoherent theory has the same classical dynamics as the original one, and
coincides with the so-called deterministic quantum theories of the type recently studied by 't Hooft. These
results suggest that the comparison of standard and deterministic quantum theories may provide an alternative
method of characterizing emergent classicality. A side product is the surprising result that histories of momenta
in the quantum Brownian motion modélor the free particle in the high-temperature limare exactly

decoherent.
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[. INTRODUCTION The projection operatoi8, characterized the different alter-

natives describing the histories at each moment of time. The
How close to classical mechanics can quantum mechanigsrojectors satisfy

be? One of the main aims of the decoherent histories ap-
proach is to demonstrate the emergence of classical mechan-
ics as an effective theory, starting from the assumption that
qguantum mechanics is the exact underlying thddry5]. In
such studies, the effective classical theory almost alwaygnd the projectors appearing in Hq__]_) are, in the Heisen-
emerges in an approximate way, rarely exact. The main reaserg picture,
son for this is that decoherence, the destruction of quantum
interference, is almost always approximate. What does ap- P, (t)=e"ttop e Hkto) (1.3
proximate decoherence mean? What is the nature of the his- K K
tories that approximately decoherent histories are an approxprgpapilities can be assigned to histories, if and only if, all

mation to? e iy . ;
, . . . . histories in the set obey the condition of consistency, which
The aim of this paper is to explore the idea that appFOXI-iSI thal ! y . ! Y, wh

mate decoherence of histories can be turned into exact deco-

herence by suitable “small” modifications of the operators ReD(a,a')=0 (1.9

characterizing the histories. In particular, histories character- =

ized by fixed values of coordinates and momerfp are  fo5r 4+’ Here @ denotes the stringe ,.

rendered exactly decoherent by replaciygwith new coor- D(a_a')_is the decoherence functional

dinates and momentX,P, which commute. This replace- =

ment, we show, is a valid approximation provided that the p(g,a’)=TI[P, (t,)...P, (t1)pP/(t1)...P(t,)].

original histories are approximately decoherent. The new T " ! . " (1.5

theory in terms of the commuting variabl¥gP has the same '

form as the so-called deterministic quantum theories of thg gosely speaking, the decoherence functional measures the

type recently studied by 't Hooft in the context of quantum amount of interference between pairs of histories. It is ob-

gravity [6]. _ _ _ . served in numerous examples involving physical mecha-
To set up the problem in more detail, we briefly review nisms for decoherence that the imaginary part of the deco-

the decoherent histories approddh-4,7,9. In the decoher-  herence functional often also vanishes when the real part

ent histories approach to quantum theory, probabilities arganishes, and it is therefore of interest to consider the stron-
assigned to histories of a closed system via the formula  ger condition of decoherence,

% Po=1, P.Ps=38,4P, (1.2

..,a, and

p(ai,as,...,a,) D(a,a')=0 (1.6)

=Tr[P, (ty)...P, (t1)pP,.(t1)...P, (t,)]. _ o
[ ”( ) 1( VP 1( ) ”( W] for a# «’. This condition may be shown to be related to the
(1.1 existence of record projectors, which may be added to the

0556-2821/2001/68)/08501315)/$20.00 63 085013-1 ©2001 The American Physical Society



J. J. HALLIWELL PHYSICAL REVIEW D 63 085013

very end of the string of projectors that are perfectly corre-approximately decoherent. Of coursay set of histories can
lated with the earlier alternatives, ,...,«,,, and are related be made exactly decoherent in this way. The point, however,
to the physical process of information stordge9. is that we expect only histories that are approximately deco-
In its application to physical interesting situations, there-herent in the first place will undergo a small change in their
fore, one of the first aims of the approach is to find out howProbabilities through this procedure. Sets of histories that are
the decoherence conditiofl.6) may come to be satisfied. MOt by any reasonable standard, close to being decoherent,
This is often accomplished, for example, by coupling theWill suffer a large change in their probabilities. o
system of interest to an environment and then tracing out the 1h€ von Neumann method above is one way of obtaining
environment. Or more generally, by some kind of coarse commuting set of operators, and there are probably many
graining procedure. However, as indicated earlier, it is alWays of achieving similar results. Here, we will use a differ-
most universally observed in such situations that the condient method, which is perhaps easier and more physically
tion (1.6) is only satisfied approximately, not exactly. The |nS|ght_fuI, but is also perhaps more ra}d|cal |n.that involves
degree to which this condition is satisfied can be exceptionchanging the fundamental theory one is quantizing. Suppose
ally good, by any standardsee Refs[10,11], for example, ~ We start with a noncommuting canonical par,X, for a
but it is still nevertheless approximate. Although to work Single particle in one dimension, so
with approximate decoherence seems very reasonable physi- (%,p]=i% @7
cally, from a more rigorous point of view it leaves a gray ' ' '
area in the formalism, since it is not clear \{vhat. the ap.proxiDenote this system, and now adjoin to it an auxiliary sys-
mgtely decoherent h'StO.”eS are an approximation to, i anyfem, denoted, identical toA, with canonical pairk,§, and
thing [12]. It would be highly desirable to find a more con- consider the variables
trolled way of moving between approximate and exact
decoherence. R 1 R
As stated above, we shall show that there is a closely X=X+, Q=§(>‘<—y), K=
related theory that is exactly decoherent and which, under

(p+k), P=p—k.

N| =

o . o c A . (1.8
certain circumstances, approximately coincides in its predic-
tions with the approximately decoherent theory. We now have the commutation relations
We start with the observation that the generic lack of
decoherence of histories is due to the fact that operators at [Q.P]=ih, [X,K]=ih. (1.9

different times generally do not commute. In the case of

histories characterized by projections onto positions, posiAll other commutators are zero, and in particular, we note

tions at different times can be completely expressed in termghat

of p andX at the initial time, so the nondecoherence is due to o

noncommutativity of the basic canonical pair. Histories char- [X,P]=0. (1.10

acterized by operators that do commute at different times are ) ) )

exactly decoherent, as may be seen from(Ed). (Histories ~ Classically, we could set=0=k identically, soX=x and

of conserved quantities are important examples of this typ& = P- Quantum mechanically, we cannot do this, but we can

[13].) see how close we can get. Suppose we put sy&em a
We now recall a very old result due to von Neumann,minimum uncertainty state witf§)=0=(k). Then

concerning the noncommuting paif,X. Von Neumann . .

showed that it is possible to find a new pair of operators, (Xy=(x), (P)=(p) (1.11

p’, X', say, which do commute, and which are in some sense .

“close” to the original pair[14]. The key issue is then to but the higher moments df andk are nonzero. This indi-

explain what is meant by “close.” This is obviously a rather cates that the paf,X are equal to the commuting peﬁk’)A(

subtle issue. Every interesting quantum effect can be tracegh to “quantum fluctuations.” More precisely, a measure of

back to noncommuting operators, so clearly there will bethe degree of closeness is indicated by the relations
many situations in which this replacement is a very poor

approximation. The point, of course, is that the measure of N ~ A
closeness depends on the context. We are primarily inter- ((X—x)2><(P—p)2>=<y2)<k2):Z, (112
ested in situations that are almost classical anyway, and in
that case there is a chance that such an approximation maye issue is then to determine to what extent and under what
be good. conditions these fluctuations are significant. Clearly they will
This suggests the following approach to approximate debe significant when quantum-mechanical effects are impor-
coherence. We start with a decoherence functional that igant, but it is reasonable suppose that they won’t be signifi-
approximately diagonal. We replace the operators with comeant close to the classical regime.
muting operators, thereby achieving exact diagonality. The To use this scheme in the decoherent histories approach it
degree of closeness is then measured by the amount that tiseuseful to write down an action for the extended system, so
probabilities for the histories change on replacing the origi-that we can use path integrals. Recall that what we ultimately
nal operators with the commuting operators. We expect thiseed to get decoherence of position histories is that positions
change to be small when the original set of histories aret different times need to commute. We therefore require that

2
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the noncommuting operatofs and X at different times are tween approximate and exact decoherence. The results do,

distorted into commuting operato; ,X, which will guar- however, contribute to 't Hooft's program, in that they show
antee exact decoherence. Since, in any reasonable dynamitsdetail how the predictions of standard quantum theory and

%, is a function ofX andX, the relationship between veloci- deterministic quantum theory become indistinguishable as

ties and momentdso far unspecifiedmust be such that

1 .1
mez—zmyz

the classical regime is approached.
PO ) ) The results of this paper are basically simple and in some
[X,X]=0. With the standard action, we would ha¥e \yays aimost obvious: DQT reproduces classical predictions
=mX, sinceK is defined to be the conjugate ¥q but this  exactly, and standard quantum theory reproduces classical
clearly will not work since[ K,X]#0. We must instead ar- predictions approximately when approximate decoherence
range thatP=mX. It is easily seen that this is achieved holds, hence it is no surprise that the two theories approxi-
using that action mately coincide. The main task of this paper, however, is to
show in detail exactly how this works out.
L In Sec. Il we discuss the quantization of systems de-
S:j dt :J dtmXQ (113 ghyibed by the actiofil.15. We show that histories of are
exactly decoherent and that the predictions of the theory may
(in the free particle caseThe classical solution foX in the  be arranged to coincidexactly with those of the classical
free particle case is theory.
5 In Sec. lll, we discuss the standard picture of approximate
: t decoherence of histories of a simple linear system, with de-
K= XHIX=X+ 1, (114 coherence provided by coupling to a thermal environment.
The main result of this paper is contained in Sec. IV,
On quantization, this |mp||es th@f(t ’)A(]:O as required_ where we repeat the analysis of Sec. Il but with the addition
The action for the new variableéandQ has the form of ~of an identical auxiliary system with the wrong sign action.
the action for the deterministic quantum thedBQT) dis-  We verify that histories oX=Xx+y are exactly decoherent,
cussed by 't Hoof{6]. For the more general case of a par-as in Sec. Il, but here complicated by the presence of an
ticle in a potential, this action is environment. Most importantly, the environment ensures that
the exactly decoherent deterministic theory makes predic-

.. , tions that are indeed very close to the predictions of the
S:f difmQX—=QV'(X)], (119 standard theory with approximate decoherence.
In Sec. V, we give an alternative account of the results of
This produces the classical equations of motion Sec. IV, working with the Wigner function rather than the
decoherent histories approach. We show that the Wigner
mX+V'(X)=0 (1.1  function of the DQT is a good approximation to the Wigner

function of the standard quantum theory approach if there is
and therefore gives the same classical dynamics as the usugi environment present. The role of the environment in both
action. But the quantum theory will generally be quite dif- Secs. IV and V is seen to be, through its fluctuations, to
ferent, since there are twice as many variables. Furthermorgmear out the positions and momenta so that the distinction
there is a price to pay in that the Hamiltonian for this theorybetweernx,p and X,P becomes insignificant.
is unbounded below, although there is some chance that this In Sec. VI, we consider a different issue related to the
problem may be rectified by fixing the quantum state of thegeneral theme of exact decoherence. This is the observation
auxiliary systenB. Nevertheless, this theory does have prop-that there is, in fact, an exactly decoherent set of histories
erties to recommend it for the purposes of this paper; it isalready buried in the standard approach, in the much-studied
exactly decoherent, and its classical dynamics coincides wituantum Brownian motion model. Namely, histories of mo-
the dynamics of the original theory. menta in this model are exactly decoheréot the free par-

The work of 't Hooft concerns the possibility that the ticle with a high-temperature environmgnThis is a differ-
deterministic quantum theory is a new fundamental theoryent sort of exact decoherence, since it is related to total
replacing the standard orjé]. The reproduction of quanti- momentum conservation of the system coupled to the envi-
zationlike effectgin particular, discrete speciris argued to  ronment, but it does not seem to have been noticed previ-
arise from dissipative effects in the underlying classicalously.
theory [6,15], making use of the fact that the basic action In Sec. VII we briefly consider the question of how the
(1.15 is readily modified to include dissipation at a funda- scheme may extend to quantum systems not described by a
mental level, simple canonical pair obeying E¢L.7). We summarize and

conclude in Sec. VIII.

s=f difmQX—2myQX—QV'(X)].  (1.17

. Lo . . Il. DETERMINISTIC QUANTUM THEORIES
The present paper is not primarily concerned with promoting
this point of view, but rather, with finding what sort of math-  We now consider the quantization of the DQT described

ematical statements one can make about the relationship bbey the action(1.15. The Hamiltonian is
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1
H=—PK+QV'(X), (2.0 D(a,a'):LDX(t)Jg,DX’(t)f DQ(H)DQ' (1)
where recall we have the fundamental commutation relations X ex;{%S[X,Q]— ;i—S[X’ ,Q']>
[Q,ﬁ)]zlﬁ, [X,R]Zlﬁ (2.2 X\PO(XOiQO)\PZ){(X(I)’Q(,J) 2.7

The sum is over pairs of path§(t),Q(t) andX'(t),Q’(t),
Since[X,P]=0, we may quantize using a representation inwhereX(t),X’(t) are constrained to pass through a series of
which the wave functions depend oX and P, ¥ gates denoted by, a’ (described in more detail in Sec. )|
—F(X,P). [Note one could instead work with the commut- andQ(t),Q’(t) are unrestricted. The paths meet at the final

. A . o i pointt=t;, hence
ing pair Q,K and work in a representation in whictl

=V (Q,K).] We therefore make the replacements, Xi=X{, Qi=Qj, (2.9
A P . P After an integration by parts, the actigh.15 may be writ-
Q=|h&—P, K=—|hﬂ. (2.3 ten
Hence the Schidinger equation is SX.Ql1= _f dt QUmX+V'(X)]+mQ;X;—mQoXo
(2.9
i _ ih 9 I\ and similarly
ih E\P(X,P,t)—( — Epa—x‘f'lﬁv (X) ﬁ)\P(X,P,t).
(2.9

gX',Q']= —f dt Q' [mX +V'(X")]+mQX; —mQyX},

The factors of and# drop out, giving the Schiinger equa- (2.10

tion a totally classical form: . .
y where the final condition$2.8) have been used. Now con-

sider the functional integral ové). In a time-slicing defini-
tion of this path integral, we may split the functional integral
into an integral of the initial value®,,Qy, the final value
(2.5 Q¢=Qs, and the values on the interior slices. TQét) and
Q’(t) in the integrands in Eqg2.9) and (2.10), sit on the

This is a classical Liouville equatiofalthough note that the interior slices only, and integrating them out pulls down
wave function is not necessarily realhe solution is delta functions on the equations of motion. Furthermore, the

integral over Q=Q; pulls down a delta functions(X;
—X{). Hence, we obtain

9\~
)\P(X,P,t).

aﬁ’XPt— I3‘9+v'x
E(!!)____ ()0”_P

m gXxX

W (X,P,t)=W(X_,,P_,,0), (2.6)

whereX_,,P_, are the(backwards evolvedclassical solu- D(a,a’)= faDX(t)Ja,DX,(t)f dQod Qoo mX—V"(X)]
tions with initial dataX,P. i i

We now see why the quantum theory of this system may X 8[mX =V’ (X")]8(X{ —Xs)
be called deterministic. First of all, sin@&ﬁ]zo, we may im
choose initial states that are arbitrarily concentrated in Both X ex;{ —(QpX4— QOXO))
and X. Secondly, there is no wave-packet spreading in the h

dynamics(2.6), and the states therefore remain arbitrarily
peaked inP and X. There is therefore no obstruction to as-
signing definite values tX andP for all times. There is also
no possibility of interference because interference arise
from.wgve—packeft spreading. Because of these properties, tl?l%m histories satisfying the classical equations of motion.
predictions of this quantum theory may be arrangea:te

actly coincide with the classical theory. Much of the aboveBUt we also haye the final Cond't'(mf__xf . together V\."th
has already been noted by 't Hog#]. the delta function in Eq.(2.1D, which ensures thak;

In the decoherent histories approach, these features ensureX; . ThereforeX(t) and X'(t) satisfy the same second-
that the histories of fixeX are exactly decoherent, not sur- order equation and the same final conditions. It follows that
prisingly. We briefly sketch the proof of this using a path- X(t)=X’(t) in this path integral and therefore there is exact
integral representation of the decoherence functional. It is decoherence.

XWo(X0,Q0) W5 (Xg,Qop)- (2.11)

Because of the delta functions on the equations of motion,
e sums over path¥(t) andX’(t) take contributions only
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The integral oveQ, andQj, performs a Fourier transfor- 1
mation of the initial wave function to the representation S[X,Qn]Zf dt Esz—V(X)

¥ (X,P) used earlier,

1 .1
+; fdt[imnqﬁ_imnwﬁqﬁ_cnqnx
\Tr(x,P)=f dQ e ("MPQY (X, Q), (2.12 3.1)

and the Hamiltonian is
and we find that the probabilities for the histories are given
by p?

H=ﬁ+V(x)+;

2
2.2
Mp w0yt ChdnX

n
om 2
. - . (3.2
pa)= | DXOAMIV 01T (X0, 50
@ This model, the quantum Brownian motion model, has been
(2.13 considered many times elsewhéd&8—20, especially in the
context of decoherend®1] (see also the older related work
This is precisely the expected result for a classical determinRef. [22]). We will describe it only in outline, quoting re-
istic theory with probability for initial conditions given by duired results where necessary. .
I‘T’(X,P)IZ. After tracing out the environment variables, the decoher-

Finally, it is of interest to compare the initial phase-space®Nce functional is
distribution| ¥ (X, P)|? with the Wigner function, which of- n
ten crops up in this sort of decoherence functional calcuIaD(g,g')zj Dx(t)Dx’(t)H Y[X(t) =X Y[X' (t) = X¢]
tion [4,16]. The Wigner function is defined in terms of the k=1
wave functionW (X,Q) by [17] i1
xexrx(% fo dt[z m'><2—V(x)

1
W(K,X,P,Q)z (277—h)2f d§1d§2

1
—me’2+V(x’) )
Xexd —(i/lh)KE —(ilh)PE&s]
1 1 XFE[x(t),x" (1) ]pa(X0,X0)- (3.3
XW| X+ -§,,Q+ = o )
2 &R 2 52) Here, we usex to denote the string; ,X5,..X,. The win-
1 1 dow functionsY restrict the paths to pass through gates of
XU X— =& ,Q— _52)_ (2.14 width A centerd about points; ,X,,... attimesty,t,...t, in
2 2 a total time interval0,7]. The only leftover of the environ-

ment is the influence functional

Inserting the expression fob (X,Q) in terms of its Fourier i

transform{ff(x,P) [the inverse of Eq(~2.12)], it is easily F[x(t),x’(t)]=exr<%W[x(t),x’(t)]), (3.9
shown that the reduced Wigner functig( X, P) is

whereW[ x(t),x’(t)] is the Feynman-Vernon influence func-
tional phase

\7V(X,P)=f dK dQ WK, X,P,Q)=|¥(X,P)|?, .
(2.19 WIX(t),x"(H)]=— fodthdS[X(t)—X’(t)]n(t—s)

which is the intuitively expected result. X[x(s)+x'(s)]

T t
+if dtf ds{x(t)—x'(t)]
I1l. APPROXIMATE DECOHERENCE IN THE STANDARD 0 0

PICTURE
Xv(t—=s)[X(s)—Xx'(s)]. (3.5

We now briefly review the approximate decoherence of
position histories in standard quantum thed8QT). We  Full details of the kernelsy and v may be found elsewhere
consider a single particle in a potentiAlx) linearly coupled [18,19,23,24 They are in general nonlocal in time, but sim-
to a large environment of harmonic oscillators in an initial plify enormously in the Fokker-Planck limihigh tempera-
thermal state with temperatufie,. The action for this sys- ture and a continuum of oscillators with a high-frequency
tem is cutoff) in which,
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l I 5 S ! l I 53 " l I
(3.1@

J dt(x—x")2. (3.6 Dropping the ordeg® term (shown here only for comparison
with later resulty the integral in the imaginary part of the

In what follows, to make the exposition clearer, we will €xponential may be integrated by parts yielding

work entirely in this limit. [It is readily verified that the

following calculations can be carried out with the fully gen- _J dt g mu+2myu+V'(u)]— Ugéo, (3.11
eral form(3.5), but the expressions are much more cumber-

some]

From Eg. (3.6) one can see that the real part of
W[ x(t),x'(t)] contributes a dissipative part to the effective
equations of motion, and also a renormalizati&w? to the
frequency. We shall assume that the latter has been absorb
into the potentialV(x). The imaginary part produces the
decoherence, since it suppresses differing valuesaofdx’.
Since the projectors coarse grain the paths into regions of 1 _
size A, distinct histories havéx—x’| greater thamA. The ~ W(p,Ug)= mf dége (MMpéo
condition for approximate decoherence is therefore loosely
given by

. . 1
W=—j dtmy(x—x’)(k+>’<’)—f dt Sw?(x?>—x'?) Viuts¢
0 0

2M
LR A 'YA

where we have used the fact thet x' at the final time so
&:=0. In a skeletonized version of the path integral, the in-
tegrand in Eq(3.11) does not involve,, only the values of
éé)n the internal time slices. The integral ow&y with the

undary term from Ed3.11) therefore effectively performs
the Wigner transformation of the initial density matrix,

1 1
Ugt+ Efo,uo— Efo
(3.12

And carrying out the integration on the internal times slices
as well, we therefore obtain

2myKTaTA%> 12, (3.7

and hence is satisfied for sufficiently large temperature. The n
imaginary part ofW[x(t),x’(t)] also produces fluctuations p(g):f pu(t)n Y[ u(ty) —Xg]
about the effective classical equations of motion. k=1
Given approximate decoherence, we may take the prob-

abilities for histories to be given, to a good approximation, ><exp<
by the diagonal elements of the decoherence functional. The

resulting expression is most easily evaluated using the sum
and difference coordinates,

I(1_Afdt[mu+2myu+v (u)]?

X W(Mig, Ug). (3.13

This is the desired result, a simple expression for the prob-
E=x—x', u==(x+x') (3.9 ab|I|ty_for h|$tor|gs pf positions. It is peaked abo_ut classical
evolution with dissipation, with thermal fluctuations about
. o o that motion, and with the initial data weighted by the Wigner
and we obtain for the probabilities for histories, function of the initial state(The Wigner function is not al-
ways positive, but a closer analysis of this sort of expression
[16] reveals that the Wigner function is effectively smeared
in such a way that it is positive.

Equation (3.13) was derived under essentially one ap-
proximation: that the contribution from paths with large val-
ues ofé=x—x' could be neglected. This meant first, that the
approximate decoherence could be taken as essentially exact.

1
u(t + Ef(tk)_Yk

p(a)= f 1>u(t>i>§<t>klj1 Y

1
Y u(ty - Eg(tk) — Xk

i . . 1 Secondly, that we could drop théterms in the window
xex;){gf df mug—2myug—Vv u+§§ functions in Eq.(3.9) and the higher powers of in the
1 omvkT expansion of the potenti&B.10, so that we could carry out
m . .
vl u— 55) ]ex;{ _ %f dtgz) the & integration.
1 1 IV. COMPARISON WITH THE EXACTLY DECOHERENT
X pa| Uot 5 €0,Uo— 550)’ (3.9 DETERMINISTIC QUANTUM THEORY

The formula (3.13) bears a close resemblance to Eq.
Consider the functional integral ovér It is Gaussian except (2.13), the probabilities for histories in the exactly decoher-
for the appearance @fin the window functions” and in the  ent DQT. There are, however, three differences. First, Eq.
potentialV. However, the contribution frorgis very tightly  (3.13 has dissipation in the equations of motion but Eq.
concentrated aroung= 0. We there expect to be able to drop (2.13 does not; this is easily fixed by the trivial generaliza-
the ¢ terms in the window functions, in comparisonupand  tion of Eq.(2.13 to the case of the dissipative actih17).
also to use a smayf approximation in the potential Second, Eq(2.13 has a delta-function peak about the equa-
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tion of motion, while Eq.(3.13 has only a Gaussian peak, a closely related DQT may be constructed using the action
due to the thermal fluctuations. This Gaussian peak becomes=S[x]— 9 y] and by focusing on the variabk=x+y.
sharper as the mass of the particle increases. Moreover, thithe coupling to an environment, as in Eg.1), requires a
difference between the two types of peaks will not be noticedeconsideration of the question of how to construct the re-
if the width of the projections in E(3.13 are much greater |ated DQT. On the basis of what we have seen so far—that
than the width of the Gaussian, Third, H§.13 has a(not  the DQT is obtained by doubling what we already have—it
necessarily positiveWigner function weighting its initial  geems natural to double up both the system and the environ-
conditions, while Eq(2.13 has a positive weight function.  ent while this in fact turns out to be correct, one might

But given that the fluctuations tend to Sm&Irso as to be \5nqer whether it would be possible to obtain exact deco-
positive anyway(as will be discussed at greater length be-herence by the simpler procedure of doubling the system

ls(?\g% tt;)Lr?o\évé(jeea\éé}::ﬁ}gI g{;gt:ﬁlééa%s tg O&Zhégge?]ﬁaﬂos- alone. As we shall see, however, the dissipative terms in-
' 9 Y duced by the environmental interactions prevent this from

the same results as E.13. . .
Of the above differences, the most important one is thi’)\’;rrl]('ggst%gp::g'emeir;rr::gxre do indeed need to double

delta function versus the Gaussian peak. We therefore co . . .
clude that as long as the particle is sufficiently massive to ON€ €an imagine a number of different ways of proceed-
substantially resist the effects of thermal fluctuations, the exiNd at this point. For example, one could extend the analysis
actly decoherent DQT of Sec. Il approximately reproducesOf Sec. Il to include couplllng to a thermal_enwronment and
the probabilities of the approximately decoherent histories ofhen repeat the steps leading to £2,13. This would, how-
standard quantum theory described above. This is our firgVer, involve getting into unnecessary detail about the envi-
result on the closeness of DQT and standard quantum theor§enment dynamics and initial state. We will instead stay as
The above result applies, however, only to the case wheflose as possible to the calculation of Sec. llI, in which all
the mass of the particle is sufficiently large to resist thermathe environment dynamics are concisely summarized in the
fluctuations. It does not apply to the case where there ignfluence functional.
approximate decoherence but the fluctuations about classical Consider therefore the same calculation as in Sec. Il but
deterministic behavior are not small, as in the case of smallvith both system and environment doubled up. For simplic-
mass. The most general effective theories emerging from aity, we first concentrate on the case of a linear system with
underlying quantum theory are classical stochastic theoried/(x) = (1/2)mw?x?. We therefore consider system with
perhaps with large fluctuations. We therefore need to genecoordinatesx coupled to its environment with temperature
alize our comparison of DQT and standard quantum theoryl 5, as before, with the auxiliary systeBiand its environ-
to this case, and this turns out to be somewhat more compliment, with temperaturdg (which, we shall see, does not
cated. It requires comparing the quantum Brownian motiorhave to be the same ds,). Following the general scheme,
model of Sec. Ill to a DQT including an environment to we consider histories specified by fixed valuesxef x+y.
provide fluctuations. After tracing out both environments, the decoherence func-
We have seen for a simple linear system with acgpx], tional is

D(c_r,gv’)=f DX('t)DX'(t)D)/(t)D)/’(t)kH1 Yx(t) +y(t) =X JYX' (t) +y" (t) =X ]

i 1 1 1 1
X _ M2 2y2__ 'r2+_ 212
exp(ﬁfdt[zmxz 5> Mw?X* =2 mX 242 mw®X

xex;x(%—f dt[ —%myz+%mw2y2+;m'y'z—%mwzy'ﬂ )
XFALX(t),x" (D) IFELY(1),y' (1) 1pa(X0.%0) Pe(Y0.Y0) (4.7)

(where the effect of the wrong sign action in the auxiliary sys&mffectively gives the complex conjugate of the influence
functiona). We will confirm that this is exactly decoherent and compute the probabilities for histories. Note ttiatlEgnd
the corresponding approximately decoherent expres&i@) are almost identical: if the projections in E@L.1) were onto
values ofx,x’, rather thanX=x+y andX’'=x’'+y’, then all they,y.’ terms could be entirely integrated out yielding Eq.
(3.3.

The path integral is most easily evaluated by changing variables(fgirto (X,y) (and similarly for the primed variablgs
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In these coordinates, and writing out the influence functional explicitly, it reads
n
D(c_l,c_v’)=f DX(t)DX’(t)Dy(t)Dy’(t)k[[1 YX(t) =3 ] Y[X (t) =i ]

i 1 . 1 1 . 1
— — 2_ 2y2__ 12 2y 12
Xex;{ﬁfdt{zmx mex 2mX +2mwX

i . .
ex%gf dtf —myX+ maw?yX+my’' X' —mw?y’X']

xexp(%f dt[—my<><—X')<>'<+>'<'>+my(y—y')(x+>'<'>+my('y+y')<><—><'>])

2m'ykTA

’ "2 zmykTB 2 ’ ! 2
Xexp - ——7— dt(X=X"—y+y’) __ﬁz_f dt(y—=y")? | pa(Xo—Y0,X0=Yo) P&(Yo,Yo)- 4.2

Recall that in Sec. I, exact decoherence in the deterministic
model was obtained as a result of the action being linear in
one of the variables, hence yielding a delta function on inte- . ]
gration. In this case, note that the exponent is linear in thé\s in Sec. II, the integration ove¥ produces a delta func-
variabley+y’. So introduce new coordinates tion enforcingX;= X{ , and since we also hav& = X; , the
solution to Eq.(4.6) is thereforeX(t) =X’ (t) identically, for

—[mY(X=X")+2myY(X—=X")13. 4.7

1 , , all t. We therefore have exact decoherence, as expected. It
Y=5(y+y), v=y-y (43 follows that the other boundary terms in E@.7) vanish
(since they are proportional %6—X').
and note that We may now compute the probabilities for histories. With
X(t)=X’(t) throughout, we now have
yX—y’X’=Y(X—X’)+%U(X+X’). (4.9

n
| | - ple)= | DXODoayodye]T YIX(t0-%]
They terms in the second and third exponential in E52) k=1

therefore become i _ _
Xex%gj dt[—mi)X+2mva+mwzvX])
jdt[—myX+mw2yX+my’X’—mwzy’x’+my(y—y’)

2Myk(To+Tg) ,
X(X+X)+my(y+y')(X=X")]
X pa(Xo—Y0:X0—Y0)Pa(Yo.Y0)- (4.9

. R
—mY(X=X")= 5 mi(X+X')

- [ at

. Thev integral may now be carried out, and, noting that there
+Mo?Y(X—X')+ Emw2v(x+x')

is also a boundary term coming from the integration by parts
of themv X term, we get

+myv (X+X)+2myY(X—X") . (4.5 n
p(a)= f DX(‘)kE[l YX(t) — %]

As advertized, the exponential in the path integral is now
entirely linear inY, and, after an integration by parts in Eq.
(4.5, Y may be integrated out on the interior slices to pro-
duce a delta function on configurations satisfying the equa-
tion

X ex —Lfdt[j'(+2y>'<+w2x12
8vkT’

x | dyodys exst(irmmiyo—yeo)

e
X=X=2y(X=XD) 0i(X=X)=0. (4 X pa(Xo—Yo.Xo—Y4)pa(Yo.Y0). 4.9

This is the antidamped dissipative equation for X', but _ _
this does not matter since it is not the effective equation ofvhereT'=T,+ Tg. Now consider the last part of this ex-

motion (derived below. The integration by parts in E¢4.5)
also produces the boundary terms

pression, theyy,yq integral involving the initial state. We
now chooseg to be the ground state of the harmonic oscil-
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lator. If we also letyg— —Vq, Yo— —VYg, followed by the
transformationy,—Yyo— Xg andy,—y,—Xo, then this in-
tegral becomes

) i "y (Yo—Xo)?
J dyo dyp ex;{ — 7 MYo~Yo)Xo~ o7 —
(Yo—Xo)? ,
- 047 Pa(Yo:Yo)- (4.10

This is clearly just the average of the initial stgig in a

coherent statép,q with p=m§<0,q=X0. Hence the final
expression is

p(a)= j Dxa)klj1 Y[X(t) =]

X ex —Lf dt X+ 2yX+ 0?X]?
8vkT’

X<m'x01x0|pA|m.x01X0>' (41])

This is the desired result: the probability for historiesdbr

PHYSICAL REVIEW D 63 085013

We now consider some finer points of this derivation.
Consider first the issue of why we need to include the envi-
ronment of the auxiliary systef. As stated, this has to do
with the dissipative term. The question is what would happen
if we drop the environment dB? It is easy to see that drop-
ping the fluctuation term foB’s environment does no harm.
In fact it improves things, since it is the same as setfiRg
=0, so we no longer need the conditidn>Tg. On the
other hand, dropping the dissipative termsBas equivalent
to including a term proportional to

my(y=y" )(y+y")=2myvY (4.12

in the exponent in Eq(4.2). On carrying out the integral
overY, this produces a term proportional #oon the right-
hand side of Eq(4.6). The key point now is that the solution

to this equation is no longet(t) = X' (t) identically. There-

fore exact decoherence is destroyed. Hence the presence of
the dissipative term is required.

A possible difficulty of having to include a second envi-
ronment is that its effects may become significant at low
temperatures. We have concentrated here on the high-
temperature regime, but in standard quantum theory there is
some decoherence at low temperatures, including zero tem-

the exactly decoherent deterministic theory with an environPerature(@lthough this does not seem to have been very ex-

ment.

The main issue now is to compare this result with Eq.
(3.13 derived using standard quantum theory under the co

ditions of approximate decoherence. Equatighll) is
clearly a much better approximation to E®.13 than Eq.

n

tensively studied in the literatu®,27)). [At low tempera-
tures note also that the fully nonlocal form of the influence
functional(3.5 must be usedIn this regime it becomes less
obvious that the DQT is close to the predictions of SQT.

At all temperatures, standard quantum theory, after ap-

(2.13 was. Equatior(4.1) has the desired dissipation term Proximate decoherence, is approximately equivalent to a
[although here it comes from the environment, and not fronflassical but stochastic theofylescribed by Eq(3.13 for

the action(1.17]. Most importantly it has thermal fluctua-

tions. The temperature in E1.12) isT' =T+ Tg, versus a

temperatureTl 5 in Eqg. (3.13, but this difference is clearly

negligible if we choos@g<T,.
The only significant difference between Ed4.11) and

(3.13 is the appearance of the explicitly positive weight on
initial data,(p,q|palp,q), in Eq. (4.1, versus the Wigner
function W(p,q) in Eqg. (3.13. The two objects are, how-
ever, close(p,q|palp,q) is readily shown to be equal to the

Wigner function ofp, but smeared over afrsized region of

phase space. Moreover, the subsequent evolution of the s
tem renders the difference between these two objects negl]
gible, since the thermal fluctuations produce a smearing i

phase space that becomes much greater tham a very

short time scald25,26]. The probabilities of the DQT and
the approximately decoherent standard quantum theory a

therefore very close.

The physical picture is as follows. We have propose

switching from noncommuting operatoksp to commuting

onesX, P differing from the original ones by “quantum fluc-
tuations.” The key point is that in the presence of the env
ronment, the system also suffers thermal fluctuations that a

typically much larger than the quantum fluctuationsXn

—% and P—p. The difference between the two sets of op-

exampld, consisting of deterministic evolution according to
classical equations of motion with dissipation, with thermal
fluctuations about that motion. This description is still good
even if the fluctuations are not small. The DQT also leads to
a description in terms of fluctuations about deterministic
evolution, but the presence oo environments means that
the fluctuations are not the same in general as the fluctua-
tions in the SQT case—they are larger, as evidence by the
presence of the temperatufg+ Tg in Eq. (4.11). They are
approximately the same ,>Tg, but they will be different

y’ both T, and Ty are the same order of magnitude. Hence,

SQT and the DQT are generally not approximately the same
their predictions for low-temperature environments, since
the fluctuations in the DQT case are significantly larger.
At least, that is the conclusion on the basis of the ap-
oach of this section, involving doubled environments. It
oes not rule out the possibility that another type of DQT

Omight approximately reproduce the predictions of standard

quantum theory at low temperatures. Indeed, if the mass of
the particle is very large, Eq2.13 with a dissipative term

. will do the job moderately wellas discussed at the begin-

ning of this sectiop Still, the analysis of this paper leaves

r§pace for a more thorough discussion of the connection be-

tween DQT and SQT in the low-temperature regime.
Finally, consider the case of nonlinear systems. When a

erators is therefore negligible, and we may reasonably cornmore general potential is present, we need to replace the

sider the two theories as “close.”

potential terms ir§ x]— g y] with (x—y)V'(x+Yy) [to co-
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incide with the actior(1.15]. This means of course that the

systemsA and B are now coupled whereas previously they
were not. It is readily shown that the analysis goes through in

a very similar way with a ternV'(X) in the final result
(4.12) in place ofmw?X. General potentials are fully treated
in the alternative formulation in the next section.

PHYSICAL REVIEW D 63 085013

p oW W
i (X)% a—p(pW)

9*W

+2mykTAﬁ—p2+DV_V. (5.4

It is well-known that the diffusion term spreads out the

_ ) ] Wigner function so that the higher derivative terdg/ may
We have examined the relationship between SQT an@he neglected29,30. Furthermore, the Wigner function also

DQT by comparing the probabilities for histories of the two hecomes positive after a very short tif25). It may there-
theories, when SQT is approximately decoherent. This stilfpre pe regarded, approximately, as a classical phase-space
leaves, however, a certain amount of vagueness in a statgjstribution function. This is the usual account of the ap-
ment about the relationship between approximate and exagkoximate emergence of classical behavior using the Wigner
deCOhel’ence, since the pI’ObabllltIeS from SQT are still Onlyfunction or density Operator’ para”e"ng the discussion of
approximately defined due to imperfect decoherence. A pergec. 1.
haps more precise way of comparing the predictions of stan- \ye now compare this to the Wigner function description
dard quantum theory with the deterministic one is to com-f the deterministic quantum theory, which we know to be
pare the density operator of standard quantum theory wityactly decoherent, paralleling the derivation of Sec. IV. The

the reduced density operator of DQT after the extra variablegction for the deterministic theory coupled to an environment
(K,Q, etc) have been traced out. This we now do. We will in jg

fact work with the Wigner functiof17], rather than the den-
sity operator, but this is essentially the same since they are
related by a simple Fourier transform.

The systemA plus its environment has Hamiltonid8.2)
and is described by a Wigner functidk(p,x,p,,,q,) obey-

V. A WIGNER FUNCTION FORMULATION

S=f difmQX—QV'(X)]+ >, fdt[anan

ing the equation — My @iQpXn— CrQnX— X, Q], (5.9
IW i '
o — {H,W} + DW, (5.2) \t/)vyere the coordinates are related to the coordingte®tc.,
where{} is the usual Poisson bracket abdis an operator 1 _
acting on phase space, X=x+y, Q=3(X=y), Xy=dy+Tn,
D_% (_l)n 1 d2n+lv(x) ﬁszrl - 1
T2 27 (2nriy det gt 62 Qn=5 (An=Tn)- (5.6)
Explicitly, In the linear case, the actigh.5) is of the form
ﬂv:—gﬂv+v'(x)ﬂv+nw+2 _Po W S=9[x,qn]— SV, Gn] (5.7
at m dx ap o m, dqn G Y:Gnl- '
JW IW IW oo
2, 7YY o oy The Hamiltonian is
+ m”w“q“apn +cpX o, +c¢han p } (5.3

%PK+QV’(X)+E

n

This equation describes the exact dynamics of the sygtem H
coupled to its environment. Assuming a factored initial state
between system and environment, and with a thermal initial
state with temperaturé, for the environment, the environ-

ment coordinates may be traced out, and an equation for the
reduced Wigner function for the system ofl(x,p) may be

derived. This is in general a non-Markovian equation, whosevhere P, ,K,, are the momenta conjugate @, ,X, respec-
explicit form is only readily obtained for linear systems tively. The Wigner function for this systemW

1 2
m— PnKn+ mnanan
n

+CnQnX+ CanQ} , (5.9

[24,28. But in the Fokker-Planck limitused in the previous
section it has the form

=W(K,X,P,Q,K,,X,,P,,Q,) obeys the evolution equa-
tion
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oW K JW PaW+V’X 0W+ Vi P L Bw
T mag max TV R VIO Fe
K, oW P, W o W
+ N PR
;[ m, 9Q, m, X, MopXnz5
) 9 S Xaw+ OW
mnanno-)Kn - Cn (9_Pn K,
+X aW+ il 5.9
P QnW- (5.9

Here, D is a modified phase-space operator, appropriate t

the fact that the potential i®V'(X); hence,

o

b=Q>

n=1

(="
22n

1
(2n+1)!

d2n+2V(X) 192n+1
dx2n+2 aK2n+l-
(5.10

This is the exact quantum dynamics of the deterministic

PHYSICAL REVIEW D 63 085013

are therefore approximately the same Ty<<T,. We may
therefore say the following: the dynamics described by Egs.
(5.3 and(5.12 will be essentially identical with respect to
coarse grainings, asking questions only about the variables
andP. [We have phrased the statement in this way, in terms
of Egs. (5.12 and (5.3, rather than Eq.(5.4) since the
former are exact equations whereas Exj4) holds only in

the Fokker-Planck limii.

Given identical dynamics, the comparison of the two sys-
tems then reduces to comparison of the initial states. In the
SQT result, Eq(5.4), the initial state is the Wigner function
Wa(p,x). In the corresponding DQT equatidiq. (5.12)
With environment traced olitby contrast, the initial state is
the reduced Wigner function,

VV(P,X)=J dQ dK WK, X,P,Q)

=f dQ dK Wi(p,x)Wg(k,y). (5.13

quantum system coupled to an environment. It is exacllyrhis s written most usefully by changing variables from
decoherent in terms of histories specified by fixed values of p Q,Kto X,P,y.k where, from Eq(5.6), we have

P, X P,, andX,. It is subject to the initial conditions that,
in terms of the original systen®,B, and their environments,
the initial state completely factors:

W=W,(p,X)Wg(K,Y)Wae(Pn,0n) Wee(Pn ,0n)-
(5.11)

As in the previous section, the auxiliary syst&is chosen
to be in a minimum uncertainty state. The environmenta of
andB are chosen to be in thermal states, but Vili{®Tg.

To compare with the standard quantum theory results

(5.3 and(5.4), we integrate out the variables, Q, K,,, and
Q.. Tracing the Wigner equatido derive Eqs(5.4) from
(5.3), for examplé is usually a nontrivial operatiof28].

However, the fact that we not tracing out canonical pair

appears to make it essentially trivial, and it is easily seen th

the resulting Wigner functiodV(X,P,X,,,P,) obeys the
evolution equation

W a\7v+V, « aw+z P, dW

gt m X X 5p o m, X,
+MuwiX 6W+ anJr X W 5.1
Mywy n(?Pn Cn P, Cn nap |’ (5.12

The evolution equation®.12 and(5.3) are the same, except
for the termDW in Eq. (5.3) [where note that the analogous
term in Eq.(5.9) dropped out wheiK was integrated ovér
In the absence of the environmental terms, the presence
DW would substantially modify the dynamics in E&.3) in
comparison to Eq(5.12. However, as stated, after tracing
out the environment in Eq5.3) to yield Eq.(5.4), the dif-
fusive effects induced in the evolution ¥ make the con-

s ~
dpe smeared Wigner functioW/(P,X), which solves the

1
EX—y, K=P+k, p=P+k, x=

Q X—y.

(5.19

It follows that

W(P,X)= f dy dk Wa(P+k,X—y)Wg(K,y).
(5.15

SinceWg is a minimum uncertainty state, this is a Wigner
function smeared over ditsize region of phase space, as in
Eqg.(4.11) (and is positiveé We are therefore now comparing

environment-traced version of E(.12) to the Wigner func-
tion of the SQT W, (p,x). These will generally be different,
but as stated in Sec. IV, the environment comes to the
rescue—under evolution according to an equation of the
form (4.4), thermal fluctuations rapidly overtake the quantum
ones, and the difference between the smeared and unsmeared
Wigner functions is negligible.

We therefore have an independent proof of the approxi-
mate equivalence of SQT and the DQT under the conditions
of approximate decoherence.

VI. EXACT DECOHERENCE OF MOMENTA IN THE

of QUANTUM BROWNIAN MOTION MODEL OF SQT

We now produce an example of a situation in standard
quantum theory, which does in fact exhibit exact decoher-
ence, without having to resort to the DQT of the previous
sections. The example is histories of momenta in the quan-

tribution of this term negligible. Moreover, tracing out the tum Brownian motion model, for a free particle in the

environment in the DQT of Eq5.12) leads to an equation of
the form (5.4) without the termDW, and with the tempera-
ture T, replaced byT,+Tg. The two evolution equations

Fokker-Planck limit. It is in some ways a curious and patho-
logical example, but it does not appear to have been noticed
before, and is perhaps of interest in relation to the discus-
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sions of the previous sections. This may also be written
We first consider the form of the decoherence functional
for a system-environment model with, for simplicity, projec- [Kg[po],fa] = K})[[po,f)]] (6.7

tors at two moments of time. It is
or better,
D(alia2|ai’aZ):Tr(PaZKB[PalpPai])- (61) A o R R
e'PK ([ pole 3P =K{[e'Ppoe'aP] 6.9
Here, the environment has been traced out, so the projectors
and the trace refer to the system only. The evolution operatdior any real constarg.
K§ refers to reduced system dynamics described by the Mas- Now suppose thdtpy,p]=0, which is equivalent to the
ter equation whose Wigner transform is E4.4), that is, its ~ statement thaf, is diagonal inp. Then it follows that
solution is [p:,p]=0 for all t. This means that the evolution operator

ot Rg preserves diagonality in momenta. It follows immediately
pr=Kolpol, (6.2 from this that the decoherence functioril4) with projec-
tors onto momenta will bexactlydiagonal.

Equation(6.8) shows that the exact decoherence of mo-
menta comes from a translational invariance visible in the
path-integral representation lﬂﬁ [essentially Eq(3.3) with-
out the projectors, with zero potential, and in the Fokker-
Planck limif]; it is invariant undex—x+a,y—y+a. Fur-
thermore it is broken by the frequency renormalization term
in Eq. (3.6), but we have here assumed that the renormalized
frequency is set to zero, along with the potential. This is all
rather unnatural, and for this reason this property is an un-
physical feature perhaps only of pedagogical value. It ulti-
mately traces back to the conservation of momentum of the
Backwards evolution may also be described by a Mastegntire systenfas long as the system environment coupling is
equation whose Wigner transform is similar to the usual ongf the form x—q,,)2 in Eq. (3.1)].

[Eq. (4.4)], but the unitary and dissipative terms have the The equivalent Langevin description also gives some in-
opposite sigriwe consider only the casé(x) =0 herd. The  sjght. The momenta, in this description, obeys the equation
decoherence term produces the same effect in either direction

in time. p+yp=n(t),

By way of a digression, from Eq6.4) we can see why
decoherence of position histories is produced by essentiallwhere 5(t) is the usual Gaussian white noise. The important
the same mechanism that diagonalizes the density matrix; thgoint is that this equation is first order, ppis a function of
projectorPa2 starts out diagonal ix and remains approxi- p, but not of p, so we expect in the quantum theory that

mately diagonal inx under evolution byREw hence when LPt,P]=0, and therefore their histories will be exactly deco-

- ; o ; herent.
acted on by position projector, ,P, it gives approximate , ) .
_ ) yp pro) oy g PP On the other hand, while the density matfand indeed
diagonality of the decoherence functional.

S ) ) any other evolving operatpwill remain exactly diagonal in
After thgse preliminaries, we turn to the case in which themomenta, the distribution of momengdp, p) will generally
projectors in Eq(6.4) are onto ranges of momenta. We shall g a5 we therefore have the perhaps surprising situation of
show that diagonality ip is exactly preserved bigg , forthe  a quantity that suffers fluctuations but is still exactly deco-
case of the free particle coupled to an environment in théyerent. The free particle without an environment is clearly
Fokker-Planck limit. To see this, consider first the Wignerexactly decoherent in momentum. Furthermore the distribu-
representation of the Master equation in this case. Itis  tion of momentum does not spread for the free particle. On

coupling to an environment in such a way that the t¢sgb-

tem plus environmeptmomentum is conserved, one might
(6.5 -

expect to get only approximate decoherence of the system

momentum, since system momentum alone is no longer ex-
The important property of this equation is the now following: actly conserved. The surprise is that in a certain regime of
if Wis a solution to this equation, with initial conditiof, this model(the Fokker-Planck limjt the decoherence of mo-
then dW/dx is also a solution, with initial condition mentumremains exactthe environment making its mark
dWp/dx. Translated back into density operator languageonly on the momentum fluctuations, which now do spread.
this means that ip; is a solution to the Master equation with This emphasises the fact that the evolutior] pfp] (which
initial conditionpy, then[ p;,p] is also a solution with initial  controls decoherengand the evolution op(p,p) or (A p)2

It is also useful to introduce a backwards time evolution
operatorK},, defined by

Tr(AKS[ pol) = Tr(K5[Alpo) (6.3

(this is not the inverse oK, since the evolution is not uni-
tary). In terms of it, the decoherence functional may be writ-
ten,

D(ay,azla;,az)=Tr(KL[P,, P pP.). (6.4

IPW

oW 2 / 2 kT
+ Vﬁ(pW)ﬂL my 2

ot

p dW
m x

condition[ pg,P], S0 (which controls fluctuationscan really be quite different.
R . R As stated, this example is in many ways a curiosity, but it
[pt,P]1=Kol[po,P]]- (6.6) illustrates some interesting points. And in the hunt for theo-
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ries, which are exactly decoherent, it is surely worth noting VIII. SUMMARY AND DISCUSSION

. S . |
the places in which it was already lying under our noses! A. Summary

We have shown in a variety of ways that approximate
decoherence of histories of a system with canonical pair

We now turn to the question of how the construction de-may be turned into exact decoherence by doubling the Hil-
scribed may be extended to quantum systems, which are nbert space and switching to the classically equivalent vari-
described by a single simple canonical pair satisfying EqablesP=p—k,X=x+y, where the auxiliary variablek,y
(1.7), but instead by a more complicated algebra. Spin sysare in a minimum uncertainty state. Any nondecoherent set
tems, for example, are not described by Elg7). While we  of histories may be made decoherent in this way, but the
do not have a comprehensive answer to this, the following igoint is that the change in the probabilities the Wigner
an indication of how one might proceed. function) is small for histories that are already approximately

Suppose we have a quantum theory described by, a set gbcoherent. The role of the environment in this scheme is
operatorsAy ,k=1,2... obeying a closed algebra, where 41 py giving the original system thermal fluctuations, it

[A«,A;]#0 in general.(The case described so far h&s  ,oyides a kind of “smoke screen” rendering the shift from
=p,A,=x,A;=1.) The equations of motion are p,xto P,X undetectable.

VII. A GENERAL APPROACH?

Ak:i[HvAk]: fr(A1,Az,..0) (7.1 B. An alternative approach to emergent classicality?

The approach described here might be regarded as giving
an alternative approach to emergent classicality. Standard

coherence functional for histories specified by fixed vaIueéjemonStr‘Em(_)n_S of approxwpate classicality involve compar-
of A.. SinceA, at different times will generally not com- ing the predictions of classical and quantum mechanics in a

mute, the histories will generally not be decoherent. given situation. Although this comparison is often clear in-
Now consider a second theory described by a set of comiuitively, at a more fundame_ntal level the issue is pe_rhaps
muting operator®, , with canonical moment®, . Suppose ~clouded by the fact that classical and quantum mechanics are
that at the classical level, they have the Poisson bracket rdébeories of different types: how can one measure the “dis-
lations, tance” between them? Here, however, in considering deter-
ministic quantum theories we are essentially writing down a
{B\.Bj}=0, {B(,P;}=6, {Px.P}=0. (7.2 quantum th_eory whose predictions are exactly the same as a
given classical theory. To check for emergent classicality we
Now define the Hamiltonian to be then compare standard quantum theory with the deterministic
quantum theory. Since the theories are the same type of
thing—quantum theories—it is clearer how they may be
H= Z Py f(B1,Bs...), (7.3 compared. One may compare the density operators predicted
K by the two theories, for example.
Although this conceptual advantage is admittedly mini-
wheref, is the function defined in Eq7.1). Then the clas- mal, there could also be a practical advantage. The decoher-

for some HamiltoniartH=H(A,A,,...), and theabove re-
lation defines the functiom,. Suppose we consider the de-

sical equations of motion fdB, are ence functional is in general rather complicated to calculate,
in comparison to Wigner functions and density operators, to
By={By, "} =f(B1,B5,...) (7.4 @ degree that presents problems in some areas of interest

(such as the study of histories of hydrodynamic variables
[31]). The results of this paper suggest that a test for approxi-
mate decoherence of histories consists quite simply of com-
paring the Wigner functiongor density operatojsof stan-

On quantizatiortand with attention to operator orderingve
thus obtain a set of commuting operat8is, which obey the
same equations of_motllon as the orlglnal set of operdiprs dard quantum theory and a suitably chosen deterministic
This means that histories of fixdsl, will be exactly deco- quantum theory

herent. Furthermore, in the expression for the probabilities '
for histories(1.1), the probabilities for histories &, andB,

will be almost the same function of the operators, differing in
the form of the initial state, and in the fact that the trace in There are undoubtedly many other ways of investigating
the case of th@, operators is over a Hilbert space twice asthe connection between approximate and exact decoherence,
large. Of course, these differences may be substantial so thd it would certainly be of interest to explore these. Here,
does not prove anything in terms of the closeness of the twave have adopted the device of doubling the set of dynamical
theories, but the above shows that the question of the dynamvariables, and employed a fundamentally different action. It
ics is straightforward. A more detailed description of thewould be of particular interest to see whether one could
relationship betweeA, andB, is required for further analy- avoid this in a simple way. For example, the commuting
sis, and this is perhaps best carried out with specific exposition and momentum operators of von Neumann, de-
amples. This will be pursued elsewhere. scribed in the Introduction, appear to hold the possibility of

C. Other approaches to approximate decoherence
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moving from noncommuting to commuting operators with- These examples and their problems cause one to wonder
out having to change the underlying dynamics or the numbewhether all attempts to distort approximate decoherence into
of dynamical variables. exact decoherence in a reasonably general fivay not just
One of the difficulties of the present scheme is that thefor special initial stateswill encounter features that are dif-
Hamiltonian of the auxiliary system has wrong sign, leadingficult to accept. We might expect difficulties because we are
to the possibility of negative energies, although it is not cleaiin a sense trying to rewrite quantum theory in essentially
that this undesirable feature must arise in this context. Foclassical terms, and this is well-known to lead to problems.
example, exactly conserved quantities are exactly decoheAnother example of this is the Wigner function representa-
ent, and also the model of Sec. VI gave exact decoherend&®n, which gives a deterministic evolution equation close to
without negative energies. the classical one for a phase-space distribution function, but
An alternative scheme, similar to the present one, whicht is not always positive and so cannot be directly interpreted
avoids negative energies, is to add an identical auxiliary sysas a true probability distribution. Then there is the Bohm
tem with the correct sign for the Hamiltonian, but work with theory approach to quantum theory, which gives a direct in-

complex canonical variable82]. So we define terpretation of the wave function in terms of trajectories, but
R R R is explicitly nonlocal. The extent to which quantum theory
X=%+iy, P=p+ik, (8.1 cannot be interpreted in classical terms is elegantly summa-

L rized in the Bell inequalitiegand other related resultsThis
which clearly satisfyf X,P]=0. The total Hamiltonian for a raises the question of whether inequalities of the Bell type

linear system is then have something to say about the degree to which decoher-
ence may be made exact. These and other issues will be
H= il”af|5+ Emwz)A(T)A( (8.2 explored elsewhere.
2m 2 ' '
which is positive. The difficulty with this approac¢hlthough ACKNOWLEDGMENTS
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