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Spin and dualization of SU(5) dyons
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Motivated by the dual standard model, we study the angular momentum spectrum ofStible dyons
that can be transformed into purely electric states by a suitable duality rotation, i.e., dyons that are dualizable.
The problem reduces to solving a Diophantine equation for the holomorphic charges in each topological sector,
but the solutions also have to satisfy certain constraints. We show that these equations can be solved and sets
of dualizable, half-integer spi8U(5) dyons can be found, each of which corresponds to a single family of the
standard model fermions. We then find two predictions of the dual standard model. First, the family of
dualizable, half-integer spin dyons is accompanied by a set of dualizable, integer-spin partner states. Secondly,
the dyon corresponding to the electron must necessarily contain nontrivial color internal structure. In addition,
we provide other general results regarding the spectrum of dualizable dyons and their novel properties, and
extend the stability analysis &U(5) monopoles used in the dual standard model so far to discuss the stability
of the half-integer spin dyons.
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[. INTRODUCTION tional to 6 [8]. Also needed was the angular momentum of
dyons in presence of & term[9].

The idea that particles may be viewed as solitons can be The success of the spin from isospin phenomenon for the
traced back to Skyrm¢l] who introduced what is now du_al standard model depends on Fhe existence of half-integer
called the Skyrme model in which a classical solutionSPIn States foell the dyons that ultimately correspond to the
(“Skyrmion” ) represents the proton. The model has provedtandard model particles. In the case of the 't Hooft—
useful in the discussion of the properties of light nuclei everf’0lyakov[10,11 monopole, spin from isospin can provide
though it is known that the Skyrmion does not have thehalf-integer spin to the fundamental monopole but not to the
constituent structure of the proton. monopole with twice the topological winding. In contrast, in

The recent attempts to build a dual standard model aré® SU(5) case it has been shown thalt the stable mono-
along the lines that Skyrme developed—that is, to find gPoles can be provided with electric charges to make them
model that admits soliton analogues of the known fundameninto half-integer spin dyonfl2]. However, the particles that
tal particles. Partial success in this direction was achieved iM/€ observe are not ostensibly dyons. Hence it is important to
the discovery that the topological charges of the stable magihow that all the half-integer spin dyons which arise in the
netic monopoles in agU(5) field theory are in one to one SU(5) field theqry and which will be identified w!th stan_—
correspondence with the electric charges of one family oflard model fermions can be transformed by a duality rotation
fermions of the standard modg,3]. A possible scheme to into purely electric charges. This is the aim of the present
obtain three families of identically charged magnetic mono-PapPer.
poles was outlined in Ref4], though at the expense of con- ~ Here we shall take the approach that the known standard
siderably complicating the group structure of the model.  Model particles are purely electrign contrast with Refs.

So far, a substantial shortcoming of the motimma-  [13,14 in which these particles have both electric and mag-
rized in Sec. I} has been that the monopoles emerging fromnetic chargg We would then like to know whether the spin
the SU(5) field theory are all bosonic while the standard 1/2 dyonic states of th&U(5) model—that are in one-one
model particles are known to be fermionic. The issue of spirforrespondence with the standard model particles—can all
and handedness of the solitons was discussed in [Rgf. Pe dualized into purely electric charges. In trying to answer
though not resolved in th8U(5) context. The basis for the this question, we strictly pee_d to conS|der_duaI|ty rotations
discussion was the discovery of “spin from isospif8—7] for gauge fields transforming in representations of the unbro-
in which dyons can have half-integer spin even in a purelykén symmetry group H=[SU(3)x SU(2)xU(1)]/Ze.
bosonic particle theory. The possibility for handedness was$Uch non-Abelian duality transformations are not fully un-
discussed in the context of @ term in the action and the derstood yet. Our approadBec. Il)) will be to assumethat

result that dyons can carry fractional electric charges proporildependent duality rotations can be applied to the field
strengths in the directions of the four commuting generators

of H. In other words, we assume that the transformation
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0556-2821/2001/68)/0850089)/$20.00 63 085008-1 ©2001 The American Physical Society



TANMAY VACHASPATI AND DANIE LE A. STEER PHYSICAL REVIEW D63 085008

independent phase angles for the generaxarand A\g of  Bogomol'nyi-Prasad-SommerfielPS form for the energy
SU(3), 73 of SU(2) andY of U(1): [16,17 (see also the monopole reviews in REL8]) in
which the energy of a dyon is proportional to the magnitude

1 H .
Agzidiagl,—l,o,o,o, ) of its charge:
1 Egps\O5+m; (7)
)\8=mdiag1,1,—2,0,0), (3)
where a sum over the indexis understood. This form of the
1 energy does not apply to the dual standard model where the

r3==diag0,0,0,1- 1), (4) ~ monopoles may be close to being BPS but are not exactly
2 BPS[2], and neither does it apply to the standard model
particles. The purpose of considering Ef).is simply that it
1 enables us to find the lowest energy dyons in the weak cou-
Y= 2\/1—5d|ag2,2,2,—3,— 3). ) pling, near BPS limit.
If we assume Eq(7) for the energy, then for any given
The corresponding magnetic chargesand electric charges value of the magnetic charge®, it would pick out the state

0, transform as g®=0 as the state with the lowest energy. These purely mag-
netic states would have zero sgsee below. The situation
(qatimy)—e'%a(qy+imy). (6) is more interesting when we includegaterm in theSU(5)

action because then the electric charge contains a contribu-

It should be emphasised that these transformations are a catien from thed term[8]. In that case, the lowest energy state
jecture: we cannot rigorously justify them since the non-can indeed have half integer spin. The hope then would be
Abelian equations of motion explicitly involve the gauge that for a certain value of), of the phasesp,, and of the
fields and not just the field strengtkie contrast with Max-  coupling constang, one would obtain a complete family of
well’'s equations. However, the equations of motion are in- spin half dyons which would be the lowest energy states.
deed invariant under the transformation if only the commut-However, we show that this hope is not realized due to the
ing gauge field component&Cartan subalgebyaare non- monopole with topological winding==6. In this topological
vanishing. Also note that the Hamiltonian and the Euclidearclass, the state with the lowest BPS energy necessarily has
action remain invariant under the transformation in Eq. integer spin.
Furthermore, ifSU(5) were broken down tdJ(1)*, each of Ideally we would like to work with the energy of a dyon
the gauge field components labeled by the index0,8,3,1 at strong coupling and then determine the lightest states for
would be Abelian and then the Abelian duality transforma-given parameters. This would require understanding the
tions would correspond exactly to Ed.). guantum properties of magnetic monopoles—a subject that

While adopting the transformation in E@L) as a “work-  has been under intense research over the last two decades.
ing hypothesis” for the duality rotation, we also discuss theRemarkable progress has been achieved in the understanding
case when this may not be true. If, for example, we restricof monopoles at strong coupling in the supersymmetric case
ourselves tapy= ¢g, We can show that the half-integer spin [19] but several tantalizing issues remain open especially in
states in the even winding topological sectors must necessathe non-supersymmetric settiig.g.[20]). An issue that is
ily carry both magnetic and electrBU(3) charge. central to particle-soliton duality is the group representation

In the case when the, are independent, we find an in- in which the monopoles transform when they are considered
finite set of dualizable, half-intege8U(5) dyon states that as particles. Goddard-Nuyts-Olive conjectured that mono-
are in one to one correspondence with the standard modgbles transform in a representation of a dual symmetry group
particles. To arrive at this conclusion we need to solve conf{21]. Bais and Schroef22,23 find that a richer structure is
strained quadratic Diophantine equations that can be definit@pplicable to non-Abelian monopoles, since they carry “ho-
or indefinite. Such equations have been considered at leastmorphic” charges in addition to a topological charge.
since 600 A.D. by Bhaskara and Brahmagupta and techtThis will be important to us in Sec. Vl.In the SU(5)
niques to solve them can be found in number theory textnodel, Lepora has provided strong evidence that the mono-
books (e.g.[15]). We shall describe some of the equationspoles transform in the fundamental representation of the dual
and their solutions in Appendix B. symmetry group[SU(3)XSU(2)xU(1)] based on the

The infinity of solutions is unlikely to be of any direct transformation properties of the monopoles under rigid
physical relevance. The reason is that we are interested onfyauge transformatior{24]. This evidence seems to support
in the lowest energy state in any given topological sectothe concept of a dual standard model. Further support comes
since, presumably, the higher energy states are unstable fimm Lepora’s calculation of the value of the weak mixing
decay into the lowest energy state. However, the energy of angle 6,, in the context of theSU(5) dual standard model
dyon is not known at strong coupling—which is the relevant[25]. Lepora finds sif¥,,=0.22 which is in good agreement
regime for making contact with the standard model—and savith experiment at a few GeV. However the relevance of the
there is no sure way of determining the lowest energy statesew GeV scale to the dual standard model has not yet been
The best that we can do at present is to assume mvestigated. Naively it seems that this should be the scale at
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which the monopole-like structure of elementary particles TABLE I. The quantum numbersng, n; andn,) on stable
becomes relevant. Then it is possible that phenomenologic&U(5) monopoles are shown and these correspond tGtes),
considerations already impose strong constraints on the ide&J(2) andU(1) charges on the corresponding standard model fer-
of the dual standard model. It would be very interesting tomions shown in the right-most column.

pursue this idea further.

n ng/3 ns/2 n,/6
Il. REVIEW OF DUAL STANDARD MODEL +1 1/3 1/2 1/6 ,d),
Consider the symmetry breaking =2 13 0 -3 dr
-3 0 1/2 -1/2 (v.e),
G=SU(5)—H=[SU3)xXSU(2)xU(1)]/Zs. (8) +4 13 0 213 Ur
-6 0 0 -1 er

The magnetic monopoles in this symmetry breaking are la=
beled by theirSU(3), SU(2) andU(1) magnetic charges,
poles are stabld.This result assumes a range of parameters
ng ny —1 \F in the SU(5) potential[3].] A comparison with the standard
0\/—?@ 29 V3™ (9 model particles shows that these monopoles are in one to one
9 correspondence as depicted in Table I. On dualization of the
SU(5) model, we expect these magnetic monopoles to cor-
respond to electrically charged particles, while the electri-
ng=n+3k, ny=n+2l, n;=n. (10  cally charged scalar and vector particles of 81&(5) model
should correspond to very massive magnetically charged
Here,k and| are arbitrary integers since thg [of SU(3)]  states.
and 73 [of SU(2)] charges are only defined modulo 3 and 2  Non-trivial spin of theSU(5) monopoles is provided by
respectively. considering electrically charged bound states on the mono-
The topological sector is only determined by the integerpoles. If a scalar field transforming in the fundamental rep-
n; which gives the topological winding numbgl,(G/H) resentation oBU(5) is included in the model, quanta of this
=Z]. The integermg andn; are related to the “holomor- field will provide such electrically charged states—this is the
phic” charges which are discussed in Reff82,23,2¢ and ~ “spin from isospin” idea [5-7] which was extended to
which are not topological. I[26], Murray derived con- SU(5) monopole§12,27. Thus, as in those papers, we now
straints that, in the BPS limit, the sum of the topological andadd to the original theory a scalar field transforming in the
holomorphic charges has to be greater than or equal to zertundamental representation &U(5). [The existence of
The holomorphic charges are the diagonal entries of theuch bound states will depend on the details of $1é(5)

M= (mg,mg,m3,my) =

where

magnetic charge matrix which in thBU(5) case is potential. Here, as ifb,6,12, we will simply assume that the
bound states exigtTo determine whether the spin is integer
2M =2g[mgh3+Mghg+mg73+m; Y] or half-integer, one needs to calculate the angular momentum

B L B in the gauge fields of two dyons of chargeg{,m(") and
:diai s nl, s nl, Gl n17n3+n1, N3t ) (q§f>,m§3>). It is given by the Zwanziger formul§28,29
3 3 3 2 2 applied to each of the charges
(13)

— 1 2 2 1
Murray’s constraint$26] are then that the first three entries J=- ; (q5Pm) —qPmb) (13)
of the charge matrix must be non-negative and the last two

entries must be greater than or equal to minus the topologicglare the indexa runs over 0.8.3.1 and labels the two

charge(our ny). Forn;<0 this leads to SU(3) charges, on8U(2) charge and the hypercharge. The
(12) m, have been defined in E) and theq, are the electric
charges present in the state under consideration. Note that
the expression for the angular momentum is invariant under
the duality rotation in Eq(6). In the applications below, we

As we shall see below, the integers crucially important Wil only need to consider the case when dyon 1 is purely
in determining the spin of a dyon: there are valuek tfiat glectrlc and dyon 2 is purely magnetic. Then the index label-
violate the constraints but which give rise to angular momenind the dyons can be dropped and we can w2
tum that cannot be achieved by states satisfying the con-
straints. Since Murray’s constraints are only valid in the BPS J=— E m. . 14
> ; . , daMa (14)
limit in any case, we will assume them provided there is no a
state that violates them and which has a different véioe
teger versus half-integeof the angular momentum. The fundamental scalar field &U(5) has five compo-

A stability analysis of the non-BPS monopoles in anynents and we can consider dyonic states with any number of
topological sector shows that only then=1,2,3,4,6 mono- quanta of these five components. Let us label the compo-

—n;=2k=0, —n;=1=0.

(For positive values ofy, these inequalities would be re-
versed)
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nents by the indek, then the four different electric charges N,=N;+M, (25)
on a single quanta of each of the five components can be
written as Mg+ Mg
N3=N;+ — (26)
1 1
-1 1 Mo—M3 Mg—M;y
a9l o o 9| -2 Na=Ni+ —5—+—% @D
0 ’ 8™ ’
2l o 23| o
M 0+ M 3 M 8_ M 1
0 2 Now since theN,, are integers, we have the following two
constraints on thé:
0 2
Mg+ M
eg:g 0 , egzi 2 (15) %ﬂnteger (29
1 2\/1—5 -3
-1 -3 My—M Mg—M
0 5 .08 6 L= integer. (30

(These assignments are obtained by considering the corre-
sponding Noether chargesio clarify the meaning of these .
charge assignments consider the example in which we haJ8 & more useful form:

one quanta of the first componefi= 1) of the fundamental Me Ma M

scalar field. This quanta will have,=g/2, q8=g/2\/§, ds 8,73, —l=integer.

3 2 6 (31)
=0 andq;=g//15. Similarly we can work out the charges

The second constraint can be combined with the first to put it

on any of the other fourh=2,3,4,5) scalar field compo-
nents. If we now consideNy quanta of the componer,
then the total electric charge is

Then the angular momentum from Eq4) with Egs.(16)
and(9) is found to be

_ 1/ Mgng Mjzn; Ming
Q=(do,08,93.91). (16) =53t *t—5 | (32)
with .
In Ref.[12] it was shown that we can have=1/2 for every
g value of n for suitable values of the electric charghk,
qo=§(N1—N2) (17) (which will be different on the different monopolesNote
thatJ is only the angular momentum in the long range gauge
fields and does not contain other possible contributions such
_ 9 _ as orbital angular momentum and spin of the gauge particles.
q8—2\/§(N1+N2 2N3) (18 Tyese extra contributions can only change the angular mo-
mentum by an integer and cannot change a half-integer an-
g gular momentum state to one that has integer angular mo-
93=5(Na—Ns) (19  mentum(or vice versa
Next let us consider the addition of &1J5) 0 term. In
terms of the gauge fields corresponding to the diagonal gen-
q1=231_5[2(N1+ N,+ N3)—3(Ng+Ns)]. (20) erators, the additional piece of the Lagrangian is
Ly=«[G3, G2+ G5 G B+ W5 Writy, Yer)
Let us now define (33
Mo=—(N;—Ny) (21)  where
2
MgE_(Nl+N2_2N3) (22) _ g 0
K= 162" (34)
M3=—(N,—Nj) (23 N ,
The addition of such a term does not alter the expression for
M;=—3(N,+Ng)+2(N;+Ny+Ny). (24 the angular momentum of the dyons given in E2R) but it

Since theN,, are integers, so are tii,. Solving the above
equations gives thbl,, in terms of theM,:

does affect the values of the electric charges in E4jg—
(20). [In the case o8U(2) monopoles, the effect of @term
on the electric charge has been discussed in [Béfand on
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FIG. 1. TheSU(5) dyons have four magnetic and four electric charges and so they can be depicted as points in an eight dimensional
space(Only three planes in this eight dimensional space have been shown in the dja@raeach of these planes, we depict bosonic states
by filled circles and fermionic states by unfilled circles. The question we would like to address is whether, by an independent rotation in each

of these four planes, a complete family of half-integer spin dyons can be made to lie in the four dimensional electric plane.

the angular momentum of dyons in Rg®].] The new ex-
pressions for the electric charges on the dyons are

QO:_gMO (35
QB:_zg—ﬁMsﬁLg—E% (36)
Q3:_g 3+%% (37)
q1=2imml—%\[§%. 38)

It is straightforward to check that a shift éfby 27 can be
compensated for by shifts of tHd, that satisfy Eqs(29)

and(31), thus verifying that the spectrum of states is invari-

ant underd— 6+ 2j for any integej.
We now want to know if a complete sgte. all topologi-

cal sectors occurring in Table of the half-integer spin dy-

numbern. Also the integers, clearly depend om. For the
dyons to be dualizable, we want that the duality phase angles
be independent af. Hence we require that, be indepen-
dent of n where

Mg=ngag (43
M3=n3a3 (44)
M]_:nlal. (45)

The «, are independent af and hence by considering the
dyon with n;=1 we find thate; must be an integer. The
constraint in Eq(12) shows that we must also takg=1
andn;=1 for n;=1 and so all thex, must be taken to be
integerst Furthermore, there is a constraint that themust
satisfy, coming from the constraint E81) when combined
with Eq. (10) and settingn=1:

Qg @z @1
— + =+ —= =Iinteger.

3 2 6 (46

In terms of thea,, the angular momenturtl4) is given

ons can be made to be purely electric by performing a suitpy

able duality rotatior(see Fig. 1

I1l. DUALIZATION OF HALF-INTEGER SPIN DYONS
The duality rotation phase angles, [see Eq.(1)] re-

ag az g
2 6

3 n?+2[n( gkt agly) + aslf]

2Jn=

(47)

+ 3a3k%

quired to make a dyon into a purely electric object are given
by the inverse tangent of the ratios of its magnetic and elecwhere we have added a subscriptto emphasize the

tric charges. Therefore,

tange=0 (if My#0) (39)
IR 40
@NPe= " 12 My /ng— 20727 (40
O S 41
an¢3_ B Ez Mg/ng_ 0/277 ( )
A 42
@nNb1== 2 M in,— 50127 (42)

n-dependence ofl. For the whole family of dyons £n
=1,2,3,4,6) to have half-integer spin, we need the right-hand
side of Eq.(47) to be odd for each member. First consider
then=2 monopole. The first term on the right-hand side is
clearly even in this case. The second term is also even since
the a, are integers. So» is odd if and only if 3a8k§ is

odd. Now suppose thatg andk, are chosen so thata%kg is

odd. Then all the other dyons in the dualizable family will

IFollowing the discussion after E(L2), if we relax the constraint
to allow ng=—2 for n;=1, half-integer values o&g could still
yield integer values olMg. However, in Appendix A we show that

Note that theM, are integers and denote the electric half-integer values ofrg cannot yield a family of spin half dyons
charges on the dyons and hence can depend on the windirgd so we will restrict our discussion to integey.
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have half-integer spin if we sé&t,= =k, when the first term However, 3vg has to be odd sinceJ2=event 3a8k§ and
on the right-hand side of Eq47) is even, and,=0 when this has to be odd for the= 2 monopole to have half-integer
this term is odd. spin. Hence the state with the shifted valuekgtas integer
Two explicit examples satisfying the constraint in Eq. spin.
(46) are Hence the dual standard model predicts bosonic partners
of all the standard model fermions. Unlike in the case of
ag=1, az=—1, a=1, (48)  supersymmetry, the masses of the partners do not have to be
degenerate.
(3) The n=6 dyon with the least BPS energy has integer
ag=1, a3=0, a;=4. (49 spin
The energy of a BPS dyon is given by Ed),

For the first example, the first term on the right-hand side of

Eq. (47) vanishes and thereforeJ2 is odd providedk? Egps=CVa5+m;

=odd for all n.2 Hence a whole family of dyons has half-

integer spin and is dualizable. In fact, there are an infinitavherec is a proportionality constant. The state with the low-
number of solutionsd,) that have this property. This can be est energy is the one with the smallest electric and magnetic
seen by noting that a shift of each of tag by any fixed charge. For thew=6 dyon, this is the state withg=0=nj3
even integer also leads to a solution that satisfies the corsince then, both the electric and magnetic charges in the
straints and preserves the half-integer angular momentum. SU(3) and SU(2) sectors vanish. Now using E¢32) to-

The dualizable 2,,=1 dyon states for a fixed set af, gether with Eq.(45) we see that this state has integer spin.
correspond to solutions of the Diophantine equation: A general statement of this kind cannot be made for dyons
with other windings since they necessarily have non-
vanishingSU(3) and/orSU(2) magnetic charge. However it
is not difficult to determine which spin state among the du-
alizable dyons has the least BPS energy. First note that du-
In Appendix B we show that for the, in Eq. (48) there are  alizability impliesq,«<m,en,. [This relation does not hold
an infinite number of dualizable dyonic states in every topofor a=0 where we havegy=—-gMy/2 and My is con-
logical sector that have half-integer spin. This conclusion isstrained by Eq(29).] Therefore, for fixed values of the,,
expected to be valid whenever some of tgs differ in ¢ and for small values off (when the electric charge contri-
their signs, leading to indefinitéhyperbolig Diophantine  butions are subdominantthe least BPS energy state is one
equations. If all thex, have the same sign, we expect therethat has the minimum values of; and n3. For A= ag/3
to be a finite setpossibly empty of solutions. In view of the  + o5/2+ «,/6=0dd, this ensures that the=1,—2,4 states
constraints in Eq(12) the infinite set of states is not of with ha|f-in'[eger Spin have lower BPS energy than the cor-
physical interest. In addition we only expect the lightest ofresponding integer spin states. However, forrike— 3 half-
the states for any given winding and angular momentum tonteger spin state to have lower energy than the integer spin
be stable. state in the case of smai| we needA=even because only
then theng=0 (k3=1) state has half-integer spin.

It is worthwhile pointing out the role of th@ term in
these considerations. The lowest BPS energy states for a

(1) There are infinitely many solutions to the constraintsnon-zero# angle will occur for non-zero values of thg, . If
leading to a dualizable family of half-integer spin dyons 6 were zero, the states with the least energy would be those

This has been shown above in the paragraph followingvith vanishing electric chargetince a,=0 would mini-

Eq. (49). mize the BPS energyand hence, with zero spin.

(2) Each member of the family of dualizable half-integer (4) The n=2,4,6 half-integer spin dualizable dyons carry

spin dyons has an integer spin partner that is also dualiz-\ 5 electric charge i.e.My#0.

2agn3+3azns=6—a;n?. (50)

IV. GENERAL RESULTS

able To see this, note that E431) implies that M;+M is
To see this conclusion, note that if for a certaione has even. Therefore botM; and M, are even or both are odd.
2J,=0dd, then the state witk,—k,* 1 has[Eq. (47)] For the evem dyons,M ;= a4n, is even. HencéV 5 is also

even for evem. Now from the angular momentum formula

23,—(23,) =2J,+even integet 3as. (51  EQ-(32) and the relations in E¢10) we get

M M M
23n2[7“73+?l

n+Mgk,+Msl,. (52
2This is an illustration of the discussion following E(.2). For
n=1 the constraint in Eq(12) only allows k;=0. However,k;
=0 gives a dyon with integer spin, while the stite=1 violates  Therefore, taking Eq(31) into account, we see thatl is
the constraint but gives half-integer spin. Since the spin of the dyeven for evem if Mg is even. Hence to obtain an odd value
ons is not taken into account in deriving the constrafi?®] we  for 2J,, (i.e. half-integer spiy we must necessarily sktg to
assume that thk; =1 state is admissible. be odd. Next we use the constraint in E89) which shows
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thatM, has to be odd and, in particular, has to be non-zero. The angular momentum of the states on the right-hand
Therefore these half-integer states necessarily cayiglec-  side can be written g€q. (32)]

tric charge.
A consequence of this conclusion is that the t&0(3) PsNg P3Ns  pPih
duality rotation phase angles, and ¢ cannot be equal. If 2Jims=2dpst2p3~My— =~ -~ (54

non-Abelian duality rotations can only be applied with

- ¢g then the.dual standard. model W‘?‘J'd only work pro- up to the addition of an integéwhich may be carried off in
vided the particles transforming non-trivially und8tJ(3) g pital angular momentum eic.For angular momentum

carry magnetic charge. _ _ conservation—meaning that half-integer initial angular mo-
(5) The n=6 half-integer spin dualizable dyon must have mentm should go to half-integer final angular momentum
ng#0. and similarly for integer angular momentum—we therefore

Insertingn=6 in Eq.(47) shows that we must necessarily eeq

have ks=o0dd to get half-integer spin. Thereforngg=n

+3kg=3(2+Kkg) is necessarily non-vanishing and time

=6 half-integer spin state carri€J3) gluonic structure. -M;—
Similarly if ag and ag/3+ a3/2+ a4/6 are odd integers,

thenks has to be even for the=3 monopole to have half-

integer spin. Themg 0 and this monopole also carries glu- A Solution is simply given bypg=0=ps, p,=6a, because
onic structure. then the left-hand side is even. With these values ofpthe

the electric interactions are also purélyl) and repulsive.
This shows that the decay process is not forbidden by angu-
V. STABILITY OF HALF-INTEGER SPIN DYONS lar momentum conservation and hence can occur for purely

The monopoles in any topological sector have two decafnergetic reasons which we know favor it.

channels. First, the monopoles can emit scalar and vector A Similar stability analysis goes through for the=5

particles and change their values lofand I. Secondly, a dyon. Consider the decay process

monopole can fragment into two monopoles of smaller mag-

netic charge. We have to show that neither of these instabili- Ng.N3,5;Mg,M3,M1)—[0,n3,3;pg,M3—p3,p1)

ties apply to the states that we would like to interpret as )

standard model particles. P +1ng.0.2Mg=Ppg.P3,M1—pa).
The first instability will not apply to the lowest lying half- (56)

integer spin state in any given topological sector and so we

need only concern ourselves with the second instability.  This is energetically favored since the two dyons on the
Next we show that the dyons with topological winding right-hand side interact only via thd(1) magnetic interac-

n>6 are all unstable to fragmentation into dyons with tion which is repulsive. Next we need to check if the decay is

PsNsg P3Nz P1M
3 2 6

=even integer. (55

=6 and something else. allowed by angular momentum conservation.
Let us denote the dyonic states by their magnetic and Using the formula for the angular momentyiq. (32)],
electric charges as follows: we find
Ng,N3,N;Mg,M3,Mq). n n M
| 8,113,111 8 3 l> 2‘]rhs:2‘]lhs_ 8p8+ 3_p3_&+_1_ (57)

3 2 6 2

Then we want to show that the decay process

So the decay will be allowed provided

|n81n31n1;M81M37M1>
—[ng,n3,n;—6;Mg—pg,M5—p3,M;—py) %Jr%—%Jr%:even integer. (58
+10,0,6 pg,P3,P1) (53

This is clearly so if we choospg=0=p; and p;=3a;.
is energetically favorable. The two states on the right-handRecall thatM ;=5a; for the initial state to be dualizabje.
side interact by th&J(1) magnetic interactions and we know With this choice ofp,, once again the electric interactions
that this is repulsive. The electric interactions are small comare purelyU(1) and repulsive. Hence the=5 dyon is un-
pared to the magnetic interactions at weak coupling by atable.
factor g* and so we ignore them for the presetitater we This tells us that the dyons witm|=5 and|n|=7 are
will check that the decay would proceed even with the elecunstable, exactly as found for the monopole$2r80]. The
tric interactions taken into accounHence it is clear that this =n=1,2,3,4,6 dyons will still be stable because the frag-
decay process is energetically favorable. What is not so cleanentation is completely governe@n the weak coupling
is if the process is allowed by angular momentum conservalimit) by the magnetic interactiong2,30]. Therefore the
tion. [The magnetic and electric charges are conserved in Egpectrum of stable half-integer spin dyons also agrees with
(53).] This is what we will now check. the standard model fermions.
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VI. DISCUSSION Then, for evem, all of ng, n3 andn, are even. Therefore we

Our general results can be found in Sec. IV. The mairy_vrite n,=2n, wheren, are integers and inse_rt into the equa-
conclusion is that it is possible to find a family of dyons eachtion for the angular momentuitq. (32)] to find
member of which has half-integer spin and the family as a
whole can be dualized into purely electric stategbject to 1 1
the discussion of duality rotations given in the Introduction 2J,=2 §M8n8+ M3n3+§M1n1 . (A1)
In addition, there are two new features that have emerged
and that may be considered as predictions of the dual stan-
dard model. The first is that each of the half-integer spinHence 2, is even and half-integer spin solutions do not
dyons has a bosonic partner. In the dualized theory, thegexist. Therefore half-integer values @f cannot yield a fam-
states would appear as bosonic partners of the known staily of half-integer spin dyons.
dard model fermions. Since the bosonic partners are not due
to an imposed symmetrie.g. supersymmetyythere is no
reason to expect them to be degenerate in mass with their
fermionic partners. The second new feature is that some of Here we show that there are an infinite number of dyon
the half-integer spin dyonign particular then=6 dyon may  states withJ=1/2 for the choice ofx, in Eq. (48) (for ex-
have non-vanishing values of; and n; even though the ample. This is not directly relevant to us because of E®)
minimum allowed values of these quantum numbers may band further physical constraints. However it is still an inter-
zero. For example, in the=6 case, the minimum values are esting exercise.
ng=0=nj3, yet to get half-integer spin it is necessary to have To see the infinity of solutions, rewrite the angular mo-
ng#0 (see Sec. IY. Since these monopoles withg=n  mentum constraintEq. (32) with (43), (44), (45) and (48)]
+3k,# 0 carry the same topological charge as the monopolas
with winding numbem but with ng=0, they too must trans-
form in the fundamental representation of the dual symmetry 2n2—3n2=6—n2 (B1)
group[24]. However, the value df, is another charge asso- 8 = L
ciated with the monopoldrelated to the “holomorphic”
charge in22]) and must correspond to a new property of theFor the fundamental monopole{=1), the problem then is

APPENDIX B

particle obtained after dualization. to find all solutions to the equation
How is the holomorphic charge manifested in the context
of the dual standard model? The holomorphic charge seems 2p2—3g2=5 (B2)

to label an internal degree of freedom of the dualized dyons
and, according to Bais and Schrog?g], manifests itself as
a magnetic dipole moment of the dyons i.e. an electric dipol
moment of the particles. Then, for example, thre — 6, spin
half dyon necessarily hasg#0 which means that it must
have non-trivial SU(3) internal structure even though it
transforms as aBU(3) singlet. The resolution to this appar-
ent paradox is that the particles in the context of the dual ap’-—bg’=c (B3)
standard model are composite objects and hence they can

have internalSU(3) structure in spite of having trivial \yherea, b andc are integers, and if there exists a non-trivial
SU(3) long range interaction@s in the case of the protbn  soytion (,m) to the equation

The novelty here is that the=—6 dyon under discussion
supposedly corresponds to the electron, implying that the
electron must carry non-trivial intern&8U(3) structure.

é(vherep andq are integers.

This is a standard problem in number theory and is related
to Pell's equation(for example,[15]) The idea of the con-
struction is that giverone solution to the equation

12—abn?=1, (B4)

ACKNOWLEDGMENTS then an infinite set of solutions can be generat&te trivial
solutions ard?=1, m=0.) The construction uses the solu-
tion to the first equation, call jtg,qo, and the solution to the
cond equation, call itm, to determine another solution:
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. . So this gives a relatively easy way to check if there are an
Reserve University. 9 y easy way

infinite number of solutions and to generate them. Indeed for
the unit winding monopole, one can check that this method
generates an infinite number of spin 1/2 states. For the higher
Consider the possibility thatg is a half-integer. In this winding monopoles, we only need find one spin 1/2 solution
case, forMg to be an integemg should be an even integer. [described below Eq49)] and that guarantees an infinite

APPENDIX A

085008-8



SPIN AND DUALIZATION OF SU(5) DYONS PHYSICAL REVIEW D 63 085008

number since the secondary equation does not care about thare integers. However, it is easy to check that the construc-
value ofc and this is the only place where the topologicaltion still generates an infinite sequence of solutions. For the

winding of the monopoler(;) enters.

n=1,2,4 cases, every alternate member of the sequence de-

In our case we have another restriction on the solutns scribed above has the desired form. For the3,6 cases,

andq since we requirg=n+ 3k andq=n+ 2| wherek and

every member has the desired form.
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