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D-brane solitons in supersymmetric sigma models
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MassiveD54, N52 supersymmetric sigma models typically admit domain wall (Q-kink! solutions and
string (Q-lump! solutions, both preserving 1/2 supersymmetry. We exhibit a new static 1/4 supersymmetric
‘‘kink-lump’’ solution in which a string ends on a wall, and show that it has an effective realization as a bion
of the D54 super DBI action. It is also shown to have a time-dependentQ-kink-lump generalization which
reduces to theQ lump in a limit corresponding to infinite BI magnetic field. All these 1/4 supersymmetric
sigma-model solitons are shown to be realized in M theory as calibrated, or ‘‘Q calibrated,’’ M5-branes in an
M-monopole background.
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I. INTRODUCTION

Although D-branes are normally defined within perturb
tive string theory in terms of Dirichlet boundary condition
at the end points of open strings, they may be defined m
generally as branes on which strings can end. As su
D-branes may occur in field theories. An example is p
vided by the domain walls~alias 2-branes! of M-theory QCD
~MQCD!, which were shown in@1# to be surfaces on which
MQCD strings may end. However, the physics of strings a
walls in MQCD is quite different from that of the D2-brane
of the IIA superstring theory because the end points
MQCD strings are not electric sources for a gauge field
the wall. Other examples of~non-supersymmetric! field
theory D-branes have been discussed in@2#, although the
physics is again rather different from that of string theo
D-branes.

A field theory domain wall that is a much closer analog
of the D2-brane of type IIA superstring theory is provided
the kink domain wall of massive hyper-Ka¨hler ~HK! sigma
models@3#. As pointed out in@3#, the effective action for the
kink domain wall is theS1 reduction of theD55 supermem-
brane, and hence dual to a gauge theory. This is simila
the relation between theD511 supermembrane and theD
510 D2-brane action@4#, and the same arguments used
that case imply that the gauge theory in question is a su
symmetric one of Dirac-Born-Infeld~DBI! type. As in the
D510 case@5#, this D54 action admits 1/2 supersymmetr
bion solutions that can be interpreted as strings ending o
membrane. But what are these sigma-model strings? Th
one of several questions that we aim to answer in this pa
Another is whether there is a 1/4 supersymmetric sigm
model configuration representing a string ending on a
main wall, as the analogy with superstring D-branes s
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gests. Indeed there is, and for simple models it can be fo
explicitly and its properties studied in detail.

Specifically, we shall considerD54 supersymmetric
sigma models with a ‘‘multi-center’’ HK target spac
4-metric of the form

ds25UdX•dX1U21~dw1dX•A!2 ~1!

where “3A5“U and U is a ‘‘multi-center’’ harmonic
function. The only potential term consistent with maxim
supersymmetry is proportional to the norm of the t
holomorphic Killing vector fieldz5]/]w, and so takes the
form

V5
1

2
m2U21 ~2!

wherem is a mass parameter. Introducing a coupling co
stantg with dimensions of inverse mass, we have the sigm
model Lagrangian density

L52
1

2g2 $hmn@U]mX•]nX1U21DmwDnw#1m2U21%

~3!

whereh is the D54 Minkowski metric~of ‘‘mostly plus’’
signature! and Dw5dw1dX•A. When mÞ0 we have a
‘‘massive’’ sigma model; otherwise it is massless.

The massless sigma models typically admit 1/2 supers
metric ‘‘lump’’ solitons @6# supported by a topologica
‘‘lump’’ charge L. These are of course string-like solitons
D54. Lump-string configurations also exist in the mass
model, with a string tension that is bounded from below
the lump chargeL, but Derrick’s theorem implies that th
bound is saturated only in the limit in which the string co
has shrunk to zero size, yielding a singular field configu
tion. In other words, the massive sigma model adm
Bogomol’nyi-Prasad-Sommerfield~BPS! strings that are
‘‘fundamental’’ in the sense that the core size vanishes. O
might be tempted to ignore these strings on the grounds
©2001 The American Physical Society02-1
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they are singular, but there are various circumstance
which the singularity is resolved. For example, the singu
ity can be removed, and Derrick’s theorem evaded, by inc
porating time dependence. Indeed, there exists a ti
dependent non-singular charged lump-string solution;
cross section is theD53 Q-lump solution found by Abra-
ham @7#. These solutions saturate an energy bound of
form

E>uLu1uQu ~4!

whereQ is the Noether charge associated with the symme
generated byz. Although the solution is not static, it issta-
tionary in the sense that the energy density is time indep
dent, a fact that allows it to preserve some fraction of sup
symmetry. This fraction was not previously determined b
we shall show here that HKQ lumps are 1/4 supersymme
ric. Massive HK sigma models also admit kinks~static soli-
tons that interpolate between the minima of the potent!
andQ kinks. TheQ kinks are stationary charged kinks th
saturate an energy bound of the form

E>AuK u21Q2 ~5!

whereK is a triplet of topological kink charges. TheQ kink
with Q50 is the static kink. Both kinks andQ kinks pre-
serve 1/2 supersymmetry.

The main result of this paper is a new non-singularstatic
1/4 supersymmetric soliton which we call the kink lump.
has a natural interpretation as a string ending on a dom
wall. To see why such configurations might be anticipat
we begin by recalling that theD53 Q lump can be viewed as
a closed loop ofD53 Q-kink string @8#, so the D54
Q-lump string can be viewed as a cylindrical tube of t
Q-kink domain wall. If this tube is splayed out at one en
we have a~non-static! configuration representing a strin
ending on a wall. If we now remove the charge, we mig
expect to end up with a static solution of similar type b
with the string core supported against collapse by its atta
ment to the wall. The kink lump is just such a solution. T
size of the string core decreases with distance from the w
so its shape is more accurately described as a ‘‘spike’’ t
as a ‘‘tube.’’ Nevertheless, the spike has a constant ene
per unit length and can therefore be interpreted as a strin
fixed tension. This tension turns out to equal the tension
the singular infinite lump string, but the kink lump is com
pletely non-singular because the ‘‘spike’’ shrinks to zero s
only at infinite distance from the wall.

These results are reminiscent of the bion solution o
D2-brane@5#. For example, the end point of the bion strin
on a D2-brane is essentially a global vortex with a logari
mically infinite energy, which leads to a logarithmic bendi
of the D2-brane. We shall show that the kink lump incorp
rates the same logarithmic bending of the kink domain w
Moreover, the way in which the singular lump string
‘‘blown up’’ into a cylindrical kink domain wall is reminis-
cent of the way that a IIA type superstring can be ‘‘blow
up’’ into a cylindrical D2-brane@9#. However, there is an
important difference. The bion is a solution of the fie
theory governing the fluctuations of the wall, so the w
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itself is not part of the solution. The bion spike remai
hollow no matter how much it shrinks because the width
the wall itself is assumed to vanish. In contrast, the k
domain wall is part of the kink-lump solution and it has
definite thickness; as the spike shrinks to a size compar
to the thickness of the wall it must ‘‘fill in’’ to form a ‘‘solid
spike.’’ We shall see explicitly how this happens in the kin
lump solution. The bion analogy is really more appropria
to an effective description of the kink lump as a 1/2 sup
symmetric soliton of the effective theory governing fluctu
tions of a kink domain wall because, as mentioned above,
kink effective action is just aD54 version of theD510
super D2-brane, and the kink lump can indeed be identi
as a bion of this theory.

Another result of this paper is a non-static but station
generalization of the kink lump which we call aQ-kink
lump. It can be viewed as a kink lump boosted in the ‘‘hi
den’’ fifth dimension. In the limit of infinite boost, to the
speed of light, theQ-kink lump reduces to theQ lump, so the
Q-kink lump is the generic 1/4 supersymmetric soliton of t
massive HK sigma models under consideration. A boos
theD55 supermembrane in the fifth dimension correspon
to the inclusion of a constant background magnetic field
the effectiveD54 DBI action describing the kink domain
wall. Using the methods of@10#, we find the bion solution in
this background and confirm its status as the effective
scription of theQ-kink lump. An interesting feature of this
result is that the limit of infinite boost, in which theQ-kink
lump becomes theQ lump, corresponds to a limit of infinite
magnetic field in the DBI theory.

Although we are concerned here with field theory so
tons, most supersymmetric field theories arise as effec
theories in some superstring or M-theory context, and th
soliton solutions thereby acquire a superstring or M-the
interpretation. The 1/2 supersymmetric kinks andQ kinks of
the models discussed here were provided with several s
interpretations in@11,12#. Here we shall show that the 1/
supersymmetric kink lump extends to a solution of the M
brane equations of motion, in a multi-M-monopole bac
ground. As such, it provides an example of a calibrated M
brane preserving 1/16 of the supersymmetry of the M-the
vacuum. A similar result holds for theQ-kink lump ~and
hence theQ lump! with the difference that the solution i
time dependent. It is thus a generalization of a calibration
a type first discussed in@13#, that could be called a ‘‘Q
calibration.’’

We shall begin with a discussion of the sigma model fie
theories and their solitons, including the kink lump and t
Q-kink lump, and their properties. We then discuss the
fective description of the kink lump in terms of aD54 DBI
action for a sigma-model D2-brane, and show that
Q-kink lump can then be found by considering the DBI a
tion in a constant background magnetic field. We then sh
how all these 1/4 supersymmetric solitons determine su
symmetric minimal energy configurations of the M5-brane
a multi M-monopole background. We conclude with a d
cussion of some other issues.
2-2
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II. KINKY LUMPS

The sigma models of relevance here have as their ta
space a HK 4-manifold of the type described above. T
simplest choice of the harmonic functionU that serves our
purposes is

U5a1
1

2 F 1

uX2nu
1

1

uX1nuG , ~6!

wheren is a unit 3-vector anda a constant. The functionU is
singular at the two ‘‘centers’’X56n, but this is a coordi-
nate singularity of the metric ifw is periodically identified
with period 2p. When a50 we have the Eguchi-Hanso
metric. For a51 we have the asymptotically flat metr
transverse to two M monopoles. In either case, the metri
HK with the triplet of Kähler 2-forms

V5~dw1dX•A!dX2
1

2
U dX3dX, ~7!

the wedge product of forms being implicit.
The 2-center metric~and, more generally, any multi

center metric with colinear centers! has an additional Killing
vector field generating rotations about then axis. This Kill-
ing vector field is holomorphic with respect to the compl
structureI associated with the Ka¨hler 2-formV5n•V. The
3-vectorX of SO(3) can be decomposed into the singletX
5n•X and a doublet under theSO(2) subgroup that fixesn.
The HK sigma model can then be consistently truncated
Kähler sigma model by keeping only the singlet fiel
(w,X). Because the truncation is consistent, any solution
the reduced Ka¨hler sigma-model equations will solve the fu
HK sigma-model equations. The metric on th
2-dimensional Ka¨hler subspace of the target space is

ds2~K2!5UdX21U21dw2 ~8!

where, foruXu<1,

U5a1
1

12X2 . ~9!

The Kähler 2-form isV5n•V and, since one can chooseA
such thatn•A50 @14#, we have

V5dw`dX, ~10!

which is the volume form on the 2-sphere. The lump cha
L is the integral of the pullback ofV, so its minimum value
is 4p, the area of the two-sphere. This is the tension of
singular lump string.

Although D55 is the maximal dimension in which w
may have a massive supersymmetric sigma model~a point
that we return to in the concluding discussion!, it will be
sufficient for our purposes to consider aD54, N52 model
with Lagrangian density~3!. For simplicity we shall setm
51 andg51. After the truncation to theN51 supersym-
metric Kähler sigma model described above, this yields
energy density
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E5
1

2
@U~Ẋ21u“Xu2!1U21~ ẇ21u“wu211!#, ~11!

which can be rewritten as

E5
1

2
@UẊ21U21~¹1w!2#1

1

2
@U21~ ẇ2v !2

1U~¹1X7A12v2 U21!2#1
1

2
@U21

3~¹2w2sU¹3X!21U21~¹3w1sU¹2X!2#

1vU21ẇ6A12v2 ¹1X1s~“w3“X!1 ~12!

for constantv, with uvu<1, ands561. Noting that

Q5E d3x U21ẇ ~13!

is a Noether charge~associated with the triholomorphi
isometry of the original HK target space metric! we see that
the above expression for the energy density implies~by ap-
propriate choice ofv) the following ~formal! bound on the
total energyE,

E>AQ21K21uLu, ~14!

whereK andL are the topological kink and lump charges

K5E d3x ~“X!1 , L5E d3x ~“w3“X!1 . ~15!

Note thatL is the pullback to the 23-plane of the Ka¨hler
2-form V. The bound is saturated when

Ẋ50, ẇ5v5
Q

AQ21K2
~16!

and

¹1w50, ¹1X56~A12v2! U21 ~17!

and

¹2w5sU¹3X, ¹3w52sU¹2X. ~18!

To solve these equations it will prove convenient to se

X56tanhu, w5vt1c, ~19!

for time independentu,c. The equation forX in Eq. ~17!
then becomes

]1~u1a tanhu!5A12v2. ~20!

Let us also set

x15x, x26 ix35z. ~21!

The functionu(x,z) is then given implicitly by
2-3
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u1a tanhu5A12v2x1s logw~z,z̄!, ~22!

and the two real equations~18! are now equivalent to the
single complex equation

]̄~c1 i logw!50, ~23!

where ]̄ indicates a partial derivative with respect toz̄.
Equivalently,

we2 ic5Z~z! ~24!

for arbitrary holomorphic functionZ.
We have now found an implicit, but general, solution

Eqs. ~17! and ~18!. For a50 the solution can be given ex
plicitly. Choosing the upper sign ands51 we have

X5tanh@A12v2 x1 logw# ~25!

with c52argZ. For constantZ both c andw are constant
and we recover theQ-kink solution of @3#. Other choices of
Z(z) yield new solutions. For example, we could haveZ
5l/z for arbitrary complex constantl. Consider, for sim-
plicity,

Z~z!5
1

z
. ~26!

In this casec5argz and

X5tanh@A12v2 x2 loguzu#. ~27!

For fixedz we have a kink solution but for fixedx we have a
sigma-model lump solution. This can be seen, for exam
by noting thatX→1 asz→0 andX→21 asz→`. For fixed
x the sigma model lump has scale size exp(A12v2x). This is
the simplestQ-kink-lump solution. The static kink lump is
found by settingv50 while theQ lump is obtained by set
ting v51.

We now turn to a determination of the fraction of supe
symmetry preserved by the kink lump,Q-kink lump andQ
lump. A formula for supersymmetric configurations ofD
56 sigma models with 4k-dimensional toric HK target
spaces was obtained in@15#. Specializing to thek51 case
we conclude that supersymmetric configurations ofD56
sigma models are those for which the equation

@Gmt•]mX1 iU 21GmDmw#e50 ~28!

admits solutions for non-zeroD56 Sp1-Majorana-Weyl
spinor e, where t are the Pauli matrices andGm (m
50,1,2,3,4,5) are theD56 Dirac matrices. To apply this
formula we note that the massiveD54 sigma model dis-
cussed here is obtained from theD56 model by setting

]4X5]5X50, ]4w51, ]5w50. ~29!

Given also that

X5X n, Ẋ50, ~30!
08500
e,

-

the supersymmetry condition becomes

@U~t•n!~G•“X!1 i ~G•“w!1 iG0ẇ1 iG4#e50 ~31!

whereG5(G1,G2,G3). For theQ-kink lump this yields

$12@vG047 iA12v2 ~t•n!G14#%e

1G4~G•“w!@12 is~t•n!G23#e50. ~32!

When“w vanishes we have

~vG047 iA12v2G14t•n!e5e, ~33!

which confirms the 1/2 supersymmetry of the kink andQ
kink. When“w is non-zero we have, in addition, that

iG23~t•n!e5e. ~34!

The combined conditions imply 1/4 supersymmetry, for a
v. We conclude that the kink lump,Q lump andQ-kink lump
are all 1/4 supersymmetric.

III. ENERGETICS

We shall now seta50 for simplicity, and again choose
s51. Then, when theQ-kink-lump solution is used in the
expression for the energy density, one finds that

E5
4e2y

~11e2yuZu2!2
@ uZu21uZ8u2# ~35!

where we have set

y5A12v2 x ~36!

for convenience. If we integrate the energy density ovex,
we find the energy density on the domain wall to be

Ewall52g~11uZ8u2/uZu2!, ~37!

where

g5
1

A12v2
. ~38!

By taking Z to be constant we see that the wall’s surfa
tension is 2g.

For the moment we postpone the analysis ofEwall for
non-constantZ and return to the unintegrated formula~35!.
For a generalQ-kink-lump solution with

Z~z!5(
i

l i

z2zi
~39!

we have, in the limit of larger 5uzu,

E;
4e2yuZu2

~11e2yuZu2!2
. ~40!
2-4
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This has a maximum wheneyuZu51, so we can take this a
the surface to which the domain wall is asymptotic at la
r 5uzu. This implies that for larger the domain wall is
asymptotic to the surface

y5 log r , ~41!

unless( il i50, in which casey; log r2.
To proceed we shall now focus on the one-lump case w

Z51/z. In this case the energy density is

E~r ,y!5
4~11r 2!e2y

~e2y1r 2!2
. ~42!

This function is plotted in Fig. 1 for a range of the indepe
dent variablesr andy. The functionE(r ,y) has no extrema
~except in ther→` limit discussed above! but some under-
standing of the solution nearr 50 can be had by considerin
the extrema of the cross-sectional energy densityE(r ) at
fixed y. As already noted, the solution for fixedy is a lump
that interpolates betweenX51 at r 50 andX51 at r 5`.
The functionE(r ) has an extremum atr 50 and, if

y.y* [ logA2, ~43!

at

r 5r * ~y![Ae2y22. ~44!

FIG. 1. A plot of the energy functionE(r ,y).
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When y.y* the extremum atr 50 is a minimum and the
extremum atr 5r * is a maximum. The cross-sectional e
ergy density is therefore ring shaped for sufficiently largey.
The radius of the ring shrinks asy increases; this is the ad
vertised ‘‘spike,’’ which is essentially hollow fory.y* .
The radius of the ring shrinks to zero aty5y* and for y
,y* the only extremum ofE(r ) is a maximum atr 50. The
solution remains non-singular in that the energy density
mains everywhere smooth and finite, but the cross-sectio
lump is no longer ring shaped. The hollow ‘‘spike’’ fory
.y* is ‘‘filled in’’ for y,y* , as one might expect from th
fact that the domain wall has a finite width, of order 1 in o
units. This behavior is shown in Fig. 2 in whichE is plotted
as a function ofr for values ofy.y* , y5y* andy,y* . A
natural interpretation of this result is that the string is ac
ally attached to the wall at the point at whiche2y52, the
wall being deformed by the string’s tension just so as to m
the string end point at this distance.

For y@y* it is natural to interpretr * ;ey as the size of
the cross-sectional lump. This implies that we have a dom
wall with a shape that is again given byy; log r, consistent
with the asymptotic behavior asr→` that we found earlier.
But we also wish to determine the shape fory!y* . One
way to do this would be to determine the size of the cro
sectional lump as a function ofy. Since the energy density i
centered atr 50 for y!y* the size is not related to th
position of the maximum ofE for fixed y, as it is for y
@y* . Naively, we might define the size as

^r &[E
0

`

~2pr !dr rE~r !, ~45!

but this integral diverges for the simple lump solution wi
Z5l/z. In fact the integral ofE also diverges. Both diver-
gences may be removed by considering a multi-lump so
tion of the form ~39! with ( il i50 but the value of̂ r & is
then more naturally interpreted as the mean distance betw
the constituent lumps~as discussed for theQ lump in @7#!.

FIG. 2. A plot of E(r ,y) for three fixed values of y withy
.y* , y5y* andy,y* , specified by the values ofE at r 50 given
by 1/2, 2 and 4, respectively.
2-5
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Since the size of an individual lump is really determined
the energy density for smallr, we shall proceed by first not
ing that

E'
4e2y

~e2y1r 2!2
~46!

for r !1. This has a finite integral over thez plane, and̂ r & is
also finite. In fact,

^r &5const3ey. ~47!

The constant depends on the particular ‘‘regularizatio
used. Its value will not be important to us but one may n
that we could have defined the shape of the spike in term
the surface on whichE(y) is a maximum for fixedr. This
surface isr 5ey, so we have agreement with the result
consideringE(r ) for fixed y if we set the constant in Eq.~47!
to unity.

The final conclusion of this analysis is that the shape
the spike fory!y* is given by

y5 log r , ~48!

just as it was fory@y* . A cutoff at a distanced from this
singularity therefore corresponds to a distancel from the
wall with l related tod by

2 logd5A12v2 l 1const. ~49!

We now return to the formula~37! for the energy density
on the wall. Let us again takeZ51/z and integrate over the
z plane, with IR cutoff atr 5R and UV cutoff atr 5d. We
find that

E52g~pR212p logR!14p l 1const1••• ~50!

where we have used the relation~49! to convert thed depen-
dence to a dependence onl, and the terms omitted vanish i
the limit of d→0. The R2 term can be considered as th
vacuum energy of the domain wall. The logR term is the
expected IR divergent energy of a global vortex inD53.
The term linear inl can be interpreted as the energy in
string of lengthl and tension

Tstring54p. ~51!

This is precisely the tension of the singular lump string,
the natural interpretation is that the kink lump provides
D54 spacetime description of a normally singular lum
string ending on aD54 Q-kink domain wall.

Note that all of the above discussion applies for any va
of the parameterv,1, in particular forv50, which yields
the static kink-lump solution. We now turn to the limitin
case ofv51. In this limit the tube-like mid-section of the
lump string gets stretched out, with the wall itself, and t
‘‘solid spike’’ region, being pushed off to infinity. We the
have an infinite straightQ-lump string, i.e., a string with a
Q-lump core and cross-sectional energy density
08500
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E5
4~ uZu21uZ8u2!

~11uZu2!2
. ~52!

As noted by Abraham, the integrated cross-sectional ene
i.e. TheQ-lump string tension, is infinite for a single lump
but is finite for a multi-lump solution with( il i50. For
example, for any complex constanta the choice

Z5
1

z2a
2

1

z1a
~53!

leads to a non-singular and finite energy charge-2Q-lump
solution. We refer to@7# for detailed properties of multiQ
lumps, but a plot of the energy density for the abo
charge-2Q-lump solution is shown fora51/2 in Fig. 3.

IV. EFFECTIVE D-BRANE DESCRIPTION

As mentioned in the introduction, the new kink-lump s
lution of massive HK sigma models that we have found a
studied here is similar in some respects to the bion solu
of the DBI field equations describing the fluctuations of
type IIA superstring theory D2-brane@5#. However, the
proper analogy of the kink lump in this context would be
a type IIA supergravitysolution in which a string ends on
D2-brane, because only in this case would the D2-brane
part of the solution. In this sense, the proper sigma-mo
analogue of the bion is found by asking whether the
supersymmetric kink-lump solution can be be understood
a 1/2 supersymmetric solution on the effectiveD53 field
theory governing the fluctuations of the kink domain wa
Indeed, it can be understood this way, as we now descri

The general static kink solution is given implicitly by

X56tanh@~x2x0!7aX#, w5w0 , ~54!

where x0 and w0 are two real collective coordinates, wit
w0;w12p. Identification of the collective coordinates a
the coordinates of the space transverse to an infinite pla
membrane, and the fact that the kink solution preserves
of the eight sigma-model supersymmetries implies that
kink has an effective description as a supermembrane

FIG. 3. A plot of the energy densityE(z) for a charge-2Q lump.
2-6
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D55 E1,33S1 spacetime@3#. To see this we allow the col
lective coordinates to become smooth functions of the wo
volume coordinatesj i ( i 50,1,2) to arrive at the world vol-
ume fields

f~j![x0~j!, s~j![w0~j!, ~55!

which may be identified with the physical~transverse! boson
fields of the supermembrane in the gauge in which th
world volume fields taking values inE(1,2) are identified with
the coordinates of anE(1,2) subset of theD55 spacetime.
The physical world volume fields thus determine the posit
of a membrane in theE(1,3)3S1 spacetime. The symmetrie
of the kink solution then imply that the low energy effectiv
action for these fields is that of theD55 supermembrane
@16#. As the kink domain wall tension equals 2 in our ma
units, the bosonic action is

I 522E d3jA2det~gi j 1] is] js! ~56!

wheregi j is the metric induced from theD54 Minkowski
metric. In a physical gauge it is given by

gi j 5h i j 1] if] jf. ~57!

Becauses is periodically identified,ds is the dual of a
U(1) world volume 2-form field strength. The dual fie
theory is just theD54 DBI action~for the same reasons tha
the D2-brane action is dual to theD511 supermembrane
action in aE(1,9)3S1 background@4#!. The bosonic action is

I 522E d3jA2det~gi j 1Fi j ! ~58!

where the on-shell relation of the BI two-form field streng
F to s is given by

A2detggi j ] js5
1

2
A11~]s!2 « i jkF jk ~59!

where (]s)25gi j ] is] js. Note that the solution of the su
permembrane equations withdf50 and ds5vdt corre-
sponds to a solution of the DBI equations withdf50 and

F52
v

A12v2
dj1`dj2, ~60!

so thatB[F12 is a constant related tov by

A11B25g~v !. ~61!

The above discussion for the static kink domain walls c
be generalized to stationary solutions by expanding
above DBI action about a non-zero but constant magn
background fieldB given by Eq.~60!. We begin with a for-
mula of @10# for the physical gauge DBI energy densityH.
For static 2-brane configurations this formula is

H 254@~11uEu2!~11B2!1~E•“f!21u“fu2# ~62!
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whereE is the electric field. Assuming thatB is constant, and
related to the constantg(v) by Eq.~61!, we may rewrite this
as

H 254~g6E•“f!214ugE7“fu2. ~63!

Following the argument of@10# we deduce the bound

E d2s@H22g#>2U E d2sE•“fU ~64!

with equality when

gE56“f. ~65!

This implies thatf is harmonic and we may choose the un
point charge solution

f5g log r , ~66!

for which E5er /r whereer is a unit vector directed radially
outwards.1

To perform the integral ofE•“f we introduce an IR
cutoff at r 5R and a UV cutoff atr 5d. The total energy of
the point charge solution is then

H52g@pR22pd2#

12Uf~R! R
r 5R

dS•E1f~d! R
r 5d

dS•EU ~67!

where dS is an outward pointing line element on a curv
enclosing the origin. The integrals are easily done, with
result that

H52gpR214p@f~R!2f~d!#1••• , ~68!

where the terms neglected vanish in the limit thatd→0.
Using the formula~66! and the fact that2f(d)5 l , wherel
is distance from the 2-brane, we find that

H52g@pR212p logR#14p l 1••• ~69!

in complete agreement with the formula~50! for the energy
of a Q-kink lump. The agreement confirms that we ha
correctly identified the DBI action as the effective action
the kink domain wall and that we have correctly identifi
the 1/2 supersymmetric bion solution of the latter with t
1/4 supersymmetric kink-lump solution of the sigma mod

V. M-THEORETIC INTERPRETATION

We shall provide the 1/4 supersymmetric sigma mo
solitons discussed here with an M-theoretic interpretation

1For v50 this solution corresponds to theD55 supermembrane
configuration f1 is52 log z, where (t,z) (z complex! param-
etrize the membrane’s world volume. Forv50 similar solutions are
well known in string theory, e.g. as a D4-brane ending on an N
brane@17#. In this case we have a sigma-model lump string end
on a sigma-model kink membrane.
2-7
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showing that they yield solutions of the M5-brane equatio
of motion in aD511 supergravity background with vanish
ing 4-form field strength and 11-metric:

ds252dT21ds2~E4!1dS21ds2~HK4!1dZ2. ~70!

We take the Killing vector field

l 5
]

]S
~71!

to generate aU(1) isometry, andHK4 to be a multi-center
4-metric of the type considered above. This has an M-the
interpretation as the metric produced by M monopoles~situ-
ated at the centers of the 4-metric!.

We now consider a 5-brane in this background. As
background breaks half the supersymmetry of the M-the
vacuum, the field theory on the M5-brane has aD56 ~1,0!
supersymmetry and the field content splits into a tensor m
tiplet and a hypermultiplet. There is a consistent truncat
to the hypermultiplet sector, and we shall perform this tru
cation. For an appropriate choice of the M5-brane vacu
the low energy field theory is then a masslessD56 sigma
model with a multi-center HK 4-manifold as its target spa
The massiveD55 sigma model is then found as the effe
tive field theory on an M5-brane wrapped on a particu
combination ofS1 cycles in the background, as described
the M2-brane in@11#. A further trivial double-dimensiona
reduction yields the massiveD54 sigma model discusse
above.

To specify the needed M5-brane configuration we be
by taking (Y,W) to be the E4 coordinates andXI (I
51,2,3,4) theHK4 coordinates. A 5-brane configuration
then specified by giving the 11 spacetime coordinatesXM

5(T,Y,S,W,XI ,Z) as functions of the six world volume co
ordinates (t,y,s,w). Six of these functions may be chosen
as to fix the world volume diffeomorphism invariance of t
five-brane action. We shall make the ‘‘physical gaug
choice

T5t, Y5y, S5s, W5w. ~72!

This leaves (XI ,Z) as the physical world volume fields
specifying the deformation of the 5-brane in the transve
5-space from the vacuum configuration in whichZ and XI

are constant. We will setZ to a constant as its fluctuation
belong to the fields of the tensor multiplet that we are d
carding. We are left with the four world volume scalar fiel
XI ~and their superpartners!. In principle, these fields are
functions of all six world volume coordinates, but we w
impose invariance under shifts ofw. This leaves us with the
D55 fieldsXI(j) ~and their superpartners! where

jm5~ t,y,s!. ~73!

Eventually we will impose the constraint

]sX
I[]4XI5z I ~74!

wherez is the tri-holomorphic KVF of the HK 4-metric, thu
reducing the effective field theory to a massiveD54 super-
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symmetric sigma model. What we will now show is that t
Q-kink-lump solution of this effective field theory defines a
M5-brane configuration preserving 1/4 supersymmetry.

The number of supersymmetries preserved by a gi
M5-brane configuration is the dimension of the space of
lutions for the constant spinore to the condition@18,11#

Ge5e ~75!

wheree is a Killing spinor of the background, andG is an
11-dimensional Dirac matrix function to be specified belo
In the present case, there are 16 linearly independent Kil
spinors, satisfying

G1234e5e. ~76!

The Killing spinors have the forme5 f e0 for a universal
function f and constant spinore0. As f cancels from Eq.~75!
we may replacee by e0 in this equation; having done so w
may then drop the suffix one to arrive back at Eq.~75! but
with e now taken to be aconstantspinor satisfying the con-
straint ~76!.

To specifyG we begin by taking theD511 Dirac matri-
ces to be

GM5~gm ,g5 ,G I ,g* G1234! ~77!

where

g* 5g01234g5 . ~78!

Thusg5
25g

*
2 51, and the remaining non-zero anticommut

tors are

$gm ,gn%52hmn , $G I ,GJ%52GIJ . ~79!

The matrixG for bosonic M5-brane configurations with van
ishing world volume 3-form field strength is then

~A2detg!G

5
1

5!
«mnrls]mXM]nXN]rXP]lXQ]sXR GMNPQRg5

~80!

whereg is the world volume 6-metric. In the physical gaug
~and with Z50) it is block diagonal with component
diag(gmn,1), where

gmn5hmn1]mXI]nXJGIJ . ~81!

We can now rewrite the condition~75! as

~A2detg!e

5S 12gm]mXIG I2
1

2
gmn]mXI]nXJG IJ1••• Dg* e.

~82!

In principle, the right hand side includes terms up to 4
order in]X ~recall that there are only 4 sigma-model fiel
2-8



gu
th

y

1

th
ie
ym

rm
n

s-

he
ac

th
-

rie

m

s
ry
th

can
sk

One
ce-

int
ns

er
gu-

del
s,

r

ilar
for

the

g

-
e

-
rel-

of

ile
e
mp
of
d-

in
he

el
he
ce,

D-BRANE SOLITONS IN SUPERSYMMETRIC SIGMA MODELS PHYSICAL REVIEW D63 085002
XI) but terms higher than second order vanish for a confi
ration such as the kink lump that depends on only two of
four sigma-model fields.

Since Eqs.~17! and~18! are linear in (]X), the supersym-
metry preservation condition~82! must be satisfied order b
order. At zeroth order we have

g* e5e, ~83!

which tells us that the vacuum state of the M5-brane is a
supersymmetric M-theory configuration. The constraints~76!
and ~83! preserve 1/4 of the 32 supersymmetries of
M-theory vacuum; that is, they preserve 8 supersymmetr
which is the expected number for the vacuum of a supers
metric HK sigma model. At first order we have

gm]mXIG Ie50. ~84!

Because the sigma model is obtained by retaining the te
quadratic in]X in a series expansion of the 5-brane actio
Eq. ~84! is equivalent to the field theory condition for pre
ervation of supersymmetry, as we shall verify below.

The higher order terms in Eq.~82! are now identities. The
analysis is similar to that of@11#. We first note that Eq.~84!
implies

gmn]mXI]nXJG IJ52hmn]mXI]nXJGIJ , ~85!

which in turn implies that Eq.~82! is satisfied if, and only if,

det~h1G!5S 11
1

2
tr GD 2

. ~86!

That this is indeed satisfied follows from the fact that t
rank of G cannot exceed 2 because there are only two ‘‘
tive’’ fields (X,w).

We now apply the above result to theQ-kink lump to
confirm that it preserves 1/4 supersymmetry. By use of
Q-kink-lump equations, Eq.~84! can be shown to be equiva
lent to two further conditions one. One is

g23GGwe5se ~87!

where we have usedG I5(G,Gw) and setU21n•G5G, so
that G25Gw

251. This is the ‘‘lump’’ condition which, by
itself, preserves 1/2 of the 8 sigma model supersymmet
The other condition is

Gve52e ~88!

where

Gv[vg046A12v2 g14GGw . ~89!

Note that Gv
251 and @Gv ,g23GGw#50, so this additional

condition reduces the supersymmetry to 1/4 of the sig
model vacuum. Note that this is true even ifv51, in which
case theQ-kink lump reduces to theQ lump. Thus, both the
Q lump and theQ-kink lump define M5-brane configuration
preserving 1/16 of the supersymmetry of the M-theo
vacuum, corresponding to 1/4 of the supersymmetry of
sigma model vacuum.
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VI. DISCUSSION

We have seen that much of the physics of D-branes
appear in a purely field theoretic context. It is natural to a
whether the D-brane analogy can be stretched further.
obvious question is whether non-Abelian symmetry enhan
ment occurs for coincident kink domain walls. The first po
to appreciate here is that not every model with kink solutio
will have static multi-kink solutions. In the simple 2-cent
model considered here there are not even multi-kink confi
rations. To get multi-kink configurations one needs either~i!
a multi-center target space 4-metric or~ii ! a higher-
dimensional target space metric. In the first case, a mo
with co-linear centers has obvious multi-kink configuration
but no staticmulti-kink solutions because the kinks repel~as
will be shown elsewhere@19#!. This behavior can also occu
in string theory@20#, where it is attributable to non-Abelian
instanton effects in theD53, N52 super Yang-Mills
~SYM! theory on the branes. This suggests that a sim
non-Abelian gauge theory interpretation may be possible
sigma-model D-branes.

We chose to setm51 andg51 throughout most of the
paper. If one reinstates them, one finds, for example, that
DBI action ~58! becomes

I 52
2m

g2 E d3jA2det~gi j 1m21Fi j ! ~90!

and the wall and string tensions become

Twall52m/g2, Tstring54p/g2. ~91!

Recall that theQ-kink lump was recovered by expandin
about a constant background magnetic fieldB, and theQ
lump was obtained in a limit corresponding to infiniteB.
Following @21# one can rescalem andg in this limit to end
up with a non-commutativeD53 gauge theory. This sug
gests that the sigma-modelQ lump may have an alternativ
description as a non-commutative soliton.

A difference between theD55 supermembrane of rel
evance to sigma-model D-branes and the M2-brane of
evance to string theory D-branes is that theD55 membrane
can be viewed as anS1 wrappedD56 3-brane~whereas the
M2-brane has no analogousD512 precursor!. The D54
D2-brane is thus a 3-brane in aD56 spacetime of the form
E(1,3)3T2, which has been wrapped on a homology cycles
the 2-torus. This is to be expected from the fact thatD55 is
the maximal dimension for massive HK sigma models wh
we considered only theD54 models. The kink is a 3-bran
of the D55 massive sigma model and a sigma model lu
is a 2-brane. The kink lump solution thus lifts to a solution
the D55 model representing a 2-brane with a string boun
ary on the 3-brane.

Finally, we note that the results of Sec. V can be stated
terms of calibrations. Recall that the lump solution of t
massless sigma model corresponds to a Ka¨hler calibrated
two surface in four dimensions@22#. We now have a similar
interpretation of the kink lump of the massive sigma mod
as a Kähler calibrated 4-surface in six dimensions. T
Q-kink lump, on the other hand, is not a calibrated 4-surfa
2-9
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strictly speaking, because it is time dependent. This kind
‘‘time-dependent calibration’’ has been discussed in@13# and
we suggest the terminology ‘‘Q calibration.’’ As we have
seen,Q calibrations arestationary, but not necessarily static
minimal energy surfaces. TheQ-kink lump is therefore a
Kähler Q-calibrated 4-surface in six dimensions. It reduc
for v51 to theQ lump, which is a Ka¨hler Q-calibrated two-
surface in four dimensions.
rg
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