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Spin and dualization of SU„5… dyons
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Motivated by the dual standard model, we study the angular momentum spectrum of stableSU(5) dyons
that can be transformed into purely electric states by a suitable duality rotation, i.e., dyons that are dualizable.
The problem reduces to solving a Diophantine equation for the holomorphic charges in each topological sector,
but the solutions also have to satisfy certain constraints. We show that these equations can be solved and sets
of dualizable, half-integer spinSU(5) dyons can be found, each of which corresponds to a single family of the
standard model fermions. We then find two predictions of the dual standard model. First, the family of
dualizable, half-integer spin dyons is accompanied by a set of dualizable, integer-spin partner states. Secondly,
the dyon corresponding to the electron must necessarily contain nontrivial color internal structure. In addition,
we provide other general results regarding the spectrum of dualizable dyons and their novel properties, and
extend the stability analysis ofSU(5) monopoles used in the dual standard model so far to discuss the stability
of the half-integer spin dyons.
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I. INTRODUCTION

The idea that particles may be viewed as solitons can
traced back to Skyrme@1# who introduced what is now
called the Skyrme model in which a classical soluti
~‘‘Skyrmion’’ ! represents the proton. The model has prov
useful in the discussion of the properties of light nuclei ev
though it is known that the Skyrmion does not have
constituent structure of the proton.

The recent attempts to build a dual standard model
along the lines that Skyrme developed—that is, to find
model that admits soliton analogues of the known fundam
tal particles. Partial success in this direction was achieve
the discovery that the topological charges of the stable m
netic monopoles in anSU(5) field theory are in one to on
correspondence with the electric charges of one family
fermions of the standard model@2,3#. A possible scheme to
obtain three families of identically charged magnetic mon
poles was outlined in Ref.@4#, though at the expense of con
siderably complicating the group structure of the model.

So far, a substantial shortcoming of the model~summa-
rized in Sec. II! has been that the monopoles emerging fr
the SU(5) field theory are all bosonic while the standa
model particles are known to be fermionic. The issue of s
and handedness of the solitons was discussed in Ref@3#
though not resolved in theSU(5) context. The basis for the
discussion was the discovery of ‘‘spin from isospin’’@5–7#
in which dyons can have half-integer spin even in a pur
bosonic particle theory. The possibility for handedness w
discussed in the context of au term in the action and the
result that dyons can carry fractional electric charges prop
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tional to u @8#. Also needed was the angular momentum
dyons in presence of au term @9#.

The success of the spin from isospin phenomenon for
dual standard model depends on the existence of half-int
spin states forall the dyons that ultimately correspond to th
standard model particles. In the case of the ’t Hoo
Polyakov @10,11# monopole, spin from isospin can provid
half-integer spin to the fundamental monopole but not to
monopole with twice the topological winding. In contrast,
the SU(5) case it has been shown thatall the stable mono-
poles can be provided with electric charges to make th
into half-integer spin dyons@12#. However, the particles tha
we observe are not ostensibly dyons. Hence it is importan
show that all the half-integer spin dyons which arise in t
SU(5) field theory and which will be identified with stan
dard model fermions can be transformed by a duality rotat
into purely electric charges. This is the aim of the pres
paper.

Here we shall take the approach that the known stand
model particles are purely electric~in contrast with Refs.
@13,14# in which these particles have both electric and ma
netic charge!. We would then like to know whether the spi
1/2 dyonic states of theSU(5) model—that are in one-on
correspondence with the standard model particles—can
be dualized into purely electric charges. In trying to answ
this question, we strictly need to consider duality rotatio
for gauge fields transforming in representations of the unb
ken symmetry group H5@SU(3)3SU(2)3U(1)#/Z6.
Such non-Abelian duality transformations are not fully u
derstood yet. Our approach~Sec. III! will be to assumethat
independent duality rotations can be applied to the fi
strengths in the directions of the four commuting generat
of H. In other words, we assume that the transformation

Ei
a1 iBi

a→eifa~Ei
a1 iBi

a!, a50,8,3,1 ~1!

leaves the equations of motion invariant, where thefa are
©2001 The American Physical Society08-1
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independent phase angles for the generatorsl3 and l8 of
SU(3), t3 of SU(2) andY of U(1):

l35
1

2
diag~1,21,0,0,0!, ~2!

l85
1

2A3
diag~1,1,22,0,0!, ~3!

t35
1

2
diag~0,0,0,1,21!, ~4!

Y5
1

2A15
diag~2,2,2,23,23!. ~5!

The corresponding magnetic chargesma and electric charges
qa transform as

~qa1 ima!→eifa~qa1 ima!. ~6!

It should be emphasised that these transformations are a
jecture: we cannot rigorously justify them since the no
Abelian equations of motion explicitly involve the gaug
fields and not just the field strengths~in contrast with Max-
well’s equations!. However, the equations of motion are i
deed invariant under the transformation if only the comm
ing gauge field components~Cartan subalgebra! are non-
vanishing. Also note that the Hamiltonian and the Euclide
action remain invariant under the transformation in Eq.~1!.
Furthermore, ifSU(5) were broken down toU(1)4, each of
the gauge field components labeled by the indexa50,8,3,1
would be Abelian and then the Abelian duality transform
tions would correspond exactly to Eq.~1!.

While adopting the transformation in Eq.~1! as a ‘‘work-
ing hypothesis’’ for the duality rotation, we also discuss t
case when this may not be true. If, for example, we rest
ourselves tof05f8, we can show that the half-integer sp
states in the even winding topological sectors must neces
ily carry both magnetic and electricSU(3) charge.

In the case when thefa are independent, we find an in
finite set of dualizable, half-integerSU(5) dyon states tha
are in one to one correspondence with the standard m
particles. To arrive at this conclusion we need to solve c
strained quadratic Diophantine equations that can be defi
or indefinite. Such equations have been considered at
since 600 A.D. by Bhaskara and Brahmagupta and te
niques to solve them can be found in number theory t
books ~e.g. @15#!. We shall describe some of the equatio
and their solutions in Appendix B.

The infinity of solutions is unlikely to be of any direc
physical relevance. The reason is that we are interested
in the lowest energy state in any given topological sec
since, presumably, the higher energy states are unstab
decay into the lowest energy state. However, the energy
dyon is not known at strong coupling—which is the releva
regime for making contact with the standard model—and
there is no sure way of determining the lowest energy sta
The best that we can do at present is to assum
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Bogomol’nyi-Prasad-Sommerfield~BPS! form for the energy
@16,17# ~see also the monopole reviews in Ref.@18#! in
which the energy of a dyon is proportional to the magnitu
of its charge:

EBPS}Aqa
21ma

2 ~7!

where a sum over the indexa is understood. This form of the
energy does not apply to the dual standard model where
monopoles may be close to being BPS but are not exa
BPS @2#, and neither does it apply to the standard mo
particles. The purpose of considering Eq.~7! is simply that it
enables us to find the lowest energy dyons in the weak c
pling, near BPS limit.

If we assume Eq.~7! for the energy, then for any given
value of the magnetic chargema, it would pick out the state
qa50 as the state with the lowest energy. These purely m
netic states would have zero spin~see below!. The situation
is more interesting when we include au term in theSU(5)
action because then the electric charge contains a cont
tion from theu term @8#. In that case, the lowest energy sta
can indeed have half integer spin. The hope then would
that for a certain value ofu, of the phasesfa , and of the
coupling constantg, one would obtain a complete family o
spin half dyons which would be the lowest energy stat
However, we show that this hope is not realized due to
monopole with topological windingn56. In this topological
class, the state with the lowest BPS energy necessarily
integer spin.

Ideally we would like to work with the energy of a dyo
at strong coupling and then determine the lightest states
given parameters. This would require understanding
quantum properties of magnetic monopoles—a subject
has been under intense research over the last two dec
Remarkable progress has been achieved in the understan
of monopoles at strong coupling in the supersymmetric c
@19# but several tantalizing issues remain open especiall
the non-supersymmetric setting~e.g. @20#!. An issue that is
central to particle-soliton duality is the group representat
in which the monopoles transform when they are conside
as particles. Goddard-Nuyts-Olive conjectured that mo
poles transform in a representation of a dual symmetry gr
@21#. Bais and Schroers@22,23# find that a richer structure is
applicable to non-Abelian monopoles, since they carry ‘‘h
lomorphic’’ charges in addition to a topological charg
~This will be important to us in Sec. VI.! In the SU(5)
model, Lepora has provided strong evidence that the mo
poles transform in the fundamental representation of the d
symmetry group @SU(3)3SU(2)3U(1)# based on the
transformation properties of the monopoles under ri
gauge transformations@24#. This evidence seems to suppo
the concept of a dual standard model. Further support co
from Lepora’s calculation of the value of the weak mixin
angleuw in the context of theSU(5) dual standard mode
@25#. Lepora finds sin2uw50.22 which is in good agreemen
with experiment at a few GeV. However the relevance of
few GeV scale to the dual standard model has not yet b
investigated. Naively it seems that this should be the scal
8-2
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SPIN AND DUALIZATION OF SU(5) DYONS PHYSICAL REVIEW D 63 085008
which the monopole-like structure of elementary partic
becomes relevant. Then it is possible that phenomenolog
considerations already impose strong constraints on the
of the dual standard model. It would be very interesting
pursue this idea further.

II. REVIEW OF DUAL STANDARD MODEL

Consider the symmetry breaking

G5SU~5!→H5@SU~3!3SU~2!3U~1!#/Z6 . ~8!

The magnetic monopoles in this symmetry breaking are
beled by theirSU(3), SU(2) andU(1) magnetic charges,

M5~m0 ,m8 ,m3 ,m1!5S 0,
n8

A3g
,
n3

2g
,
21

2g
A5

3
n1D ~9!

where

n85n13k, n35n12l , n15n. ~10!

Here,k and l are arbitrary integers since thel8 @of SU(3)#
andt3 @of SU(2)] charges are only defined modulo 3 and
respectively.

The topological sector is only determined by the integ
n1 which gives the topological winding number@P2(G/H)
5Z#. The integersn8 and n3 are related to the ‘‘holomor-
phic’’ charges which are discussed in Refs.@22,23,26# and
which are not topological. In@26#, Murray derived con-
straints that, in the BPS limit, the sum of the topological a
holomorphic charges has to be greater than or equal to z
The holomorphic charges are the diagonal entries of
magnetic charge matrix which in thisSU(5) case is

2M52g@m0l31m8l81m3t31m1Y#

5diagS n82n1

3
,
n82n1

3
,
22n82n1

3
,
n31n1

2
,
2n31n1

2 D .

~11!

Murray’s constraints@26# are then that the first three entrie
of the charge matrix must be non-negative and the last
entries must be greater than or equal to minus the topolog
charge~our n1). For n1<0 this leads to

2n1>2k>0, 2n1> l>0. ~12!

~For positive values ofn1, these inequalities would be re
versed.!

As we shall see below, the integerk is crucially important
in determining the spin of a dyon: there are values ofk that
violate the constraints but which give rise to angular mom
tum that cannot be achieved by states satisfying the c
straints. Since Murray’s constraints are only valid in the B
limit in any case, we will assume them provided there is
state that violates them and which has a different value~in-
teger versus half-integer! of the angular momentum.

A stability analysis of the non-BPS monopoles in a
topological sector shows that only the6n51,2,3,4,6 mono-
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poles are stable.†This result assumes a range of paramet
in theSU(5) potential@3#.‡ A comparison with the standar
model particles shows that these monopoles are in one to
correspondence as depicted in Table I. On dualization of
SU(5) model, we expect these magnetic monopoles to c
respond to electrically charged particles, while the elec
cally charged scalar and vector particles of theSU(5) model
should correspond to very massive magnetically char
states.

Non-trivial spin of theSU(5) monopoles is provided by
considering electrically charged bound states on the mo
poles. If a scalar field transforming in the fundamental re
resentation ofSU(5) is included in the model, quanta of th
field will provide such electrically charged states—this is t
‘‘spin from isospin’’ idea @5–7# which was extended to
SU(5) monopoles@12,27#. Thus, as in those papers, we no
add to the original theory a scalar field transforming in t
fundamental representation ofSU(5). @The existence of
such bound states will depend on the details of theSU(5)
potential. Here, as in@5,6,12#, we will simply assume that the
bound states exist.# To determine whether the spin is integ
or half-integer, one needs to calculate the angular momen
in the gauge fields of two dyons of charges (qa

(1) ,ma
(1)) and

(qa
(2) ,ma

(2)). It is given by the Zwanziger formula@28,29#
applied to each of the charges

J52(
a

~qa
(1)ma

(2)2qa
(2)ma

(1)! ~13!

where the indexa runs over 0,8,3,1 and labels the tw
SU(3) charges, oneSU(2) charge and the hypercharge. Th
ma have been defined in Eq.~9! and theqa are the electric
charges present in the state under consideration. Note
the expression for the angular momentum is invariant un
the duality rotation in Eq.~6!. In the applications below, we
will only need to consider the case when dyon 1 is pur
electric and dyon 2 is purely magnetic. Then the index lab
ing the dyons can be dropped and we can write@27#

J52(
a

qama . ~14!

The fundamental scalar field ofSU(5) has five compo-
nents and we can consider dyonic states with any numbe
quanta of these five components. Let us label the com

TABLE I. The quantum numbers (n8 , n3 and n1) on stable
SU(5) monopoles are shown and these correspond to theSU(3),
SU(2) andU(1) charges on the corresponding standard model
mions shown in the right-most column.

n n8/3 n3/2 n1/6

11 1/3 1/2 1/6 (u,d)L

22 1/3 0 21/3 dR

23 0 1/2 21/2 (n,e)L

14 1/3 0 2/3 uR

26 0 0 21 eR
8-3
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nents by the indexh, then the four different electric charge
on a single quanta of each of the five components can
written as

e0
h5

g

2S 1

21

0

0

0

D , e8
h5

g

2A3S 1

1

22

0

0

D ,

e3
h5

g

2S 0

0

0

1

21

D , e1
h5

g

2A15S 2

2

2

23

23

D . ~15!

~These assignments are obtained by considering the c
sponding Noether charges.! To clarify the meaning of these
charge assignments consider the example in which we h
one quanta of the first component (h51) of the fundamenta
scalar field. This quanta will haveq05g/2, q85g/2A3, q3

50 andq15g/A15. Similarly we can work out the charge
on any of the other four (h52,3,4,5) scalar field compo
nents. If we now considerNh quanta of the componenth,
then the total electric charge is

Q5~q0 ,q8 ,q3 ,q1!, ~16!

with

q05
g

2
~N12N2! ~17!

q85
g

2A3
~N11N222N3! ~18!

q35
g

2
~N42N5! ~19!

q15
g

2A15
@2~N11N21N3!23~N41N5!#. ~20!

Let us now define

M0[2~N12N2! ~21!

M8[2~N11N222N3! ~22!

M3[2~N42N5! ~23!

M1[23~N41N5!12~N11N21N3!. ~24!

Since theNh are integers, so are theMa . Solving the above
equations gives theNh in terms of theMa :
08500
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N25N11M0 ~25!

N35N11
M81M0

2
~26!

N45N11
M02M3

2
1

M82M1

6
~27!

N55N11
M01M3

2
1

M82M1

6
. ~28!

Now since theNh are integers, we have the following tw
constraints on theMa :

M81M0

2
5 integer ~29!

M02M3

2
1

M82M1

6
5 integer. ~30!

The second constraint can be combined with the first to pu
in a more useful form:

M8

3
1

M3

2
1

M1

6
5 integer. ~31!

Then the angular momentum from Eq.~14! with Eqs.~16!
and ~9! is found to be

J5
1

2 FM8n8

3
1

M3n3

2
1

M1n1

6 G . ~32!

In Ref. @12# it was shown that we can haveJ51/2 for every
value of n for suitable values of the electric chargesMa
~which will be different on the different monopoles!. Note
thatJ is only the angular momentum in the long range gau
fields and does not contain other possible contributions s
as orbital angular momentum and spin of the gauge partic
These extra contributions can only change the angular
mentum by an integer and cannot change a half-integer
gular momentum state to one that has integer angular
mentum~or vice versa!.

Next let us consider the addition of anSU~5! u term. In
terms of the gauge fields corresponding to the diagonal g
erators, the additional piece of the Lagrangian is

Lu5k@Gmn
3 G̃mn31Gmn

8 G̃mn81Wmn
3 W̃mn31YmnỸmn#

~33!

where

k5
g2u

16p2 . ~34!

The addition of such a term does not alter the expression
the angular momentum of the dyons given in Eq.~32! but it
does affect the values of the electric charges in Eqs.~17!–
~20!. †In the case ofSU(2) monopoles, the effect of au term
on the electric charge has been discussed in Ref.@8# and on
8-4
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FIG. 1. TheSU(5) dyons have four magnetic and four electric charges and so they can be depicted as points in an eight dim
space.~Only three planes in this eight dimensional space have been shown in the diagram.! On each of these planes, we depict bosonic sta
by filled circles and fermionic states by unfilled circles. The question we would like to address is whether, by an independent rotatio
of these four planes, a complete family of half-integer spin dyons can be made to lie in the four dimensional electric plane.
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the angular momentum of dyons in Ref.@9#.‡ The new ex-
pressions for the electric charges on the dyons are

q052
g

2
M0 ~35!

q852
g

2A3
M81

gn8

A3

u

2p
~36!

q352
g

2
M31

gn3

2

u

2p
~37!

q15
g

2A15
M12

gn1

2
A5

3

u

2p
. ~38!

It is straightforward to check that a shift ofu by 2p can be
compensated for by shifts of theMa that satisfy Eqs.~29!
and~31!, thus verifying that the spectrum of states is inva
ant underu→u12p j for any integerj.

We now want to know if a complete set~i.e. all topologi-
cal sectors occurring in Table I! of the half-integer spin dy-
ons can be made to be purely electric by performing a s
able duality rotation~see Fig. 1!.

III. DUALIZATION OF HALF-INTEGER SPIN DYONS

The duality rotation phase anglesfa @see Eq.~1!# re-
quired to make a dyon into a purely electric object are giv
by the inverse tangent of the ratios of its magnetic and e
tric charges. Therefore,

tanf050 ~ if M0Þ0! ~39!

tanf852
2

g2

1

M8 /n822u/2p
~40!

tanf352
1

g2

1

M3 /n32u/2p
~41!

tanf152
5

g2

1

M1 /n125u/2p
. ~42!

Note that theMa are integers and denote the elect
charges on the dyons and hence can depend on the win
08500
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numbern. Also the integersna clearly depend onn. For the
dyons to be dualizable, we want that the duality phase an
be independent ofn. Hence we require thataa be indepen-
dent ofn where

M85n8a8 ~43!

M35n3a3 ~44!

M15n1a1 . ~45!

Theaa are independent ofn and hence by considering th
dyon with n151 we find thata1 must be an integer. The
constraint in Eq.~12! shows that we must also taken851
andn351 for n151 and so all theaa must be taken to be
integers.1 Furthermore, there is a constraint that theaa must
satisfy, coming from the constraint Eq.~31! when combined
with Eq. ~10! and settingn51:

a8

3
1

a3

2
1

a1

6
5 integer. ~46!

In terms of theaa , the angular momentum~14! is given
by

2Jn5Fa8

3
1

a3

2
1

a1

6 Gn212@n~a8kn1a3l n!1a3l n
2#

13a8kn
2 ~47!

where we have added a subscriptn to emphasize the
n-dependence ofJ. For the whole family of dyons (6n
51,2,3,4,6) to have half-integer spin, we need the right-ha
side of Eq.~47! to be odd for each member. First consid
the n52 monopole. The first term on the right-hand side
clearly even in this case. The second term is also even s
the aa are integers. So 2J2 is odd if and only if 3a8k2

2 is
odd. Now suppose thata8 andk2 are chosen so that 3a8k2

2 is
odd. Then all the other dyons in the dualizable family w

1Following the discussion after Eq.~12!, if we relax the constraint
to allow n8522 for n151, half-integer values ofa8 could still
yield integer values ofM8. However, in Appendix A we show tha
half-integer values ofa8 cannot yield a family of spin half dyons
and so we will restrict our discussion to integera8.
8-5
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TANMAY VACHASPATI AND DANIÈ LE A. STEER PHYSICAL REVIEW D63 085008
have half-integer spin if we setkn56k2 when the first term
on the right-hand side of Eq.~47! is even, andkn50 when
this term is odd.

Two explicit examples satisfying the constraint in E
~46! are

a851, a3521, a151, ~48!

a851, a350, a154. ~49!

For the first example, the first term on the right-hand side
Eq. ~47! vanishes and therefore 2Jn is odd providedkn

2

5odd for all n.2 Hence a whole family of dyons has hal
integer spin and is dualizable. In fact, there are an infin
number of solutions (aa) that have this property. This can b
seen by noting that a shift of each of theaa by any fixed
even integer also leads to a solution that satisfies the
straints and preserves the half-integer angular momentu

The dualizable 2Jn51 dyon states for a fixed set ofaa
correspond to solutions of the Diophantine equation:

2a8n8
213a3n3

2562a1n1
2 . ~50!

In Appendix B we show that for theaa in Eq. ~48! there are
an infinite number of dualizable dyonic states in every to
logical sector that have half-integer spin. This conclusion
expected to be valid whenever some of theaa’s differ in
their signs, leading to indefinite~hyperbolic! Diophantine
equations. If all theaa have the same sign, we expect the
to be a finite set~possibly empty! of solutions. In view of the
constraints in Eq.~12! the infinite set of states is not o
physical interest. In addition we only expect the lightest
the states for any given winding and angular momentum
be stable.

IV. GENERAL RESULTS

~1! There are infinitely many solutions to the constrain
leading to a dualizable family of half-integer spin dyons.

This has been shown above in the paragraph follow
Eq. ~49!.

~2! Each member of the family of dualizable half-integ
spin dyons has an integer spin partner that is also dua
able.

To see this conclusion, note that if for a certainn one has
2Jn5odd, then the state withkn→kn61 has@Eq. ~47!#

2Jn→~2Jn!852Jn1even integer13a8 . ~51!

2This is an illustration of the discussion following Eq.~12!. For
n51 the constraint in Eq.~12! only allows k150. However,k1

50 gives a dyon with integer spin, while the statek151 violates
the constraint but gives half-integer spin. Since the spin of the
ons is not taken into account in deriving the constraints@26# we
assume that thek151 state is admissible.
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However, 3a8 has to be odd since 2J25even13a8k2
2 and

this has to be odd for then52 monopole to have half-intege
spin. Hence the state with the shifted value ofkn has integer
spin.

Hence the dual standard model predicts bosonic part
of all the standard model fermions. Unlike in the case
supersymmetry, the masses of the partners do not have
degenerate.

~3! The n56 dyon with the least BPS energy has integ
spin.

The energy of a BPS dyon is given by Eq.~7!,

EBPS5cAqa
21ma

2

wherec is a proportionality constant. The state with the low
est energy is the one with the smallest electric and magn
charge. For then56 dyon, this is the state withn8505n3
since then, both the electric and magnetic charges in
SU(3) andSU(2) sectors vanish. Now using Eq.~32! to-
gether with Eq.~45! we see that this state has integer spi

A general statement of this kind cannot be made for dy
with other windings since they necessarily have no
vanishingSU(3) and/orSU(2) magnetic charge. However
is not difficult to determine which spin state among the d
alizable dyons has the least BPS energy. First note that
alizability impliesqa}ma}na . @This relation does not hold
for a50 where we haveq052gM0/2 and M0 is con-
strained by Eq.~29!.# Therefore, for fixed values of theaa ,
u and for small values ofg ~when the electric charge contr
butions are subdominant!, the least BPS energy state is on
that has the minimum values ofn8

2 and n3
2. For A[a8/3

1a3/21a1/65odd, this ensures that then51,22,4 states
with half-integer spin have lower BPS energy than the c
responding integer spin states. However, for then523 half-
integer spin state to have lower energy than the integer
state in the case of smallg, we needA5even because only
then then850 (k351) state has half-integer spin.

It is worthwhile pointing out the role of theu term in
these considerations. The lowest BPS energy states f
non-zerou angle will occur for non-zero values of theaa . If
u were zero, the states with the least energy would be th
with vanishing electric charges~since aa50 would mini-
mize the BPS energy! and hence, with zero spin.

~4! The n52,4,6 half-integer spin dualizable dyons carr
l3 electric charge i.e., M0Þ0.

To see this, note that Eq.~31! implies that 3M31M1 is
even. Therefore bothM3 and M1 are even or both are odd
For the evenn dyons,M15a1n1 is even. HenceM3 is also
even for evenn. Now from the angular momentum formul
Eq. ~32! and the relations in Eq.~10! we get

2Jn5FM8

3
1

M3

2
1

M1

6 Gn1M8kn1M3l n . ~52!

Therefore, taking Eq.~31! into account, we see that 2Jn is
even for evenn if M8 is even. Hence to obtain an odd valu
for 2Jn ~i.e. half-integer spin!, we must necessarily setM8 to
be odd. Next we use the constraint in Eq.~29! which shows

-

8-6
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that M0 has to be odd and, in particular, has to be non-ze
Therefore these half-integer states necessarily carryl3 elec-
tric charge.

A consequence of this conclusion is that the twoSU(3)
duality rotation phase anglesf0 andf8 cannot be equal. If
non-Abelian duality rotations can only be applied withf0
5f8 then the dual standard model would only work pr
vided the particles transforming non-trivially underSU(3)
carry magnetic charge.

~5! The n56 half-integer spin dualizable dyon must ha
n8Þ0.

Insertingn56 in Eq.~47! shows that we must necessari
have k65odd to get half-integer spin. Thereforen85n
13k653(21k6) is necessarily non-vanishing and then
56 half-integer spin state carriesSU~3! gluonic structure.

Similarly if a8 and a8/31a3/21a1/6 are odd integers
thenk3 has to be even for then53 monopole to have half
integer spin. Thenn8Þ0 and this monopole also carries gl
onic structure.

V. STABILITY OF HALF-INTEGER SPIN DYONS

The monopoles in any topological sector have two de
channels. First, the monopoles can emit scalar and ve
particles and change their values ofk and l. Secondly, a
monopole can fragment into two monopoles of smaller m
netic charge. We have to show that neither of these insta
ties apply to the states that we would like to interpret
standard model particles.

The first instability will not apply to the lowest lying half
integer spin state in any given topological sector and so
need only concern ourselves with the second instability.

Next we show that the dyons with topological windin
n.6 are all unstable to fragmentation into dyons withn
56 and something else.

Let us denote the dyonic states by their magnetic
electric charges as follows:

un8 ,n3 ,n1 ;M8 ,M3 ,M1&.

Then we want to show that the decay process

un8 ,n3 ,n1 ;M8 ,M3 ,M1&

→un8 ,n3 ,n126;M82p8 ,M32p3 ,M12p1&

1u0,0,6;p8 ,p3 ,p1& ~53!

is energetically favorable. The two states on the right-ha
side interact by theU~1! magnetic interactions and we kno
that this is repulsive. The electric interactions are small co
pared to the magnetic interactions at weak coupling b
factor g4 and so we ignore them for the present.~Later we
will check that the decay would proceed even with the el
tric interactions taken into account.! Hence it is clear that this
decay process is energetically favorable. What is not so c
is if the process is allowed by angular momentum conse
tion. @The magnetic and electric charges are conserved in
~53!.# This is what we will now check.
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The angular momentum of the states on the right-ha
side can be written as@Eq. ~32!#

2Jrhs52Jlhs12p32M12
p8n8

3
2

p3n3

2
2

p1n1

6
~54!

up to the addition of an integer~which may be carried off in
orbital angular momentum etc.!. For angular momentum
conservation—meaning that half-integer initial angular m
mentum should go to half-integer final angular moment
and similarly for integer angular momentum—we therefo
need

2M12
p8n8

3
2

p3n3

2
2

p1n1

6
5even integer. ~55!

A solution is simply given byp8505p3 , p156a1 because
then the left-hand side is even. With these values of thepa ,
the electric interactions are also purelyU~1! and repulsive.
This shows that the decay process is not forbidden by an
lar momentum conservation and hence can occur for pu
energetic reasons which we know favor it.

A similar stability analysis goes through for then55
dyon. Consider the decay process

un8 ,n3,5;M8 ,M3 ,M1&→u0,n3,3;p8 ,M32p3 ,p1&

1un8,0,2;M82p8 ,p3 ,M12p1&.

~56!

This is energetically favored since the two dyons on
right-hand side interact only via theU~1! magnetic interac-
tion which is repulsive. Next we need to check if the decay
allowed by angular momentum conservation.

Using the formula for the angular momentum@Eq. ~32!#,
we find

2Jrhs52Jlhs2Fn8p8

3
1

n3p3

2
2

p1

6
1

M1

2 G . ~57!

So the decay will be allowed provided

n8p8

3
1

n3p3

2
2

p1

6
1

M1

2
5even integer. ~58!

This is clearly so if we choosep8505p3 and p153a1.
~Recall thatM155a1 for the initial state to be dualizable.!
With this choice ofpa , once again the electric interaction
are purelyU~1! and repulsive. Hence then55 dyon is un-
stable.

This tells us that the dyons withunu55 and unu>7 are
unstable, exactly as found for the monopoles in@2,30#. The
6n51,2,3,4,6 dyons will still be stable because the fra
mentation is completely governed~in the weak coupling
limit ! by the magnetic interactions@2,30#. Therefore the
spectrum of stable half-integer spin dyons also agrees w
the standard model fermions.
8-7
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VI. DISCUSSION

Our general results can be found in Sec. IV. The m
conclusion is that it is possible to find a family of dyons ea
member of which has half-integer spin and the family a
whole can be dualized into purely electric states~subject to
the discussion of duality rotations given in the Introductio!.
In addition, there are two new features that have emer
and that may be considered as predictions of the dual s
dard model. The first is that each of the half-integer s
dyons has a bosonic partner. In the dualized theory, th
states would appear as bosonic partners of the known s
dard model fermions. Since the bosonic partners are not
to an imposed symmetry~e.g. supersymmetry!, there is no
reason to expect them to be degenerate in mass with
fermionic partners. The second new feature is that som
the half-integer spin dyons~in particular then56 dyon! may
have non-vanishing values ofn8 and n3 even though the
minimum allowed values of these quantum numbers may
zero. For example, in then56 case, the minimum values ar
n8505n3, yet to get half-integer spin it is necessary to ha
n8Þ0 ~see Sec. IV!. Since these monopoles withn85n
13knÞ0 carry the same topological charge as the monop
with winding numbern but with n850, they too must trans
form in the fundamental representation of the dual symme
group@24#. However, the value ofkn is another charge asso
ciated with the monopole~related to the ‘‘holomorphic’’
charge in@22#! and must correspond to a new property of t
particle obtained after dualization.

How is the holomorphic charge manifested in the cont
of the dual standard model? The holomorphic charge se
to label an internal degree of freedom of the dualized dy
and, according to Bais and Schroers@22#, manifests itself as
a magnetic dipole moment of the dyons i.e. an electric dip
moment of the particles. Then, for example, then526, spin
half dyon necessarily hasn8Þ0 which means that it mus
have non-trivial SU(3) internal structure even though
transforms as anSU(3) singlet. The resolution to this appa
ent paradox is that the particles in the context of the d
standard model are composite objects and hence they
have internalSU(3) structure in spite of having trivia
SU(3) long range interactions~as in the case of the proton!.
The novelty here is that then526 dyon under discussion
supposedly corresponds to the electron, implying that
electron must carry non-trivial internalSU(3) structure.
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APPENDIX A

Consider the possibility thata8 is a half-integer. In this
case, forM8 to be an integer,n8 should be an even intege
08500
n

a

d
n-
n
se
n-

ue

eir
of

e

e

le

y

t
s

s

le

l
an

e

i
rs

d

rn

Then, for evenn, all of n8 , n3 andn1 are even. Therefore we
write na52ña whereña are integers and insert into the equ
tion for the angular momentum@Eq. ~32!# to find

2Jn52F1

3
M8ñ81M3ñ31

1

3
M1ñ1G . ~A1!

Hence 2Jn is even and half-integer spin solutions do n
exist. Therefore half-integer values ofa8 cannot yield a fam-
ily of half-integer spin dyons.

APPENDIX B

Here we show that there are an infinite number of dy
states withJ51/2 for the choice ofaa in Eq. ~48! ~for ex-
ample!. This is not directly relevant to us because of Eq.~12!
and further physical constraints. However it is still an inte
esting exercise.

To see the infinity of solutions, rewrite the angular m
mentum constraint@Eq. ~32! with ~43!, ~44!, ~45! and ~48!#
as

2n8
223n3

2562n1
2 . ~B1!

For the fundamental monopole (n151), the problem then is
to find all solutions to the equation

2p223q255 ~B2!

wherep andq are integers.
This is a standard problem in number theory and is rela

to Pell’s equation~for example,@15#! The idea of the con-
struction is that givenonesolution to the equation

ap22bq25c ~B3!

wherea, b andc are integers, and if there exists a non-trivi
solution (l ,m) to the equation

l 22abm251, ~B4!

then an infinite set of solutions can be generated.~The trivial
solutions arel 251, m50.) The construction uses the solu
tion to the first equation, call itp0 ,q0, and the solution to the
second equation, call itl ,m, to determine another solution:

p5 lp01bmq0 , q5amp01 lq0 . ~B5!

So this gives a relatively easy way to check if there are
infinite number of solutions and to generate them. Indeed
the unit winding monopole, one can check that this meth
generates an infinite number of spin 1/2 states. For the hig
winding monopoles, we only need find one spin 1/2 solut
@described below Eq.~49!# and that guarantees an infinit
8-8
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number since the secondary equation does not care abou
value of c and this is the only place where the topologic
winding of the monopole (n1) enters.

In our case we have another restriction on the solutionp
andq since we requirep5n13k andq5n12l wherek and
. A

08500
the
l
l are integers. However, it is easy to check that the const
tion still generates an infinite sequence of solutions. For
n51,2,4 cases, every alternate member of the sequence
scribed above has the desired form. For then53,6 cases,
every member has the desired form.
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