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Analyzing the ’t Hooft model on an x¿-p¿ lattice
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We study the ’t Hooft model~largeNc QCD in two space-time dimensions! using an improved approach to
digitizing the sum of gauge theory Feynman diagrams based on light-cone gaugeA150 and discretizedp1

and ix1. Our purpose is to test the new formalism in a solvable case, with the hope to gain some insight into
how it might be usefully applied to the physically interesting case of four-dimensional QCD.
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I. INTRODUCTION

Last year, with Bering we proposed@1# a new method to
digitize the sum of planar diagrams selected by ’t Hoof
Nc→` limit of SU(Nc) gauge theories@2#. The proposal,
based on the light-cone or infinite momentum frame desc
tion of the dynamics, involved discretization of both thep1

carried by each line of the diagram and the propagation t
t5 ix1, as in @3–5#. But the main advantage of the ne
version is the flexibility it offers in dealing withp150 is-
sues that typically plague the light-cone description.

We hope that our formalism will eventually allow an im
proved understanding of QCD in four-dimensional spa
time. But in this article, we merely wish to test the propo
in the context of the well-understood case of largeNc gauge
theories in two space-time dimensions, namely, the ’t Ho
model @6#. Our purpose is not to unearth new aspects of
model, but rather to see how its well-known properties c
be obtained from our new discretization.

The physical content of the ’t Hooft model boils down
an integral equation, essentially a Bethe-Salpeter equa
@9#, that determines the mass spectrum ofqq̄ mesons. The
reason the limitNc→` reduces to ladder diagrams~albeit
with self-energy corrected quark propagators!, is that the
two-dimensional gluon is not dynamical~there are no trans
verse polarizations!. Thus, as with any axial gauge, the ligh
cone gaugeA250 eliminates all gluon self-interactions, s
A1 can be integrated out inducing an instantaneous Coulo
potential. But the ’t Hooft limitNc→` further eliminates all
quark loops and all nonplanar diagrams, leaving only
planar self-energy corrections to the quark propagator,
the ladder bare gluon exchanges~Coulomb interaction! be-
tween quark-antiquark lines in the singletqq̄ channel. In
light-cone parameters the Bethe-Salpeter equation summ
these ladderqq̄ diagrams simplifies to the single variable
Hooft integral equation@6#:

M2w~x!5S 1

x
1

1

12xDm2w~x!

2
gs

2Nc

2p
PE

0

1

dy
w~y!2w~x!

~y2x!2 , ~1.1!

where the integral is understood to be evaluated by the p
cipal value prescription. The variablex is the fraction carried
by the quark of the totalP1 of the system~the antiquark
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carriesP1 fraction 12x!. Also M is the mass of the meso
bound state andw satisfies the boundary conditions,w(0)
5w(1)50.

Since the new formalism discretizest[ ix15ka in addi-
tion to p15 lm, the corresponding simplifications lead to a
equation that is not a straightforward discretization of t
integral equation. In particular, the continuum limit can
taken in different ways depending on the ratioT05m/a
~which would be infinite for continuoust!, and we want to
explore to what extent these different continuum limits le
to the same physics. We shall find that some care mus
taken with the setup of the discretet dynamics in order for
this to be true. Indeed, a numerical study shows that the m
simple-minded treatment leads to a ground state that
comes unstable at moderate ’t Hooft coupling even with re
tively small P1/m[M unless the ratioa/m51/T0 is tuned
to be sufficiently small~perhaps infinitesimal for largeM!. If
this feature were robust, it would cast doubt on any poten
utility of the discretization oft.

To overcome this difficulty, we find it necessary to ve
some of the ‘‘densest’’ discretized Feynman diagrams
quark must be forbidden to emit two gluons at immediat
successive time steps, with a similar veto on two succes
absorptions. With this simple veto~which is prescribed lo-
cally in time!, we shall show that the continuum limit re
duces to the ’t Hooft model provided only that the totalP1

of theqq̄ system is large compared to the discretization u
m. In particular it is not necessary that the ratioT05m/a be
large. KeepingT0 finite in the continuum limit leads to the ’
Hooft equation with a nontrivial renormalization of the co
pling. Because of this effect, it turns out that the effecti
~renormalized! coupling is small for both large and sma
bare coupling, reminiscent of strong-weak coupling dual
The strong coupling limit favors the densest diagrams,
vetoing some of the densest ones has a dramatic effect o
strong coupling behavior of the theory. This possibility w
anticipated and discussed in@1# in connection with the nature
of the fishnet diagrams in higher dimensional space-time

The rest of the paper is organized as follows. In Sec. II
set up the discretized ’t Hooft model. We analyze it using
single time-step transfer matrix in Sec. III and using a Bet
Salpeter approach in Sec. IV. In Sec. V we discuss a
implement the veto which allows a satisfactory continuu
limit at fixed T0 . Discussion and concluding remarks are t
subject of the final section.
©2001 The American Physical Society06-1
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II. DISCRETIZED ’t HOOFT MODEL

The Lagrange density for SU(Nc) gauge fields coupled to
quarks in the fundamental representation is given by

L52 1
4 TrFmnFmn1q̄@ ig•~]2 igA!2m0#q, ~2.1!

where Fmn5]mAn2]nAm2 ig@Am ,An#. We remind the
reader that the normalization of gauge fields appropriate
matrix fields and dictated by the gluon kinetic term differs
a factor 1/& from the more standard one:

2
1

4 (
a

Fa
mnFamn52

1

2
TrFs

mnFsmn ,

with Fs[(a(la/2)Fa . Thus As5A/&, and we conclude
thatg5gs /&. In two space-time dimensions we choose t
representation ofg matrices for which the lightlike compo
nents are

g15&S 0 1

0 0D , g25&S 0 0

1 0D . ~2.2!

With this choice the field equation for the upper compon
of the quark spinor does not involve the ‘‘time’’ derivativ
and is an equation of constraint relating the upper com
nent,q1 , to the lower component,q2 . Working in light-cone
gauge (A25A150), we can eliminate the upper compone
in favor of the lower component yielding the light-con
gauge Lagrange density

L51
1

2
Tr~]2A1!21 ic†F]12 igA11

m0
2

2]2
Gc, ~2.3!

wherec521/4q2 .
Our discretization of Feynman diagrams is based on

x1 representation of each bare propagator

D~p1,x1!5E dp2

2p
D̃~p1,p2!e2 ix1p2

. ~2.4!

Performing thep2 integral gives the following Feynma
rules for the continuum theory:

Dc~p1,x1!5e2 ix1m0
2/2p1→e2tm0

2/2p1
,

DA~p1,x1!5 i
d~x1!

p12 →2
d~t!

p12 ,

Vc†cA5 ig→g, ~2.5!

where the arrows indicate the rules to use with imagin
time.

One way to digitize the ’t Hooft equation~1.1! is to put
the variablesx,y on a grid, which amounts to discrete ligh
cone quantization@3,7#, where one discretizes the amount
P1 each line of the ladder diagram carries in quanta ofm

p15 lm, l 51,2,3,... .
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One can then focus on a state of the system of interest~in our
case aqq̄ system! with total P15Mm. The continuum
theory is recovered by taking the combined limitsm→0 and
M→` while keepingP15Mm fixed. Following @1,3#, in
addition to discretizing thep1 of each particle, we also dis
cretize imaginary light-cone time, t5 ix15ka (k
51,2,3,...). This discretization~which also serves as an u
traviolet cutoff! allows the continuum limit to be reached b
keeping T0[m/a fixed and taking bothm,a→0 and M
→` simultaneously. Actually, since the physics of the d
cretized model depends only on the ratiom/a, the continuum
limit is nothing but the largeM limit, whereM measures the
total P1 of the system state. The conventional continuo
time discrete light-cone quantization~DLCQ! approach~see
@8# and references therein! corresponds to the special ca
T0→`.

Discretization of the quark propagator poses no difficul
However, for the instantaneous interaction induced by in
grating outA1 , we allow for ambiguities as in@1#. The only
constraint is that the discretized propagator become tha
Eq. ~2.5! in the continuum limit. This allows us to spread o
the instantaneous interaction away fromt50 ~see @1# for
further discussion!. Thus the gauge propagator can be e
pressed as

DA~Mn,2 ika!52 f k

T0

M2 where (
k51

`

f k51. ~2.6!

We require that these arbitrary parametersf k rapidly vanish
with increasingk. Using this discretization, the Feynma
rules for the discrete theory are summarized in Fig. 1.

For the purposes of this paper we shall not exploit the
generality of the set of$ f k% ’s. We restrict attention to the
simplest version where the spread out interaction propag
only one unit in light-cone time; this corresponds to setti
f 151, f k.150. The Feynman rules of Fig. 1 can be furth
simplified if we absorb the negative sign from the antiqua
propagator into the corresponding vertex factor. We defi
new parameters

a[e2m0
2/2T0 and k[Ag2Nc

2pT0
. ~2.7!

FIG. 1. Feynman rules for the discretized ’t Hooft model. D
crete light-cone time flows up the page.
6-2



s t

en

t

e-

nc
te
at
im
s

-

l.

ANALYZING THE ’t HOOFT MODEL ON AN x1-p1 LATTICE PHYSICAL REVIEW D 63 085006
We also recall that in ’t Hooft’s largeNc limit every addi-
tional pair of cubic vertices in the ladder sum correspond
a completed color index loop, which produces a factorNc .
Thus we shall also absorb a factor ofANc into each vertex.
Simply put, all terms in the ladder sum are only depend
on the ’t Hooft couplingg2Nc . The simplified Feynman
rules are presented in Fig. 2.

III. SINGLE TIME-STEP TRANSFER MATRIX

Using the Feynman rules of Fig. 2 we can now proceed
set up a transfer matrix which evolves a singletqq̄ system
one step forward inx1 time. Once the matrix has been d
termined as a function of the coupling,k, solving the eigen-
value problem will yield the bound state energies as fu
tions of coupling. Since the scalar particle which media
the Coulomb interaction only lives one time-step, any st
can have at most two intermediate scalars. Thus for the s
plest systems withP1/m[M53,4,5,6 the number of state
k,

h
m

-
u

08500
o

t

o
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are 3, 7, 14, 25@the number of states is (M21)(M222M
16)/6 for generalM#. For illustrative purposes we shall ex
plicitly present the transfer matrix forM54.

For M54 there are seven states, namely,

FIG. 2. Simplified discretized Feynman rules for ’t Hooft mode
u3,1&5b3
†d1

†u0&, u2,2&5b2
†d2

†u0&, u1,3&5b1
†d3

†u0&,

u2,1,1&5b2
†a1

†d1
†u0&, u1,2,1&5b1

†a2
†d1

†u0&, u1,1,2&5b1
†a1

†d2
†u0&,

u1,1,1,1&5b1
†a1

†2d1
†u0&, ~3.1!
r
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whereb†, d†, and a† are creation operators for the quar
antiquark, and intermediate gauge particle states~the sub-
script on these operators denotesp1/m!.

By construction each of the quark and antiquark states
at least one unit ofp1/m. The matrix that evolves the syste
forward in x1 can be factored into a matrixA that involves
only propagators and a matrixV that involves vertices. Writ-
ing the state of the system as a column vector,Y, with seven
components corresponding to the seven states in Eq.~3.1!,
the transfer matrix equation is

tY5AVY, ~3.2!

where

A5diag@a4/3,a,a4/3,2a3/2,2a2/4,2a3/2,a2#, ~3.3!

V5S 1 0 0 k k 0 0

0 1 0 2k 0 k 2k2

0 0 1 0 2k 2k 0

k 2k 0 0 0 2k2 0

k 0 2k 0 0 0 0

0 k 2k 2k2 0 0 0

0 2k2 0 0 0 0 0

D ,

~3.4!

and the eigenvalue ist5e2aE. Solving this eigenvalue prob
lem will yield energy eigenvalues as a function of the co
as

-

pling k. Note that the matrixAV is not Hermitian, and be-
cause of the negative diagonal entries inA, the equivalent
matrix AAVAA is not Hermitian either. Thus there will, in
general, be complex eigenvaluest. The best one can hope fo
is that the lowest-lying energy eigenvalues~highest-lying
positive real part fort! are real. A satisfactory outcome fo
the continuum limitM→` would be that the ground stat
energy and all the energy values with real parts of order 1M
above the ground state energy are real. Then the com
eigenvalues would be strict lattice artifacts.

The existence of complext eigenvalues is already eviden
tat M54 as shown in Fig. 3, where we have chosena
50.5, which for definiteness we use in subsequent gra

FIG. 3. Plot of the real solutions oft as a function ofk2 for the
M54 single time-step transfer matrix. It is convenient to plot
rather than energy since then infinite energy corresponds tot50.
Also note that the lowest-lying states are those with the larg
value of t.
6-3
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JOEL S. ROZOWSKY AND CHARLES B. THORN PHYSICAL REVIEW D63 085006
unless otherwise indicated. The ground state~highest value!
of t stays real and positive for all coupling. However the ne
two excited states stay real only fork,kc when they collide
with eigenvalues that have emerged fromt50 ~infinite en-
ergy! after which the eigenvalues become complex conjug
pairs. The hope is that for increasingM the number of
lowest-lying energy levels that remain real all the way
strong coupling should increase. ForM54 analysis shows
that the lowest-energy eigenvalue~that of the ground state!
stays well separated from the other states~real and complex!
for all couplings; see Fig. 3. We also see the eigenva
solutions~again see Fig. 3! which are well behaved at wea
coupling can merge witht50 solutions ~solutions which
havet50 at zero coupling correspond to infinite energy l
tice artifacts! and become complex. Complext solutions are
not physical as they correspond to complex energies. T
behavior is generic for our discretization, but as we shall
later, when the problem has been set up correctly, we
separate the lowest-lying states which survive the continu
limit from the lattice artifacts.

However, when one performs a similar analysis for t
M55 andM56 systems the lowest eigenstate at weak c
pling does not remain the ground state for all coupling~see
Fig. 4!. In both cases a complex solution at weaker coupl
becomes real at larger coupling with a lower energy than
weak coupling ground state. Comparing this behavior
M55 andM56 suggests that for increasingM this probably
occurs at weaker coupling. Thus for largeM the weak cou-
pling ground state might only be valid for extremely we
~perhaps only infinitesimal! coupling.

Conventional continuous time DLCQ corresponds in o
discretization tok2→0 since thenT0→`. In order for our
light-cone time discretization to be useful, the soluti
should work for all coupling~corresponding to all values o
T0!. Here, in this single time-step analysis, we see that
most naive discretization does not satisfy this requirem
We shall have to modify the discretization in order to
this.

Since the continuum limit requiresM→` the single time-
step analysis is also inefficient because the rank of the ma
to diagonalize is ofO(M3). However, as we shall show i

FIG. 4. Plot of the lowest energy real solutions ofE5
2 ln(t)/a as a function ofk2 for the M55 andM56 single time-
step transfer matrices. We see the appearance of additional
solutions at lower energies than the weak coupling ground state
k.kc .
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the following section, writing the ladder equation in the for
of a Bethe-Salpeter equation~exchange-to-exchange rath
than single time step! will reduce the complexity of the ei-
genvalue problem to a matrix of rank ofO(M ).

IV. BETHE-SALPETER EQUATION

A more efficient way to solve the discretized ’t Hoo
model is by setting up a Bethe-Salpeter equation@9#. Instead
of a matrix equation that evolves theqq̄ system one step
forward in time, we can write down a system of equatio
~also a matrix equation! which evolves the system exchang
to exchange. The simplification is that the intermediate s
involves two ~dressed! particles ~M21 possible states fo
generalM! rather than two, three, and four bare particles
in the case of the single time-step transfer matrix. The tra
off is that the equations become more complicated beca
of the dressed propagators.

In order to set up the Bethe-Salpeter equation it is nec
sary to work out the dressed quark propagator. In the con
of this discretization the dressed quark propagator is just
sum of all possible iterated bubbles. There is no room
nested bubbles becausef k.150. While the bubbles extend
only one time step inx1, we must still allow for all possible
P1 routings through each bubble.

The energy representation of the bare quark propag
carrying p1/m5 l ~without bubbles!, obtained by multiply-
ing by uk and summing over allk.0, is given by

Dq~ l !5 (
k51

`

~ua1/l !k5
ua1/l

12ua1/l , ~4.1!

whereu[1/t5eaE. The contribution of a single bubble is

eal
or

FIG. 5. Iterated bubbles which contribute to the quark propa
tor.

FIG. 6. Here is a section of the ladder sum between two
changes. The quark on the left carriesp1/m5 l and the antiquark
on the right carriesp1/m5M2 l .
6-4
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2k2S l[2k2(
r 51

l 21
1

r 2 a1/~ l 2r !. ~4.2!

The full propagator is given by iterations of Eq.~4.1! and Eq.
~4.2! as displayed in Fig. 5,

Dq
full~ l !5Dq~ l !(

k50

`

„2uk2S lDq~ l !…k5
ta1/l

t22ta1/l1a1/lk2S l
.

~4.3!

The denominator of the full propagator can be factored
two roots so that

Dq
full~ l !5

ta1/l

~ t2t1!~ t2t2!
, ~4.4!

where

t65
a1/l

2
@16A124a21/lk2S l #. ~4.5!

We can now partial fraction the full propagator
um

co

08500
n

Dq
full~ l !5

a1/l

~ t12t2! F t1

~ t2t1!
2

t2

~ t2t2!G
5

a1/l

~ t12t2! (
k51

`

uk~ t1
k 2t2

k !. ~4.6!

Expressing the full quark propagator as the sum in Eq.~4.6!
allows us to read off the time representation of the full qua
propagator for discretet5ka.

What we really need in order to set up the Bethe-Salpe
equation is a ‘‘propagator’’ which propagates theqq̄ system,
including bubbles, between exchanges between the q
and antiquark; see Fig. 6. The ‘‘propagator’’ which evolv
the system forward between exchanges is then

Dqq̄~ l !5
aM / l ~M2 l !

~ t12t2!~s12s2! (
k51

`

uk~ t1
k 2t2

k !~s1
k 2s2

k !,

~4.7!

wheres6 are the roots for the antiquark@obtained simply by
replacingl in Eq. ~4.5! by M2 l #. With some manipulation
this can be simplified to
Dqq̄~ l !5
uaM / l ~M2 l !~12u2k4S l8SM2 l8 !

~12u2k4S l8SM2 l8 !22uaM / l ~M2 l !~12uk2SM2 l8 !~12uk2S l8!
, ~4.8!
where for brevity, we have defined

S l8[a1/~M2 l !S l . ~4.9!

FIG. 7. Parallelogram and trapezoid sections of the ladder s
Internal variables label the number of units ofp1/m carried by each
leg. The quark and antiquark propagators include self-energy
rections.
We can now now set up the Bethe-Salpeter equations

.

r-
6-5
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FIG. 8. Asymmetry in the densest configuration of exchange
the same sense and opposite sense. The double arrow points
effect of implementing the veto.
08500
in
theFIG. 9. Real eigenvalues using the Bethe-Salpeter method
M54,5. All solutions of the single time-step method~see Fig. 3!
are reproduced, but additional spurious solutions are present.
D̄qq̄~ l !5
aM / l ~M2 l !

~ t12t2!~s12s2!(k51

`

uk11~ t1
k 2t2

k !~s1
k122s2

k12!

5
ua2/~M2 l !@uaM / l ~M2 l !~12uk2SM2 l8 !2k2SM2 l8 ~12u2k4S l8SM2 l8 !#

~12u2k4S l8SM2 l8 !22uaM / l ~M2 l !~12uk2SM2 l8 !~12uk2S l8!
. ~4.14!
6-6
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ANALYZING THE ’t HOOFT MODEL ON AN x1-p1 LATTICE PHYSICAL REVIEW D 63 085006
wherea l[aM / l (M2 l ).
This discretized equation has roughly twice the compl

ity of a straightforward discretization of the ’t Hooft equ
tion. The reason is that a rung propagating forward from
to right can couple to subsequent evolutions forbidden t
rung from right to left~and vice versa!. See Fig. 8 for the
graphs responsible for this asymmetry. This is the reason
had to introduce a two-component Bethe-Salpeter~BS! wave
function. An immediate consequence is that atk50 each
energy value is at least doubly degenerate, including
ground state. This feature is evident in Fig. 9 where the
lutions of the BS equation are displayed forM54,5. All of
the solutions seen in Fig. 3 are present, but in addition th
are extra spurious solutions. For example, withM54, there
is a second curve emerging from thek50 ground state ei-
genvalue. Fork.0 this extra eigenvalue curve lies below~in
t! and well separated from the true ground level curve for
coupling. Similarly, for other values ofM the Bethe-Salpete
method consistently reproduces all the solutions of the tra
fer matrix method, but it also adds spurious solutions due
the two-component nature of the wave function.

One way to avoid these unwanted solutions is to sligh
modify the discretized Feynman rules so that the rung w
attach to the same lines whichever way the exchanged g
propagates. As seen in Fig. 8, the asymmetry stems from
possibility of consecutive gluon emissions~absorptions! on
immediately successive time steps. If this possibility is d
allowed, the basic exchange rung can be taken to be the
of the two different exchanges as in Fig. 10. In addition
removing unwanted solutions this veto rule also leads to s
pler equations, with a more transparent continuum limit.
we shall see in the next section, it also produces a m
physical strong coupling behavior than our original discre
zation.

V. BETHE-SALPETER WITH VETO

The Bethe-Salpeter equation for the discretized ’t Ho
model, with the veto imposed as described at the end of
previous section, is

C~ l !5 (
r 51

M2 l 21
k2

r 2 ua1/l 11/~M2 l 2r !Dqq̄~ l 1r !C~ l 1r !

1(
r 51

l 21
k2

r 2 ua1/~ l 2r !11/~M2 l !Dqq̄~ l 2r !C~ l 2r !,

~5.1!

where Dqq̄ is defined in Eq.~4.8!. After reindexing both
sums the equation can be written as

FIG. 10. With successive emissions and absorptions vetoed
two types of exchanges can be combined in a single rung.
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C~ l !5 (
r 5 l 11

M21
uk2

~ l 2r !2 a1/l 11/~M2r !Dqq̄~r !C~r !

1(
r 51

l 21
uk2

~ l 2r !2 a1/r 11/~M2 l !Dqq̄~r !C~r !. ~5.2!

By imposing the veto we have reduced the rank of the eig
value problem from 2(M22) to M21.

The new discretized equation is much easier to analyz
the formal continuum limitM→` than the original. First
defineF(r )[Dqq̄(r )C(r ), and rearrange Eq.~5.2! to read

K~ l !F~ l ![S 1

uDqq̄~ l !
2k2~S l81SM2 l8 ! DF~ l !

5 (
r 5 l 11

M21
k2

~ l 2r !2 a1/l 11/~M2r !@F~r !2F~ l !#

1(
r 51

l 21
k2

~ l 2r !2 a1/r 11/~M2 l !@F~r !2F~ l !#.

~5.3!

To formally examine the continuum limit we suppose th
each discretep1 variable is large putting eachl→xM,1 and
takeM→` at fixedx. Then the right-hand side~rhs! of Eq.
~5.3! is set up to go to 1/M times the rhs of the continuum ’
Hooft equation:

(
r 5 l 11

M21
k2

~ l 2r !2 a1/l 11/~M2r !@F~r !2F~ l !#

1(
r 51

l 21
k2

~ l 2r !2 a1/r 11/~M2 l !@F~r !2F~ l !#

→ k2

M
PE

0

1

dy
F~y!2F~x!

~y2x!2 . ~5.4!

Clearly, u must be chosen so that the lhs is also of ord
1/M . Next, it is easy to verify thatS l85a1/l 11/(M2 l )@p2/6
21/l 1O(ln l/l2)#, so that the inverse propagator can be si
plified, neglecting terms of order lnM/M2,

1

ulDqq̄~ l !
;

1

ul
22k4S p2

6
2

M

2l ~M2 l ! D
2

2
1

ul

12ulk
2@p2/62M /2l ~M2 l !#

11ulk
2@p2/62M /2l ~M2 l !#

, ~5.5!

1Of course even for largeM the equation does contain term
where l and M2 l are small~i.e., close to 1!. In order for these
contributions to not affect the solution to the continuum Beth
Salpeter equation, the wave function must vanish at the endpo
We shall see how this occurs when we evaluate the numerics l

he
6-7
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where we have definedul5uaM / l (M2 l ). The factorK multi-
plying F on the lhs of Eq.~5.3! can now be simplified to

K~ l !;aM / l ~M2 l !F 1

ul
22

k4p4

36

2
1

ul

12ulk
2@p2/62M /2l ~M2 l !#

11ulk
2@p2/62M /2l ~M2 l !#

2
k2p2

3

1
k4p2

6

M

l ~M2 l !
1k2

M

l ~M2 l !G
;aM / l ~M2 l !H 1

ul
22

k4p4

36
2

1

ul

12ulk
2p2/6

11ulk
2p2/6

2
k2p2

3

1
M

l ~M2 l ! Fk4p2

6
1k22

k2

~11ulk
2p2/6!2G J . ~5.6!

Now write u5u0eaD, whereaD will be determined to be of
order 1/M , so thatul5u0$11aD1@M / l (M2 l )# ln a% to or-
der 1/M . Thenu0 must satisfy

f ~u0![
1

u0
22

k4p4

36
2

1

u0

12u0k2p2/6

11u0k2p2/6
2

k2p2

3
50.

~5.7!

Then the continuum limit reads

FaD1
1

Mx~12x! H ln a1
1

u0f 8~u0!

3Fk4p2

6
1k22

k2

~11u0k2p2/6!2G J GF~x!

5
k2

Mu0f 8~u0!
PE

0

1

dy
F~y!2F~x!

~y2x!2 . ~5.8!

The energy of the system isE5(ln u0)/a1D, but the diver-
gent first term is simply a physically irrelevan
M-independent constant, so it is consistent to identifyP2

5D. Then M252P1P252MmD52MT0aD. We also
identify

m2522T0H ln a1
1

u0f 8~u0! Fk4p2

6
1k2

2
k2

~11u0k2p2/6!2G J ,

and we obtain the continuum ’t Hooft equation,

FM22m2
1

x~12x!GF~x!

5
2T0k2

u0f 8~u0!
PE

0

1

dy
F~y!2F~x!

~y2x!2

5
gs

2Nc

2pu0f 8~u0!
PE

0

1

dy
F~y!2F~x!

~y2x!2 . ~5.9!
08500
Comparing with Eq.~1.1!, we see that the only effect on th
continuum limit of keepingT0 finite is a finite renormaliza-
tion of the gauge couplingg2→2g2/u0f 8(u0), and a cou-
pling constant dependent shift inm2. Thus, the only require-
ment for identical continuum physics is thatu0f 8(u0) be
negative. Sincea is a free parameter, we can access all po
tive values ofm2 by tuning it.

Equation~5.7! implicitly relatesu0 to k via a cubic equa-
tion. Instead of solving this equation, it is more illuminatin
to use it to relateu0 to the combinationh[u0k2p2/6,

u05
~12h2!~11h!

11h12h2 , k25
6h

u0p2 5
6h~11h12h2!

~12h2!~11h!p2 .

~5.10!

We can also obtain the charge renormalization fac
u0f 8(u0) in terms ofh:

u0f 8~u0!52
~11h12h2!~11h17h22h3!

~12h2!2~11h!2 ,

~5.11!

the effective coupling in the ’t Hooft equation

geff
2 Nc

p
52

2k2T0

u0f 8~u0!
5

12h~12h2!~11h!T0

p2~11h17h22h3!
,

~5.12!

and the renormalized mass parameter

m25m0
21

12h2~31h2!T0

p2~11h17h22h3!
, ~5.13!

where we have useda5e2m0
2/2T0.

As a check, note that the continuous time limit corr
sponds toT0→` or k2→0, whenceu0→1 andh→0. Then
the effective coupling Eq.~5.12! goes to 12T0h/p2

52T0k25g2Nc /p5gs
2Nc/2p as it should. Next, with dis-

crete time, we see that, in order to have real energy
k (u0.0 and k2.0!, we must place the restriction 0,h
,1. Smallk corresponds to smallh, and largek corresponds
to h near unity. Interestingly, we note that the effective co
pling in the ’t Hooft equation is small inboth the small and
largek regimes.

It is easy to understand the small effective coupling
large k in terms of our discrete time Feynman diagram
With discrete time,k2→` causes the diagrams with a max
mal number of powers ofk2 per time step to dominate. Fo
example, theqq̄ propagatorDqq̄ behaves in this limit as

Dqq̄~ l !;
uaM / l ~M2 l !

12u2k4( l8(M2 l8

5uaM / l ~M2 l !(
k51

`

~uk2!2k~( l8(M2 l8 !k, ~5.14!

so that the propagator for 2k11 time steps is
aM / l (M2 l )(k4( l8(M2 l8 )k→(k2p2/6)2k in the continuum
limit. We see that away from the end points there is a fac
6-8
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FIG. 11. Plots of the lowest-
lying energy eigenstates of th
Bethe-Salpeter equation with th
veto for M56,16,32,64. Other
states which occur at higher ene
gies than those displayed hav
been omitted.
r-
un
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ng
ge
an
e

u
u

tio

ed
is

. IV
res-
of k2p2/6 per time step in the continuum limit, which co
responds to each quark propagating exactly one time
between interactions. Since this is the eigenvalue of
transfer matrix, we immediately infer the strong coupli
value of u056/k2p2. Because of our veto, every exchan
between quark lines occupies precisely two time steps
contributes only a single factor ofk2. Thus each exchang
costs a relative factor of 1/k2 in the strong coupling limit,
and this relative factor is proportional to the effective co
pling in the ’t Hooft equation. More precisely, separating o
the factor corresponding to the strong coupling propaga
f

08500
it
e

d

-
t
n

of the quark and antiquark for two time steps, we havek2

5(k2p2/6)2(36/k2p4), so the effective coupling for a
single exchange is 36/k2p4 for large k, in accord with the
h→1 limit of Eqs. ~5.10!, ~5.12!.

Now we turn to a numerical analysis of our discretiz
dynamics in order to understand how the continuum limit
approached in practice. As with the no-veto case in Sec
we can write this equation as an eigenvalue problem by
caling c and isolating the eigenvaluet as a function ofx
[uk2. The resulting eigenvalue problem to solve is
tF~ l !5
a l

~12x2( l8(M2 l8 !
F ~12x( l8!~12x(M2 l8 !

~12x2( l8(M2 l8 !
F~ l !1x(

r 51

l 21
a1/r 11/~M2 l !

~ l 2r !2 F~r !1x (
r 5 l 11

M21
a1/l 11/~M2r !

~ l 2r !2 F~r !G .

~5.15!
es
rip-

as
We use numerical procedures inMAPLE andMATLAB to find
the eigenvaluestn(x) of the matrix on the right-hand side o
this equation as a function ofx. The value ofk2 is different
for eachtn sincek25xtn . However by varying 0<x<` we
can generate the real solutions,tn , for all k2. In order to
solve for complextn’s we would need to varyx in the com-
plex plane rather than just over positive real numbers.
The problem of contamination of the lowest-lying stat
by complex solutions has been solved by our veto presc
tion: The lowest-lying state forM56 for Eq.~5.15! remains
intact for all couplingk2 ~see Fig. 11!, which should be
compared against Fig. 4 where the lowest-lying state w
only the ground state fork2&3. When we analyze Eq.~5.15!
for increasingM ~see Fig. 11 forM516,32,64! we see that
6-9
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FIG. 12. Plots of the three
lowest-lying states against 1/M .
The three graphs correspond
choices ofa andk2 such that the
continuum limit of m̃2

[pm2/geff
2 Nc50,1,(2.11)2 so

that we can compare these resu
against those of ’t Hooft@6#.
a

r

e

r

t

ng
r
c-

e

rre-

d

ou
the number of low-lying states that remain uncrossed for
couplings increases with increasingM. We also see that the
spacing between these states decreases asM increases. Re-
call that the solutions in Fig. 11 have been generated foa
50.5.

In order to compare our numerical results for large valu
of M ~hopefully close to the continuum limit! with the nu-
merical results of ’t Hooft@6# we solve the Bethe-Salpete
equation in Eq.~5.15! for k250.5 and

a51.16433, a51.04167, a50.70930. ~5.16!

These three choices ofa correspond to values of ’t Hoof
parameter,m̃2[pm2/geff

2 Nc , taken to be 0, 1, and 2.112,
respectively. These values ofm̃ were used in@6#. Fixing k2

FIG. 13. Comparison of numerical fits for 128<M<2048 ~for
m̃50 we used 128<M<4096! in order to determine the boun
state mass squared in units ofgeff

2 Nc /p for our discretized theory
compared with the numerical results of the conventional continu
time approach of ’t Hooft.
08500
ll

s

is equivalent to fixingh, u0 , andgeff
2 Nc /p; thus choosing a

value for m̃ determinesa in Eq. ~5.13!.
As we can see in Fig. 12 plots of the three lowest-lyi

energy levels against 1/M show curves that become linea
with increasingM. These results can be fitted to the fun
tional form

aE5 ln~u0!1
c1

M
expS c2

M
1

c3

M2D , ~5.17!

wherec2 andc3 parametrize the departure from 1/M behav-
ior away from largeM. We used the data of Fig. 12 in th
range 128<M<2048 to fit this equation. With the fitted
value of c1 we can calculate the mass square of the co

s
FIG. 14. Fits tob in Eq. ~5.20! for m̃50.
6-10
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FIG. 15. Plot of the ground
state eigenvector againstx5 l /M
for increasingM for the casesm̃
50 and 1. Each eigenvector i
plotted for the range ofM indi-
cated in powers of 2.
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sponding bound state. As discussed previously,
M-independent term in Eq.~5.17! is dropped in identifying
P2. Since

M252P1P252MT0~aE2 ln u0!, ~5.18!

we have, fork250.5,

M25
2c1

0.22265
1¯ , ~5.19!

in units of geff
2 Nc /p. The results of the fits are tabulated

Fig. 13 against the results of ’t Hooft@6#. We see that for
m̃51 and 2.11, the results of our discretization match qu
well those of@6#. However, form̃50 we increased the rang
of M to 4096, which still yielded a poor match. What we d
note was that even for these sizable values ofM, conver-
gence form̃50 is slow. When fitting the data form̃50 for
the ground state to Eq.~5.17! we are trying to force it to fit a
coefficient to a 1/M term which is not supposed to be ther
It is more appropriate to use the form

aE5 ln~u0!1
c1

Mb expS c2

M
1

c3

M2D , ~5.20!

where the powerb of the leading behavior is fitted dynam
cally. We performed this refined fit to the three lowest-lyi
states form̃50 which yielded the results assembled in F
14. These results provide numerical evidence that form̃50,
the first and second excited states do have a nonzero m
mass~i.e., the leading behavior is 1/M !. However, the lead-
ing behavior for the ground state decreases more rapidly
1/M and is consistent with zero meson mass.

We next address the issue of slow convergence fom̃
50 by examining the form of the ground state energy eig
vector for increasing values ofM. It is well known that the
solutions of Eq.~1.1! for m50 do not vanish at the endpoin
x50, 1; indeed the exact ground state is simply a const
As we can see in Fig. 15, at finite largeM the ground state
solution of our discretized equation is ever smaller at the
points, and the progression of shapes is toward a more sq
profile. But even forM54096 the eigenvector has not y
converged to its limiting form. This should be compar
with the solution form̃51 which rapidly approaches its lim
08500
e

e

.

.

on

an

-

t.

d
are

iting form ~see rhs of Fig. 15!. We see that, for our dis
cretized equation, the solution for the ground state decre
more rapidly near the end points~x50 andx51! asM in-
creases, consistently with the shape eventually approach
square profile atM→`. However, it is not hard to show tha
consistency of the continuum limit requires that the range
x over which the falloff occurs must decrease less rapi
than 1/AM . This still allows an approach to a square profi
but convergence is necessarily slower than one might h
expected. In fact all solutions of the continuum ’t Hoo
equation withm̃50 have nonzero values at the end poin
Thus we should expect slow convergence for all solutions
them̃50 equation because the discrete solution tends to v
ish at the end points but the limiting form does not. Th
effect does not occur form̃.0 because then the continuu
solution vanishes at the end points, so a decent approx
tion to it can be achieved with relatively smallerM.

VI. DISCUSSION AND CONCLUSION

In this paper we have explored the efficacy of the discr
zation of largeNc QCD proposed in@1# by applying it to the
well-understood ’t Hooft model. For a smooth continuu
limit over the whole range of bare couplingk, we had to
introduce a refinement of the discrete time gluon emiss
vertex. This amounted to insisting that after an emission
least two time steps had to intervene before the next em
sion, with a similar restriction on consecutive absorptions
contrast, an absorption is allowed to immediately follow
emission and vice versa. With this refinement in place
found that the continuum ’t Hooft equation describes t
mass spectrum for all realk. However, the parameters tha
occur in the equation are renormalized from their bare v
ues, as summarized in Eqs.~5.10!, ~5.12!, ~5.13!.

An amusing outcome of this renormalization phenomen
is that the effective coupling goes to zero in both the sm
and largek limits. Perhaps this feature is a version of wea
strong coupling duality, much celebrated in recent devel
ments in string-M theory. However, we must concede t
two-dimensional QCD may be too trivial to expect anythi
other than the usual continuum theory to emerge from
continuum limit. Another caveat against attributing mu
significance to this ‘‘duality’’ phenomenon is that the phy
6-11
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ics of the continuum limit really only depends on the ra
m2/Ncg

2. This is because one can always choose the ef
tive coupling as the fundamental unit of energy. Then
theories at different coupling but with the same value of t
ratio ~0 for example! are physically identical: any difference
in description can be removed by a change of units.

At any rate, we conclude that the discretization of@1# can
be meaningfully applied to QCD in two space-time dime
sions, with some intriguing hints about the nature of we
strong coupling duality. An obvious and important limitatio
of the two-dimensional case, however, is that the gluon
no dynamical degrees of freedom. Thus there is no oppo
nity for the P1 of the system to be shared among an infin
08500
c-
e
s

-
-

s
u-

number of gluons. This must occur for the fishnet diagra
to be relevant, and is allowed in higher dimensional spa
time. The next step is to study the three-dimensional ca
the simplest gauge theory where fishnet diagrams can be
evant.
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