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Low-energy effective theories of quantum spin and quantum link models
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Quantum spin and quantum link models provide an unconventional regularization of field theory in which
classical fields arise via dimensional reduction of discrete variables. ThisD-theory regularization leads to the
same continuum theories as the conventional approach. We show this by deriving the low-energy effective
Lagrangians ofD-theory models using coherent state path integral techniques. We illustrate our method for the
(211)D Heisenberg quantum spin model which is theD-theory regularization of the 2DO(3) model.
Similarly, we prove that in the continuum limit a (211)D quantum spin model withSU(N)L3SU(N)R

3U(1)L5R symmetry is equivalent to the 2D principal chiral model. Finally, we show that (411)D SU(N)
quantum link models reduce to ordinary 4D Yang-Mills theory.
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th
ic
e
ce
ar
.
ic
us

n

ic
g
a

io
y
in
y
iv

t

in

a
th

-

e
by

g

ed
ric

2D
n

n (2
m

the
den-

ete
of

ks
in
the

uge
sive
n-
nite
nal

can
on-

m
um
b

ge
f
the

pin
I. INTRODUCTION

In the conventional approach to quantum field theory
fundamental degrees of freedom are continuous class
fields. To regularize the ultraviolet divergences beyond p
turbation theory it is natural to introduce a space-time latti
For example, in Wilson’s lattice gauge theory the gluons
represented by classicalSU(N) parallel transporter matrices
Similarly, the fundamental degrees of freedom of a latt
O(3) model are classical unit vectors. In this paper we
an alternative approach to field theory—D-theory—in which
classical fields are replaced by discrete variables~quantum
spins or quantum links! that undergo dimensional reductio
@1–4#.

For example, at zero temperature theO(3) symmetries of
both the (211)D ferromagnetic and antiferromagnet
Heisenberg quantum spin models break spontaneously,
ing rise to massless Goldstone bosons—the so-called m
nons or spin waves. These magnons are collective excitat
of many quantum spins and are effectively described b
continuous classical field. It is remarkable that these cont
ous degrees of freedom emerge from a microscopic theor
purely discrete quantum spins. The low-energy effect
theory of magnons is anO(3) model in (211) dimensions.
At small, non-zero temperature, and hence at finite extenb
of the Euclidean time dimension, the correlation lengthj of
the Goldstone bosons is large compared tob and hence the
system undergoes dimensional reduction to the 2DO(3)
model. In this case, the Coleman-Hohenberg-Merm
Wagner theorem@5# implies thatj must become finite and
that the magnons pick up a nonperturbatively generated m
gapm51/j. As a consequence of asymptotic freedom of
2D O(3) model, j is exponentially large in b, j
; exp(2prsb), wherers is the spin stiffness of the underly
ing quantum spin system@6–8#. Hence,rsb51/g2 plays the
role of the coupling constant of the dimensionally reduc
theory. The continuum limit of that theory is reached
0556-2821/2001/63~8!/085007~14!/$20.00 63 0850
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varying the extentb of the extra dimension, not by adjustin
a bare coupling constant.

Dimensional reduction of discrete variables is not limit
to the quantum Heisenberg model. In fact, it is a gene
phenomenon that gives rise to theD-theory formulation of
field theory. For example, as we show in this paper, the
principal chiral model that is traditionally formulated i
terms of continuous classicalU(N) matrix fields can also be
expressed as a system of generalized quantum spins i
11) dimensions~cf. @9#!. The components of these quantu
spins are generators of anSU(2N) algebra. Again, the dis-
crete variables undergo dimensional reduction to 2D if
(211)D system has massless Goldstone bosons. We i
tify appropriate representations of theSU(2N) algebra for
which this is indeed the case.

Gauge theories can be formulated in terms of discr
quantum links which are gauge covariant generalizations
quantum spins. A quantum link is anN3N parallel trans-
porter matrix whose elements are generators ofSU(2N).
The dimensional reduction of quantum link models wor
differently from the case of quantum spins. While in the sp
case an infinite correlation length arises as a result of
spontaneous breakdown of a global symmetry, for ga
theories spontaneous symmetry breaking leads to a mas
Higgs phase with a finite correlation length. Moreover, co
fined phases in non-Abelian gauge theories also have fi
correlation lengths and therefore do not lead to dimensio
reduction. However, gauge theories in five dimensions
exist in a non-Abelian Coulomb phase with massless unc
fined gluons@2,10#. The massless gluons of a (411)D quan-
tum link model are collective excitations of many quantu
links, just as magnons are collective excitations of quant
spins. If a (411)D quantum link model exists in a Coulom
phase for an infinite extentb of the fifth dimension, it will
undergo dimensional reduction to an ordinary 4D gau
theory onceb becomes finite@1#. This is a consequence o
the confinement hypothesis, which is the gauge analog of
Coleman-Hohenberg-Mermin-Wagner theorem of the s
©2001 The American Physical Society07-1
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case. In particular, a gluon cannot remain massless wheb
becomes finite because it then effectively lives in a 4D wo
and hence should be confined. The corresponding finite
relation lengthj is related to the glueball massm51/j. As
before, asymptotic freedom of 4D non-Abelian gauge th
ries implies that j is exponentially large in b, j
; exp(8p2b/11e2N), where e is the dimensionful gauge
coupling of the underlying (411)D quantum link model.
Hence, the role of the coupling constant of the dimension
reduced theory is played byb/e251/g2. So again, the con
tinuum limit of the theory is reached by varying the extentb
of the extra dimension, not by adjusting a bare coupling c
stant.

As just explained, taking the continuum limit of a qua
tum link model requires a fifth dimension in order to obta
a large gluonic correlation length. It is then very natural
make use of the fifth dimension to include quarks as dom
wall fermions. In particular, Shamir’s variant@11,12# of Ka-
plan’s original proposal@13# provides a suitable realizatio
of full quantum link QCD. Again, the correlation length o
the quarks is controlled by the extent of the fifth dimens
and is exponentially large inb. Consequently, one reache
both the chiral and the continuum limit by sendingb to
infinity. This requires no fine-tuning of bare coupling co
stants, which makesD-theory an attractive alternative to th
traditional approach to field theory@3#.

Models with discrete degrees of freedom have been s
ied before. Generalizations of antiferromagnetic quant
spin models were discussed by Read and Sachdev in@14# for
the case of anSU(N) symmetry group. In@15#, Radjbar-
Daemi, Salam and Strathdee considered discrete spin
tems with a general symmetry group and showed how
continuum limit of such theories corresponds to sigm
model-type field theories. They considered both ferro- a
antiferromagnetic cases. In a follow up to that paper, th
also investigated the renormalization group flow of a parti
lar continuum theory on the manifoldSU(3)/@U(1)
3U(1)# @16#. A quantum link model with aU(1) gauge
symmetry was first constructed by Horn in@17#. Orland and
Rohrlich introduced anSU(2) quantum link model@18#. In
the present context, it was realized in@1# that models with
discrete variables can give rise to ordinary field theori
including QCD @3#, via dimensional reduction. A detaile
analysis of how the physics of conventional lattice gau
theory with U(1) gauge group is reproduced by theU(1)
quantum link model is given in@19#.

A key issue in the previous discussion is the existence
massless Goldstone bosons in quantum spin models, an
massless Coulombic gauge bosons in quantum link mod
In the (211)D spin 1/2 antiferromagnetic quantum Heise
berg model it was unclear for some time if theO(3) sym-
metry is spontaneously broken. For larger spin represe
tions, however, one can prove analytically that this is inde
the case. By now, detailed numerical simulations ha
shown that spontaneous symmetry breaking also occurs
spin 1/2 @20,21#. For the (211)D SU(N)L3SU(N)R
3U(1)L5R symmetric quantum spin model constructed
this paper it isa priori not clear if spontaneous symmet
breaking occurs, and thus if massless Goldstone bosons
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ist. Here we show that for a sufficiently large representat
of the embedding algebraSU(2N) with a rectangular Young
tableau, this model becomes a Wilson-type lattice princi
chiral model in 3D. Such a model is known to exist in
phase of spontaneously broken symmetry@22# and hence we
conclude that at finite extentb of the third dimension it
undergoes dimensional reduction to the usual 2DSU(N)L
3SU(N)R3U(1)L5R principal chiral model. Similarly, we
show that for a sufficiently large representation ofSU(2N)
the low-energy behavior of a (411)D quantum link model
is that of a Wilson-type lattice gauge theory in 5 dimensio
From numerical simulations, we know that such a model c
exist in a non-Abelian Coulomb phase@2,10# and hence un-
dergoes dimensional reduction to a 4DSU(N) Yang-Mills
theory once the extent of the fifth dimension becomes fin
This proves that D-theory is indeed a valid regularization
these models. It would be interesting and of practical imp
tance to investigate if the massless phases arise also for s
representations ofSU(2N). This requires detailed future nu
merical studies.

The rest of this paper is organized as follows. In Sec
we use the quantum Heisenberg model to illustrateD-theory
with a simple example. Section III contains the construct
of quantum spin and quantum link models withSU(N)L
3SU(N)R3U(1)L5R symmetry embedded in the algebra
SU(2N). In Sec. IV a coherent state formalism is presen
in order to describe the large representation limit
SU(2N). The existence of massless Goldstone bosons
the SU(N)L3SU(N)R3U(1)L5R symmetric quantum spin
model is shown in Sec. V and the existence of a mass
Coulomb phase forSU(N) quantum link models is derived
in Sec. VI. Finally, Sec. VII contains our conclusions.

Throughout the paper we distinguish classical degree
freedom, denoted by lower case letters, from quantum op
tors, denoted by upper case letters.

II. FROM THE „2¿1…D HEISENBERG QUANTUM SPIN
MODEL TO THE 2D O„3… MODEL

To motivate the ideas leading to theD-theory formulation
of field theory, let us review the well-known relation be
tween the (211)D Heisenberg quantum spin model and t
2D O(3) model. The 2DO(3) model is asymptotically free
it has a nonperturbatively generated mass gap, as we
instantons andu-vacua and has been used as a simple
model for QCD in four dimensions.

The continuum action of the 2DO(3) model is given by

S@sW#5
1

2g2E d2x]msW•]msW, ~2.1!

wheresW is a classical, 3-component unit vector that assum
continuous values. Clearly, this action is invariant under g
bal O(3) transformationssW85RsW, whereRTR51. The stan-
dard procedure to regularize this theory beyond perturba
theory is to follow Wilson and introduce a lattice as an u
7-2
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LOW-ENERGY EFFECTIVE THEORIES OF QUANTUM . . . PHYSICAL REVIEW D63 085007
traviolet cutoff. Partial derivatives are then replaced by fin
differences and~after dropping an irrelevant constant!, the
lattice action takes the form

S@sW#52
1

g2 (
x,m

sWx•sWx1m̂ . ~2.2!

Here, m̂ is the unit-vector in them-direction. The theory is
quantized by writing down the partition function, which is
path integral over classical field configurations,

Z5E DsW exp~2S@sW# !. ~2.3!

Due to asymptotic freedom, the continuum limit of th
lattice-regularized theory is attained by taking the bare c
pling constantg to zero. In this limit, the correlation lengt
j; exp(2p/g2) diverges exponentially, thus eclipsing an
short-distance lattice artifacts.

D-theory follows a radically different approach to fie
quantization. Instead of performing a path integral over c
tinuous classical fields, those fields are replaced by disc
quantum variables. For example, the above 2DO(3) field
theory is formulated in terms of quantum spins with
Heisenberg model Hamiltonian

H5J(
x,m̂

SW x•SW x1m̂ . ~2.4!

The components of the spin vectorsSW are the generators o
SO(3) and they satisfy the usual commutation relations

@Sx
i ,Sy

j #5 idxy« i jkSx
k . ~2.5!

Notice that we are free to choose any representation
SO(3) for the generatorsSW x , not just spin 1/2. TheSO(3)
symmetry of the quantum Hamiltonian is expressed

@H,SW #50, whereSW 5(xSW x .
The caseJ,0 corresponds to a ferromagnet andJ.0 to

an antiferromagnet with a Ne´el-ordered ground state. W
restrict our attention to the former case. The partition fu
tion for the Heisenberg model is given by

Z5Tr exp~2bH !, ~2.6!

where the trace is taken in a large Hilbert space, the di
product of the Hilbert spaces corresponding to individ
lattice sites. The Hamiltonian evolves the system in an e
dimension, giving rise to a (211)-dimensional field theory
For a condensed matter quantum spin system the additi
dimension is Euclidean time. InD-theory, however, Euclid-
ean time is part of the 2D lattice and the additional Euclide
dimension will ultimately disappear via dimensional redu
tion.

As discussed in the Introduction, dimensional reduct
requires an infinite correlation length, which in this case
due to the existence of massless Goldstone bosons. One
of addressing the question of symmetry breaking and he
dimensional reduction, is to investigate the limit of large sp
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S. To do this, we set up a spin coherent state representa
of the path integral as discussed in@23#. The highest weight
vector of the representation with spinS is denoted byuS,S&.
To generate a system of coherent states, we must there
act with all group elements on this state. A generalSO(3)
group element can be parametrized using the three E
angles as

R~x,u,f!5exp~ ifS3!exp~ iuS2!exp~ ixS3!. ~2.7!

Hence, we obtain the system of coherent states, with
following parametrization:

usW&5R~x,u,f!uS,S&

5exp~ ifS3!exp~ iuS2!exp~ ixS3!uS,S&. ~2.8!

Notice that eixS3
uS,S&5eixSuS,S&, generating the isotropy

subgroup for the highest weight vector,uS,S&. Choosingx
[0 then corresponds to taking a cross section in the fi
bundle with baseX5SO(3)/SO(2) and fiberSO(2).

The coherent states are now parametrized only byu and
f, which fall in the rangesuP@0,p# and fP@2p,p), so
that we can think ofsW as parametrizing a vector on the un
sphere,sW5(sinu cosf,sinu sinf,cosu). To obtain an ex-
pression for the coherent states as a superposition
S3-eigenstates, we introduce Schwinger bosons—a,a† and
b,b†—which are two sets of boson creation and annihilat
operators, satisfying the usual commutation relations.
can then write

S11 iS25a†b, S12 iS25b†a, S35
1

2
~a†a2b†b!.

~2.9!

The additional constraintna1nb52S fixes the representa
tion of spinS. We can use the raising and lowering operato
to generate the other weight vectors,

uS,m&5
~a†!S1m

A~S1m!!

~b†!S2m

A~S2m!!
u0&. ~2.10!

To rotate such a state byR as above, we note that

S a†

b†D 8
5S R a† R21

R b† R21D
5expS i

x

2
szDexpS i

u

2
syDexpS i

f

2
szD S a†

b†D

5S uexpS i
x

2D vexpS i
x

2D
2v* expS 2 i

x

2D u* expS 2 i
x

2D D S a†

b†D .

~2.11!

Here, u(u,f)5cos(u/2)exp(if/2) and v(u,f)
5sin(u/2)exp(2if/2). This leads to the following expres
sion for the coherent states~recall thatx[0):
7-3



th
ca
re

o
c
f

e

tio
h

-
-
n

rla

v
c

th

the
s

e

a
he
e

ter-

topy
h
the
he

e

o

is-
ved

m-

ed
n

te

rgy

is
in-
exci-
re
can

i-
e
et,

B. SCHLITTGEN AND U.-J. WIESE PHYSICAL REVIEW D63 085007
usW&5
~a†8!2S

A~2S!!
u0&5A~2S!!(

m

uS1mvS2m

A~S1m!! ~S2m!!
uS,m&.

~2.12!

These coherent states are not all linearly independent—
form an over-complete set of states. In particular, we
express the identity operator as a superposition of cohe
states. The measure of integration we use here is@(2S

11)/4p#dsW5@(2S11)/4p#sinu du df,

2S11

4p E dsWusW&^sWu5(
m

uS,m&^S,mu51. ~2.13!

Another important property is the following:

sW•SW usW&5SusW&. ~2.14!

A system of coherent states in the large Hilbert space
which the entire Hamiltonian acts is simply given by a dire
product of the coherent state systems we have derived
each lattice site. From property~2.14! it is straightforward to
obtain an expression for the expectation value of the Heis
berg Hamiltonian in a coherent state,

H@sW#5^sWuHusW&5
S2J

2 (
x,m̂

sWx•sWx1m̂ . ~2.15!

Using these ingredients, we can express the parti
function ~2.6! as a path integral over coherent states. T
standard procedure is to divide up the ‘‘time’’ intervalb into
N« small intervals of width«5b/N« , and to insert a reso
lution of the identity~2.13! in between each time slice. Even
tually, we takeN«→`. We can manipulate the expressio
for the path integral using Eq.~2.15!. Also, we write

sWx~ t1«!2sWx~ t !

«
→sẆx1O~«!. ~2.16!

In our parametrization of the coherent states, the ove
between neighboring states is given by

^sW~ t1«!usW~ t !&5expS 2 iS«(
x

ḟxcos~ux! D . ~2.17!

We thus get the path integral

Z5E DsW exp~2S@sW# !, ~2.18!

where

S@sW#5 iS(
x

v@sWx#1E
0

b

dt H@sW#, ~2.19!

and v@sW#5*0
bdt ḟ cosu5rf0

f0df cos(uf) is a Berry phase

term. The geometric nature of the Berry phase term is e
dent, as it depends only on the path on the unit sphere tra
out by the spin, and not on the explicit dependence of
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path ont. In fact, this term measures the area enclosed by
pathsW(t) on S2. It may be written in gauge invariant form a

v@sW#5E
0

b

dtE
0

1

dv sW•~] tsW3]vsW !. ~2.20!

We have introduced the interpolating fieldsW(t,v), which de-
pends on an additional~fourth! dimension and obeys th
boundary conditions sW(t,1)5sW(t), sW(t,0)5sW(t8,0) and
sW(0,v)5sW(b,v). This field is therefore parametrized on
disk with v51 as the boundary. The only requirement on t
interpolationsW(t,v) from the boundary of the disk to th
interior is that it be a smooth function ofv. In particular, the
value of the Berry phase term differs from one chosen in
polation to another only by an integer multiple of 4p. This is
a direct consequence of the fact that the second homo
group ofS2 is P2(S2)5Z. Hence, for the value of the pat
integral to be independent of the chosen interpolation,
spin S needs to be quantized in half-integer units. With t
simple parametrizationsi(t,v)5vsi(t) for i 51,2, we can
perform the integral overv to obtain an expression for th
Berry phase that is equivalent to the one given in Eq.~2.19!,
and hence arrive at the following continuum action:

S@sW#5E
0

b

dtE d2x F iS~11s3!21~] ts
1s22] ts

2s1!

1
rs

2
]msW•]msWG . ~2.21!

Here, rs5S2J/2 is the spin stiffness. This result was als
obtained by Leutwyler in@24# using chiral perturbation
theory. He showed that this theory has a non-relativistic d
persion relation, attributed to the existence of a conser
order parameter.

Notice that the fieldsW(x) is a unit vector field. It therefore
lives in S2, which is the coset space corresponding to a sy
metry breaking patternSO(3)→SO(2). Thus, the low-
energy effective theory in Eq.~2.21! is a theory of Goldstone
modes associated with this symmetry breaking.

The mechanism of dimensional reduction was explain
for the antiferromagnet in@7#. Here, we adapt the discussio
for the ferromagnet. Consider a system of dimensionsL3L
3b. ForL5b5`, the system is in the ordered ground sta
of the Heisenberg ferromagnet. This breaks theSO(3) sym-
metry and, as discussed above, we obtain the low-ene
theory of Goldstone bosons of Eq.~2.21!. If we now consider
the case in which the extent of the additional dimension
taken to be finite, then the Coleman-Hohenberg-Merm
Wagner theorem tells us that there cannot be massless
tations in a slab@5#. The Goldstone bosons must therefo
pick up a small, non-perturbatively generated mass. One
use a block spin transformation to map the 3DO(3)-model
in a slab of finite extentb to a 2D latticeO(3) model. One
averages the fields over blocks of sizeb in the third direction
and sizea8 in the two spatial directions, decreasing the orig
nal cutoff 1/a down to 1/a8. To determine a suitable valu
for a8, consider the dispersion relation of the ferromagn
7-4
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E5(rs /S)p2. This implies 1/b5(rs /S)(1/a82), and hence
a85Arsb/S. One thus obtains a two-dimensional latti
field theory, whose degrees of freedom are the blo
averaged fields living at the block centers. The lattice sp
ing of the new theory is therefore equal toArsb/S, which is
different from the lattice spacing of the original quantu
Heisenberg model~see Fig. 1!. The correlation length of the
2D O(3) model in lattice units is given byj/a8
}g2exp(2p/g2). The value ofa8 was found above, and w
can identify the coupling constant as 1/g25rsb. We thus
arrive at the expression for the dependence of the correla
length on the extentb of the additional dimension,

j}~rsb!21/2exp~2prsb!. ~2.22!

This relation was first found by Kopietz and Chakravarty
@8#, where they used the same techniques of renormalizat
group analysis that had been used for the antiferromagn
@6# by Chakravarty, Halperin and Nelson. The continuu
limit is reached by taking the extent of the additional dime
sion to infinity, since the correlation length diverges exp
nentially asb→`. However, in this limit the extent of the
third dimension is much smaller than the correlation leng
i.e., j@Arsb/S. Thus, the fields are effectively constant
the t-direction, and the theory undergoes dimensional red
tion.

III. U„N… QUANTUM SPINS AND QUANTUM LINKS

In the following sections we will be considering mode
whose fundamental degrees of freedom in the conventio
formulation are elements of unitaryN3N matrices. In
D-theory these fields are replaced by quantum operators
that we have matrices whose entries are operators rather
complex numbers. However, we still want the Hamiltoni

FIG. 1. Dimensional reduction of aD-theory: Averaging the
(d11)-dimensional effective field of theD-theory over blocks of
size b in the extra dimension anda8 in the physical directions
results in an effectived-dimensional Wilsonian lattice field theor
with lattice spacinga85Arsb/S.
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constructed from these operators to be invariant under
same symmetries as the conventional action. In particu
we will be considering two models, the principal chir
model with a globalSU(N)L3SU(N)R3U(1)L5R symme-
try, and Yang-Mills theory with a localSU(N) symmetry. In
order to construct the appropriateD-theory Hamiltonians, let
us consider the operators associated with just one lattice
in the case of the principal chiral model, or just one link
the case of Yang-Mills theory. Dropping the site/link indice
we denote these operators byUi j . The appropriate symme
tries follow by construction if we also associate with ea
site/link an SU(N)L3SU(N)R algebra, generated by$La%
and$Ra% which satisfy the commutation relations

@La,Lb#52i f abcL
c, @Ra,Rb#52i f abcR

c, @La,Rb#50.
~3.1!

Here f abc are the usual structure constants ofSU(N). We
then require that the site/link operator variables transform

U85exp~2 iaaLa!U exp~ ibbRb!

5exp~ iaala!U exp~2 ibblb!, ~3.2!

where thela are the Hermitian generators ofSU(N) in the
fundamental representation. These generators satisfy

@la,lb#52i f abcl
c, Trlalb52dab. ~3.3!

The transformation rule~3.2! is implied by the following
commutation relations:

@La,Ui j #52l ik
a Uk j, @Ra,Ui j #5Uiklk j

a . ~3.4!

All of these commutation relations can be satisfied by e
bedding the operators in anSU(2N) algebra. In particular,
the aforementionedSU(N)L3SU(N)R algebra is embedded
diagonally, while theUi j operators fill in the off-diagona
blocks. To summarize, we get the full set of commutati
relations:

@La,Lb#52i f abcL
c, @Ra,Rb#52i f abcR

c,

@Ra,Ui j #5Uiklk j
a , @La,Ui j #52l ik

a Uk j,

@T,Ui j #52Ui j ,

@Ra,Lb#5@T,La#5@T,Ra#50,

@ReUi j ,ReUkl#5@ Im Ui j ,Im Ukl#

52 i ~d ikIm l j l
a Ra1d j l Im l ik

a La!,

@ReUi j ,Im Ukl#5 i S d ikRel j l
a Ra2d j l Rel ik

a La

1
2

N
d ikd j l TD . ~3.5!

Here,T generates an extraU(1) symmetry.@Later, this sym-
metry needs to be broken explicitly to obtain anSU(N)
rather thanU(N) Yang-Mills theory.# If we restrict ourselves
to representations ofSU(2N) which correspond to rectangu
lar Young tableaux withN rows andn columns~as shown in
7-5
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Fig. 2!, we can use a fermionic basis of rishons for our re
resentation@3,14# ~we use the summation convention f
greek indices!,

Si j 5Li j 5S l ia†l j a2
n

2
d i j D ,

SN1 i ,N1 j5Ri j 5S r ia†r j a2
n

2
d i j D ,

SN1 j ,i52Ui j 52 l iar j a†,

Sj ,N1 i52~U†! i j 52~U ji !†52r ial j a†,

T5(
i

~r ia†r ia2 l ia†l ia!,

(
i

~ l ia†l ib1r ia†r ib!5dabN, ~3.6!

wherea51, . . . ,n is an additional rishon flavor index an
i , j 51, . . . ,N. For convenience, we have chosen these g
erators not to be traceless. We then haveLa5l i j

a Li j and
Ra5l i j

a Ri j . The constraint~3.6! is needed to obtain the cor
rect representation.

For the purpose of deriving systems of coherent sta
addressed in the next section, it will be convenient to int
duce the following notation:

cia5H l ia, for 1< i<N;

r ia, for N11< i<2N.
~3.7!

We then have

Si j 5cia†cj a2
n

2
d i j , (

i
cia†cib5dabN. ~3.8!

Notice that the labelsi and j now run from 1 to 2N.

FIG. 2. Young tableau of theSU(2N) representation by which
states at each lattice site-link transform.
08500
-

n-

s,
-

IV. COHERENT STATES

In this section we first describe how to generate an ov
complete system of states, which we then use to set up a
integral. Moreover, a Berry phase term is generated in
action and we work out its form in terms of the degrees
freedom in the path integral. These degrees of freedom
arranged intoGL(N,C) matrices and we decompose such
matrix into its Hermitian and unitary parts. This will allow u
to make contact with the respective target theories.

Systems of coherent states forSU„2N…

Let us now construct a coherent state system for the ty
of representations ofSU(2N) that we are interested in. Th
general procedure is described in detail in@25#. We must first
pick a vector in the carrier space that the chosen represe
tion acts in. It is convenient to choose a weight vectorum& as
the initial element of the coherent state system. We will s
that for our choice of initial vector, the corresponding iso
ropy subgroup, i.e. the subgroup ofSU(2N) transformations
which leave the state defined by this vector unchanged
SU(N)L3SU(N)R3U(1)L5R . This is a consequence of th
chosen type of representation with rectangular Young t
leaux of N rows. Coherent states are then characterized
the elements ofSU(2N)/@SU(N)L3SU(N)R3U(1)L5R#.

We now proceed to constructing a concrete set of coh
ent states for representations ofSU(2N) with rectangular
Young tableaux of the kind previously described. This d
cussion follows the steps outlined in@14#. Our basis of gen-
erators is given by Eq.~3.8!. We can choose the Cartan su
algebra to be spanned by the following set of generators

Sii 5(
a

cia†cia2
n

2
, ~4.1!

for i 51, . . . ,2N. Notice that Eq.~3.8! imposes one con-
straint on this set of generators, consistent with the fact
SU(2N) has rank 2N21. The remaining operatorsSi j with
iÞ j are the ‘‘raising’’ and ‘‘lowering’’ operators which
complete the canonical Cartan basis for the Lie algebra.

For the given representation we obtain the highest-we
vector as follows,

uc0&5C @«ab•••caa†cba†
•••#@«cd•••ccb†cdb†

•••#•••u0&,
~4.2!

where there areN creation operators in each square brack
and there aren square bracketed terms all together. The
dicesa,b, . . . run through all values 1 toN, while a,b, . . .
run from 1 ton. We are symmetrizing the column indices
the Young tableau, and antisymmetrizing the row indic
The normalization constantC is chosen so that̂c0uc0&
51. The weight of this state is given by

Sii uc0&5H n

2
uc0&, for 1< i<N,

2
n

2
uc0&, for N11< i<2N.

~4.3!
7-6
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We can obtain a coherent state system by applying all p
sible group transformations modulo the isotropy subgroup
uc0& to our chosen initial vector. In terms of the chosen ba
for the Lie algebra we obtain a group element ofSU(2N) by
exponentiating an anti-Hermitian combination of generato
and so we have

uq&5exp~2qi j Sji 1qi j * Si j !uc0&, ~4.4!

where the indexj runs through the values 1 toN, and i runs
from N11 to 2N. It is easily checked that ifi and j were to
fall in the same range of values, i.e., either both are betw
1 andN or both are betweenN11 and 2N, thenuq& would
just be equal~or in the casei 5 j proportional! to uc0&.
Hence, the isotropy subgroup of the vectoruc0& is SU(N)L
3SU(N)R3U(1)L5R as mentioned above. Theqi j are N2

independent complex numbers, which can be arranged in
GL(N,C) matrix. UnderSU(2N) rotations, the generator
Si j transform in the adjoint representation,

exp~qklSlk2qkl* Skl!Si j exp~2qmnSnm1qmn* Smn!

5FexpS 0 q†

2q 0 D G ik

SklFexpS 0 2q†

q 0 D G l j

. ~4.5!

The statesuq& are normalized to one, and from Eq.~4.5! they
clearly satisfy the following important identity

^quSi j uq&5
n

2
Qi j , ~4.6!

whereQ is given by
08500
s-
f

is

s,

n

a

Q5expF S 0 q†

2q 0 D G S 1N 0

0 21N
D expF S 0 2q†

q 0 D G . ~4.7!

In particular, if we write the matrixQ as

Q5S l w†

w r D , ~4.8!

we see that

^quUi j uq&52
n

2
wi j . ~4.9!

From the discussion of how to set up a coherent state p
integral in the case of the Heisenberg model, we know th
Berry phase term of the form

SB5E
0

b

dtS ^q~ t1«!uq~ t !&21

« D ~4.10!

is generated at each site/link as part of the action. To m
nipulate this term, notice that for any operatorM, we have
@26#

d

dx
eM5E

0

1

dv eM (12v)
dM

dx
eMv. ~4.11!

Using the expression foruq& found in Eq.~4.4!, we can write
the Berry phase term as
SB52E
0

b

dtK q~ t !U d

dt Uq~ t !L 52E
0

b K c0Uexp~qi j Sji 2qi j * Si j !
d

dt
exp~2qi j Sji 1qi j * Si j !Uc0L

52E
0

b

dtE
0

1

dv K c0Uexp@2v~2qi j Sji 1qi j * Si j !#S 2
]qi j

]t
Sji 1

]qi j *

]t
Si j Dexp@v~2qi j Sji 1qi j * Si j !#Uc0L . ~4.12!
If we now define

^vq~ t !uSi j uvq~ t !&[
n

2
Qi j ~ t,v !, ~4.13!

we can simplify the above to

SB52
n

2E0

b

dtE
0

1

dvS 2
]qi j

]t
Qji ~ t,v !1

]qi j *

]t
Qi j ~ t,v ! D

52
n

2E0

b

dtE
0

1

dv TrF S 0
]q†

]t

2
]q

]t
0
D Q(t,v)G .

~4.14!
As a function ofv the matrixQ(t,v) now satisfies

Q~ t,0!5S 1N 0

0 21N
D , ~4.15!

andQ(t,1)[Q(t). Integrating Eq.~4.14! by parts gives

SB5
n

2E0

b

dtE
0

1

dv TrF S 0 q†~ t !

2q~ t ! 0 D ]

]t
Q~ t,v !G .

~4.16!

It is not hard to see that

S 0 q†~ t !

2q~ t ! 0 D 52
1

2
Q~ t,v !

]Q~ t,v !

]v
, ~4.17!
7-7



e
-

,

s

le
n-
th

tr

i-

rm

-

a
n

u-
We
ts of
ded
as
el.

re-

n-

zed
by

ry

try

B. SCHLITTGEN AND U.-J. WIESE PHYSICAL REVIEW D63 085007
and this leads to the final result for the Berry phase,

SB52
n

4E0

b

dtE
0

1

dvFTrS Q~ t,v !
]Q~ t,v !

]v
]Q~ t,v !

]t D G .
~4.18!

In the above derivation we used a specific dependenc
Q(t,v) on the variablev, which satisfies the boundary con
ditions

Q~ t,0!5Q~ t8,0!, for all t,t8;

Q~ t,1!5Q~ t !; Q~0,v !5Q~b,v !. ~4.19!

Thus, the fieldQ(t,v) lives in a rectangle 0<t<b and 0
<v<1. From the periodic boundary conditions in thet di-
rection, we can interpretQ(t) as defining a closed curve
parametrized byt, and with the parameterv filling in the
space enclosed by the curve to form a disk in the Gra
mann manifold G(N,2N)5SU(2N)/@SU(N)L3SU(N)R
3U(1)L5R#. In @14# it was shown thatSB is independent of
the particular surface that has this boundary, up to multip
of 2pnki for kPZ. This result was derived as a direct co
sequence of the fact that the second homotopy group of
Grassmann manifold is justP2(G(N,2N))5Z, the group of
integers.

Consider now theGL(N,C) matrix q of Eq. ~4.4!. As
shown in the Appendix, we can decompose such a ma
into the product of a left-coset Hermitian matrixb and a
unitary matrixu, q5bu. Upon substituting this decompos
tion into Eq.~4.7!, we obtain

Q5S u†cos~2b!u 2u†sin~2b!

2sin~2b!u 2cos~2b!
D . ~4.20!

In order to use this result to simplify the Berry phase te
in the action, we representSB as

SB5
n

8E d2j «pqTr @Q]pQ]qQ#, ~4.21!

wherep,q take the values 1, 2, andj15t, andj25v, and
the integral is over a rectangle in (t,v) space. We param
etrizeQ(t,v) in the following way,

Q~ t,v !5expF S 0 q†~ t,v !

2q~ t,v ! 0 D G S 1N 0

0 21N
D

3expF S 0 2q†~ t,v !

q~ t,v ! 0 D G , ~4.22!

whereq(t,v) is a smooth function on the rectangle, such th
the boundary conditions~4.19! are satisfied. We can the
decompose the matrixq(t,v) as before,

q~ t,v !5b~ t,v !u~ t,v !, ~4.23!

and find
08500
of

s-

s

is

ix

t

Q5S u†~ t,v !cos„2b~ t,v !…u~ t,v ! 2u†~ t,v !sin„2b~ t,v !…

2sin„2b~ t,v !…u~ t,v ! 2cos„2b~ t,v !…
D .

~4.24!

Substituting this expression into the integrand of Eq.~4.21!,
we find that after some algebra it reduces to

«pqTr@Q]pQ]qQ#

524«pqTr†]q@cos„2b~ t,u!…u~ t,u!]pu†~ t,u!#‡.

~4.25!

Hence, the Berry phase term simplifies to

SB52
n

2E0

b

dtE
0

1

dv„]v$Tr@cos~2b!u] tu
†#%

2] t$Tr@cos~2b!u]vu†#%…

52
n

2E0

b

dt Tr@cos~2b!u] tu
†#, ~4.26!

where we have used the boundary conditions onb(t,v) and
u(t,v) to obtain the last line.

V. PRINCIPAL CHIRAL MODEL

In this section we use symmetry considerations to form
late the principal chiral model as a quantum spin model.
then set up a coherent state path integral using the resul
the previous section. The resulting Lagrangian is expan
around its minimum to obtain a 3D principal chiral model
the low-energy effective theory of the quantum spin mod
Finally, we explain how the mechanism of dimensional
duction gives rise to the 2D target theory.

A. D-theory formulation

The action of the 2D principal chiral model in the co
tinuum is given by

S@u#5
1

2g2E d2x Tr@]mu†~x!]mu~x!#, ~5.1!

where theu(x) are unitaryN3N matrices. In Wilson’s ap-
proach to regularizing the theory, space-time is discreti
by introducing a regular lattice. Derivatives are replaced
finite differences to obtain an action of the form

S@u#52
1

g2 (̂
xy&

Tr@ux
†uy#. ~5.2!

The target theory has a globalSU(N)L3SU(N)R

3U(1)L5R symmetry of the formux→ux85LuxR
†, whereL

and R are unitary matrices. It is known that this symmet
breaks to anSU(N) vector symmetry (L5R) at g50. Due
to the Mermin-Wagner theorem, however, the symme
cannot break forg.0.
7-8
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Let us now replace the classical fieldsux
i j by quantum

operatorsUx
i j and write down aD-theory Hamiltonian, which

evolves the two-dimensional system in an additional Euc
ean time direction,

H52J(
x,m

Re TrUxUx1m̂
†

5J(
x,m

@Ux
i j ~Ux1m̂

i j
!†1Ux1m̂

i j
~Ux

i j !†#. ~5.3!

We would like this Hamiltonian to have anSU(N)L

3SU(N)R3U(1)L5R symmetry, i.e., @GL
a ,H#5@GR

a ,H#
5@T,H#50, whereGL

a andGR
a are mutually commuting set

of SU(N) generators andT generates aU(1) symmetry. As
we saw in Sec. III, this can be realized by embedd
SU(N)L3SU(N)R3U(1)L5R diagonally in SU(2N). In
particular, we have anSU(2N) algebra of the form~3.6! at
each lattice site. Labeling the generators that correspon
the lattice sitex by a subscriptx, we can write the generator
of the algebra of the globalSU(N)L3SU(N)R3U(1)L5R

symmetry group asGL
a5(xLx

a , GR
a5(xRx

a andT5(xTx . It
then follows that @GL

a ,H#5@GR
a ,H#5@GL

a ,GR
b #5@T,H#

50.
For J,0 this model is ferromagnetic. We choose t

same representation ofSU(2N) for the generators at eac
site of the lattice, namely the one mentioned above, wit
rectangular Young tableau as shown in Fig. 2. Note that
f

e
ng

08500
-

g

to

a
e

properties of the system defined by the HamiltonianH are
completely determined, once the representation ofSU(2N)
has been specified.

B. The continuum limit of the theory

Using the results of Sec. IV, we set up a coherent s
path integral for the partition function. The Berry phase te
of the corresponding action was calculated in Eq.~4.26!. The
other term in the action is given by

E
0

b

dt H„Q~ t !…

5
Jn2

4 E
0

b

dt(
x,m

@wx
i j ~wx1m̂

i j
!* 1~wx1m̂

i j
!* wx

i j #

5
Jn2

4 E
0

b

dt(
x,m

Tr@wxwx1m̂
†

1wx1m̂wx
†#.

~5.4!

As discussed above, we havew52sin(2b)u and we define
s[sin(2b). Thenw52su, wheres5s†. We can think ofs
as the radial component and ofu as the phase of the matri
w. Due to the sine function and the fact that we can cover
coset spaceSU(2N)/@SU(N)L3SU(N)R3U(1)L5R# by
limiting the matrixb to have eigenvalues between 0 andp/2,
the eigenvalues ofs are constrained to lie between 0 and
Substituting the above coset decomposition into Eq.~5.4!,
we obtain
Jn2

4 E
0

b

dt(
x,m

Tr@sxuxux1m̂
†

sx1m̂1sx1m̂ux1m̂ux
†sx#

52
Jn2

4NE
0

b

dt(
x,m

TrF1

2
~sxsx1m̂2sx1m̂sx!~uxux1m̂

†
2ux1m̂ux

†!

1
1

4
~21uxux1m̂

†
1ux1m̂ux

†!~sx1m̂2sx!~sx1m̂2sx!

1
1

4
~sx1m̂1sx!~sx1m̂1sx!~ux1m̂2ux!~ux1m̂

†
2ux

†!22sxsxG . ~5.5!
e

lds
We would like to expand this action around its minimum
Since the eigenvalues ofs are bounded by 1, the minimum o
the action occurs whens51 @up to a global SU(N)L
3SU(N)R3U(1)L5R rotation#, andu is constant across th
lattice. We now introduce fluctuations in the fields, defini
the forward lattice derivative

Dm
f ux5

ux1m̂2ux

a
, ~5.6!

and writing
.
sx5sin~2bx!5sinS 2S p

4
1aexD D'122a2ex

2 . ~5.7!

Substituting these expressions into Eq.~5.5!, expanding to
quadratic order ina and dropping an irrelevant constant, w
obtain

S5SB2
Jn2

4 E
0

b

dt(
x,m

a2 Tr@~Dm
f ux!~Dm

f ux
†!18ex

2#.

~5.8!

Next, we turn to the Berry phase term, and expand the fie
in the same way as before,
7-9
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SB52(
x

n

2E0

b

dt Tr„cos~2bx!ux] tux
†
…

'2(
x

n

2E0

b

dt TrF S cosS p

2 D
22aexsinS p

2 D Dux] tux
†G

5(
x

n

2E0

b

dt Tr@2aexux] tux
†#. ~5.9!

We thus obtain the final expression for the action in
continuum limit,

S5E
0

b

dtE d2x TrF2
Jn2

4
]mu~x!]mu†~x!24Jn2e2~x!

1
n

a
e~x!u~x!] tu

†~x!G
5E

0

b

dtE d2x
rs

2
TrF ]mu]mu†1

1

c2
] tu] tu

†G .

~5.10!

In this equation, we have integrated out the shifted field

e8~x!5e~x!2
1

8Jna
u~x!] tu

†~x!. ~5.11!

The spin stiffness is given byrs5uJun2/2, andc52nauJu is
the spin wave velocity.

Notice that we now have a theory with a relativistic d
persion relation. The ferromagneticSO(3) spin model has a
non-relativistic dispersion relation@24#, because the orde
parameter commutes with the Hamiltonian. In the ferrom
netic principal chiral model on the other hand, the order
rameterUi j 5(xUx

i j does not commute withH, so a relativ-
istic dispersion relation comes as no surprise.

The three-dimensional system will dimensionally redu
if the correlation length is much larger than the extent of
third dimension,j@bc. If we now assume that this is th
case, then the fieldsu will have no dependence ont, and the
integration overt becomes trivial,

S5
brs

2 E d2x Tr@]mu]mu†#. ~5.12!

From @27# we know that the correlation for the two
dimensional principal chiral model is given by

j}expS 2p

g2N
D 5expS 2pbrs

N D . ~5.13!

When performing a blockspin transformation in the way d
scribed for the Heisenberg ferromagnet, the new lattice sp
ing for a system with a relativistic dispersion relation, su
as the present one, isa85bc. Equation~5.13! is consistent
08500
e

-
-

e
e

-
c-

with j@bc in the zero temperature (b→`) limit, so dimen-
sional reduction does indeed occur.

VI. GAUGE THEORY

The quantum link formulation of Yang-Mills theory wa
worked out in@3# and we shall review it here, before show
ing how it is related to the classical formulation of th
theory. First, recall Wilson’s action for lattice gauge theo
with gauge groupSU(N) @28#,

S@u#52
1

g2 (
x,mÞn

2Re Tr@ux,mux1m̂,nux1 n̂,m
†

ux,n
† #.

~6.1!

Here,x labels the sites of a 4D hyper-cubic lattice, and t
ux,m areSU(N) matrices, associated with each link (x,m) on
the lattice. This action is invariant under localSU(N) trans-
formations of the formux,m→ux,m8 , where

ux,m8 5exp~ iax
ala!ux,mexp~2 iax1m̂

b
lb!. ~6.2!

The classical partition function for this system is given by

Z5E Du expS 2
1

g2
S@u# D . ~6.3!

In theD-theory formulation we replace the classical fiel
that make up the entriesux,m

i j of the ux,m matrices in the
action by quantum operatorsUx,m

i j , to obtain a quantum
Hamilton operator that evolves the system in an additio
Euclidean direction. The Hamilton operator takes the form

H5J (
x,mÞn

@Ux,m
i j Ux1m̂,n

jk
~Ux1 n̂,m

lk
!†~Ux,n

i l !†1H.c.#

1J8(
x,m

@detUx,m1detUx,m
† #. ~6.4!

The determinant term is understood to mean

detUx,m5
1

N!
e i 1i 2••• i N

e j 1 j 2••• j N
Ux,m

i 1 j 1Ux,m
i 2 j 2

•••Ux,m
i Nj N .

~6.5!

It has been introduced into the Hamiltonian to break an ex
U(1) symmetry that would otherwise be present and lead
a U(N) rather than anSU(N) gauge invariant model.

This Hamilton operator has to be invariant under gau
transformations, i.e., we require that

@H,Gx
a#50, ~6.6!

whereGx
a are the generators of anSU(N) algebra at each

lattice sitex, obeying the commutation relations

@Gx
a ,Gy

b#52idxyf abcGx
c . ~6.7!
7-10
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In the Hilbert space, a general gauge transformation is
resented by the operator)xexp(iax

aGx
a). We can construct

gauge covariant transformations of the fields by requir
that

Ux,m8 5)
y

exp~2 iay
aGy

a!Ux,m)
z

exp~ iaz
bGz

b!

5exp~ iax
ala!Ux,mexp~2 iax1m̂

b
lb!. ~6.8!

This implies commutation relations of the form

@Gx
a ,Uy,m#5dx,y1m̂Uy,mla2dx,yl

aUy,m . ~6.9!

In order to satisfy these relations, we write
l
q

f

08500
p-

g

Gx
a5(

m
~Rx2m̂,m

a
1Lx,m

a !, ~6.10!

whereRx,m
a and Lx,m

a are generators of left and right gaug
transformations of the link variableUx,m . They generate an
SU(N)R3SU(N)L algebra on each link, which can be em
bedded diagonally in the algebra ofSU(2N), with the com-
mutation relations as given in Eq.~3.5!.

We choose representations for theSU(2N) algebra with
rectangular Young tableaux, as we already did in the cas
the principal chiral model. In particular, we can use the r
hon representation of Eqs.~3.6!–~3.8!. In contrast to the
principal chiral model, operators now live on the links a
not on the lattice sites. The notation is the following:
Sx,m
i j 5Lx,m

i j 5S cx,m
ia†cx,m

j a 2
n

2
d i j D , Sx,m

N1 i ,N1 j5Rx,m
i j 5S cx1m̂,2m

ia†
cx1m̂,2m

j a
2

n

2
d i j D ,

Sx,m
N1 j ,i52Ux,m

i j 52cx,m
ia cx1m̂,2m

j a† , Sx,m
j ,N1 i52~Ux,m

j i !†52cx1m̂,2m
ia

cx,m
j a† ,

Tx,m5(
i

~cx1m̂,2m
ia†

cx1m̂,2m
ia

2cx,m
ia†cx,m

ia !, (
i

~cx,m
ia†cx,m

ib 1cx1m̂,2m
ia†

cx1m̂,2m
ib

!5dabN, ~6.11!
te

c-
i-

ge
tity
wherea51, . . . ,n and i , j 51, . . . ,N.
The next step is to set up a coherent state path integra

discussed in Sec. IV. We will consider the analog of E
~4.9! and the coset decomposition of Eq.~4.20! to determine
some properties of the matrixw that appears in the action o
the coherent state path integral. We have

Ux,m
i j 52cx1m̂,2m

ja†
cx,m

ia . ~6.12!

From Eq.~4.9! we obtain

^quUx,m
i j uq&52

n

2
wx,m

i j . ~6.13!

Now consider

2
n

2
wx1m̂,2m

i j
5^quUx1m̂,2m

i j uq&52^qucx,m
ja†cx1m̂,2m

ia uq&

5^qu~Ux,m
j i !†uq&5^quUx,m

j i uq&* 52
n

2
wx,m

j i * ,

~6.14!

and hence we see that

wx1m̂,2m5wx,m
† . ~6.15!

The coset decomposition iswx,m52sx,mux,m , wheres5s†

anduu†51. Taken together with Eq.~6.15!, this leads to

wx1m̂,2m52sx1m̂,2mux1m̂,2m5wx,m
†

52ux,m
† sx,m52ux,m

† sx,mux,mux,m
† ,

~6.16!
as
.

and we deduce that

ux1m̂,2m5ux,m
† , sx1m̂,2m5ux,m

† sx,mux,m . ~6.17!

At this point, the complete action in the coherent sta
path integral is

S5SB1
Jn4

16 E
0

b

dt (
x,mÞn

2Re

Tr@sx,mux,msx1m̂,nux1m̂,nux1 n̂,m
†

sx1 n̂,mux,n
† sx,n#

1J8E
0

b

dt(
x,m

FdetS n

2
sx,mux,mD1detS n

2
sx,mux,m

† D G .
~6.18!

Here

SB52
n

2 (
x,m

E
0

b

dt Tr„cos~2bx,m!ux,m] tux,m
†

…, ~6.19!

which follows from Eq.~4.26!.
We now want to expand around the minimum of the a

tion. From Eq.~6.18!, the action is minimized when the e
genvalues ofs are largest, i.e., equal to one, and the fieldu is
constant for all links on the lattice. We can use a gau
transformation to rotate these constant fields to the iden
matrix. The expansion fors is the same as in Sec. V B,

sx,m5sin~2bx,m!5sin„2~b01ex,m!…'122ex,m
2 .

~6.20!
7-11



in
n

to
o
ra

-

ha

d

is
an

the
is

a
re-
n-

a
on-
The
u-

we
an-
ar-
the
in-
w

B. SCHLITTGEN AND U.-J. WIESE PHYSICAL REVIEW D63 085007
We substitute this expression into the action, dropp
terms of orderex,m

3 and higher. After some rearrangeme
and relabeling of the summed indices, we find

S'SB1
Jn4

16 E0

b

dt (
x,mÞn

2Re

Tr@„124~ex,m
2 1ex,n

2 !…ux,mux1m̂,nux1 n̂,m
†

ux,n
† #

12J8S n

2D NE
0

b

dt(
x,m

~122 Trex,m
2 !cosux,m .

~6.21!

Here, we have defined exp(iux,m)[ detux,m . If we take J8
,0, then the minimum of the action will occur forux,m
50. Thus, the matricesux,m will have determinant equal to
one, and belong toSU(N) rather thanU(N).

In order to be able to take the continuum limit we need
express the unitary matrix fieldux,m , assumed to be close t
the identity in our expansion, as the exponential of algeb
valued matrix fields. So let

ax,m52ax,m
b lb ~6.22!

be a Lie algebra valued vector field,la denoting the genera
tors of SU(N), and write

ux,m[ exp„2 ia2~ux,m /N!12 ia ax,m…. ~6.23!

We also rescale the fieldex,m , writing ex,m5a2ẽx,m . The
next step is to expand the action to ordera4, using Eq.
~6.23!. This leads to

S5SB2
Jn4

16 E
0

b

dt (
x,mÞn

a4Tr@ f mn f mn#

1E
0

b

dt(
x,m

a4TrFgẽx,m
2 22J8S n

2D N

ux,m
2 G , ~6.24!

where we have dropped a constant, and

g523Jn424J8S nb

2 D N

. ~6.25!

Of course, there are not any terms linear inẽ in Eq. ~6.24!,
andg.0 since we are expanding about a minimum.

We use the same expansion to manipulate the Berry p
term:

SB52
n

2E0

b

dt(
x,m

Tr@cos~2bx,m!ux,m] tux,m
† #

'2
n

2E0

b

dt(
x,m

Tr@„cos~2b0!22 sin~2b0!ex,m…

3~12 ia ax,m!] t~11 ia ax,m!#

5 i
n

2E0

b

dt(
x,m

a4 TrF2

a
ẽx,m] tax,mG . ~6.26!
08500
g
t

-

se

The complete action in the limit(xa
4→*d4x is now

S5
1

2e2E0

b

dtE d4x TrF f mn f mn12e2gẽmẽm

12ie2
n

a
ẽm] tam24e2J8S n

2D N

umumG
5

1

2e2E0

b

dtE d4x TrF f mn f mn1
1

c2
] tam] tam

12e2gẽm8 ẽm8 24e2J8S n

2D N

umumG , ~6.27!

where e258/(n4uJu) and c5(na/2)AguJu. We have com-
pleted the square in order to integrate out the shifted fiel

ẽm8 5 ẽm1 i
n

2ga
] tam , ~6.28!

as well as theu-field, obtaining

S5
1

2e2E0

b

dtE d4x TrF f mn f mn1
1

c2
] tam] tamG .

~6.29!

If we now again assume that the correlation length
much larger than the extent of the fifth dimension, we c
perform the trivial integration overt, to obtain

S5
b

2e2E d4x Tr@ f mn f mn#. ~6.30!

It was argued in@1# that a finite correlation length

j} expS 24p2b

11Ne2 D ~6.31!

is expected to be generated non-perturbatively. Again,
continuum limit in which the correlation length diverges
achieved by taking the extent of the extra dimensionb to
infinity. In this limit, we also find that the extent of the extr
dimension in physical units is much smaller than the cor
lation length, bc!j. Thus, the theory undergoes dime
sional reduction.

VII. CONCLUSIONS

In the D-theory formulation of quantum field theories,
field Lagrangian is replaced by a Hamilton operator and c
tinuous classical fields are replaced by operator fields.
Hamilton operator evolves the system in an additional E
clidean direction. Guided by symmetry considerations,
have formulated the principal chiral model as such a qu
tum spin system. We then went on to show that with a p
ticular choice of representation for the operators in
Hamiltonian, the theory reduces to a Wilsonian lattice pr
cipal chiral model. From numerical simulations we kno
7-12
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that theSU(N)L3SU(N)R3U(1)L5R symmetry of such a
model breaks spontaneously toSU(N)L5R at b5` @22#. We
chose representations with rectangular Young tableaux,
N rows andn columns, wheren was taken to be large. Th
Goldstone modes arising from the spontaneous symm
breaking cause the system to undergo dimensional reduc
when we make the extent of the third dimension finite a
we thus recover the 2D principal chiral model. We have s
that the continuous degrees of freedom of the low-ene
effective theory, which is the same as the standard form
tion of the principal chiral model, arise as collective exci
tions of the discrete degrees of freedom in theD-theory for-
mulation of the model.

We also showed that the quantum link model in
11)D undergoes dimensional reduction to 4D Yang Mi
theory. We chose the quantum link operators to be in
same type of representation that we considered for the
erators in the principal chiral model, namely large repres
tations with rectangular Young tableaux. The mechanism
dimensional reduction is different in this case. Instead
Goldstone modes arising from a spontaneously broken gl
symmetry, the massless modes we need for dimensiona
duction result from the fact that a (411)D gauge theory can
exist in a non-Abelian Coulomb phase. We showed that
the aforementioned representations the low-energy effec
theory of theD-theory is indeed a 5D Wilson-type lattic
gauge theory. It is known from numerical simulations th
such a theory is indeed in the non-Abelian Coulomb ph
when the extent of the fifth dimension is infinite@2,10#. At
finite temperature the gauge bosons form glueballs and
quire mass, due to the confinement hypothesis. The cor
tion length, however, is exponential in the extent of the fi
dimension, hence leading to dimensional reduction. Aga
the continuous fields of the low-energy effective theory af
dimensional reduction arise as collective excitations of d
crete variables.

In order to be able to get an analytic handle on the beh
ior of theD-theory formulations of the principal chiral mode
and non-Abelian gauge theory, we had to consider large
resentations for the quantum operators in the Hamilton
On the other hand, to develop more efficient algorithms
simulating such theories one would like to consider sma
representations, so that each variable can assume only a
discrete values. It is not clear at this point if the mechani
of dimensional reduction also occurs for small represen
tions. Numerical studies are needed to answer this ques
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APPENDIX

For completeness’ sake, we show in this section how
decompose a non-singularGL(N,C) matrix q into the prod-
uct of a Hermitian matrixb and a unitary matrixu. First, let
m5qq†, which is Hermitian positive semidefinite. So it ca
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o

be diagonalized by a unitary transformation,

vmv†5mD5diag~m1 ,m2 , . . . ,mN!. ~A1!

We can then define the square root ofmD as

AmD5diag~Am1,Am2, . . . ,AmN!. ~A2!

Now let

b5v†mD
1/2v, u5b21q5v†mD

21/2vq. ~A3!

It is easily seen that such au is unitary. We also want to
determine the transformation properties of theb and u ma-
trices if q transforms underU(N)L3U(N)R transformations
as

q→q85LqR†, ~A4!

whereLL†5RR†51. Thenq85b8u8, and

m85q8q8†5LqR†Rq†L†5LmL†. ~A5!

We also have

mD8 5v8m8v8†5v8LmL†v8†5mD . ~A6!

Thus, v8L5dv or v85dvL†, whered is a non-degenerate
diagonal matrix. So we find the transformation properties

b85v8†AmDv85Lv†d†AmDdvL†5LbL† ~A7!

and

u85b821q85Lb21L†LqR†5LuR†. ~A8!

Furthermore, observe that

qq†5m5v†mDv5~v†AmDv !~v†AmDv !5b2,

q†q5u†b2u. ~A9!
7-13
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