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Analyzing the 't Hooft model on an x*-p™ lattice
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We study the 't Hooft modellargeN. QCD in two space-time dimensiongsing an improved approach to
digitizing the sum of gauge theory Feynman diagrams based on light-cone 4dugé and discretizegh*
andix ™. Our purpose is to test the new formalism in a solvable case, with the hope to gain some insight into
how it might be usefully applied to the physically interesting case of four-dimensional QCD.
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I. INTRODUCTION carriesP™ fraction 1—x). Also M is the mass of the meson

] ) bound state and satisfies the boundary conditiong(0)
Last year, with Bering we proposé¢d] a new method to  _ ©(1)=0.

digitize the sum of planar diagrams selected by 't Hooft's Since the new formalism discretizesix* =ka in addi-

Ng—eo limit of SU(N;) gauge theorie$2]. The proposal, tion to p" =Im, the corresponding simplifications lead to an

based on the light-cone or infinite momentum frame descrip- . . . . o .
tion of the dynamics, involved discretization of both thé equation that is not a straightforward discretization of this

. . . I .. _integral equation. In particular, the continuum limit can be
carried by each line of the diagram and the propagation tlm?aken in different wavs depending on the rafia=m/a
r=ix", as in[3-5]. But the main advantage of the new Y P 9 9

version is the flexibility it offers in dealing witp*=0 is- (which would be infinite for continuous), a’?d we want to
sues that typically plague the light-cone description. explore to what e>_<tent these d|ff_erent continuum limits lead
We hope that our formalism will eventually allow an im- [© the same physics. We shall find that some care must be
proved understanding of QCD in four-dimensional spacei@ken with the setup of the discretedynamics in order for
time. But in this article, we merely wish to test the proposalthis to be true. Indeed, a numerical study shows that the most
in the context of the well-understood case of laNjegauge ~ Simple-minded treatment leads to a ground state that be-
theories in two space-time dimensions, namely, the 't Hoofcomes unstable at moderate 't Hooft coupling even with rela-
model[6]. Our purpose is not to unearth new aspects of thdively small P*/m=M unless the rati@/m=1/T, is tuned
model, but rather to see how its well-known properties carto be sufficiently smal(perhaps infinitesimal for largi). If
be obtained from our new discretization. this feature were robust, it would cast doubt on any potential
The physical content of the 't Hooft model boils down to utility of the discretization ofr.
an integral equation, essentially a Bethe-Salpeter equation To overcome this difficulty, we find it necessary to veto
[9], that determines the mass spectrumgaf mesons. The some of the “densest” discretized Feynman diagrams: a
reason the limitN,— reduces to ladder diagranfalbeit  quark must be forbidden to emit two gluons at immediately
with self-energy corrected quark propagajpris that the successive time steps, with a similar veto on two successive
two-dimensional gluon is not dynamicéhere are no trans- absorptions. With this simple vetevhich is prescribed lo-
verse polarizations Thus, as with any axial gauge, the light- cally in time), we shall show that the continuum limit re-
cone gaugéA_ =0 eliminates all gluon self-interactions, so duces to the 't Hooft model provided only that the tofal
A_ can be integrated out inducing an instantaneous Coulombf the qq system is large compared to the discretization unit
potential. But the 't Hooft limitN.—c further eliminates all m. In particular it is not necessary that the rafig=m/a be
quark loops and all nonplanar diagrams, leaving only thdarge. Keepindl finite in the continuum limit leads to the 't
planar self-energy corrections to the quark propagator, antlooft equation with a nontrivial renormalization of the cou-
the ladder bare gluon exchang@&oulomb interactionbe-  pling. Because of this effect, it turns out that the effective
tween quark-antiquark lines in the singlgf channel. In  (renormalized coupling is small for both large and small
light-cone parameters the Bethe-Salpeter equation summirgare coupling, reminiscent of strong-weak coupling duality.
these laddeqq diagrams simplifies to the single variable 't The strong coupling limit favors the densest diagrams, so
Hooft integral equation6]: vetoing some of the densest ones has a dramatic effect on the
strong coupling behavior of the theory. This possibility was

2 (1 2 anticipated and discussed|[if] in connection with the nature
Moe(O={ 3+ ﬁ)“ ¢(X) of the fishnet diagrams in higher dimensional space-time.
) The rest of the paper is organized as follows. In Sec. Il we
95N Pfl e(y) = e(x) 17 Setup the discretized 't Hooft model. We analyze it using a
2 0 y (y—x)° (1.0 single time-step transfer matrix in Sec. 11l and using a Bethe-

Salpeter approach in Sec. IV. In Sec. V we discuss and
where the integral is understood to be evaluated by the prinimplement the veto which allows a satisfactory continuum
cipal value prescription. The variabtas the fraction carried limit at fixed T,. Discussion and concluding remarks are the
by the quark of the totaP™ of the system(the antiquark subject of the final section.
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Il. DISCRETIZED 't HOOFT MODEL

The Lagrange density for SBI.) gauge fields coupled to
quarks in the fundamental representation is given by e—kug/2MTo _e—kug/2MT0 _fkTA
M2

L=—FTrF*F,,+0liy-(I—igA) —pola,  (2.1)

where F,,=d,A,—d,A,—ig[A,,A,]. We remind the

reader that the normalization of gauge fields appropriate for

matrix fields and dictated by the gluon kinetic term differs by i\ 1/ ﬁ /i \i E\}Lﬁ
a factor 1#2 from the more standard one:

. EE FAVE . — ETrF‘“’F FIG. 1. Feynman rules for the discretized 't Hooft model. Dis-
45 2 A 2 s s crete light-cone time flows up the page.

with Fe=Z,(Na/2)F,. Thus A;=A/v2, and we conclude One can then focus on a state of the system of intéiresur
thatg=g/v2. In two space-time dimensions we choose thecgse aqq system with total P*=Mm. The continuum
representation ofy matrices for which the lightlike compo-  theory is recovered by taking the combined limits~0 and
nents are M —oo while keepingP*=Mm fixed. Following[1,3], in
addition to discretizing the™ of each particle, we also dis-
+:‘/§(0 1 -3 0 0 2.2 cretize imaginary light-cone time, r=ix"=ka (k
Y o o' 7 1 0/ ' =1,2,3,...). This discretizatiofwhich also serves as an ul-
traviolet cutof) allows the continuum limit to be reached by
With this choice the field equation for the upper componenkeeping T,=m/a fixed and taking bothm,a—0 and M
of the quark spinor does not involve the “time” derivative — < simultaneously. Actually, since the physics of the dis-
and is an equation of constraint relating the upper compoeretized model depends only on the ratita, the continuum
nent,q,, to the lower componentj,. Working in light-cone  limit is nothing but the largéM limit, where M measures the
gauge A_=A"=0), we can eliminate the upper componenttotal P* of the system state. The conventional continuous
in favor of the lower component yielding the light-cone time discrete light-cone quantizatigPLCQ) approach(see
gauge Lagrange density [8] and references thergirorresponds to the special case
TOHOO.
. Mo Discretization of the quark propagator poses no difficulty.
J+—IgAL + ﬁ} ¥, (2.3 However, for the instantaneous interaction induced by inte-
grating outA . , we allow for ambiguities as ifiL]. The only

2

1 .
£=+§Tr(a_A+)2+|¢T

where y=2Yq,. constraint is that the discretized propagator become that of
Our discretization of Feynman diagrams is based on thé&dg. (2.5) in the continuum limit. This allows us to spread out
x* representation of each bare propagator the instantaneous interaction away frors0 (see[1] for
further discussion Thus the gauge propagator can be ex-
dp™ - - ressed as
D(p*,xﬂ:f_pD(p*,p*)e*'“p Coee P
2
. _ . : . T ”
Performing thep™ integral gives the following Feynman DA(Mn,—ika)=—f,—9 where > f,=1. (2.6
rules for the continuum theory: M k=1

oy — a—ix T ulizpt —rulipt . . . .
Dy(p™.x")=e ™ #/¥P —e TP, We require that these arbitrary parametirsapidly vanish

with increasingk. Using this discretization, the Feynman

DA(p* X =i 8(x") o) rules for the discrete theory are summarized in Fig. 1.
AVE +2 pto’ For the purposes of this paper we shall not exploit the full
generality of the set off,}'s. We restrict attention to the
V,tua=ig—g, (2.5 simplest version where the spread out interaction propagates

only one unit in light-cone time; this corresponds to setting

where the arrows indicate the rules to use with imaginanf1=1, fx~1=0. The Feynman rules of Fig. 1 can be further
time. simplified if we absorb the negative sign from the antiquark
One way to digitize the 't Hooft equatiofi.1) is to put ~ propagator into the corresponding vertex factor. We define
the variables,y on a grid, which amounts to discrete light- Nnew parameters

cone quantizatiof3,7], where one discretizes the amount of

P™ each line of the ladder diagram carries in quantanof ’N
a=e 70 and k= /2.

pt=Im, 1=1,23,.... 27T,

(2.7)
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We also recall that in 't Hooft's larg&l; limit every addi-
tional pair of cubic vertices in the ladder sum corresponds to
a completed color index loop, which produces a faddgr
Thus we shall also absorb a factor @i, into each vertex. T oM
Simply put, all terms in the ladder sum are only dependent
on the 't Hooft couplingg®N,. The simplified Feynman
rules are presented in Fig. 2.

IIl. SINGLE TIME-STEP TRANSFER MATRIX \ y K /i \I —K

Using the Feynman rules of Fig. 2 we can now proceed to
set up a transfer matrix which evolves a singlef system
one step forward ix™ time. Once the matrix has been de- FIG. 2. Simplified discretized Feynman rules for 't Hooft model.
termined as a function of the coupling, solving the eigen-
value problem will yield the bound state energies as func-
tions of coupling. Since the scalar particle which mediatesare 3, 7, 14, 25the number of states isM—1)(M?—2M
the Coulomb interaction only lives one time-step, any statet6)/6 for generaM]. For illustrative purposes we shall ex-
can have at most two intermediate scalars. Thus for the sinplicitly present the transfer matrix favl =4.
plest systems withP*/m=M =3,4,5,6 the number of states  For M=4 there are seven states, namely,

k/M _ 1
M2

3,1)=b1d]|0), 2,2 =b}d}|0), 11,3 =b]d}|0),
12,1, =blaldl|0), |1,2,0=blaldl|0o), |1,1,2=blald}l0),
|1,1,1,2=blal?d]|0), (3.1)

whereb’, d', anda’ are creation operators for the quark, pling . Note that the matrixAV is not Hermitian, and be-
antiquark, and intermediate gauge particle stdtee sub- cause of the negative diagonal entriesAnthe equivalent
script on these operators denofes'm). matrix VAV4/A is not Hermitian either. Thus there will, in
By construction each of the quark and antiquark states hageneral, be complex eigenvaluedhe best one can hope for
at least one unit op */m. The matrix that evolves the system is that the lowest-lying energy eigenvaluésighest-lying
forward inx* can be factored into a matriX that involves  positive real part fott) are real. A satisfactory outcome for
only propagators and a matrikthat involves vertices. Writ-  the continuum limitM — would be that the ground state
ing the state of the system as a column vecYorwith seven  energy and all the energy values with real parts of order 1/
components corresponding to the seven states in(Ed, above the ground state energy are real. Then the complex

the transfer matrix equation is eigenvalues would be strict lattice artifacts.
The existence of complexeigenvalues is already eviden-
tY=AVY, (3.2  tat M=4 as shown in Fig. 3, where we have chosen
=0.5, which for definiteness we use in subsequent graphs
where
A=dia§[a4/3,a,a4/3,—a3/2,—a2/4,—a3/2,a2], (3.3) o8 [T 08 T
\_/ 06 [ ]
1 0 K K 0 0 o 04 K 1 o
0 0 —K K —K? I?r M=4 Iﬂ> 04 M=5 s
0 1 —K —K 0 oz 7
0.2 [ i
v=| « —«x O 0 —«x*> 0 , i ]
T L I e T I A
k 0 -« 0 0 0 0 % o2 04 05 08 1 ® o2 04 05 08 1
0 « -k —-«k* 0 0 0 12 12
0 —«x* 0 0 0 0 0 FIG. 3. Plot of the real solutions afas a function ofc? for the

(3.9 M=4 single time-step transfer matrix. It is convenient to plot
rather than energy since then infinite energy corresponds-th
and the eigenvalue is=e~2E. Solving this eigenvalue prob- Also note that the lowest-lying states are those with the largest
lem will yield energy eigenvalues as a function of the cou-value oft.
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FIG. 5. Iterated bubbles which contribute to the quark propaga-
tor.

the following section, writing the ladder equation in the form
of a Bethe-Salpeter equatidexchange-to-exchange rather
than single time stepwill reduce the complexity of the ei-
e e genvalue problem to a matrix of rank 6f(M).

FIG. 4. Plot of the lowest energy real solutions &f=
—In(t)/a as a function of«? for the M=5 andM =6 single time- IV. BETHE-SALPETER EQUATION
step transfer matrices. We see the appearance of additional real

: ; . A more efficient way to solve the discretized 't Hooft
solutions at lower energies than the weak coupling ground state for . .
g ping g model is by setting up a Bethe-Salpeter equak®ininstead

of a matrix equation that evolves thgg system one step
forward in time, we can write down a system of equations

L : (also a matrix equatignwhich evolves the system exchange
unless otherwise indicated. The ground stétighest valug to exchange. The simplification is that the intermediate state

of t stays real and positive for all coupling. However the next. . - .
two excited states stay real only fex «. when they collide involves two (dressedl particles(M —1 possible states for

with eigenvalues that have emerged from0 (infinite en- generalM) rather than two, three, and four bare particles as

) . : in the case of the single time-step transfer matrix. The trade-
ergw after which the elgenvalu'es becqme complex ConJUQat%ff is that the equations become more complicated because
pairs. The hope is that for increasing the number of

. . of the dressed propagators.

lowest-lying energy Ieve_ls that remain real all j[he way to In order to set up the Bethe-Salpeter equation it is neces-
tsrtlrc;nt% c?uvslln? thorUId Tcrxs:e%%:r:fﬁhana:y&; dShtO;VS sary to work out the dressed quark propagator. In the context
ta vs I(I) es _retedgf¥ ?ngteh ath :’1 tg(teale gngu msla)xe of this discretization the dressed quark propagator is just the
fso?ysll ceous?i?]asa'l esee OFi ??OWS ;so seea thecoei F;r?valusum of all possible iterated bubbles. There is no room for

) piNgs, 9. o 9 iested bubbles becausg.,=0. While the bubbles extend
solutions(again see Fig. which are well behaved at weak only one time step ix™, we must still allow for all possible
coupling can merge witht=0 solutions (solutions which '

havet=0 at zero coupling correspond to infinite energy Iat—P+ routings through each bubble.
tice artifactg and become complex. Complésolutions are The energy representation of the bare quark propagator

. el ; . e
not physical as they correspond to complex energies. ThiEAYING P /m=1 (without bubble, obtained by multiply

K . o

behavior is generic for our discretization, but as we shall se&'d by u” and summing over ak>0, is given by

later, when the problem has been set up correctly, we can

separate the lowest-lying states which survive the continuum ” Ua

limit from the lattice artifacts. Dq(|)=k21 (Ual/')k=mr, 4.9
However, when one performs a similar analysis for the -

M =5 andM =6 systems the lowest eigenstate at weak cou-

pling does not remain the ground state for all couplisge ~ Whereu= 1t=e?E. The contribution of a single bubble is

Fig. 4). In both cases a complex solution at weaker coupling

becomes real at larger coupling with a lower energy than the

K> K¢ .

m

weak coupling ground state. Comparing this behavior for >

M =5 andM =6 suggests that for increasiMythis probably

occurs at weaker coupling. Thus for larlyethe weak cou- C
pling ground state might only be valid for extremely weak >

(perhaps only infinitesimalcoupling.
Conventional continuous time DLCQ corresponds in our

discretization tox>—0 since therT,—«. In order for our C
light-cone time discretization to be useful, the solution )

should work for all couplingcorresponding to all values of

Tgo). Here, in this single time-step analysis, we see that our C

most naive discretization does not satisfy this requirement.
We shall have to modify the discretization in order to fix
this. ! M-l

Since the continuum limit requiréd — o the single time- FIG. 6. Here is a section of the ladder sum between two ex-
step analysis is also inefficient because the rank of the matrishanges. The quark on the left carrigb/m=1 and the antiquark
to diagonalize is of2(M3). However, as we shall show in on the right carriep™/m=M —I.
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-1 1/
1 B full _ o t+ t_
—KE= ket patlty, (42 br == )
The full propagator is given by iterations of Eg.1) and Eq. _ o i uk(tk — <) (4.6)
(4.2) as displayed in Fig. 5, (ty—t)E& o 7 '
talﬂ
full
Dy (H= q(|)2 (—uk®X D))"= Tt ta+ a7, Expressing the full quark propagator as the sum in &)

(4.3 allows us to read off the time representation of the full quark
propagator for discrete=ka.
The denominator of the full propagator can be factored in What we really need in order to set up the Bethe-Salpeter
two roots so that equation is a “propagator” which propagates tpg system,
including bubbles, between exchanges between the quark

y and antiquark; see Fig. 6. The “propagator” which evolves

ta .
Dfu”(l): ’ (4.4 the system forward between exchanges is then
d (t—ty)(t—t_)
where MAeD . kepk _sky ok _ ok
Pai) = (T, — (s, —s ) & V(T HIE s,
oM (4.7)
te=—-[1% V1—4a 25, (4.5
wheres.. are the roots for the antiquafkbtained simply by
replacingl in Eq. (4.5 by M —1]. With some manipulation
We can now partial fraction the full propagator this can be simplified to
UaMll(Mfl)(l_u2K4EIIE'/VI7I)
Dya(l)= , (4.9
(=33, )2 —uaM ™MD (1—ukS ), ) (1—uk®S))
|
where for brevity, we have defined We can now now set up the Bethe-Salpeter equations
3/ =aM-D3, (4.9 M-1-2 o
Vo ()= 2 —DgU+r)¥a(l+r)
.lI] 1\ r=1 r
/ 71 I 1 M-1-1
/ / + 21 ZDQ (l+r)‘l’ (l+r)
2
M-l-r M-L-r Vo ()= Z —Dp (=) Wa (I=7)

2

I+r l+r
— | +2 U=V (1=7). (4.10)
¥ ¥

V., ¥ label two-particle states where the last ladder rung
propagated forward in time from left to right or right to left,

FIG. 7. Parallelogram and trapezoid sections of the ladder sunfespectively. The first equation is graphically portrayed in
Internal variables label the number of unitspsf/m carried by each ~ Fig. 7. Since each of the quark-antiquark propagators must
leg. The quark and antiquark propagators include self-energy cosarry a minimum of one unit of p*/m there are only 2(M
rections. —2) possible states,
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0.6 [T T T 0.8 [TTTTTTTITTT
£ £ r 1 06 [ 1
g %4 R 1 =
T T | — | —
— ?l) M=4 ﬂ) 0.4 M=5 ]
4 4 Ik L |
0.2 - 1 L ]
T T [ 1oeer ]
0 e e RN 0' i P IR A
0 02 04 06 08 1 0 02 04 06 08 1
FIG. 8. Asymmetry in the densest configuration of exchanges in ©? «?

the same sense and opposite sense. The double arrow points to theFIG. 9. Real eigenvalues using the Bethe-Salpeter method for

effect of implementing the veto.

Vo ():1sIsM-2, V. (Dh2<sisM-1.
(4.11)

Eq. 4.10 is constructed by evolving the system from a
state just after one exchange in the ladder sum to just after
the next. The various D’s in Eq. 4.10 correspond to the Feyn-
man diagram contributions which are either parallelogram or
trapezoidal sections which take a ¥'n or ¥~ toa ¥~ or
W . The parallelogram propagator sections are simply re-
lated to Eq. (4.8),

aﬁ(l):

M=4,5. All solutions of the single time-step meth¢ske Fig. 3
are reproduced, but additional spurious solutions are present.

D g(h)=Dy(1)
Dy (=DM =D =Dy(0). (4.12)

However, the trapezoidal segments must be independently
determined

D q(h)=Dy3(1)

Dy(1)=Dyg(M 1), @.13)
where
GMIM=1) N ik ke ki2 ka2
+ B _
(t+—t,)(S+—s,)k§=:1u (o))
_UaZ/(M_U[uaM/I(M—I)(l_UK22,'V1_|)—KZE,(A_|(1_UZK42|,E',\/|—|)] (4.19

(1-u?k*3[ 22— uaMM ™MD —yk?S | )(1—uk?3))

In order to solve the matrix equation in Eq. (4.10) we would like to write it in the form of an eigenvalue problem yielding
t=1/u as a function of «*. This is slightly complicated since the propagator segments involve 3,"’s which appear together with
factors of k. By setting y=ux* we can manipulate the equation to isolate ¢ as the eigenvalue, with solutions ¢, (). This is
achieved by rescaling ¥~ , ¥, by the denominator factor common to all D’s, yielding

M—-I-1

F ! ! X e e & ! !
a(1=x2 (1= x2y VL ()+ 21 r_2“1+ra2/(M] (1= xZp— )WL (I+7)

r=

M—1-2

4 4 1 X s 4 4 !
=1 (1=x*%/2 WA ()— 21 r_za/--}—r(l_XZEI-H‘EM—I—V)‘I’(‘(I-I—I')

r=

M-I-1

2
Y %QZ/(M—/—")(I—XZE;ME;W—/—,)\P:\(l+r)

r=1

i-1

o 7 ! ! X -r ! [/
a(1=x2 ) (1= x2p )WL (l)""; r‘z“/—ﬂ”“ JA=x3_)¥h(-r)

=2
= (1=X*5[% )WL (-3

7

-1 2

X —r ' ' '
+E r_2a2/(] ’)(1_X22171.2M71+,,)\If(| (l_r) s

r=1

N|><

@ (1= XS] Sh . YWh (=)

4.15)
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wherea;= oMM~ M-1 2
This discretized equation has roughly twice the complex- v(h= > =72 oM UM=0D ()W (r)
ity of a straightforward discretization of the 't Hooft equa- r=l+1
tion. The reason is that a rung propagating forward from left -1 2
to right can_couple to subse_quent evolutlons_ forbidden to a + Z I__r)zal/rﬂ/(M—l)an(r)q,(r)_ (5.2
rung from right to left(and vice versa See Fig. 8 for the r=1

graphs responsible for this asymmetry. This is the reason we

had to introduce a two-component Bethe-Salp@8&) wave By imposing the veto we have reduced the rank of the eigen-
function. An immediate consequence is thatxat0 each value problem from 2 —2) toM —1.

energy value is at least doubly degenerate, including the The new discretized equation is much easier to analyze in
ground state. This feature is evident in Fig. 9 where the sothe formal continuum limitM —c than the original. First
lutions of the BS equation are displayed tdr=4,5. All of define®(r)=Dgq(r)¥(r), and rearrange Eq5.2) to read

the solutions seen in Fig. 3 are present, but in addition there

are extra spurious solutions. For example, wWith=4, there

is a second curve emerging from tke=0 ground state ei- K(Hhd(l)= — K23+ [P

genvalue. Fokx>0 this extra eigenvalue curve lies beldiw UDqq(1)

t) and well separated from the true ground level curve for all M-1 2

coupling. Similarly, for other values dfl the Bethe-Salpeter = ———— oM VM=O () —D(1)]

method consistently reproduces all the solutions of the trans- r=r (1=1)

fer matrix method, but it also adds spurious solutions due to -1 2

the two-component nature of the wave function. +> X 5 UMD (1) —D(1)].
One way to avoid these unwanted solutions is to slightly =1 (l—=r)

modify the discretized Feynman rules so that the rung will
attach to the same lines whichever way the exchanged gluon

propagates. As seen in Fig. 8, the asymmetry stems from th]e f I ine th i limit that
possibility of consecutive gluon emissiofebsorptions on o formally e’iam'”_e € continuum fimit we supplose a
each discret@™ variable is large putting eadh-xM, " and

i iatel i i . If thi ibility is dis-
immediately successive time steps. If this possibility is dis keM < at fixedx. Then the right-hand sidehs of Eq.

allowed, the basic exchange rung can be taken to be the su ) . ) ,
of the two different exchanges as in Fig. 10. In addition to >.3) is set up to go to M times the rhs of the continuum 't
Hooft equation:

removing unwanted solutions this veto rule also leads to sim-
pler equations, with a more transparent continuum limit. As

(5.3

we shall see in the next section, it also produces a more K2 W+ 1M=1)
physical strong coupling behavior than our original discreti- A (T2 [P(r)—D()]
zation.
I-1 K2
+2 Zal/r+l/(M7|)[(I)(r)_q)(|)]
V. BETHE-SALPETER WITH VETO =1 (1=1)
The Bethe-Salpeter equation for the discretized 't Hooft _}K_ijl O (y)—P(x) 5.4

model, with the veto imposed as described at the end of the M~ Jo y (y—x)? '

previous section, is

Clearly, u must be chosen so that the Ihs is also of order

MoI-1 1/M. Next, it is easy to verify thab=a™*¥M-D[ 72/6
V()= — ua VMO D ()W (1 +r) — 11+ O(In1/1%)], so that the inverse propagator can be sim-
r=1 T plified, neglecting terms of order M/M?,
1-1 2
+3, g ua DD - (1), 1 1w M2
—1 - — -
' uDg() u? “1\6 21(M-1)

(5.1)
1 1-uk’[726—M/2[(M—1)]

where Dyg is defined in Eq.(4.8). After reindexing both Tu Trulale-MamM—n] P
sums the equation can be written as

> 1 : ;

> _ Of course even for largé/l the equation does contain terms

é////’?//’ ///%/;% - N + M wherel and M —1 are small(i.e., close to L In order for these
contributions to not affect the solution to the continuum Bethe-

FIG. 10. With successive emissions and absorptions vetoed, th®alpeter equation, the wave function must vanish at the endpoints.
two types of exchanges can be combined in a single rung. We shall see how this occurs when we evaluate the numerics later.
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where we have definegi=ua™"'™ =D, The factork multi-

plying ® on the Ihs of Eq(5.3) can now be simplified to

1 KAt

MI(M=1)
K()~e u? 36

1 1—u k[ 76—M2/(M—1)] k%2

U 1+u kA w6—M2M =] 3

K2 M ) M
T ED R ED

1 &t 1 1-uk’n?6  Kk2m?

NaM/I(MI){_Z_

w36 u ltux’wi6 3
+ M K47T2+ 2 < 5.6
IM=1)| 6 7 (1+ux2n26)?|| (5.6

Now write u=uge®®, whereaA will be determined to be of
order 1M, so thatu;=ug{1+aA+[M/I(M—1)]In o} to or-

der 1M. Thenuy must satisfy

1 «*m* 1 1—ugk’m?l6 K2’772_

f(Uo)EF_

Then the continuum limit reads

20 36 ugltugk?mil6 3

1 1
aA+—Mx(1—x) Ina+u0f,(u0)
K4’1T2 K2
2_
x 6 T (1+U0K2’772/6)2H
O (y)—D(x)

K2 fl
S
Muof’(ug) * Jo y

The energy of the system E=(Inug)/a+A, but the diver-
irrelevant
M-independent constant, so it is consistent to idenffy
=A. Then M?=2P*P =2MmA=2MT,aA. We also

gent first term is simply a

identify

/.L2= _2T0 |n a+

Uof'(uo)

2
B (1+ UOKZWZ/G)ZH '

(y=x)

physically

k*ar?

_+K2
6

and we obtain the continuum 't Hooft equation,

1
X(1—x)

D(x)

[MZ_MZ

2Tok? 1 B(y)—Dd(x)

- uof’(uo) ~ Jo
N 1
~ 2mUof ' (Ug) o

(y—x)?

Q(y) —P(x)

(y—x)?

O (x)

(5.7

(5.9

(5

9
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Comparing with Eq(1.1), we see that the only effect on the
continuum limit of keepindT, finite is a finite renormaliza-
tion of the gauge coupling®— —g?/uyf’(ug), and a cou-
pling constant dependent shift ji?. Thus, the only require-
ment for identical continuum physics is thagf’(ugy) be
negative. Since is a free parameter, we can access all posi-
tive values ofu? by tuning it.

Equation(5.7) implicitly relatesug to « via a cubic equa-
tion. Instead of solving this equation, it is more illuminating
to use it to relatey to the combinatiory=uyx?m?/6,

(A-7)A+n)  , 67  6y(l+n+27°

Upg=

1+ p+279° o u0772_(1—772)(1+17)(7gzj:@

We can also obtain the charge renormalization factor
uof’(up) in terms of %

(1+9+293)(1+ n+79°—1°)

Uof'(ug)=— ,
0 ( 0) (1_772)2(1+7])2
(5.11
the effective coupling in the 't Hooft equation
geNe  2k%To  129(1-79)(1+7)To
T Uf'(Up) (Lt p+tTn*—n%)"
(5.12
and the renormalized mass parameter
129°(3+ 7%)To
w?= (5.13

+
O w1t n+ T =)

where we have used=e~#/2To,

As a check, note that the continuous time limit corre-
sponds tol,—® or k2—0, whenceuy— 1 andz—0. Then
the effective coupling Eq.(5.12 goes to 1Zn/w?
=2Tok?=g?N;/m=g2N./27 as it should. Next, with dis-
crete time, we see that, in order to have real energy and
k (Uup>0 and k>>0), we must place the restriction<Oz
<1. Smallk corresponds to smat}, and largex corresponds
to » near unity. Interestingly, we note that the effective cou-
pling in the 't Hooft equation is small iboth the small and
large k regimes.

It is easy to understand the small effective coupling at
large « in terms of our discrete time Feynman diagrams.
With discrete timex?— o causes the diagrams with a maxi-
mal number of powers ok? per time step to dominate. For
example, theyq propagatorDq behaves in this limit as

i UaM”(M_l)
qa( ) 1_u2K4EIIEII\/I7I

:uQM/I(Mfl)E (UKZ)ZK(E(E{W,OK, (514)
k=1

so that the propagator for k21 time steps is
aMNM=D (s st )8 (k2216)%% in the  continuum
limit. We see that away from the end points there is a factor
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1 -l T T I L l T 1 7T | T 11 I L] I- 1 _I LI I T 17T I T 1 I" T 1 l LI I-
: b 0.5 L M=16 _
—~ 0Fr - — A ]
-~ L . e | 4
~— S~ d
= L ] i C ]
I - . L0 g
| -1 - Il L 3
= i ] = -
oo} u . L
- . -0.5 N
-2 - ] C ]
C 11 ! L1 I N | | I 11 _1 —l 11 L | Lt l | ) iy l_ FlG ll PlOtS Of the |0West'
0 2 4 6 8 10 0 02 04 06 08 1 lying energy eigenstates of the
K2 K2 Bethe-Salpeter equation with the
veto for M=6,16,32,64. Other
1 _I TT LN L B B T T l— 1 _| LA S O L B L |— states Wh|Ch occur at h|ghe|’ ener-
- . L 4 gies than those displayed have
i : ] i i been omitted.
0.5 - M=32 — 05 M:64 |
—~~ - 4 ~~~ - -
-+ L i - L N
p— p——
= ) = ’ i
| 0 7] | 0F 7]
[l . ] Il i ]
=] L § 4 L ]
o - 3 (o] - .
-0.5 -0.5 |-
_1 _l L1 I 1.1 ] I 111 I L1 ' 11 I- — -I 11 I L1 1 l 11 1 I 11 1 ' Lt |
0 02 04 06 038 1 0 02 04 06 0.8 1
K? K2

of k27?6 per time step in the continuum limit, which cor- of the quark and antiquark for two time steps, we have
responds to each quark propagating exactly one time unit («?72/6)%(36/k’>7*), so the effective coupling for a

between interactions. Since this is the eigenvalue of thgingle exchange is 3677 for large «, in accord with the
transfer matrix, we immediately infer the strong coupling 7—1 limit of Egs. (5.10, (5.12.

— 2_2
value ofuo=6/x"n". Because of our veto, every exchange "\, we turn to a numerical analysis of our discretized
between quark lines occupies precisely two time steps an L . .
; . 5 ynamics in order to understand how the continuum limit is
contributes only a single factor of~. Thus each exchange : . : .
approached in practice. As with the no-veto case in Sec. IV

costs a relative factor of &f in the strong coupling limit, ite thi i . | blem b
and this relative factor is proportional to the effective cou-'WE€ can write this equation as an eigénvaiue problem by res-

pling in the 't Hooft equation. More precisely, separating outial'ng ¢ and |solgtlng _the eigenvalueas a funct|or_1 of
the factor corresponding to the strong coupling propagatior= U«*- The resulting eigenvalue problem to solve is

_ / _ ’ =1 _1r+1M-1) M-1 11+ 1(M—r)
a (1=x=2)A=xZy-) a a
tdb(l)= pe = 1)+ ——D(r)+ ———D(r)|.
O=aommr ) amsmr=,) X2, —nz *" X2 i—nz_ *0
(5.19
|
We use numerical proceduresmarPLE and MATLAB to find The problem of contamination of the lowest-lying states

the eigenvalues,(x) of the matrix on the right-hand side of by complex solutions has been solved by our veto prescrip-
this equation as a function gf The value ofx? is different  tion: The lowest-lying state favl =6 for Eq.(5.15 remains

for eacht,, sincex?= yt,. However by varying & y<o we intact for all coupling«? (see Fig. 11 which should be
can generate the real solutiortg, for all 2. In order to  compared against Fig. 4 where the lowest-lying state was
solve for complex,’s we would need to vary in the com-  only the ground state foe?<3. When we analyze E@5.15

plex plane rather than just over positive real numbers. for increasingM (see Fig. 11 folM =16,32,64 we see that
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O LU ] LB l T 17T LI I T o T T | T l LI l'rrl [ T T 7T
L «%=0.5 i L x2=0.5 -
L «=1.16433 _ L «=1.04167 4

—~ ~ A _ hi
= -02p R=0 - = -0=2 1 =
£ 1 £ ]
| . [ 4
. | -
P ~-0.4 -: po -0.4 ‘:

s L by b b Lo by g by FIG. 12. Plots of the three

-0.8 -0.6
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1 lowest-lying states against M/
The three graphs correspond to
l/M l/M choices ofa and «? such that the
0 . continuum  limit  of @?

L DN R

=7u?1g%N.=0,1,(2.11f  so
that we can compare these results
against those of 't Hooff6].

L k%=0.5
. «=0.70930
o=211

-0.4

aBE=-In(t)

e by b by Ly

0 0.02 0.04 0.06 0.08 0.1
1/M

-0.6

the nymbgr of Iow-Iying sFates th.at remain uncrossed for alls equiva|ent to fixingn, Ug, andggﬁNC/ﬂ-; thus Choosing a
couplings increases with increasiy We also see that the | 5 forz, determinesy in Eq. (5.13.

Spacing betwee”,thes,e states decreaséd mereases. Re- As we can see in Fig. 12 plots of the three lowest-lying
call that the solutions in Fig. 11 have been generatedvfor energy levels against W show curves that become linear

=0.5. ) with increasingM. These results can be fitted to the func-
In order to compare our numerical results for large valuesjgnal form

of M (hopefully close to the continuum limiwith the nu-
merical results of 't Hooff 6] we solve the Bethe-Salpeter
equation in Eq(5.15 for k>=0.5 and

C2 + (:3) (5.17

C1
aE=In(uy) + Mexp<M i

a=1.16433, «=1.04167, «=0.70930. (5.16

These three choices af correspond to values of 't Hooft wherec, andc, parametrize the departure fromM/behav-

parameter,i®=mu2/giN,, taken to be 0, 1, and 241 jor away from largeM. We used the data of Fig. 12 in the

respectively. These values @if were used iff6]. Fixing k>  range 12&M=2048 to fit this equation. With the fitted
value ofc; we can calculate the mass square of the corre-

fi = 0|’t Hooft||i = 1|’t Hooft|{ii = 2.11{’t Hooft

ground state] 0.72 0 7.25 7.2 24.23 24.1 /8

1st 7.57| 59 ||17.26 17.3 38.17 38.1

ground state| 1.108
ond  ||16.21| 14.3 [27.06| 27.2 || 49.98 | 49.8

FIG. 13. Comparison of numerical fits for 1281 <2048 (for st 1.025
=0 we used 128 M<4096 in order to determine the bound Snd 1.015
state mass squared in units gﬁﬁNC/w for our discretized theory - i
compared with the numerical results of the conventional continuous
time approach of 't Hooft. FIG. 14. Fits tog in Eq. (5.20 for &.=0.
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1 T 1T T I T 17T ]

a - i i
Sos S o8 —
+ -+ = 4
3] O - ]
g 0. g oe L N FIG. 15. Plot of the ground
ot o 3 ] state eigenvector againgt=1/M
g g) i 4 for increasingM for the casesu
® 0. © 0.4 7 =0 and 1. Each eigenvector is
= = - no=1 . plotted for the range oM indi-
u 0. M=16 - 4096 v 02 | M=16 - 1024 \ cated in powers of 2.
&) O]

O Lt | | ] | 11 | I | I | I 11 1 O L 11! l - l | | P11 [ 11 1 ]

0 0.2 04 06 08 1 0 02 04 086 038 1
X X

sponding bound state. As discussed previously, théting form (see rhs of Fig. 16 We see that, for our dis-
M-independent term in Eq5.17) is dropped in identifying cretized equation, the solution for the ground state decreases
P~. Since more rapidly near the end poingg=0 andx=1) asM in-
creases, consistently with the shape eventually approaching a
square profile aMl —oo. However, it is not hard to show that
consistency of the continuum limit requires that the range in
x over which the falloff occurs must decrease less rapidly
2¢, than 1A/M. This st.iII allows an approach to a square profile
:mer--- , (5.19 but convergence is necess_arlly slower than_ one might have
: expected. In fact all solutions of the continuum 't Hooft
in units ofggﬁNc/w. The results of the fits are tabulated in equation withzz =0 have nonzero values at the end pomts.
Thus we should expect slow convergence for all solutions of

Fig. 13 against the results of 't Hoof6]. We see that for ~ X : .
=1 and 2.11, the results of our discretization match quitethe'“_O equation because the discrete solution tends to van-

well those off6]. However, forfi=0 we increased the range ish at the end points bEt the limiting form does not. This
of M to 4096, which still yielded a poor match. What we did Eff€Ct does not occur i >0 because then the continuum
note was that even for these sizable valuesvipfconver- ;olut|or) vanishes at the enq points, S0 a decent approxima-
gence for=0 is slow. When fitting the data fgi=0 for tion to it can be achieved with relatively smallgr.

the ground state to E@5.17) we are trying to force it to fit a
coefficient to a I¥ term which is not supposed to be there.
It is more appropriate to use the form

M?=2P P =2MTy(aE—Inuy), (5.19

we have, fork?=0.5,

MZ

VI. DISCUSSION AND CONCLUSION

In this paper we have explored the efficacy of the discreti-
zation of largeN, QCD proposed ifil] by applying it to the
well-understood 't Hooft model. For a smooth continuum
limit over the whole range of bare coupling we had to
where the powep of the leading behavior is fitted dynami- introduce a refinement of the discrete time gluon emission
cally. We performed this refined fit to the three lowest-lyingvertex. This amounted to insisting that after an emission, at
states foru=0 which yielded the results assembled in Fig. least two time steps had to intervene before the next emis-
14. These results provide numerical evidence thafifer0,  sion, with a similar restriction on consecutive absorptions. In
the first and second excited states do have a nonzero meseontrast, an absorption is allowed to immediately follow an
mass(i.e., the leading behavior is /). However, the lead- emission and vice versa. With this refinement in place we
ing behavior for the ground state decreases more rapidly thaiound that the continuum 't Hooft equation describes the
1/M and is consistent with zero meson mass. mass spectrum for all read. However, the parameters that

We next address the issue of slow convergencegfor occur in the equation are renormalized from their bare val-
=0 by examining the form of the ground state energy eigenues, as summarized in Eq$.10, (5.12), (5.13.
vector for increasing values ofl. It is well known that the An amusing outcome of this renormalization phenomenon
solutions of Eq(1.1) for =0 do not vanish at the endpoints is that the effective coupling goes to zero in both the small
x=0, 1; indeed the exact ground state is simply a constaneand largex limits. Perhaps this feature is a version of weak-
As we can see in Fig. 15, at finite larg® the ground state strong coupling duality, much celebrated in recent develop-
solution of our discretized equation is ever smaller at the endnents in string-M theory. However, we must concede that
points, and the progression of shapes is toward a more squatwo-dimensional QCD may be too trivial to expect anything
profile. But even forM =4096 the eigenvector has not yet other than the usual continuum theory to emerge from any
converged to its limiting form. This should be comparedcontinuum limit. Another caveat against attributing much
with the solution forz=1 which rapidly approaches its lim- significance to this “duality” phenomenon is that the phys-

C, C3

C1
aE=In(u0)+Wex;{M+W , (5.20
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ics of the continuum limit really only depends on the ratio number of gluons. This must occur for the fishnet diagrams
w?IN.g?. This is because one can always choose the effedto be relevant, and is allowed in higher dimensional space-
tive coupling as the fundamental unit of energy. Then theime. The next step is to study the three-dimensional case,
theories at different coupling but with the same value of thisthe simplest gauge theory where fishnet diagrams can be rel-
ratio (0 for example are physically identical: any differences eyant.
in description can be removed by a change of units.

At any rate, we conclude that the discretizatior] bf can
be meaningfully applied to QCD in two space-time dimen- ACKNOWLEDGMENTS
sions, with some intriguing hints about the nature of weak-
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