PHYSICAL REVIEW D, VOLUME 63, 085007

Low-energy effective theories of quantum spin and quantum link models

B. Schlittgen
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

U.-J. Wiese
Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
(Received 11 December 2000; published 19 March 2001

Quantum spin and quantum link models provide an unconventional regularization of field theory in which
classical fields arise via dimensional reduction of discrete variables.DFttigory regularization leads to the
same continuum theories as the conventional approach. We show this by deriving the low-energy effective
Lagrangians oD-theory models using coherent state path integral techniques. We illustrate our method for the
(2+1)D Heisenberg quantum spin model which is tBetheory regularization of the 20D(3) model.
Similarly, we prove that in the continuum limit a ¢21)D quantum spin model witts U(N)_ X SU(N)g
XU(1),_-r symmetry is equivalent to the 2D principal chiral model. Finally, we show that{¥D SU(N)
guantum link models reduce to ordinary 4D Yang-Mills theory.
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[. INTRODUCTION varying the exteng of the extra dimension, not by adjusting
a bare coupling constant.

In the conventional approach to quantum field theory the Dimensional reduction of discrete variables is not limited
fundamental degrees of freedom are continuous classicé the quantum Heisenberg model. In fact, it is a generic
fields. To regularize the ultraviolet divergences beyond perphenomenon that gives rise to tietheory formulation of
turbation theory it is natural to introduce a space-time latticefield theory. For example, as we show in this paper, the 2D
For examp|e, in Wilson’s lattice gauge theory the g|uons ar@rinCipal chiral model that is traditionally formulated in
represented by classicalU(N) parallel transporter matrices. terms of continuous classicel(N) matrix fields can also be
Similarly, the fundamental degrees of freedom of a lattice€XPressed as a system of generalized quantum spins in (2
O(3) model are classical unit vectors. In this paper we use" 1) dimensiongcf. [9]). The components of these quantum
an alternative approach to field theorfp-theory—in which ~ SPINS are generators of &81J(2N) algebra. Again, the dis-
classical fields are replaced by discrete varialitasgantum crete variables undergo dimensional reduction to 2D if the

- ; - - ; 2+1)D system has massless Goldstone bosons. We iden-
tum linksthat undergo d | reduction ¢ ; .
[Sfl_nj or quantum linksthat undergo dimensional reduction tify appropriate representations of tisdJ(2N) algebra for

For example, at zero temperature B€3) symmetries of which this is indeed the case.

) g . Gauge theories can be formulated in terms of discrete
bOt.h the (2r1)D ferrqmagnet|c and antlferromagnenc_quantum links which are gauge covariant generalizations of
Heisenberg quantum spin models break spontaneously,

9Nuantum spins. A quantum link is @ N parallel trans-

ing rise to.massless Goldstone bosons—the s.o—calle(.j Maldbrter matrix whose elements are generatorsSef(2N).
nons or spin waves. T_hese magnons are collective excitationgye dimensional reduction of quantum link models works
of many quantum spins and are effectively described by ifferently from the case of quantum spins. While in the spin
continuous classical field. It is remarkable that these continusgse an infinite correlation length arises as a result of the
ous degrees of freedom emerge from a microscopic theory @fpontaneous breakdown of a global symmetry, for gauge
purely discrete quantum spins. The low-energy effectivetheories spontaneous symmetry breaking leads to a massive
theory of magnons is a®@(3) model in (2+1) dimensions. Higgs phase with a finite correlation length. Moreover, con-
At small, non-zero temperature, and hence at finite exfent fined phases in non-Abelian gauge theories also have finite
of the Euclidean time dimension, the correlation lengtbf  correlation lengths and therefore do not lead to dimensional
the Goldstone bosons is large comparegtand hence the reduction. However, gauge theories in five dimensions can
system undergoes dimensional reduction to the Q(B) exist in a non-Abelian Coulomb phase with massless uncon-
model. In this case, the Coleman-Hohenberg-Mermin{ined gluond2,10]. The massless gluons of a{4.)D quan-
Wagner theoreni5] implies thaté must become finite and tum link model are collective excitations of many quantum
that the magnons pick up a nonperturbatively generated madisks, just as magnons are collective excitations of quantum
gapm= 1/£. As a consequence of asymptotic freedom of thespins. If a (4+1)D quantum link model exists in a Coulomb
2D O(3) model, ¢ is exponentially large inB, ¢  phase for an infinite exterg of the fifth dimension, it will

~ exp(2mpyB), wherep, is the spin stiffness of the underly- undergo dimensional reduction to an ordinary 4D gauge
ing quantum spin systefi6—8]. Hence p,8=1/g? plays the theory onceB becomes finitd1]. This is a consequence of
role of the coupling constant of the dimensionally reducedhe confinement hypothesis, which is the gauge analog of the
theory. The continuum limit of that theory is reached by Coleman-Hohenberg-Mermin-Wagner theorem of the spin
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case. In particular, a gluon cannot remain massless yghen ist. Here we show that for a sufficiently large representation
becomes finite because it then effectively lives in a 4D worldof the embedding algeb@U(2N) with a rectangular Young
and hence should be confined. The corresponding finite cotableau, this model becomes a Wilson-type lattice principal
relation lengthé is related to the glueball mass=1/¢£. As  chiral model in 3D. Such a model is known to exist in a
before, asymptotic freedom of 4D non-Abelian gauge theophase of spontaneously broken symm¢ag] and hence we
ries implies that £ is exponentially large ing, &  conclude that at finite exteng of the third dimension it
~ exp(87B/11e’N), where e is the dimensionful gauge undergoes dimensional reduction to the usual 2O(N),
coupling of the underlying (4 1)D quantum link model. XSU(N)gXU(1)_—r principal chiral model. Similarly, we
Hence, the role of the coupling constant of the dimensionallyshow that for a sufficiently large representationSifi(2N)
reduced theory is played h§/e’=1/g°. So again, the con- the low-energy behavior of a (41)D quantum link model
tinuum limit of the theory is reached by varying the extgnt is that of a Wilson-type lattice gauge theory in 5 dimensions.
of the extra dimension, not by adjusting a bare coupling conFrom numerical simulations, we know that such a model can
stant. exist in a non-Abelian Coulomb phag2,10] and hence un-
As just explained, taking the continuum limit of a quan- dergoes dimensional reduction to a 4J(N) Yang-Mills
tum link model requires a fifth dimension in order to obtain theory once the extent of the fifth dimension becomes finite.
a large gluonic correlation length. It is then very natural toThis proves that D-theory is indeed a valid regularization of
make use of the fifth dimension to include quarks as domaithese models. It would be interesting and of practical impor-
wall fermions. In particular, Shamir's variaft1,12 of Ka-  tance to investigate if the massless phases arise also for small
plan’s original proposal13] provides a suitable realization representations ddU(2N). This requires detailed future nu-
of full quantum link QCD. Again, the correlation length of merical studies.
the quarks is controlled by the extent of the fifth dimension The rest of this paper is organized as follows. In Sec. II
and is exponentially large i8. Consequently, one reaches we use the quantum Heisenberg model to illustaeory
both the chiral and the continuum limit by sendiggto  with a simple example. Section Il contains the construction
infinity. This requires no fine-tuning of bare coupling con- of quantum spin and quantum link models wiIU(N),_
stants, which makeB-theory an attractive alternative to the X SU(N)gX U(1), - symmetry embedded in the algebra of
traditional approach to field theof]. SU(2N). In Sec. IV a coherent state formalism is presented
Models with discrete degrees of freedom have been studn order to describe the large representation limit of
ied before. Generalizations of antiferromagnetic quantunSU(2N). The existence of massless Goldstone bosons for
spin models were discussed by Read and Sachdgiirfor  the SU(N) X SU(N)gX U(1)_—r Symmetric quantum spin
the case of arSU(N) symmetry group. In15], Radjbar- model is shown in Sec. V and the existence of a massless
Daemi, Salam and Strathdee considered discrete spin sy€oulomb phase foSU(N) quantum link models is derived
tems with a general symmetry group and showed how thén Sec. VI. Finally, Sec. VII contains our conclusions.
continuum limit of such theories corresponds to sigma- Throughout the paper we distinguish classical degrees of
model-type field theories. They considered both ferro- andreedom, denoted by lower case letters, from quantum opera-
antiferromagnetic cases. In a follow up to that paper, theyors, denoted by upper case letters.
also investigated the renormalization group flow of a particu-
lar continuum theory on the manifoldSU(3)/[U(1)
xXU(1)] [16]. A quantum link model with dJ(1) gauge Il. FROM THE (2+1)D HEISENBERG QUANTUM SPIN
symmetry was first constructed by Horn[ih7]. Orland and MODEL TO THE 2D O(3) MODEL
Rohrlich introduced ar8U(2) quantum link mode[18]. In

the present context, it was realized|[ih] that models with To motivate the ideas leading to tBetheory formulation

discrete variables can give rise to ordinary field theoriesOf field theory, let us review the well-known relation be-
9 y tween the (2-1)D Heisenberg quantum spin model and the

mcludmg QCD[3], via dlmensmnal redu_ctlon. A _deta|led 2D 0(3) model. The 200(3) model is asymptotically free,
analysis of how the physics of conventional lattice gauge

. ) it has a nonperturbatively generated mass gap, as well as
theory W'th U(1) gauge group 1S reproduced by thi1) instantons andl-vacua and has been used as a simple toy
quantum link model is given ifl9]. . : .

: . ) . L . odel for QCD in four dimensions.

A key issue in the previous discussion is the existence of" The continuum action of the 2D(3) model is given by
massless Goldstone bosons in quantum spin models, and of ‘
massless Coulombic gauge bosons in quantum link models.
In the (2+1)D spin 1/2 antiferromagnetic quantum Heisen- 1
berg model it was unclear for some time if t€3) sym- 5[5]: _j d2x(9M§.,;ﬂ§, (2.2
metry is spontaneously broken. For larger spin representa- 2g°
tions, however, one can prove analytically that this is indeed
the case. By now, detailed numerical simulations have R
shown that spontaneous symmetry breaking also occurs fo¥heres is a classical, 3-component unit vector that assumes
spin 1/2 [20,21]. For the (2+1)D SU(N), XSU(N); continuous values. Clearly, this action is invariant under glo-
XU(1), =g Ssymmetric quantum spin model constructed inbal O(3) transformations’ = Rs, whereR"R=1. The stan-
this paper it isa priori not clear if spontaneous symmetry dard procedure to regularize this theory beyond perturbation
breaking occurs, and thus if massless Goldstone bosons etiieory is to follow Wilson and introduce a lattice as an ul-
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traviolet cutoff. Partial derivatives are then replaced by finiteS. To do this, we set up a spin coherent state representation
differences andafter dropping an irrelevant constanthe  of the path integral as discussed[28]. The highest weight
lattice action takes the form vector of the representation with spiis denoted byS,S).

To generate a system of coherent states, we must therefore

- 1 —_— act with all group elements on this state. A geneS&aX3)
S[S]:_E ~ Sx* Sxtp- (2.2 group element can be parametrized using the three Euler
angles as
Here, 11 is the unit-vector in theu-direction. The theory is R(x,6,¢)=exp(i $S%)expi 652)expixS).  (2.7)
qguantized by writing down the partition function, which is a
path integral over classical field configurations, Hence, we obtain the system of coherent states, with the
following parametrization:
z=fD§ex —gs]). 2.3 -
P steh 23 9=R(x.0.4)S.9)

Due to asymptotic freedom, the continuum limit of the =exp(i pS®)exp(i 6S%)exqixS%)|S,S). (2.8
lattice-regularized theory is attained by taking the bare cou- _ _
pling constant to zero. In this limit, the correlation length Notice thatE'XS3|S,S>=e'XSIS,S>, generating the isotropy
é~ exp(2r/g®) diverges exponentially, thus eclipsing any subgroup for the highest weight vectd8,S). Choosingy
short-distance lattice artifacts. =0 then corresponds to taking a cross section in the fiber
D-theory follows a radically different approach to field bundle with baseX=S0O(3)/SO(2) and fiberSO(2).
quantization. Instead of performing a path integral over con- The coherent states are now parametrized only land
tinuous classical fields, those fields are replaced by discret¢, which fall in the range®e[0,7] and ¢ [ — =, 7), so
quantum variables. For example, the above @QB) field  that we can think of as parametrizing a vector on the unit
the_ory is formulated in terms of quantum spins with asphere,§=(sin6cos¢,sinesin¢,cos¢9). To obtain an ex-
Heisenberg model Hamiltonian pression for the coherent states as a superposition of
SB-eigenstates, we introduce Schwinger bosoasa® and
H=32 S;-Si;- (2.4  b,b™—which are two sets of boson creation and annihilation
X, it operators, satisfying the usual commutation relations. We

_ - can then write

The components of the spin vectd®sare the generators of
SQO(3) and they satisfy the usual commutation relations 1

A3 y bt S'+is?=a'bh, S'-iS?=b'a, s3=§(aTa— b'b).

[S,.S)1=i 34k Sk- (2.5 (2.9

Notice that we are free to choose any representation ofhe additional constrainh,+n,=2S fixes the representa-
SQ(3) for the generatorS,, not just spin 1/2. Th&(3)  tion of spinS We can use the raising and lowering operators
symmetry of the quantum Hamiltonian is expressed ag$o generate the other weight vectors,

[H,§]=0, Where§=2X§x. (ah)stm (phsm

The casel<0 corresponds to a ferromagnet aid 0 to |S,m)= |0). (2.10
an antiferromagnet with a N¢ordered ground state. We V(S+m)! {(S—m)!
restrict our attention to the former case. The partition func-
tion for the Heisenberg model is given by To rotate such a state By as above, we note that
Z=Trexp — BH), (2.6) a’ ’_(RaTRl)
b Rb'R™?

where the trace is taken in a large Hilbert space, the direct

product of the Hilbert spaces corresponding to individual X, 0 P,
lattice sites. The Hamiltonian evolves the system in an extra =ex;{ 150 )exp{ I an)exp( 150
dimension, giving rise to a (2 1)-dimensional field theory.

For a condensed matter quantum spin system the additional X X
dimension is Euclidean time. IB-theory, however, Euclid- uex;<|—) vexp( i —) 1
ean time is part of the 2D lattice and the additional Euclidean _ 2 2 (a )
dimension will ultimately disappear via dimensional reduc- X X b')
tion. —v*exp(—|§> u*exp<—|§)

As discussed in the Introduction, dimensional reduction (2.11)
requires an infinite correlation length, which in this case is
due to the existence of massless Goldstone bosons. One whklgre, u( 6, ¢)=cos@2)expis/2) and v(6,d)

of addressing the question of symmetry breaking and hence sin(6/2)exp(i¢/2). This leads to the following expres-
dimensional reduction, is to investigate the limit of large spinsion for the coherent statéeecall thaty=0):
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. (a')®s uS*tm,S—m path ont. In fact, this term measures the area enclosed by the
S)= 0)=(29)! S,m). S 2 ' ' ' '
|s) (25! |0)=(2S) %‘4 (Srm)l(S—m)! | ) paths(t) on S°. It may be written in gauge invariant form as
(2.12 . B 1oL .
w[s]zf dtf dv s-(9;SX 3,S). (2.20
These coherent states are not all linearly independent—they 0 0 t

form an over-complete set of states. In particular, we can _ _ L )
express the identity operator as a superposition of cohereMYe have introduced the interpolating fiedtt,v), which de-
states. The measure of integration we use her§(S  pends on an additionafourth) dimension and obeys the
+1)/4mw]ds=[(2S+1)/4m]sinodode, boundary conditions s(t,1)=s(t), s(t,0)=s(t’,0) and
st 1 s(0p)=s(B,v). This field is therefore parametrized on a
+ L N . . _ .
J ds|s)(s|=2 S,my(S,m|=1. (2.13 fj|$k Wlthl-) {as the boundary. The only requwernent on the
4w m interpolations(t,v) from the boundary of the disk to the
interior is that it be a smooth function of In particular, the

Another important property is the following: value of the Berry phase term differs from one chosen inter-
N - polation to another only by an integer multiple o&#4This is
s-Sls)=SJs). (219 3 direct consequence of the fact that the second homotopy

roup of $? is I1,(S?) =7. Hence, for the value of the path
integral to be independent of the chosen interpolation, the
spin S needs to be quantized in half-integer units. With the
imple parametrizatiors'(t,v) =vs'(t) for i=1,2, we can
erform the integral over to obtain an expression for the
3erry phase that is equivalent to the one given in @gL9),
and hence arrive at the following continuum action:

A system of coherent states in the large Hilbert space o
which the entire Hamiltonian acts is simply given by a direct
product of the coherent state systems we have derived f
each lattice site. From propertg.14) it is straightforward to
obtain an expression for the expectation value of the Heise
berg Hamiltonian in a coherent state,

.. S L 5
H[S]=<5|H|S>:72 Sx"Sxt - (2.19 S[§]:f dtf dx
X, (o 0

iS(1+s%) Y(g,s's?— 9,5°st)

Using these ingredients, we can express the partition ps - -
function (2.6) as a path integral over coherent states. The 5 9uS 9,8
standard procedure is to divide up the “time” inten@into
N, small intervals of widths=B/N,, and to insert a reso- Here, p.=S2J/2 is the spin stiffness. This result was also
lution of the identity(2.13) in between gach time slice. Even— obtained by Leutwyler in[24] using chiral perturbation
tually, we takeN,—<. We can manipulate the expression theory. He showed that this theory has a non-relativistic dis-

. (2.21)

for the path integral using Eq2.15. Also, we write persion relation, attributed to the existence of a conserved
- - order parameter.
s’><(t+8—)_s’><(t)_>'§x+ O(s). (219  Notice that the fields(x) is a unit vector field. It therefore
2 lives in S7, which is the coset space corresponding to a sym-

L metry breaking patterrSO(3)—SO(2). Thus, the low-
In our parametrization of th.e c.oherent states, the overlagnergy effective theory in Eq2.21 is a theory of Goldstone
between neighboring states is given by modes associated with this symmetry breaking.
The mechanism of dimensional reduction was explained
<§(t+s)|§(t))=exp( —iSe >, ¢.co96,)|. (2.17  for the antiferromagnet ifi7]. Here, we adapt the discussion
X for the ferromagnet. Consider a system of dimensiowd.
X B. ForL= ==, the system is in the ordered ground state
of the Heisenberg ferromagnet. This breaks $&3) sym-
metry and, as discussed above, we obtain the low-energy
7= f Ds exp(_s[g]), (2.19  theory of Goldstone bosons of E@.21). If we now consider
the case in which the extent of the additional dimension is
taken to be finite, then the Coleman-Hohenberg-Mermin-
Wagner theorem tells us that there cannot be massless exci-
R _ 8 R tations in a slalf5]. The Goldstone bosons must therefore
S[s]zisz w[sx]+f dtH[s], (2.19 pick up a small, non-perturbatively generated mass. One can
X 0 use a block spin transformation to map the GP3)-model

We thus get the path integral

where

By o i in a slab of finite extenB to a 2D latticeO(3) model. One
and w[s]=[odt ¢cosf=¢,dpcosy) is a Berry phase ayerages the fields over blocks of sjgén the third direction
term. The geometric nature of the Berry phase term is eviand sizea’ in the two spatial directions, decreasing the origi-
dent, as it depends only on the path on the unit sphere tracewhl cutoff 1A down to 14'. To determine a suitable value
out by the spin, and not on the explicit dependence of thigor a’, consider the dispersion relation of the ferromagnet,
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gjdimenlslional ordinary lattice constructed from these operators to be invariant under the
iglid. gheony same symmetries as the conventional action. In particular,
we will be considering two models, the principal chiral

(d+1) -dimensional model with a globalSU(N), X SU(N)gxX U (1), =g Symme-
D-theory /\ try, and Yang-Mills theory with a locagb U(N) symmetry. In
order to construct the appropridbetheory Hamiltonians, let

us consider the operators associated with just one lattice site
2 3 in the case of the principal chiral model, or just one link in

the case of Yang-Mills theory. Dropping the site/link indices,
we denote these operators by!. The appropriate symme-
tries follow by construction if we also associate with each
£ site/link an SU(N), X SU(N)y algebra, generated bjL2}
and{R?} which satisfy the commutation relations

< l.---r71 [L3LP]=2if,,L% [R®RP]=2if,,R® [L%RP]=0.
(3.2

Here f ., are the usual structure constantsSIfJ(N). We
~a- B then require that the site/link operator variables transform as

FIG. 1. Dimensional reduction of B-theory: Averaging the U’ =exp(—ia®L?)U exp(i °R°)
(d+1)-dimensional effective field of thB-theory over blocks of _ . ava by b
size B in the extra dimension and’ in the physical directions =explia” U exp(—i5°\7), 3.2

results in an effectivel-dimensional Wilsonian lattice field theory \here thex? are the Hermitian generators 8{U(N) in the

with lattice spacing’ = VpsB/S. fundamental representation. These generators satisfy
E=(p./S)p2. This implies 18=(p./S)(1/a’2), and hence [N2AP]=2if ;o A%, TAA\P=25%. 3.3

a’=\psB/S. One thus obtains a two-dimensional lattice The transformation rulg3.2) is implied by the following
field theory, whose degrees of freedom are the blockyommutation relations:

averaged fields living at the block centers. The lattice spac- B , B ,

ing of the new theory is therefore equal{pB/S, which is [L3UT]==\{UY,  [RLUT]=UM\E. (34
different from the lattice spacing of the original quantum
Heisenberg moddkee Fig. 1L The correlation length of the
2D O(3) model in lattice units is given byé/a’

All of these commutation relations can be satisfied by em-
bedding the operators in @U(2N) algebra. In particular,

, the aforementione@U(N), X SU(N)R algebra is embedded
ocgze_Xp(Z.T/gz)' The va_lue ofa’” was found above, and we diagonally, while theU'! operators fill in the off-diagonal
can identify the couplmg constant asglfpsB. We thus . blocks. To summarize, we get the full set of commutation
arrive at the expression for the dependence of the correlaﬂo;&ations:
length on the extenB of the additional dimension,

[L3LP]=2if,,LS [R®RP]=2if,,R",

g“(PSIB)_l/ZeXFIZWPs,B)- (2.22 . ) . :
[R%,UT]=U™\E;,  [L3UT]=-\{UY,
This relation was first found by Kopietz and Chakravarty in
[8], where they used the same techniques of renormalization- [T,Ul]=2U1,
group analysis that had been used for the antiferromagnet in
[6] by Chakravarty, Halperin and Nelson. The continuum [R3,LP]=[T,L3]=[T,R%]=0,

limit is reached by taking the extent of the additional dimen-

sion to infinity, since the correlation length diverges expo- [ReU"),ReUX']1=[ImU'l,im U¥']

nentially asf—o. However, in this limit the extent of the

third dimension is much smaller than the correlation length, = —i(SImNjiR?+ & Im N LF),
i.e., &psBIS. Thus, the fields are effectively constant in

:ir;?]t-dlrectlon, and the theory undergoes dimensional reduc'[ReU”,lm Uk']zi 5ikRe)\ja|Ra— 5,-|Re7\?kLa
ll. U(N) QUANTUM SPINS AND QUANTUM LINKS +%5ik5jl-r)- (3.5

In the following sections we will be considering models
whose fundamental degrees of freedom in the conventiondflere, T generates an exttd(1) symmetry[Later, this sym-
formulation are elements of unitarfldXN matrices. In metry needs to be broken explicitly to obtain &U(N)
D-theory these fields are replaced by quantum operators, sather tharlJ(N) Yang-Mills theory] If we restrict ourselves
that we have matrices whose entries are operators rather themrepresentations & U(2N) which correspond to rectangu-
complex numbers. However, we still want the Hamiltonianlar Young tableaux withN rows andn columns(as shown in
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n IV. COHERENT STATES

In this section we first describe how to generate an over-
complete system of states, which we then use to set up a path
integral. Moreover, a Berry phase term is generated in the
action and we work out its form in terms of the degrees of
freedom in the path integral. These degrees of freedom are
arranged intdGL(N,C) matrices and we decompose such a
matrix into its Hermitian and unitary parts. This will allow us
to make contact with the respective target theories.

Systems of coherent states foSB U(2N)

Let us now construct a coherent state system for the types
of representations ddU(2N) that we are interested in. The
general procedure is described in detail26]. We must first
pick a vector in the carrier space that the chosen representa-
tion acts in. It is convenient to choose a weight ve¢tor as
the initial element of the coherent state system. We will see
that for our choice of initial vector, the corresponding isot-

FIG. 2. Young _table_au _of thEU(2N) representation by which ropy subgroup, i.e. the subgroup $tJ(2N) transformations
states at each lattice site-link transform. which leave the state defined by this vector unchanged, is
SU(N)  XSU(N)gXU(1) —-r. This is a consequence of the
‘chosen type of representation with rectangular Young tab-
leaux of N rows. Coherent states are then characterized by

Fig. 2), we can use a fermionic basis of rishons for our rep
resentation[3,14] (we use the summation convention for

greek indice the elements 08 U(2N)/[SU(N), X SU(N)rx U(1), _r].
c R L We now proceed to constructing a concrete set of coher-
Si=Li=|1pe—5a"], ent states for representations $fJ(2N) with rectangular

Young tableaux of the kind previously described. This dis-
S . n . cussion follows the steps outlined [ih4]. Our basis of gen-
SNHNFI=RI = ( riefrle— 55”), erators is given by E¢3.8). We can choose the Cartan sub-
algebra to be spanned by the following set of generators,

SN+j,i:_Uij:_|iafrjaT’
- o ..on
gN+i= —(uhyii= — (uliyt= —riajiat S"Zza: c'“TC'“—E, 4.1
T:E (riefpia_jiatjiay for i=1,...,2N. Notice that Eq.(3.8) imposes one con-
i straint on this set of generators, consistent with the fact that
SU(2N) has rank N—1. The remaining operatos! with
S (jiat|iBy piatyiB) = soBN (3.6 i#] are the “raising” and “lowering” operators which
i ' ' complete the canonical Cartan basis for the Lie algebra.
) N . ) For the given representation we obtain the highest-weight
wherea=1, ... n is an additional rishon flavor index and yector as follows,
i,j=1,...N. For convenience, we have chosen these gen-
erators not to be traceless. We then have=\}L" and | o) =C[ e3P caafebat. . god - cehicdBt. . 1. .. |0),
Raz)\f}R”. The constraint3.6) is needed to obtain the cor- (4.2)

rect representation.
For the purpose of deriving systems of coherent statesyhere there ar®l creation operators in each square bracket,
addressed in the next section, it will be convenient to intro-and there ar@ square bracketed terms all together. The in-

duce the following notation: dicesa,b, ... run through all values 1 td, while a,8, . ..
e for 1<i<N- run from 1 ton. We are symmetrizing the column indices of
cla— o for Isi=N, 3.7 the Young tableau, and antisymmetrizing the row indices.

rie, for N+1<i<2N. The normalization constant is chosen so that | i)

=1. The weight of this state is given by
We then have

n
§|¢0>, for 1<i=<N,

S'lvo=y 4.3
—§|¢/,0>, for N+1<i<2N.

s'l=c"”cla—§5'l, > ¢ fcif=5"N. (3.9
|

Notice that the labels andj now run from 1 to A.

085007-6



LOW-ENERGY EFFECTIVE THEORIES OF QUANTUM . .. PHYSICAL REVIEW B3 085007

o
| o) to our chosen initial vector. In terms of the chosen basis

for the L"? allgebra we_obtaln_a} group eI_emgnSchﬂ(ZN) by In particular, if we write the matrixQ as
exponentiating an anti-Hermitian combination of generators,
and so we have ( | WT>

|a)y=exp(—q" 9"+ S") o), (4.4) "

0 —q'

q 0

We can obtain a coherent state system by applying all pos- 0 q'
sible group transformations modulo the isotropy subgroup ofQ=ex ( )

(11N 0

0 1y ” @0

wor 4.9

where the indey runs through the values 1 t¢, andi runs
from N+1 to 2N. It is easily checked that ifandj were to
fall in the same range of values, i.e., either both are between B n o

1 andN or both are betweeN+1 and N, then|q) would (qlu|g)=— EW”' (4.9
just be equal(or in the casei=j proportional to |i).
Hence, the isotropy subgroup of the vectgp) is SU(N),

X SU(N)gXU(1),_r as mentioned above. Thg! are N?
independent complex numbers, which can be arranged into
GL(N,C) matrix. UnderSU(2N) rotations, the generators
S transform in the adjoint representation,

we see that

From the discussion of how to set up a coherent state path
integral in the case of the Heisenberg model, we know that a
erry phase term of the form

(B, [{at+e)a(t)—1
exp(qH1Sk — g% S Sl expf — gMMSTM 4 g ST Sg= . dt - (4.10
0 qf\]k 0 —qf\]"
_ exp( oKl ex;{ ” _ (4.5 is generated at each site/link as part of the action. To ma-
-q 0 qg O nipulate this term, notice that for any operatdr we have
26
The statesq) are normalized to one, and from Eg.5) they [26]
clearly satisfy the following important identity d 1 dM
oM M(1-v) " AMv
) - dxe jo dve dxe . (4.11)
(als’a)=5Q", (4.6
Using the expression fdg) found in Eq.(4.4), we can write
whereQ is given by the Berry phase term as

¥

exqqusjl_qu*slj)aexq_qusjl+qu*slj)

B d B
S5 fodt<q<t>‘mq<t>>=—f0<¢o

B (1 o aql . agilr o
f dtf dv<w0 exp[—v(—q"S“+q"*S")](—781'4— n S! exp[v(—q”S“+q”*S”)]¢0>. (4.12
0 0
|
If we now define As a function ofv the matrixQ(t,v) now satisfies
i _N 4 Iy O
(va()[S’lva(t)=5Q"(t.v), (4.13 QLo=| o _ | (4.15
AN
we can simplify the above to andQ(t,1)=0Q(t). Integrating Eq(4.14) by parts gives
n(e [t aql aqlr .
sB=——J dtJ dv| — ——Q'(t,v)+ Q'l(t,v) _EF fl 0 a®ad
2J)o 0 at at SB—2 Odt Odv Tr —q(t) 0 atQ(t,U) .
. aq' (4.19
B 1 ot i
_ gf dtf do Tr . Q(t.v) It is not hard to see that
0 0
-— 0 0 q'(t) 1 IQ(t,v)
at S !
(4.14 (—q(t) 0 )_ Q) —5 =, (419
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and this leads to the final result for the Berry phase,

n(e. 1 dQ(t,v) dQ(t,v)
SBZ_ZJO dtJo d dv at

(4.18

Tr(Q(t,v)

PHYSICAL REVIEW D63 085007

—u'(t,v)sin(2b(t,v))
—codq2b(t,v))
(4.24

Substituting this expression into the integrand of Eg21),
we find that after some algebra it reduces to

(uT(t,v)cos(Zb(t,v))u(t,v)
—sin(2b(t,v))u(t,v)

In the above derivation we used a specific dependence of

Q(t,v) on the variabley, which satisfies the boundary con-

ditions
Q(t,00=0Q(t’,0), forall t,t’;

QtD=Q(); QOv)=Q(B.v). (419

Thus, the fieldQ(t,v) lives in a rectangle &t<g and 0
<v<1. From the periodic boundary conditions in thei-

rection, we can interpreQ(t) as defining a closed curve,

parametrized by, and with the parameter filling in the

space enclosed by the curve to form a disk in the Grass-

mann manifold G(N,2N)=SU(2N)/[SU(N), X SU(N)r
XU(1),=r]. In[14] it was shown tha8g is independent of

£pqTI[QdpQ34Q]
= —4e, Trldg[cos2b(t,u))u(t,u)dpu’(t,u)]].
(4.29

Hence, the Berry phase term simplifies to

B 1
Sp=— gfo dtfo dv (9,{Tr[cog 2b)ua,u’]}

— o Tr[cog2b)ua,u})

(4.26

n( s
=—§f dt Tr{cog2b)ud,u'],
0

the particular surface that has this boundary, up to multiples -
of 27rnki for ke Z. This result was derived as a direct con- Where we have used the boundary conditions(inv) and
sequence of the fact that the second homotopy group of thig(t,v) to obtain the last line.

Grassmann manifold is ju$i,(G(N,2N)) =7, the group of
integers.
Consider now theGL(N,C) matrix q of Eq. (4.4). As

V. PRINCIPAL CHIRAL MODEL

shown in the Appendix, we can decompose such a matrix In this section we use symmetry considerations to formu-

into the product of a left-coset Hermitian matrixand a

unitary matrixu, q=bu. Upon substituting this decomposi-

tion into Eq.(4.7), we obtain

—u'sin(2b)
—cog2b) |’

(4.20

(uTcos{Zb)u
—sin(2b)u

late the principal chiral model as a quantum spin model. We
then set up a coherent state path integral using the results of
the previous section. The resulting Lagrangian is expanded
around its minimum to obtain a 3D principal chiral model as
the low-energy effective theory of the quantum spin model.
Finally, we explain how the mechanism of dimensional re-
duction gives rise to the 2D target theory.

In order to use this result to simplify the Berry phase term

in the action, we represe§; as

n 2
ngf d% 80T [Q7,Q04Q1, (4.20)

wherep,q take the values 1, 2, an§i=t, and¢,=v, and
the integral is over a rectangle int,¢) space. We param-

etrize Q(t,v) in the following way,
Iy O
0 -1y

0 qT(t,v)>
[P
X ex q(t,v) 0

, (4.22

A. D-theory formulation

The action of the 2D principal chiral model in the con-
tinuum is given by

S[u]=if d?x Tr{a,uf(x)d, u(x)] (5.1
292 1 2 )

where theu(x) are unitaryNXxX N matrices. In Wilson’s ap-
proach to regularizing the theory, space-time is discretized
by introducing a regular lattice. Derivatives are replaced by
finite differences to obtain an action of the form

Sul=— iz > Trlulu,]. (5.2
g° (xy)

whereq(t,v) is a smooth function on the rectangle, such that
the boundary condition§4.19 are satisfied. We can then The target theory has a globaBU(N) XSU(N)g

decompose the matrig(t,v) as before,
q(t,v)=b(t,v)u(t,v), (4.23

and find

X U (1), —r symmetry of the formu,—u,=Lu,R", whereL

and R are unitary matrices. It is known that this symmetry
breaks to arBU(N) vector symmetry I(=R) atg=0. Due

to the Mermin-Wagner theorem, however, the symmetry
cannot break fog>0.
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Let us now replace the classical fieldé% by quantum properties of the system defined by the Hanjiltonhhrare
operatordJ!) and write down @-theory Hamiltonian, which  completely determined, once the representatio b{2N)
evolves the two-dimensional system in an additional Euclighas been specified.
ean time direction, B. The continuum limit of the theory
Using the results of Sec. IV, we set up a coherent state

H= 2‘]2 Re Tru U path integral for the partition function. The Berry phase term

s of the corresponding action was calculated in &q26). The
other term in the action is given b
=33 VU T+ U U (6 ) JVEn DY
. _ - f dt H(Q(1))

We would like this Hamiltonian to have asU(N)_ 0
XSU(N)gXU(1) —r symmetry, i.e.,[G} H]=[G& H] Jn
=[T,H]=0, whereG{ andG§ are mutually commuting sets dtz [W'J(W )* +(Wx+ )*w 'J]
of SU(N) generators and generates & (1) symmetry. As a
we saw in Sec. lll, this can be realized by embedding Jn
SU(N)_ XSU(N)gXU(1), _r diagonally in SU(2N). In dtz Tr[wxw PRR Y I]_
particular, we have aSU(2N) algebra of the form(3.6) at 4 o
each lattice site. Labeling the generators that correspond to (5.4

the lattice sitex by a subscripk, we can write the generators ; e .
of the algebra of the globaBU(N) X SU(N)gXU (1) -r 'SAZ gf&gis-?-ﬂeitxie’_g& r\;v%“:r:esjg(.zjv)\/ueigi \;\;ﬁnie(f)lfge
symmetry group aSf=2,L}, Gg=2,R; andT=2,T,. It g the radial component and ofas the phase of the matrix
then follows that [Ga,H] [Ga,H] [Ga, 21=[T,H]  w. Due to the sine function and the fact that we can cover the
=0. coset spaceSU(2N)/[SU(N) X SU(N)gXU(1) -gr] by

For J<O this model is ferromagnetic. We choose thelimiting the matrixb to have eigenvalues between 0 ant@,
same representation &U(2N) for the generators at each the eigenvalues of are constrained to lie between 0 and 1.
site of the lattice, namely the one mentioned above, with &ubstituting the above coset decomposition into &),
rectangular Young tableau as shown in Fig. 2. Note that theve obtain

Jn?
t R . ot
7, th% Tr[sxuxux+;sx+ﬂ+sxwuxwuxsx]

th Tr =

S

(sxsxw Sx+ Sx) (Ux ux+ — Uy o Uy)
T A -

+7 (2+uu 5T U ) (St £ S50 (S =Sy

(5.9

1
R R R t
+ 7 (Sce it S0 (S S0 (U = U (Uy 2= U) = 2855, .

We would like to expand this action around its minimum. . .
Since the eigenvalues efare bounded by 1, the minimum of Sx=sin(2by) =sin| 2
the action occurs whers=1 [up to a global SU(N),

X SU(N)gxU(1)_-g rotation], andu is constant across the gypstituting these expressions into .5, expanding to

lattice. We now introduce fluctuations in the fields, definingquadratic order ira and dropping an irrelevant constant, we
the forward lattice derivative obtain

an
—+ae | |~1-2a%¢. (5.7

4

dtZ a?Tr{ (A u) (Al ul)+8€Z].
(5.8

Jn?

. S=S,—

u u B~
ALuF%, (5.6 4

Next, we turn to the Berry phase term, and expand the fields
and writing in the same way as before,
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n (a8 ; with &> Bc in the zero temperaturgd(— =) limit, so dimen-
Sg= —; Efo dt Tr(cog 2b,) u,d;uy) sional reduction does indeed occur.
n (B T VI. GAUGE THEORY
~—> —f dtTr | cod = . _ .
x 2Jo 2 The quantum link formulation of Yang-Mills theory was

worked out in[3] and we shall review it here, before show-
ing how it is related to the classical formulation of the
theory. First, recall Wilson’s action for lattice gauge theory
with gauge grouBU(N) [28],

. ™ 1
—2ae,sin > Uy d¢Uy

ni( e
=§ > fo dt Tr[2aeuydyul]. (5.9

. t
) ] ) ) ] S[U]: ) 2 2Re T{UX,MUX+;L,Vux+;’MuI,V]'
We thus obtain the final expression for the action in the 9" xm#y

continuum limit, (6.0
B JIn2 Here, x labels the sites of a 4D hyper-cubic lattice, and the
S= fo dtf d?x Tr| — Tﬁﬁu(x)o"#u’r(x)—u nZe?(x) u,, areSU(N) matrices, associated with each link ) on

the lattice. This action is invariant under lo&U(N) trans-

n formations of the formu, ,—uy ,, where
+ ae(x)u(x)atuT(x)
Uy .= expli AUy exp—ia,, -AP). (6.2
B 1
= fo dtf d?x pfTr aﬂuaﬂuu ?atuatuTl' The classical partition function for this system is given by
(5.10 1
In this equation, we have integrated out the shifted field Z:f Duexp — §S[u] ' 63
€' (X)=e(x)— ! u(x)a,ut(x). (5.11) In the D-theory formulation we replace the classical fields
8Jna that make up the entries , of the u, , matrices in the
) ij )
The spin stiffness is given by,=|J[n?/2, andc=2nalJ] is action by quantum operatord, ,, to obtain a quantum

Hamilton operator that evolves the system in an additional

the spin wave velocity. Euclidean direction. The Hamilton operator takes the form

Notice that we now have a theory with a relativistic dis-
persion relation. The ferromagne®O(3) spin model has a

non-relativistic dispersion relatiof24], because the order H=J > [ui uk. . il yi4Hc)
K . . Xo = X+ p, vy T Xt v,u X, v
parameter commutes with the Hamiltonian. In the ferromag- X, pF v
netic principal chiral model on the other hand, the order pa-
rameterU" ==, U} does not commute withi, so a relativ- +J’X§;L [detUX’MeretUIVM]. (6.9

istic dispersion relation comes as no surprise.

The three-dimensional system will dimensionally reduce . )
if the correlation length is much larger than the extent of thel '€ determinant term is understood to mean
third dimension, &> Bc. If we now assume that this is the

case, then the fields will have no dependence dnand the detU. =—e e . ydiylaz, yinin
( | < etU, , T €igin - ig€igo inUx x o
integration ovett becomes trivial, N! el e
(6.9
_Bps [ T ) . o
S=— | d%Trld,ud,ut]. (5.12 |t has been introduced into the Hamiltonian to break an extra

U(1) symmetry that would otherwise be present and lead to
From [27] we know that the correlation for the two- aU(N) rather than ar8U(N) gauge invariant model.
dimensional principal chiral model is given by This Hamilton operator has to be invariant under gauge

transformations, i.e., we require that
: % 277) F{ZW'BPS
xexp —— | =eX .
2 N
g°N

When performing a blockspin transformation in the way de-Where Gy are the generators of @®U(N) algebra at each
scribed for the Heisenberg ferromagnet, the new lattice spadattice sitex, obeying the commutation relations

ing for a system with a relativistic dispersion relation, such b )

as the present one, & = Bc. Equation(5.13 is consistent [GX,Gyl=2i6yfanCx - (6.7)

(5.13 [H,G3]=0, (6.6
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In the Hilbert space, a general gauge transformation is rep-
resented by the operatdt,exp(aiGS). We can construct

gauge covariant transformations of the fields by requiring

2 (R - +L3,

X—= @, p

(6.10

that

U le;[ exq—ia;‘e;‘)uX,M]:[ exp(i a’GP)

whereR? , and La are generators of left and right gauge
transformations of the link variablg, ,. They generate an
SU(N)gX SU(N), algebra on each I|nk which can be em-
bedded diagonally in the algebra 1J(2N), with the com-
mutation relations as given in E.5).

_ © aya _: b b
expli as AUy, expl 'axw)\ )- 6.8 We choose representations for t8&J(2N) algebra with
This implies commutation relations of the form rectangular Young tableaux, as we already did in the case of
the principal chiral model. In particular, we can use the ris-
[G2,Uy 0= 8xy+ jUy N2= 8 yA2U,y (6.9 hqn represgntation of Eq$3.6)—(3.9. In contrast to the
principal chiral model, operators now live on the links and
In order to satisfy these relations, we write not on the lattice sites. The notation is the following:
|
ij _pij _ iat Ja__ N+i,N+j_ pij _ iat Ja _
SX,,u_LX,,u_( C 25”)1 Sx,,u _RX,M_ CX+;1,,—;LCX+,u,—,u 26” !
N+j,i_ i — _ Aia Ajat N+i_ ]I t_ R jat
Scu = U= OOt = S§< (Ui x+,u ~uCxm
iat la IaT Ia iat |/3 iat iB @
Ty .= 2 (G L Chn “ ), 2 (ciel,+el el )=8"N, (6.11)

wherea=1,... nandi,j=1,... N.

The next step is to set up a coherent state path integral as
discussed in Sec. IV. We will consider the analog of Eq.
(4.9 and the coset decomposition of E¢.20 to determine
some properties of the matrix that appears in the action of

the coherent state path integral. We have

uy = —CLT;‘_MC;?‘M. (6.12
From Eq.(4.9) we obtain
n .
@Vl ay=—5w, (6.13

Now consider

n
_EWX+M ,u_<q| x+;1 M|q>——(q|ci(a; Ixaﬂl ,u|q>

. n ..
=(al(Ul ) a)=(alul Ja)y* = - Swi7.
(6.14
and hence we see that
WX+';‘_M=WI,M. (6.195

The coset decomposition 8, , = —s, ,Uy ,, wheres= s’
anduu’=1. Taken together with Ec{ﬁ 15 this leads to

+

Wyt == 7 Sxt = uUx+ = 0= Wy

_ .t T
S, = — Uy, Sx, Uy, uUx 0

(6.16

= — uX,,tL

and we deduce that

+

. -t
Uxt i~ = Ux o Sxt - ™ Uy uSxo U - (6.17

At this point, the complete action in the coherent state
path integral is

Jn* (8
s:sB+—f dt >, 2Re
16 Jo

X, L F v

. -t -t
Tr[sx,,uux,,usx-%—,u,vux-%—,u,VUX+ ;/YMSX_F V,,LLUX,VSX,V]

f th de< Sy, U +deﬂ(;sX,MuI’#) .
(6.18
Here
n B
Ss=—5 % . dt Tr(cog 2by ,)uy ,du) ), (6.19

which follows from Eq.(4.26).

We now want to expand around the minimum of the ac-
tion. From Eq.(6.18), the action is minimized when the ei-
genvalues of are largest, i.e., equal to one, and the fieid
constant for all links on the lattice. We can use a gauge
transformation to rotate these constant fields to the identity
matrix. The expansion fos is the same as in Sec. VB,

Sx .= SiN(2by ) =sin(2(bo+ €y ,))~1—2¢; .
(6.20
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We substitute this expression into the action, dropping
terms of orderei’ﬁ and higher. After some rearrangement

and relabeling of the summed indices, we find

4

Jn
S~Sg+ 5 th 2Re

X, uF v

2 2 ot t
T (1—4( €t €5, Uy Uy Uy ;,MUX,V]

+2J'

n N
5) fodtz (1-2Tré; ,)cosby ,
(6.21)

Here, we have defined exg(,)= detu, ,. If we takeJ’
<0, then the minimum of the action will occur faf, ,
=0. Thus, the matrices, ,
one, and belong t& U(N) rather thanJ(N).

In order to be able to take the continuum limit we need to
, assumed to be close to
the identity in our expansion, as the exponential of algebra-

express the unitary matrix field, ,
valued matrix fields. So let

_ _ b \b
A= am)\

(6.22

be a Lie algebra valued vector field® denoting the genera-

tors of SU(N), and write

IN)1—-iaay,).

Uy, = exp(—ia®(fy,, (6.23

We also rescale the field writing eX#—a Ex,pu- The

X, 11

next step is to expand the action to ord, using Eq.

(6.23. This leads to

S= dt > atmif,,fL,]
X, uF v
+ ﬁth a‘Tr| ye2 ,—2J’ 02 (6.24)
A KT 2] Txwr A
where we have dropped a constant, and
nb\N
y=-3JIn*-4J’ = (6.25

Of course, there are not any terms lineareim Eq. (6.24),
and y>0 since we are expanding about a minimum.

will have determinant equal to Wheree

PHYSICAL REVIEW D63 085007

The complete action in the limi,a%*— [d*x is now

ff .+ 26%ve €,

S=— dtj d*x Tr
2e?

N
+2ie22~e J,a —4e2J’(E) 0,6
a Kt 2 np

,uv wv

1
dtJ' d*x Tr| f,f +§ataﬂataﬂ

2e

(6.27

N
+2e2ye’’ e —4e2)’ n 6,0
Ve€uCu 2 wu

2=8/(n*J]) and c=(na/2)\y|J]. We have com-
pleted the square in order to integrate out the shifted field

~ ~ n
€L=6M+i%ﬁtaM, (6.28

as well as thed-field, obtaining

1
f . f +§&taMataM

uvt v

S=— dtf d*x Tr
2¢e?
(6.29

If we now again assume that the correlation length is
much larger than the extent of the fifth dimension, we can
perform the trivial integration ovet; to obtain

= ZL;J d*x Tr[f,,f,.]. (6.30

It was argued if1] that a finite correlation length

(6.30

is expected to be generated non-perturbatively. Again, the
continuum limit in which the correlation length diverges is
achieved by taking the extent of the extra dimens@rio
infinity. In this limit, we also find that the extent of the extra
dimension in physical units is much smaller than the corre-
lation length, Bc<¢. Thus, the theory undergoes dimen-

We use the same expansion to manipulate the Berry phagéenal reduction.

term:

n( s i
Su=- 5, 0t Tilcos20, v, )

m_EJ dtZ Tr{(cog2bg) — 2 sin(2by) €y, ,,)

X(l-iaay,)d(l+iaay,)]

n
—|—f dtZ a*Tr
2Jo

X,

(6.26

2.
_GX p,a’(ax m

VII. CONCLUSIONS

In the D-theory formulation of quantum field theories, a
field Lagrangian is replaced by a Hamilton operator and con-
tinuous classical fields are replaced by operator fields. The
Hamilton operator evolves the system in an additional Eu-
clidean direction. Guided by symmetry considerations, we
have formulated the principal chiral model as such a quan-
tum spin system. We then went on to show that with a par-
ticular choice of representation for the operators in the
Hamiltonian, the theory reduces to a Wilsonian lattice prin-
cipal chiral model. From numerical simulations we know
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that theSU(N) X SU(N)gXU(1) —g symmetry of such a be diagonalized by a unitary transformation,
model breaks spontaneously$&J(N), _g at 8= [22]. We
chose representations with rectangular Young tableaux, with
N rows andn columns, wheren was taken to be large. The vmuT=mp=diagm;,m,, ... my). (A1)
Goldstone modes arising from the spontaneous symmetry
breaking cause the system to undergo dimensional reduction
when we make the extent of the third dimension finite andWe can then define the square rootaf as
we thus recover the 2D principal chiral model. We have seen
that the continuous degrees of freedom of the low-energy
effective theory, which is the same as the standard formula- Jmp = diag Vmy, Vm,, . .. my). (A2)
tion of the principal chiral model, arise as collective excita-
tions of the discrete degrees of freedom in Bwheory for-
mulation of the model. Now let

We also showed that the quantum link model in (4
+1)D undergoes dimensional reduction to 4D Yang Mills
theory. We chose the quantum link operators to be in the b=v'mi%, u=b lq=v'mgY%q. (A3)
same type of representation that we considered for the op-
erators in the principal chiral model, namely large represen-
tations with rectangular Young tableaux. The mechanism foit is easily seen that such @is unitary. We also want to
dimensional reduction is different in this case. Instead ofdetermine the transformation properties of thandu ma-
Goldstone modes arising from a spontaneously broken globatices if g transforms undet (N), X U(N)g transformations
symmetry, the massless modes we need for dimensional ras
duction result from the fact that a (41)D gauge theory can
exist in a non-Abelian Coulomb phase. We showed that for
the aforementioned representations the low-energy effective q—q’'=LqgR?, (A4)
theory of theD-theory is indeed a 5D Wilson-type lattice
gauge theory. It is known from numerical simulations that
such a theory is indeed in the non-Abelian Coulomb phasevhereLL'=RR'=1. Thenq’'=b’u’, and
when the extent of the fifth dimension is infinit2,10]. At
finite temperature the gauge bosons form glueballs and ac-
quire mass, due to the confinement hypothesis. The correla- m'=q'q "=LqR'Rq'LT=LmL". (A5)
tion length, however, is exponential in the extent of the fifth
dimension, hence leading to dimensional reduction. Again,
the continuous fields of the low-energy effective theory afteiWe also have
dimensional reduction arise as collective excitations of dis-
crete variables.

In order to be able to get an analytic handle on the behav- mp=v'm'v'T=v'LmLv'T=my. (AB6)
ior of the D-theory formulations of the principal chiral model
and non-Abelian gauge theory, we had to consider large rep-
resentations for the quantum operators in the HamiltonianThus,v’'L=dv or v’ =dvL’, whered is a non-degenerate
On the other hand, to develop more efficient algorithms fordiagonal matrix. So we find the transformation properties
simulating such theories one would like to consider smaller
representations, so that each variable can assume only a few
discrete values. It is not clear at this point if the mechanism b'=v'Tmpv'=Lotd"VmpdoLT=LbL"T (A7)
of dimensional reduction also occurs for small representa-
tions. Numerical studies are needed to answer this question.

and
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Furthermore, observe that

APPENDIX

For completeness’ sake, we show in this section how to q9"=m=v"mpv = (v "Vmpv) (v Vmpv) =b?,
decompose a non-singul&L(N,C) matrix g into the prod-
uct of a Hermitian matrbb and a unitary matrix. First, let
m=qq’, which is Hermitian positive semidefinite. So it can q'gq=u'b?u. (A9)
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