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MassiveD=4, N=2 supersymmetric sigma models typically admit domain w&ltkink) solutions and
string (Q-lump) solutions, both preserving 1/2 supersymmetry. We exhibit a new static 1/4 supersymmetric
“kink-lump” solution in which a string ends on a wall, and show that it has an effective realization as a bion
of the D=4 super DBI action. It is also shown to have a time-depen@ekink-lump generalization which
reduces to th& lump in a limit corresponding to infinite Bl magnetic field. All these 1/4 supersymmetric
sigma-model solitons are shown to be realized in M theory as calibrated) aafibrated,” M5-branes in an
M-monopole background.
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[. INTRODUCTION gests. Indeed there is, and for simple models it can be found
explicitly and its properties studied in detail.

Although D-branes are normally defined within perturba-  Specifically, we shall consideD=4 supersymmetric
tive string theory in terms of Dirichlet boundary conditions sigma models with a “multi-center” HK target space
at the end points of open strings, they may be defined mord-metric of the form
generally as branes on which strings can end. As such,

D-branes may occur in field theories. An example is pro- ds’=UdX-dX+U " Hde+dX-A)? 1)
vided by the domain wall&lias 2-brangsof M-theory QCD ) . )
(MQCD), which were shown ifi1] to be surfaces on which Where VXA=VU and U is a “multi-center” harmonic
MQCD strings may end. However, the physics of strings andunction. The on!y potent|a_l term consistent with maX|m§1I
walls in MQCD s quite different from that of the D2-branes SUPersymmetry is proportional to the norm of the ftri-
of the IIA superstring theory because the end points ofolomorphic Killing vector field;=d/d¢, and so takes the
MQCD strings are not electric sources for a gauge field oform

the wall. Other examples ofnon-supersymmetrjcfield

theory D-branes have been discusseddh although the Vzlﬂzufl )
physics is again rather different from that of string theory

D-branes.

A field theory domain wall that is a much closer analoguewhere u is a mass parameter. Introducing a coupling con-
of the D2-brane of type IIA superstring theory is provided by stantg with dimensions of inverse mass, we have the sigma-
the kink domain wall of massive hyper-Kier (HK) sigma  model Lagrangian density
models[3]. As pointed olut in 3], the effective action for the L
kink domain wall is the5™ reduction of theD =5 supermem- Lt uw 1 2011
brane, and hence dual to a gauge theory. This is similar to' 292{77M [Ud,X-3,X+U""D,eD,e]+u U™}
the relation between thB=11 supermembrane and tie 3)
=10 D2-brane actiof4], and the same arguments used in
that case imply that the gauge theory in question is a supewhere 7 is the D=4 Minkowski metric(of “mostly plus”
symmetric one of Dirac-Born-InfeldDBI) type. As in the signatur¢ and De=de+dX-A. When u#0 we have a
D =10 casq5], thisD =4 action admits 1/2 supersymmetric “massive” sigma model; otherwise it is massless.
bion solutions that can be interpreted as strings ending on a The massless sigma models typically admit 1/2 supersym-
membrane. But what are these sigma-model strings? This imetric “lump” solitons [6] supported by a topological
one of several questions that we aim to answer in this papetlump” charge L. These are of course string-like solitons in
Another is whether there is a 1/4 supersymmetric sigmab =4. Lump-string configurations also exist in the massive
model configuration representing a string ending on a domodel, with a string tension that is bounded from below by
main wall, as the analogy with superstring D-branes sugthe lump charge., but Derrick’s theorem implies that the

bound is saturated only in the limit in which the string core
has shrunk to zero size, yielding a singular field configura-
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they are singular, but there are various circumstances iiiself is not part of the solution. The bion spike remains
which the singularity is resolved. For example, the singularhollow no matter how much it shrinks because the width of
ity can be removed, and Derrick’s theorem evaded, by incorthe wall itself is assumed to vanish. In contrast, the kink
porating time dependence. Indeed, there exists a timejomain wall is part of the kink-lump solution and it has a
dependent non-singular charged lump-string solution; itgjefinite thickness; as the spike shrinks to a size comparable
cross section is th® =3 Q-lump solution found by Abra- g the thickness of the wall it must “fill in” to form a “solid
ham [7]. These solutions saturate an energy bound of thgpike.” We shall see explicitly how this happens in the kink-
form lump solution. The bion analogy is really more appropriate
E=|L|+|Q| 4) to an effective description of the kink lump as a 1/2 super-
symmetric soliton of the effective theory governing fluctua-
whereQ is the Noether charge associated with the symmetryions of a kink domain wall because, as mentioned above, the
generated by. Although the solution is not static, it sta-  kink effective action is just & =4 version of theD =10
tionary in the sense that the energy density is time indepensuper D2-brane, and the kink lump can indeed be identified
dent, a fact that allows it to preserve some fraction of superas a bion of this theory.
symmetry. This fraction was not previously determined but Another result of this paper is a non-static but stationary
we shall show here that HRQ lumps are 1/4 supersymmet- generalization of the kink lump which we call @-kink
ric. Massive HK sigma models also admit kinkstatic soli-  Jump. It can be viewed as a kink lump boosted in the “hid-
tons that interpolate between the minima of the potentialden” fifth dimension. In the limit of infinite boost, to the
and Q kinks. TheQ kinks are stationary charged kinks that speed of light, th&-kink lump reduces to th® lump, so the

saturate an energy bound of the form Q-kink lump is the generic 1/4 supersymmetric soliton of the
massive HK sigma models under consideration. A boost of
E= K+ Q@ (5) 0

theD =5 supermembrane in the fifth dimension corresponds

whereK is a triplet of topological kink charges. TH@ kink to the inc!usion of a constgnt backgr(_)und magnetic fielq in
with Q=0 is the static kink. Both kinks an@ kinks pre- the effef:tlveD=4 DBI action desgnbmg th_e kink dpmgln
serve 1/2 supersymmetry. wall. Using the methods dfL0], we find the bion solution in

The main result of this paper is a new non-singutatic ~ this background and confirm its status as the effective de-
1/4 supersymmetric soliton which we call the kink lump. It scription of theQ-kink lump. An interesting feature of this
has a natural interpretation as a string ending on a domairesult is that the limit of infinite boost, in which th@-kink
wall. To see why such configurations might be anticipatedJump becomes th& lump, corresponds to a limit of infinite
we begin by recalling that the=3 Q lump can be viewed as magnetic field in the DBI theory.
a closed loop ofD=3 Q-kink string [8], so the D=4 Although we are concerned here with field theory soli-
Q-lump string can be viewed as a cylindrical tube of thetons, most supersymmetric field theories arise as effective
Q-kink domain wall. If this tube is splayed out at one end,theories in some superstring or M-theory context, and their
we have a(non-stati¢ configuration representing a string soliton solutions thereby acquire a superstring or M-theory
ending on a wall. If we now remove the charge, we mightinterpretation. The 1/2 supersymmetric kinks @éinks of
expect to end up with a static solution of similar type butthe models discussed here were provided with several such
with the string core supported against collapse by its attachhterpretations iM11,17. Here we shall show that the 1/4

ment to the wall. The kink lump is just such a solution. Thesupersymmetric kink lump extends to a solution of the M5-
size of the string core decreases with distance from the Walbrane equations of motion, in a multi-M-monopole back-

S0 Its shape Is more accurately dgscribed as a "spike” tha round. As such, it provides an example of a calibrated M5-
as a Fube. Nevertheless, the sp|kg has a constant Energdrane preserving 1/16 of the supersymmetry of the M-theory
per unit length and can therefore be interpreted as a string acuum. A similar result holds for the-kink lump (and
fixed tension. This tension turns out to equal the tension o ence theQ lump) with the difference that the solution is

the singular infinite lump string, but the kink lump is com- . : N L
pletely non-singular because the “spike” shrinks to zero sizdime dependent. It is thus a generalization of a calibration, of

only at infinite distance from the wall. a type .ﬁrst discussed if13], that could be called a @

These results are reminiscent of the bion solution on &&libration.” _ _ _ _
D2-brane[5]. For example, the end point of the bion string  We shall begin with a discussion of the sigma model field
on a D2-brane is essentially a global vortex with a |Ogarith_theones and their solitons, including the kink lump and the
mically infinite energy, which leads to a logarithmic bending Q-Kink lump, and their properties. We then discuss the ef-
of the D2-brane. We shall show that the kink lump incorpo-fective description of the kink lump in terms ofta=4 DBI
rates the same logarithmic bending of the kink domain wallaction for a sigma-model D2-brane, and show that the
Moreover, the way in which the singular lump string is Q-kink lump can then be found by considering the DBI ac-
“blown up” into a cylindrical kink domain wall is reminis- tion in a constant background magnetic field. We then show
cent of the way that a IIA type superstring can be “blown how all these 1/4 supersymmetric solitons determine super-
up” into a cylindrical D2-brang[9]. However, there is an symmetric minimal energy configurations of the M5-brane in
important difference. The bion is a solution of the field a multi M-monopole background. We conclude with a dis-
theory governing the fluctuations of the wall, so the wallcussion of some other issues.
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II. KINKY LUMPS

1 . .
E=-[UX2+|VX|H+U L e?+|Vo|2+1)], (11
The sigma models of relevance here have as their target 2[ ( IV XI) (e*+]Vel Ay

space a HK 4-manifold of the type described above. The )
simplest choice of the harmonic functiah that serves our Which can be rewritten as
purposes is
1 2 -1 2 1 -1/ 2
. £=S[UXP+U1(V19)?]+ 5 [U H(p—v)
U=a+ E

1 N 1
[X—=n| " |X+n|

: (6)

1
+U(V XFV1-v2U H2]+5[U "t
wheren is a unit 3-vector and a constant. The functiod is ! 2

singular at the two “centers’X= *n, but this is a coordi-
nate singularity of the metric it is periodically identified
with period 27. Whena=0 we have the Eguchi-Hanson +oU e+ 1-02V X+ 0o(VeXVX); (12
metric. Fora=1 we have the asymptotically flat metric

transverse to two M mgnopoles. In either case, the metric ifor constanty, with |v|<1, ando==1. Noting that

HK with the triplet of Kahler 2-forms

X (Vyo—aUV3X)2+U Y Vze+ oUV,X)?]

1 o= [ Ui a3

QZ(dcp+dX~A)dX—§U dXxdX, (7)

is a Noether chargdassociated with the triholomorphic

the wedge product of forms being implicit. isometry of the original HK target space mejrige see that
The 2-center metridand, more generally, any multi- the above expression for the energy density impl®sap-

center metric with colinear centersas an additional Killing propriate choice ob) the following (formal) bound on the

vector field generating rotations about thewxis. This Kill-  total energyk,
ing vector field is holomorphic with respect to the complex
structurel associated with the Kaer 2-formQ=n-Q. The E= Q%+ KZ+]L|, (14)

3-vectorX of SO(3) can be decomposed into the singtet ) )
=n-X and a doublet under tH80(2) subgroup that fixes. whereK andL are the topological kink and lump charges:
The HK sigma model can then be consistently truncated to a

Kahler sigma model by keeping only the singlet fields K:f d3x (VX), L:f BX(VexVX);. (15
(¢,X). Because the truncation is consistent, any solution of

the reduced Klaler sigma-model equations will solve the full
HK sigma-model equations. The metric on this
2-dimensional Khler subspace of the target space is

Note thatL is the pullback to the 23-plane of the Kar
2-form (). The bound is saturated when

ds?(K,)=UdX?+U tdg? (8) - - Q
X=0, ¢=v=—"—=— (16)
JQ2+K?
where, for|X|<1, Q
and
U=a+ti1-xz © Vip=0, V,X==(J1-v?)U-? (17)

The Kanler 2-form isQ2=n- € and, since one can choose and
such thain-A=0 [14], we have
V2QD:O'UV3X, Vg(,D:_O'UVZX (18)
Q=de/\dX, (10 i o i
To solve these equations it will prove convenient to set

which is the volume form on the 2-sphere. The lump charge
L is the integral of the pullback d?, so its minimum value
is 41, the area of the two-sphere. This is the tension of th
singular lump string.

Although D=5 is the maximal dimension in which we
may have a massive supersymmetric sigma maoagdoint — .2
that we return to in the concluding discussioit will be a(utatanhu)=y1-uv®. 20
sufficient for our purposes to consideDa=4, N=2 model | gt ys also set
with Lagrangian density3). For simplicity we shall seju

X==*tanhu, o¢=vt+, (19

Sor time independenti, . The equation foiX in Eq. (17)
then becomes

=1 andg=1. After the truncation to thé&l=1 supersym- xl=x, x°=xix®=z (21)
metric Kéhler sigma model described above, this yields the
energy density The functionu(x,z) is then given implicitly by
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u+atanhu=1—v%x+ o logw(z,z), (22

and the two real equationd8) are now equivalent to the
single complex equation
A(y+ilogw)=0, (23)

where ¢ indicates a partial derivative with respect
Equivalently,

we ¥=27(z) (24)
for arbitrary holomorphic functioiz.

We have now found an implicit, but general, solution of
Egs.(17) and (18). For a=0 the solution can be given ex-
plicitly. Choosing the upper sign angi=1 we have

X=tanH V1—v?x+logw]

with = —argZ. For constan¥ both ¢ andw are constant
and we recover th&-kink solution of[3]. Other choices of
Z(z) yield new solutions. For example, we could haXe
=\/z for arbitrary complex constant. Consider, for sim-

plicity,

(25

Z(z)= > (26)
In this casey=argz and
X=tanf V1—v?x—log|z|]. (27)

For fixedz we have a kink solution but for fixexlwe have a

sigma-model lump solution. This can be seen, for example,

by noting thatX—1 asz—0 andX— —1 asz— . For fixed
x the sigma model lump has scale size efpt v2x). This is
the simplestQ-kink-lump solution. The static kink lump is
found by settingy =0 while theQ lump is obtained by set-
tingv=1.

We now turn to a determination of the fraction of super-

symmetry preserved by the kink lum@:kink lump andQ
lump. A formula for supersymmetric configurations Df
=6 sigma models with K-dimensional toric HK target
spaces was obtained [i5]. Specializing to th&k=1 case
we conclude that supersymmetric configurationsDof 6
sigma models are those for which the equation
[TM7 9 X+iU ™D, p]e=0 (29
admits solutions for non-zer®@ =6 Sp,-Majorana-Weyl
spinor €, where = are the Pauli matrices anfi™ (m
=0,1,2,3,4,5) are th® =6 Dirac matrices. To apply this
formula we note that the massii@=4 sigma model dis-
cussed here is obtained from tBe=6 model by setting
&4X:O’)5X:O, 0"5(,0:0

dap=1, (29

Given also that

X=Xn, X=0, (30

PHYSICAL REVIEW B3 085002

the supersymmetry condition becomes
[U(7n)(C-VX)+i([- V) +ilCp+il*]e=0 (31)
whereI'=(I'1,1'2,I"®). For theQ-kink lump this yields

(1-[oT%FiVI— 02 (NI 4le

+THT-Vo)[1—io(mnI'?le=0. (32
WhenV ¢ vanishes we have
WI'%FiJ1—v T n)e=¢, (33

which confirms the 1/2 supersymmetry of the kink a@Qd

kink. WhenV ¢ is non-zero we have, in addition, that
ir>(r-nje=e. (34

The combined conditions imply 1/4 supersymmetry, for any

v. We conclude that the kink lumg@ lump andQ-kink lump
are all 1/4 supersymmetric.

Ill. ENERGETICS

We shall now sea=0 for simplicity, and again choose
o=1. Then, when th&-kink-lump solution is used in the
expression for the energy density, one finds that

2y
:Wﬂzﬁﬂz’ﬁ (35)
where we have set
y= J1—vZx (36)

for convenience. If we integrate the energy density oyer
we find the energy density on the domain wall to be

Ewan=2v(1+|Z'21|Z]?), (37
where

1
1—v2

y= (39

By taking Z to be constant we see that the wall's surface
tension is 2.

For the moment we postpone the analysiségf, for
non-constan¥ and return to the unintegrated formul25).
For a genera-kink-lump solution with

A

Z(z)—}i: 2 (39
we have, in the limit of large =z,
4e?|z)?

(40

(1+e?|2/3)?
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FIG. 2. A plot of &(r,y) for three fixed values of y witly
>y, , Y=Y, andy<y, , specified by the values éfatr =0 given
by 1/2, 2 and 4, respectively.

Wheny>y, the extremum at=0 is a minimum and the
extremum atr=r, is a maximum. The cross-sectional en-
ergy density is therefore ring shaped for sufficiently layge
The radius of the ring shrinks asincreases; this is the ad-
vertised “spike,” which is essentially hollow foy>vy, .
The radius of the ring shrinks to zero aty, and fory
<y, the only extremum o€(r) is a maximum at=0. The
solution remains non-singular in that the energy density re-
mains everywhere smooth and finite, but the cross-sectional
lump is no longer ring shaped. The hollow “spike” fgr

. . _ . >y, is “*filled in” for y<y, , as one might expect from the
This has a maximum wheet|Z|=1, so we can take this as fact that the domain wall has a finite width, of order 1 in our

the surface to which the domain wall is asymptotic at large " . I i . iy
r=|z|. This implies that for larger the domain wall is units. This behavior is shown in Fig. 2 in whi¢his plotted

; as a function of for values ofy>y, , y=y, andy<y, . A
asymptotic to the surface natural interpretation of this result is that the string is actu-
ally attached to the wall at the point at whieRY=2, the

FIG. 1. A plot of the energy functio#i(r,y).

y=logr, (41) wall being deformed by the string’s tension just so as to meet
_ . 5 the string end point at this distance.
unlessZi\;=0, in which casey~logr~. _ Forysy, itis natural to interpret, ~¢e’ as the size of
To proceed we shall now focus on the one-lump case withhg ¢ross-sectional lump. This implies that we have a domain
Z=1/z. In this case the energy density is wall with a shape that is again given lpy-logr, consistent
with the asymptotic behavior as—« that we found earlier.
4(1+r%)e? But we also wish to determine the shape fogy, . One
ery)= m' (42) way to do this would be to determine the size of the cross-

sectional lump as a function gf Since the energy density is
centered ar=0 for y<y, the size is not related to the
position of the maximum of for fixed y, as it is fory
>y, . Naively, we might define the size as

This function is plotted in Fig. 1 for a range of the indepen-
dent variables andy. The function&(r,y) has no extrema
(except in the — o limit discussed aboyebut some under-
standing of the solution near=0 can be had by considering
the extrema of the cross-sectional energy den&{ty) at %
fixed y. As already noted, the solution for fixgdis a lump <r)zf (27r)drr&(r), (45)
that interpolates betweeX=1 atr=0 andX=1 atr=co,. 0

The function&(r) has an extremum at=0 and, if

but this integral diverges for the simple lump solution with

y>y,=l0g2, (43)  z=\/z. In fact the integral of also diverges. Both diver-
gences may be removed by considering a multi-lump solu-
at tion of the form(39) with ;\;=0 but the value ofr) is
then more naturally interpreted as the mean distance between
r=r,(y)=ye?—2. (44) the constituent lumps$as discussed for th® lump in [7]).
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Since the size of an individual lump is really determined by
the energy density for smal| we shall proceed by first not-
ing that

4e%

~—— 46

(eZy+r2)2 ( )
for r<1. This has a finite integral over tlzeolane, andr) is
also finite. In fact,

(ry=constxev. (47

The constant depends on the particular “regularization”
used. Its value will not be important to us but one may note
that we could have defined the shape of the spike in terms of
the surface on whiclg(y) is a maximum for fixedr. This ~ FIG. 3. A plot of the energy densit§(z) for a charge-2 lump.
surface isr=¢Y, so we have agreement with the result of

considerings(r) for fixedy if we set the constant in E¢47) 4(1z|12+12'|?)
to unity. = W

The final conclusion of this analysis is that the shape of
the spike fory<y, is given by

(52

As noted by Abraham, the integrated cross-sectional energy,
i.e. TheQ-lump string tension, is infinite for a single lump,
but is finite for a multi-lump solution with=;A;=0. For
example, for any complex constaathe choice

y=logr, (48

just as it was fory>y, . A cutoff at a distances from this

singularity therefore corresponds to a distamcigom the 1 1
wall with | related toé by Z= —a 7ra (53
—log o= y1—-v"l+const (49) leads to a non-singular and finite energy charg®-Rimp

solution. We refer td 7] for detailed properties of mul®
lumps, but a plot of the energy density for the above
charge-2Q-lump solution is shown foa=1/2 in Fig. 3.

We now return to the formulé&37) for the energy density
on the wall. Let us again také=1/z and integrate over the
z plane, with IR cutoff ar =R and UV cutoff atr= 6. We

find that
IV. EFFECTIVE D-BRANE DESCRIPTION

_ 2
E=2y(7mR°+2mlogR)+4ml+constt--- (50 As mentioned in the introduction, the new kink-lump so-

) lution of massive HK sigma models that we have found and
where we have used the relatio#9) to convert thes depen- gy died here is similar in some respects to the bion solution

dence to a dependence brand the terms omitted vanish in ¢ e pp| field equations describing the fluctuations of a
the limit of 5—0. The R? term can be considered as the type IIA superstring theory D2-brangs]. However, the
vacuum energy of the domain wall. The IBgerm is the  ,rgner analogy of the kink lump in this context would be to
expected IR divergent energy of a global vortexDr=3. 5 type 11A supergravitysolution in which a string ends on a
The term linear inl can be interpreted as the energy in apa_prane, because only in this case would the D2-brane be
string of lengthl and tension part of the solution. In this sense, the proper sigma-model
analogue of the bion is found by asking whether the 1/4
supersymmetric kink-lump solution can be be understood as
o , i , i a 1/2 supersymmetric solution on the effectide=3 field
This is precisely the tension of the singular lump string, SGeqry governing the fluctuations of the kink domain wall.

the natural ir)terpretatio_n _is that the kink Ium_p provides 3indeed, it can be understood this way, as we now describe.
D=4 spacetime description of a normally singular lump  he general static kink solution is given implicitly by
string ending on @& =4 Q-kink domain wall.

Note that all of the above discussion applies for any value X=*tanH (x—xg)FaX], ¢=¢q, (54

of the parametep <1, in particular forv =0, which yields

the static kink-lump solution. We now turn to the limiting wherex, and ¢, are two real collective coordinates, with
case ofv=1. In this limit the tube-like mid-section of the ¢y~ ¢+ 2. Identification of the collective coordinates as
lump string gets stretched out, with the wall itself, and thethe coordinates of the space transverse to an infinite planar
“solid spike” region, being pushed off to infinity. We then membrane, and the fact that the kink solution preserves 1/2
have an infinite straigh®@-lump string, i.e., a string with a of the eight sigma-model supersymmetries implies that the
Q-lump core and cross-sectional energy density kink has an effective description as a supermembrane in a

Tstring:477- (51
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D=5 E3x S! spacetimg3]. To see this we allow the col- WhereE is the electric field. Assuming th&is constant, and

lective coordinates to become smooth functions of the worldelated to the constan(v) by Eq.(61), we may rewrite this
volume coordinateg' (i=0,1,2) to arrive at the world vol- &S

ume fields H2=4(y=E-V )2 +4|yETV ¢|2. (63)
P(&)=xo(8),  (£)=¢o(£), (59 Following the argument of10] we deduce the bound

which may be identified with the physicé@tansversgboson

fields of the supermembrane in the gauge in which three f dzg[H—zy]zzu d2gE.V¢‘ (64)

world volume fields taking values ii*? are identified with

the coordinates of a1 subset of theD=5 spacetime. yith equality when

The physical world volume fields thus determine the position

of a membrane in th&(3x S! spacetime. The symmetries yE=*V . (65)

of the kink solution then imply that the low energy effective

action for these fields is that of thie=5 supermembrane This implies thaty is harmonic and we may choose the unit
[16]. As the kink domain wall tension equals 2 in our masspoint charge solution

units, the bosonic action is

¢=vylogr, (66)
= —Zf d3¢y— det(gi; + diodjo) (56)  for which E=e /r whereeg, is a unit vector directed radially
outwards*
whereg;; is the metric induced from th® =4 Minkowski To perform the integral oE-V ¢ we introduce an IR
the point charge solution is then
i= it didd; . (57
9ij = 7ij i® J¢) H=2’y[7TR2—7752]
Becauser is periodically identifieddo is the dual of a
U(1) world volume 2-form field strength. The dual field +2|p(R) é dS-E+ ¢(5) 39 dS-E| (67
theory is just thed =4 DBI action(for the same reasons that r=R r=¢

the D2-brane action is dual to tHe=11 supermembrane ) o i
action in aE*9x St background4]). The bosonic action is where dS is an outward pointing line element on a curve
enclosing the origin. The integrals are easily done, with the

result that

|:—2J d3¢\—det(g;; +Fy)) (58

where the on-shell relation of the BI two-form field strength
F to o is given by

. 1 o
\/—detgg'lajo=§\/1+(&a)zs""ij (59

H=2ymR?*+4a[p(R)— p(5)]+-- -, (69)

where the terms neglected vanish in the limit tl&at0.
Using the formula66) and the fact that- ¢(5) =1, wherel
is distance from the 2-brane, we find that

H=2y[7R?+ 27 logR]+ 4l + - - - (69)

where @o)?=g''d,0d;0. Note that the solution of the su- in complete agreement with the formua0) for the energy

permembrane equations witthy=0 and do=vdt corre- of a Q-kink lump. The agreement confirms that we have

sponds to a solution of the DBI equations witkh=0 and correctly identified the DBI action as the effective action of
the kink domain wall and that we have correctly identified

v 1 ) the 1/2 supersymmetric bion solution of the latter with the
F=- \/1_—vzd§ ANdE7, (60) 1/4 supersymmetric kink-lump solution of the sigma model.

so thatB=F,, is a constant related t by V. M-THEORETIC INTERPRETATION
JI+B2= (1) 61) We shall provide the 1/4 supersymmetric sigma model

solitons discussed here with an M-theoretic interpretation by

The above discussion for the static kink domain walls can
be generalized to stationary solutions by expanding the
above DBI action about a non-zero but constant magnetic Fory =0 this solution corresponds to tfz=5 supermembrane
background fieldB given by Eq.(60). We begin with a for-  configuration ¢+io=—log¢, where ¢,¢) ({ compley param-
mula of [10] for the physical gauge DBI energy density  etrize the membrane’s world volume. Ro«=0 similar solutions are
For static 2-brane configurations this formula is well known in string theory, e.g. as a D4-brane ending on an NS5-

brane[17]. In this case we have a sigma-model lump string ending
H2=4[(1+|E|?>)(1+B?)+(E-V$)?>+|V¢|?] (62)  on a sigma-model kink membrane.
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showing that they yield solutions of the M5-brane equationssymmetric sigma model. What we will now show is that the
of motion in aD =11 supergravity background with vanish- Q-kink-lump solution of this effective field theory defines an
ing 4-form field strength and 11-metric: M5-brane configuration preserving 1/4 supersymmetry.
The number of supersymmetries preserved by a given
ds’=—dT?+ds’(EY) +dS*+ds’(HK,) +dZ%  (70)  Ms-brane configuration is the dimension of the space of so-

We take the Killing vector field lutions for the constant spinar to the condition18,11]

J le=e€ (75)
== (71 . - . ,

JS wheree is a Killing spinor of the background, ard is an
11-dimensional Dirac matrix function to be specified below.
In the present case, there are 16 linearly independent Killing
¥pinors, satisfying

to generate & (1) isometry, andHK, to be a multi-center

4-metric of the type considered above. This has an M-theor

interpretation as the metric produced by M monopdti-

ated at the centers of the 4-mejric [ ipse=e. (76)
We now consider a 5-brane in this background. As the

background breaks half the supersymmetry of the M-theoryThe Killing spinors have the forne=fe, for a universal

vacuum, the field theory on the M5-brane haB &6 (1,00  functionf and constant spina,. As f cancels from Eq(75)

supersymmetry and the field content splits into a tensor mulwe may replace by ¢, in this equation; having done so we

tiplet and a hypermultiplet. There is a consistent truncatiormay then drop the suffix om to arrive back at Eq(75) but

to the hypermultiplet sector, and we shall perform this trun-with e now taken to be @onstantspinor satisfying the con-

cation. For an appropriate choice of the M5-brane vacuungtraint(76).

the low energy field theory is then a massl&s 6 sigma To specifyI" we begin by taking thé® = 11 Dirac matri-

model with a multi-center HK 4-manifold as its target space.ces to be

The massiveD =5 sigma model is then found as the effec-

tive field theory on an M5-brane wrapped on a particular Cy=(¥ur 5.1, ¥ 1239 (77)

combination ofS! cycles in the background, as described for

the M2-brane in[11]. A further trivial double-dimensional Where

reduction yields the massii@ =4 sigma model discussed

above. Y% = Y01234Y5 - (78)

To s_pecify the needed MS-brane cqnfiguration e beginThus 2= 12 =1, and the remaining non-zero anticommuta-
by taking (Y,W) to be the E* coordinates andX' (I V5= Ve T 4 9
=1,2,3,4) theHK, coordinates. A 5-brane configuration is tors are
then specified by giving the 11 spacetime coordinat&s _ _
=(T,Y,S,W,X',Z) as functions of the six world volume co- v =200, AT T}=26y;. (79)
ordinates {,y,s,w). Six of these functions may be chosen SO matrixI for bosonic M5-brane configurations with van-
as to fix the world volume diffeomorphism invariance of the ishing world volume 3-form field strength is then
five-brane action. We shall make the “physical gauge”

choice (J—detg)T
T=t, Y=y, S=s, W=w. (72 1
_ | _ _ = gs’“””)“’&MXM&VXN&pXP&)\XQ&UXR I yNPORYS
This leaves X',Z) as the physical world volume fields, :
specifying the deformation of the 5-brane in the transverse (80)

5-space from the vacuum configuration in whighand X'
are constant. We will seZ to a constant as its fluctuations
belong to the fields of the tensor multiplet that we are dis-\®
carding. We are left with the four world volume scalar fields 4129@.:
X' (and their superpartnersin principle, these fields are
functions of all six world volume coordinates, but we will
impose invariance under shifts of This leaves us with the
D=5 fieldsX'(&) (and their superpartnérsvhere

whereg is the world volume 6-metric. In the physical gauge
(and with Z=0) it is block diagonal with components
1), where

g’u,,: 77MV+(9MXI(9VXJG|J. (81)

We can now rewrite the conditiofY5) as

£=(ty.s). (73 ~(Vdetg)e
- . 1
Eventually we will impose the constraint =|1- y"r?#X'l“, -3 yw(yﬂxlgnyrU+ e
IX'=9,X'=¢ (74 (82

where( is the tri-holomorphic KVF of the HK 4-metric, thus In principle, the right hand side includes terms up to 4th
reducing the effective field theory to a massie-4 super-  order indX (recall that there are only 4 sigma-model fields
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X" but terms higher than second order vanish for a configu- VI. DISCUSSION
ration such as the kink lump that depends on only two of the
four sigma-model fields.

Since Eqs(17) and(18) are linear in ¢X), the supersym-
metry preservation conditiof82) must be satisfied order by
order. At zeroth order we have

We have seen that much of the physics of D-branes can
appear in a purely field theoretic context. It is natural to ask
whether the D-brane analogy can be stretched further. One
obvious question is whether non-Abelian symmetry enhance-
ment occurs for coincident kink domain walls. The first point
(83 to appreciate here is that not every model with kink solutions
will have static multi-kink solutions. In the simple 2-center

which tells us that the vacuum state of the M5-brane is a 1/2nodel considered here there are not even multi-kink configu-
supersymmetric M-theory configuration. The constrafit} rations. To get multi-kink configurations one needs eitfier
and (83) preserve 1/4 of the 32 supersymmetries of thea multi-center target space 4-metric ofii) a higher-
M-theory vacuum; that is, they preserve 8 supersymmetrieglimensional target space metric. In the first case, a model
which is the expected number for the vacuum of a supersymwith co-linear centers has obvious multi-kink configurations,

Y« €E—E,

metric HK sigma model. At first order we have but no staticmulti-kink solutions because the kinks refas
| will be shown elsewherEl9]). This behavior can also occur
Y9, XT'e=0. (84 in string theory[20], where it is attributable to non-Abelian

instanton effects in theD=3, N=2 super Yang-Mills
YM) theory on the branes. This suggests that a similar
'non-Abelian gauge theory interpretation may be possible for
sigma-model D-branes.
We chose to sett=1 andg=1 throughout most of the
paper. If one reinstates them, one finds, for example, that the
DBI action (58) becomes

Because the sigma model is obtained by retaining the ter
guadratic indX in a series expansion of the 5-brane action
Eq. (84) is equivalent to the field theory condition for pres-
ervation of supersymmetry, as we shall verify below.

The higher order terms in E¢82) are now identities. The
analysis is similar to that dfL1]. We first note that E¢(84)
implies

v ’ 2
Y9, X' 9, X ;== n*"3,X'9,XGy;, (85) |=— g_’z‘J d®¢—det(g; + 1 TFy) (90)

which in turn implies that Eq(82) is satisfied if, and only if, ) .
and the wall and string tensions become

1 2
de(n+G)=(1+§trG)- (86) Towan=20/9%  Tsyring=4m/g% (91)

That this is indeed satisfied follows from the fact that theRe€call that theQ-kink lump was recovered by expanding

rank of G cannot exceed 2 because there are only two “ac@P0ut @ constant background magnetic figldand theQ

tive” fields (X, ). lump was obtained in a limit corresp.ond|_ng.to. infiniBe
We now apply the above result to ti@kink lump to Following [21] one can rescal@g andg in this limit to end

confirm that it preserves 1/4 supersymmetry. By use of thé!P With & non-commutativ® =3 gauge theory. This sug-
Q-kink-lump equations, Eq84) can be shown to be equiva- gests that the sigma-mod@ lump may have an alternative

lent to two further conditions o&. One is description as a non-commutative soliton.
A difference between th® =5 supermembrane of rel-
YT je=0€ (87)  evance to sigma-model D-branes and the M2-brane of rel-

evance to string theory D-branes is that bve 5 membrane
where we have usell,=(I',I',) and setU *n-I'=T, SO can be viewed as a&" wrappedD =6 3-branewhereas the
that F2=F1=1. This is the “lump” condition which, by M2-brane has no analogod=12 precursor The D=4
itself, preserves 1/2 of the 8 sigma model supersymmetrie2-brane is thus a 3-brane inka=6 spacetime of the form
The other condition is E®3% T2, which has been wrapped on a homology cycles of
the 2-torus. This is to be expected from the fact hat5 is
I'e=—e (88) the maximal dimension for massive HK sigma models while
we considered only thB =4 models. The kink is a 3-brane
of the D=5 massive sigma model and a sigma model lump
I,=vy"£{1-0v*y"IT,. (89)  isa2-brane. The kink lump solution thus lifts to a solution of
the D=5 model representing a 2-brane with a string bound-
Note thatT'2=1 and[I',,y*I'T,]=0, so this additional ary on the 3-brane.
condition reduces the supersymmetry to 1/4 of the sigma Finally, we note that the results of Sec. V can be stated in
model vacuum. Note that this is true evervif 1, in which  terms of calibrations. Recall that the lump solution of the
case theQ-kink lump reduces to th@® lump. Thus, both the massless sigma model corresponds to ‘dl&mcalibrated
Q lump and theQ-kink lump define M5-brane configurations two surface in four dimensiorf22]. We now have a similar
preserving 1/16 of the supersymmetry of the M-theoryinterpretation of the kink lump of the massive sigma model
vacuum, corresponding to 1/4 of the supersymmetry of th@s a Kaler calibrated 4-surface in six dimensions. The
sigma model vacuum. Q-kink lump, on the other hand, is not a calibrated 4-surface,

where

085002-9



GAUNTLETT, PORTUGUES, TONG, AND TOWNSEND PHYSICAL REVIEW B3 085002

strictly speaking, because it is time dependent. This kind of ACKNOWLEDGMENTS
“time-dependent calibration” has been discussefilig] and
we suggest the terminology@ calibration.” As we have P.K.T. would like to thank Taichiro Kugo and Nobuyoshi

seenQ calibrations arestationary but not necessarily static, Ohta for helpful discussions, and the E&lienna), the YI

minimal energy surfaces. Th@-kink lump is therefore a (Kyoto) and the Kyoto University Department of Physics for
Kahler Q-calibrated 4-surface in six dimensions. It reducestheir hospitality. D.T. is supported by EPSRC. R.P. thanks
for v=1 to theQ lump, which is a Kaler Q-calibrated two-  Trinity College, Cambridge for financial support. All authors

surface in four dimensions. are supported in part by PPARC through SP®G13.
[1] E. Witten, Nucl. PhysB507, 658(1997. [13] J.P. Gauntlett, N.D. Lambert, and P.C. West, Adv. Theor.
[2] S.M. Carroll and M. Trodden, Phys. Rev. B7, 5189 Math. Phys.3, 91 (1999.
(1998. [14] G. Papadopoulos and P.K. Townsend, Nucl. PiB3&14, 245
[3] E.R.C. Abraham and P.K. Townsend, Phys. Lett2®l, 85 (1995.
(1992. [15] J.P. Gauntlett, D. Tong, and P.K. Townsend, preceding paper,
[4] P.K. Townsend, Phys. Lett. B373 68 (1996, C. Phys. Rev. D63, 085001(2001).
Schmidhuber, Nucl. PhysB467, 146 (1996; E. Bergshoeff [16] E. Bergshoeff, E. Sezgin, and P.K. Townsend, Phys. Lett. B
and P.K. Townsendbid. B490, 145(1997). 189 75(1987; A. Achlcarro, J. Evans, D. Wiltshire, and P.K.
[5] C. Callan and J. Maldacena, Nucl. Ph§513 198 (1998; Townsend,bid. 198 441 (1987).
G.W. Gibbonsjbid. B514, 603(1998. [17] E. Witten, Nucl. PhysB500, 3 (1997.
[6] R.S. Ward, Phys. Lett158B, 424 (1985; P.J. Ruback, [18]E. Bergshoeff, M.J. Duff, C.N. Pope, and E. Sezgin, Phys.
Commun. Math. Physl16, 645 (1988. Lett. B 199 69 (1987; K. Becker, M. Becker, and A.
[7] E.R.C. Abraham, Phys. Lett. B78 291(1992; Ph.D. thesis, Strominger, Nucl. PhysB456, 130(1995; E. Bergshoeff, R.
Cambridge University, 1992. Kallosh, T. Ortin, and G. Papadopoulotid. B502, 149
[8] E.R.C. Abraham and P.K. Townsend, Phys. Let®5 225 (1997).
(1992. [19] J.P. Gauntlett, D. Tong and P.K. Townsend, “Dynamics of
[9] R. Emparan, Phys. Lett. B23 71 (1998. supersymmetric sigma-model domain walls” in preparation.
[10] J.P. Gauntlett, J. Gomis, and P.K. Townsend, J. High Energy20] O. Aharony and A. Hanany, Nucl. PhyB504, 239 (1997).
Phys.01, 003(1998. [21] E. Witten and N. Seiberg, J. High Energy Phy9, 032
[11] E. Bergshoeff and P.K. Townsend, J. High Energy Pi0gs. (1999.
021 (1999. [22] J. Gutowski, G. Papadopoulos, and P.K. Townsend, Phys. Rev.
[12] N.D. Lambert and D. Tong, Nucl. PhyB569, 606 (2000. D 60, 106006(1999.

085002-10



