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Vacuum polarization in the Schwarzschild spacetime and dimensional reduction
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A massless scalar field minimally coupled to gravity and propagating in Schwarzschild spacetime is con-
sidered. After dimensional reduction under spherical symmetry the resulting 2D field theory is canonically
quantized and the renormalized expectation va{ligg) of the relevant energy-momentum tensor operator are
investigated. Asymptotic behaviors and analytical approximations are givéi fgr in the Boulware, Unruh
and Hartle-Hawking states. Special attention is devoted to the black-hole horizon region where the WKB
approximation breaks down.
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[. INTRODUCTION the 4D action for a massless scalar field minimally coupled
to 4D gravity,
In quantum field theory the dimensional reduction of a 1
system obeying some symmetries, such as spherical symme- 4 by @) pr
try, is obtained by decomposing the field operators in har- sh=- 8_7Tf dXV=9"g" duedye, 1.2
monics in the symmetrical subspace. In the case of spherical
symmetry, decomposing in terms of spherical harmonics efunder the assumption of spherical symmétBecomposing
fectively reduces a 4D theory to a set of 2D theories characthe 4D spacetime as
terized by different values of the angular momentum.
Two-dimensional theories are often regarded as useful d32=gﬁfy)dx”dx”=gabdxadxb+e‘2¢(xa)d92, (1.3
tools for inferring general features of systems whose behav-
ior is sophisticated and difficult to analyze in the physical 4DWhered()? is the metric on the unit two-sphere, one obtains
spacetime. In some spherically symmetric systems the maithe 2D action(1.1) by inserting the decompositiaid.3) into
physical effects come from thes‘wave sector’—thed =0  the action(1.2), imposing ¢=¢(x?), and integrating over
mode. Truncation of higher momentum modes is then obthe angular variables. Therefore the model based on the ac-
tained by integrating over the “irrelevant” angular variables. tion (1.1) seems more appropriate for discussing the quantum
This is the spirit which pervades most of the vast literaturedroperties of black holes in thewave approximation than
on 2D black holes, though thiswave approximation is not other 2D models based on the Polyakov actidescribing a
always accurate enough. These models are believed to devnimally coupled 2D massless scalar figlthose link with
scribe thes-wave sector of physical 4D black holes. the real 4D world is missing. For this reason the efforts of
Within this perspective, a model of 2D conformally in- many authors were devoted to finding the effective action
variant matter fields interacting with 2D dilaton gravity has Which describes at the quantum level the above 2D dilaton
attracted considerable interest recently. The action for thigravity theory([1]; see alsd6] and[2]). This effective ac-
theory is tion, once derived, would allow one to go beyond the fixed
background approximation usually assumed in studies of the
1 guantum black-hole radiation discovered by Hawkira].
S=— _f d2x\—ge 29929, 00,0, (1.1  Such an effective action will give in fagfT,p,) for an arbi-
2 trary 2D spacetime which could then be used to study self-
consistently, within this 2D approach, the backreaction of an
where ¢ is the scalar fieldg the dilaton,g,;, the 2D back- ~€vaporating black hole, its evolution, and its final fate. Un-
ground metric andy,b=1,2. fortunately the effective actions so far proposed for the
The reason for this interest lies in the following: the ac-model of Eq.(1.1) have serious problems in correctly repro-

tion (1.1) can be obtained by the dimensional reduction ofducing Hawking radiation even in a fixed Schwarzschild
spacetime(see the discussion in Rd6]; see alsd6] for a

different point of view. In any case before embarking on
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amb|§|ous backreaction calcylanons gnd taking S(::rlously-|-ab[uj ,Uf]:e_zd’{Re[(Van)(VbUf)]—(1/2)9ab|VUj|2}-

puzzling results(such as antievaporatiop4]) one should (2.6

check for any candidate of the effective action that leads, at

least for the Schwarzschild black hole, to the correct resultsTaking as the background geometry the exterior Schwarzs-

But what are the exad(T ;) for a scalar field described by child solution

the action(1.1) propagating in a 2D Schwarzschild space- N

time that the relevant effective action should predict? The ds’=—(1-2M/r)dt*+(1-2M/r)"*dr?,  ¢=—Inr,

aim of this paper is to partially answer this question. 2.7
_ By standard canonical quantization we will be able t0gne finds that a set of normalized basis functions of the field

give the asymptoticat infinity and near the black hole hori- equation(2.3) is given by

zon) values of(T,p) in the three quantum states relevant for

a field in the Schwarzschild spacetime, namely the Boulware _ 1 R(r;w)

state (vacuum polarization around a static $tathe Unruh Uw(X)=

state(black hole evaporationand the Hartle-Hawking state

(black hole in thermal equilibriuim We will also obtain ap- -

proximate analytical expressions f0F,;,) for every value of <N R(r;w)

i . . . Uy (X)=

the radial coordinate. Any effective action for the model of W Jamw T

Eg. (1.1) which is unable to predict at least the above

asymptotic values ofT ,y,) is incorrect(or better incomplete  where the radial function®(r;w) satisfy the differential

and any result based on it has no physical support. equation

e Wt (2.9

Aaw T

e wt, (2.9

2
Il. {Tap: ASYMPTOTIC BEHAVIOR d“R

2M
+(1—2M/r) R—-w?R=0, (2.10

r3

*2
Our main goal is the evaluation of the renormalized ex- dr

pectation values of the stress tensor operator for the scalgrndr*
field ¢ whose dynamics is given by the actighl). Here we

will be interested in the asymptotic valuést infinity and r*=r+2MIn(r/2M —1). (2.11
near the horizon The following derivation is just a readap- _

tation to our model of Sec. VI of the seminal paper by Chris-Exact solutions of Eq(2.10 are not known; however, one
tensen and Fulling7] to which we refer the readésee also  can find their asymptotic behavior near the horizon,

[8]).

is the Regge-Wheeler coordinate:

The classical stress tensor is defined as R~e" +A(w)e "™,
2 5S R~B(w)e ™", (212
Tab:_ \/— ab’ (21)
—9 49 and at infinity,
and hence, from Eql1.1), B~ é(w)eiwr*
1 L
Tap=€" 2% da@dhe —5Gan(V¢)?|. (2.2 R~e ™™ +A(w)e™"”.
(2.13
The scalar field obeys the field equation A andB are the reflection and transmission coefficie(sese
Ref. [9]).
V3(e 2%V ,9)=0. (2.3 [9)

The (T, calculated for these modes corresponds to the

) . ~ so-called Boulware vacuum:
The quantum field operatap is then expanded on a basis

For the Unruh vacuum we have

{u;} for the solution of Eq(2.3) in terms of annihilation and b o . b cx
creation operators, (B[Ta"B)unren= . dW{Ta [uy Uy ]+ Ta[uy Uy 1}
(2.19
(p:; (ajUj‘f'a.JTUT), (24)

where [a;,a/]=5; etc. Computing the mean value <U|Tab|U>unren:jde{Tab[Gw,G\’fv]
(0| T4p/0) we have 0

+coth 4rMw) TP[ Uy, ,UX 1},

<Tab>:§j: Taoluj,uj' ], (29 (2.15

where whereas for the Hartle-Hawking state,
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the same for every state. One sees that the basic quantity
entering all the expressions T U, , U] which using the

<H|Tab|H>unren: JO dWCOtr(47TMW){Tab[GWvG’\;/]
decomposition, Eq42.9),(2.9), can be written int{,r*) co-

+ T2 Uy, U5 L (2.1  ordinates as
As they stand these expressions are ill defined and need to be T.5[uy, u*]=E -1 0 = 0 -1 2.21)
regularized. However, taking into account the regularity of al=wrHw 0 1 1 0]/’ '
the renormalized expectation valugs|T,,/H) on the hori-
zon and the vanishing ofB|T,,B) as r—«, some Wwhere
asymptotic expressions can be obtained without recursion to
any regularization procedure. For example fore> we can 1 W2IR[+ dRdR"| f RdR* L R* dR
write Sawf dr* dr* r dr* dr*
lim (H|T,°[H) = lim ((H|T,"[H)— (B|T,"B)) £2
r—o0 r—oo +|R|2—2 (2.22
) r
= lim (<H|Tab|H>_<B|Tab| B))unren
r—= and
=|im2fwd—W{T Pl Uy, U] i [ dR _dR*
a W ~w - —
e 0 e877MW_ 1 F= 87Tf dr* dr* (223

+T.[ 0y, UX T} (2.17)

Similarly for the leading term at—2M we have

lim (B|T."[B)~ lim ((B|T,°|B)—(H|T."[H))
r—2M r—2M

= lim ((B|T.?|B)—(H|T.|H)) unren-

r—2M
(2.18
For the Unruh vacuum we have
lim (U[TP[U)~ lim ((U[TPIU)—(H|T"[H))
r—2M r—2M
= lim (<U|Tab|U>_<H|Tab|H>)unren
r—2M
— i - dw br7 %
(2.19
and

”m<U|Tab|U>: lim (<U|Tab|u>_<B|Tab|B>)

r—o r—o

= lim ((U|T,2|U)—(B| T:°IB))unren

r—o

— i ” dw bry %
=lim2 OWTE‘ [UW,UW].

r—o

(2.20

In deriving the above expressions we used the fact that the

with f=(1—-2M/r). Using the asymptotic expansions, Egs.
(2.12,(2.13, for the radial function the limiting behaviors of
(Tap) can be evaluated.

Let us start by discussing what is perhaps the most inter-
esting quantity, namely the Hawking flux for this theory,
whose value has been the object of a lively debate. Only for
the Unruh state is there a nonvanishing component of the
flux T,«'. Note also that the Wronskian contained Fnis
constant, so it can be calculated for fafrom the asymptotic
expansion. We find, therefore,

(UITL|U)=(U|T..|U)—(BIT .[B)
:(<U|T:*|U>_<B|TE*|B>)unren:f_lEu,
(2.24

where

1 fw wdw

Eu=o5— |B(w)|? (2.29

0 e871'MW_ 1

is the energy flux at infinity. Not surprisingly, this flux is
positive; i.e., there is no antievaporation of the black hole in
this theory. We can calculate the total flux using Page’s re-
sult [10] for the w—0 asymptotics of the greybody factor
|B(w)|? for thel =0 mode:

|B(w)|2=16M2w?2. (2.26
Integration over the frequencies leads to the approximate
Hawking flux in this 2D theory:

—Page_
EU -

7680mM?2’ (229

differences between unrenormalized and renormalized quan-
tities are the same. This because the divergences, being Urhis low-frequency approximation for the transmission am-
traviolet, are state independent; hence the counterterms apéitude should work quite well since high frequencies will
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not contribute to the flux because of the Planckian exponent.lll. (Tap): ANALYTICAL APPROXIMATIONS FOR THE
Note that the value of the Hawking flu]?%is exactly 1/10 BOULWARE AND HARTLE-HAWKING STATES

of the corresponding value coming from the Polyakov theory 14 gptain an analytical expression f6F,,,) valid for ev-
(massless minimally coupled 2D scalar fiel@his damping eryr (2M<r<w) we use point-splitting regularization fol-
is due to the potential barrier present in the radial equatiof,yeq by a WKB approximation for the modes. The renor-
(2.10 which reflects the coupling of the scalar field with the 5jized expressiofiT,,) is then obtained by subtraction of
dilaton. In the Polyakov theory there is no potential barrier, onormalization counterterm¢To,)ps coming from  the
and hencdB(w)|?=1 andE{"Y? =109 DeWitt-Schwinger expansion of the Feynman Green func-
Accurate numerical calculations of the greybody factortion and removal of the regulatdpoint separation This
for I=0 mode and the corresponding Hawking flux give  method is nicely explained in the seminal work of Anderson
et al.[12] on(T,,) in spherically symmetric static space-

E{pmencal c gPaoe (2.28  times, to which we refer the reader for all details. This sec-

tion is just an application of their general method to our

where the coefficient (much simpler sswave case. Here we just outline the main
points of the derivation.

C~1.62. (2.29 One first analytically continues the spacetime metric into

an Euclidean form by letting=it:

It is interesting to compare the 2B3-node Hawking flux
with that of the 4D black hole. DeWift9] provides an ap- ds?=fd2+f dr2 (3.1
proximate formula for the transmission coefficiefB(w)|?
=27M?w?, which takes into account the contribution to the By the point-splitting methodT ,,)unreniS calculated by tak-
4D Hawking flux of all momenta(this gives C=1.69), ing derivatives of the quantit{p(x) ¢(x')) and then letting
whereas numerical calculatiofkl] of the 4D Hawking flux  x’—x. When the points are separated one can show that
at infinity give EJP™mencak 1 7gera0e

Using the asymptotic expansion we can extract the lead-
ing behavior of(U|T,?|U) near the horizon and at infinity
[see Eqs(2.19,(2.20]:

’ 1 ’ !
<Tab>unren: e7[¢(x)+¢(x 2 E(gg GE;c’b+g(t:) GE;ac’)

1 ,
1 1/f _1 - Egabng GE;Cd' ’ (32)
<U|Tab|U>Hzm~—2< . ) (2.30
76807M2 | 1/f Lt where G¢ is the Euclidean Green function satisfying the
and equation
L (o1 -1 Vile 2!V Ge(xx)]=—g 0 8% (xx"), (3.3
<U|Tab|u>r%~—2( ) (2.3 o .
7680mrM?\ 1 1 and the quantitieg, are the bivectors of parallel transport.

The integral representation f@g(x,x’) used by Anderson
where nowa,b=r,t. From Eq.(2.30 one sees the negative et al.[12] is the following:
energy flux entering the black hole horizon which compen-

sates the Hawking radiation at infinity. ) )
Using similar methods one obtairsee Egs.(2.17), Ge(x,x")= | ducod (7= 7)]p,(r<)qu(r=),
(2.18] (3.9
_ 1 (1 0 ) (2.3 where, for an arbitrary functiof,
B|T.)°B) oy~ ———— 2.3
(BT 1Bl an™ e mzr o —1 L
and f d,uF(w)EEJ'O do F(w)
) 1 ( -1 o) if T=0 (Boulware statg whereas, foflTf>0,
HIT, I HY oo ———— 2.3
HITLH) e | ) (233

f duF(w)=2T >, F(w,)+TF(0)
This last equation shows clearly that the Hartle-Hawking n=1

state asymptotically describes a thermal bath of 2D radiation

at the Hawking temperatui®, = (87M) 1. The prefactoris andw,=27nT.

the expected £/6)TZ . This is indeed the leading contribu- ~ The modesp,, andq, are analogous to the radial func-
tion (in a 1t expansiohfor thes mode in flat spacésee the tionsR/r, R/r used in the previous section. They satisfy the
Appendix. Euclidean version of Eq2.10, which we write as
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d’s 2 M\ dS 2 The expansion for the bivectors is
" F(l_T)E_TSZO’ 39 I
gl =— = — ——2+0(€), (3.1
and the Wronskian condition f8f
da, dp,, 1 o e ' 3
g === = =—g'tl=— —e+ 1

ColPugr O gr | =~ 73 (3.6 g"'=-g 5 e+ 0(e%), (3.12

To express these modes we use the WKB approximation ) fr2f
g =f+ T62+0(.s4), (3.13
1 F{ rW(r)
p,= ————=exX f—dr ,
rvV2W(r) f wheref’=df/dr.
Eventually one arrives at the following expression for
1 F{ frW(r) g } (THunren in the zero temperature case:
,=———=6exg —
r2W(r) f
3.7 (B|T{|B)=—(B|T,'|B)
By this change of variables one sees that the Wronskian con- :i 1 M2 +ﬁ[2 +In(4\2€2)] |,
dition is satisfied byC,=1. Substituting Eqs(3.7) into the 27 f 2r Y
mode equatiori3.5) one finds that the functio/(r) has to
satisfy (3.19
f d2W df dW  3f /dW which shows 1¢? and Ine divergences as—0 (\ is a lower
W2= 2+ V+ W f—— d—d—— —( g ) limit cutoff in the integral overw and vy is the Euler con-
dr? rar r stan}. To obtain the renormalized expressions one needs to

(3.9 subtract from the above expressions the renormalization
counterterm(T,?)ps obtained using the following Green

where V= (f/r)df/dr. This is solved iteratively starting function (see[15] for the detaili

from the zeroth-order solution

W=ow. (3.9 e+ (') 1 [mPo
G(l)(X,X/):T —|y+ Eln T)
By this method one obtains an explicit form for the modes
pPw .0y to be inserted in the general expressionGy [Eq. R a a
(3.4)]. Taking derivatives of the latter quantity as indicated X1+ == = o+ —1+ ]
in Eq. (3.2 one eventually arrives at the following expres- 12 2 2m?
sion for (T.®)unren: (3.19
t _ r
(Toounren= (T dunren where m? is an infrared cutoff anda; is the DeWitt-
, 1, Schwinger coefficient for the actiaf.l),
=e*2¢f du cogwe,)| — gtt szl_Eg” A,
1
1 al=E[R—6(V¢)2+6D¢]. (3.1
+e_2¢if duw sin(we,) —Egn As
HereR s the Ricci scalar for the 2D metric amdis one-half
_ Egtr’A } (3.10 of the square of the distance between the ponend x’
4 along the shortest geodesic connecting them. For our split-
ting,
where
dp, d d e
o _ P, 4Q, _ Po O't_O't_6+—6 +O(65),
Al_pwqu A2_ dr dr ’ AS_qw dr ’ 24
dq r N frf 2 4
-p —2 o'=0"=——€e+0(€), (3.1
A4 Pw dr’ 4

and e,=7—7'. For the sake of convenience the points areando = o?c,/2. This allows the counterterm to be evaluated
split in time only so that’ =r. in an e expansion:
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Tt 1 1+5M2+1fM f2
(Tos™ | @™ 127 "6 7 "o
X[Zy-i—ln(mzezf)]l,

.y 1 1 5M2+fM f2
Tlos™gaf| "2 1277 T2 42

X[2y+In(m?e?f)]|. (3.18

The renormalized expectation value is then defined as

<Tab>:Re[”m(<Tab>unren_<Tab>DS)]- (3-19)

E—>O
In the Boulware state this yields

1fM

2 [m?f
12 ¢4 6 (3 42

1
t —
(BIT|BYwke= 5= "

(3.20

. f2 | mzf)

—_— n —_—

4r2 | 4n?
(3.2

Note that(B|T,,/B) has the correct trace anomaly:

1
<B|Trr|B>WKB:m

a a; 1 5
(B|T3l B>WKB=E=E[R—6(V¢) +6004¢]

1 (d?f
T 2an\are "

3ar’
(3.22

It is easy to show tha{B| T ,,|B) is not conserved. Reparam-
etrization invariance of the actiofi.1) gives the following
nonconservation equatidb,6|:

1 oS
fg<%vb¢>'

6dff M
rdr)] 3

Va(To) =~ (3.23

A “source term” is present because of the coupling with the

dilaton. Equation$3.23 are nothing but the 4D conservation
equationsV,L(T(f)"}:O for the minimally coupled massless
scalar field of the actiorf1.2). This allows us to define a
“pressure” for our 2D model by rewriting Eq$3.23 as

8mrTi=0,T" +£(T’ -TY
0 r r |'2f r t/s

9, T=0. (3.24)

Then from Eqs(3.20), (3.21) and(3.24) one has

PHYSICAL REVIEW D 63 084029

4|v|) mzf)

I, |n -

4\2
(3.29

r
It is rather interesting to note that provided we iset 2\ the
above expressions fdB|T,°|B) and the pressure coincide
exactly with the ones derived from the “anomaly induced”
effective action for the theory1.1) [5].

The thermal case is treated similarly. Evaluating the sum
overn using the Plana sum formula, one finds that the stress
tensor at finite temperature is obtained from the zero-
temperature one by making the substitution

(BITEIB)=

4

8M 2(

64m%| 5 v

I mf 2y+I 5t (3.26
n—sj|— n .
4\ 7 1672
and adding the traceless pure radiation term
(T rae=~ (T g =~ — (3.:2)
t/ra r’ra 6[821: 1

whereg=T"1.
Summarizing, we find that in the WKB approximation for
the Hartle-Hawking state,

HITH B w+1 1 M2 1fM
< |t| >WKB__% 2_77f 1_2r_4_6r_3
f2 2,32
——|2y+In , 3.2
4r? 4 1642 (3.28
HIT I B w+1 1 M2 1fM
< | r| >WKB_% m 1_2I’_4 E r3
f2 m232f
+F 2y+|n( 2) ], (3.29
<H|TZ|H>WKB:<B|TS|B>WKB:_W:
(3.30
HIPIH o= 8M 2( 4|v|>
R I r
X| 2y+I At (3.3)
n s .
7 1672

where in this cas@=T,*.

The analytic expressions we have obtained for
(B|Tap/B)wke and (H|T.,/H)wke have the correct
asymptotic behaviors at—oo as inferred in the previous
section.(B|T,°|B)wkg does indeed have the limiting form,
Eq. (2.32, as the horizon is approached, whereas
(H|T,°|H)wkg for larger describes thermal radiation at the
Hawking temperature in agreement with £g.33).
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In the Hartle-Hawking state the stress tensor should be
regular on the horizon. This means that on the horizon the
leading term of H| T,°|H) should be proportional to the 2D
metric, since the manifold of the Euclidean instanton is regu-
lar and the Hartle-Hawking state respects all its symmetries.
But the trace of the stress tensor is known exactly because

PHYSICAL REVIEW D63 084029

dZY * — * 2
dr*z—U(r )Y=0, U(*(r)=w+V,
2M

V:T?f’

we know the conformal anomal{3.30 in 2D. So on the

horizon we should obtain
4.2

2M
-

=(1- 2

1 1 Solving iteratively the equation foN? [see Eq(3.9)],
(HITLI] o =5 08 (HITID] o=~ o a8, ’ Y e isee Ea(39)]
g 1 d*W? 5 [d(W?))\?
(332 W2= w2+ V+ -
4W? grx2 16 WA\ dr* |
(4.2
In the vicinity of the horizon this provides only the leading
term. Our results, Eq9.3.28,(3.29 satisfy this condition. we get
However, to ensure finiteness of the stress tensor near the ) ) ) )
horizon in a regular frame one should satisfy the stronger W= (W0 + (W) 1+ (W)t - - -, (4.3
condition
(W?)o=w?, (4.9
2\ —
(HITIH) = (HITHH) W=V, 49
- =finite. (3.33
d2v 5 dv 2
(W2),= - 3=
27 A(w?+V) gr*2 16 (0®+V)2\dr*
This leads to serious concerns regarding the expression we (4.6)

found for the Hartle-Hawking state using the WKB approxi- _ ok
mation. The logarithmic term present in Ed8.28,(3.29 Note thatV~f, as do all its derivatives . V. For o=0 the
causeg H| T,°|H)wg to be logarithmically divergent at the first terms (%), and (W?); vanish at the horizon while the
horizon when calculated in a free-falling frame. This kind of next “correction” (W?), is already finite. This indicates that
logarithmic divergence is also present in the 4D calculatiorthe WKB approximation cannot work near the horizon for
of Anderson et al. for non-vacuum spacetimes such asthe zero-frequency mode. For the modes with non-zero
Reissner-Nordsfra spacetime[12]. However, numerical =w,=(4M)'n we have

computations performed by the same authors give no indica-

tion that this divergence actually exists. Similarly, we sus- 2
pect that the logarithmic term we have in E¢3.28,(3.29

is an artifact of the WKB approximation which, as we shall

see in the next section, breaks down near the horizon.

+0(n~ %) |+0(f?).

(4.7)

One can see that the convergence of the WKB series implies
thatn is at least greater than 1. Evaluation of the correspond-

ing series for ¢2) and the stress tens6H|T,°|H) near the

_ _ _ _ horizon leads to exactly the same conclusion:
From the discussion of the previous section one can see

the disappointing fact that in the Hartle-Hawking state the
energy density as measured by a free-falling observer in the
WKB approximation diverges logarithmically as one ap- Clearly, the standard WKB approximation cannot be applied
proaches the horizon=2M. On physica| grounds we do not for the calculation of the contribution of the=0 andn
expect this to happen, since the Hartle-Hawking state is de=1 modes to quantum averages near the horizon. To obtain
fined in terms of modes which are regular at the horizon. Th& more reliable analytical expression fo#|T,°|H) near the
origin of the logarithmic term in(H|T,?|H)ykg is in the  horizon we need a better approximation for the Green func-
counterterms T,?) 5 [see Eq.(3.18]. The WKB approxi- tion for these modes.
mation for the modes pdeUCGSQWaanren, besides terms In Ref. [13] it was demonstrated that a more accurate
of the form Ine and and 1¢2 which are canceled by the calculation of the contribution of the=0 mode cures the
counterterms, only a monomial involvifgand powers of. analogous logarithmic divergence in the ta(t{aF)WKB. Here
The natural question which arises is whether one can truste follow a similar approach to analyze the stress te(ses
the WKB approximation near the horizon. also[14]).

The Euclidean mode¥=(rp,,rq,) [see Eq.3.7)] sat- One can decompose the thermal Euclidean Green function
isfy a Schrainger-like equation for the Y modes as

1+

1
Zn2+f

" (2M)?2 n?

IV. (H|T.’|H) NEAR THE HORIZON

n>1. (4.8
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1 0
’ by — - 2
4.9 (4.18

= cosw,(7—1')

1
B oS [H(D)f(r)

Ge(r,r;7',r')=

where we writew, for the frequency instead of just as  Note that eactn>0 contribution should be double counted
before to make the dependence onmore clear W, to account for thenv<0 modes as well.

=2mnlB). These results should be compared to those coming from
Near the horizon the functioB,(r.r’) satisfies the fol-  the WKB approximation. The=0 mode does not make any
lowing differential equatior{with r#r"): contribution to(T,?)\ks Whereas the contribution of an in-
5 5 dividual mode withn#0 is
16 an-—1

Gy~ | —+ +0(f) |G,=0, (4.1
a /WKBn™ - .
- , 647M2f  327|n|M2 0 -1
wherelL is defined by (4.19
dL= ﬂ (4.11)  Taking the difference we find the correction to
f1/2 (H|Ta6/H)wkg due to the first three modes to be
e (TP = (2y+Inf)+ L
, 1 n2 a /n=0x1=2 327M2 Y 240mM2
a‘=—=+ —. (4.12
6 12 1
, . . . N X +0(f?). 4.2
The differential equatiof4.10 admits solutions in terms of 0 -1 () (4.20

Bessel functions of imaginary argument:

Comparing this with Eqs(3.28),(3.29 we find that the cor-
rections above exactly cancel the logarithmic term at the
event horizon to ordef Inf. Only then=*1 modes con-
tribute such terms. Fdn|>1 only higher-order logarithmic
One can show that this solution obeys the derivative conditerms(i.e. f?In f etc) are produced which will cause no di-
tion resulting from integrating the differential equati@®3)  vergence. Proceeding in a similar way we find the correction

<

Gn(r,r')z(LL')”Zln(%)Kn(%>. (4.13

for Gg across the delta function singularity && 7',r=r". to the pressure:
Using the above Green function one can calculate the corre-
sponding contribution to the stress tensor for eackear the 1 83
horizon. OPp_g+14+2= 1 5~ 5(2y+Inf)

For a contribution to the Green function of the form 167M 9607M*  327M

e (R (rr) (4.14 +0(f)|. (4.2

the corresponding contribution to the unrenormalized stress
tensor in the Hartle-Hawking state is Again this cancels exactly the logarithmic term in

(H|P|H)wkg- We can therefore conclude that for our 2D
theory, Eq.(1.1), the (H|T,°|H) and (H|P|H) are regular

(in a free-falling frame on the horizon as expected. The
logarithmic term appearing ifH| T.°|H)w«kg is an artifact of

w? 1 0 the WKB approximation which breaks down for the low-

}Fn(r,r’)(o _1)- (419  modes near the horizon. Furthermore, the nonlogarithmic

terms in Eq.(4.20 are of ordeff, so we can obtain from Egs.
(3.29,(3.29 the following limiting values fof H| T,°|H) on

f
(T2)n= lim [ —?[1—r((9r+ar,)+r2(9rﬁ,,]

r—r
n

+ —
2f

For then=0,1,2 modes one obtains

the horizon:
1 0
(T®)o=| ———= +0O(f?) ( ) (4.16 1
: 24077M2 0 -1 <H|Ttt|H>r=2M:<H|Trr|H>r=2M: T o 2"
487 M
(T.D) ! 1+f(2 +Inf) f+O(1‘2)K1 0 ) e
= — n —_— s
RGN VEIR y 3 0 -1 On the other hand, the value of the pressure changes because

(4.17  of the first term in Eq(4.21):

084029-8
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23 1 m2p? difference indicates a dismal failure of the dimensional re-
(HIP[H)r—om=——| — st In——|. duction. But this is not all of the story. As was shown in
647 240M7 8M" 16w [16,17], the smode contribution to the renormalized stress-

(4.23 energy tensor of the 4D theory does not coincide with the
renormalized stress-energy tensor of the 2D reduced theory.
V. CONCLUSIONS The difference is called the dimensional-reduction anomaly.
. . . There is a suspicion that the actual mismatch between the 2D
The main purpose of this paper was to shed some light o erived value, Eq(5.1), and the 4D value, Eq(5.2), is

the rather cont_roversial Ii_terature existing on the HaWk_ingcaused essentially by this anomaly. A preliminary analysis
effect for the dilaton gravity theory described by the act|on[18] seems to confirm this idea

(1.7). We found that the Hawking flux is manifestly positive,
reduced by a greybody factor with respect to the correspond-
ing value one gets from the Polyakov theadmyo dilaton
coupling. We also showed that the Hartle-Hawking state  This work was partly supported by the Natural Sciences
corresponds to thermal equilibrium at the Hawking temperaand Engineering Research Council of Canada. V.F. and A.Z.
ture and that asymptoticallyr {~=) the stress tensor de- are grateful to the Killam Trust for its financial support.
scribes a gas of 2D photons. The regularity of this stress

tensor on the horizon has been proved by a careful expansigbpenDIX A:  SMODE CONTRIBUTION TO THE 4D

of the Green function in that region eliminating the unphysi- STRESS TENSOR IN FLAT SPACE AT FINITE
cal logarithmic divergence predicted by the WKB approxi- TEMPERATURE

mation. One can hope that the analogous logarithmic WKB
divergence appearing in nonvacuum 4D spacetime can be In this appendix we determine the-0 mode contribution
handled in a similar way. to <Tab>3 in flat space for a minimally coupled and massless

The analytic expression fQﬁ'ab> we found in Sec. lllcan 4D scalar field in a thermal state at the temperatlire
be exactly reproduced by the high-frequency approximatior= 8. For this case we know exactly the mode-function
for the effective action in static spacetimes developed bysolutionse,, of the Klein-Gordon equation
Frolov et al. [16]. This point and the generalization of our
work to arbitrary curvature coupling and mass for the scalar Ue=0. (A1)
field will be discussed elsewhere.

The feature which makes the theddy.1) so attractive is
its connection with the 4D actiofi.2). What can be inferred
of the physical 4D theory from the quantization of the di- 0= eut,1)Yim(0,¢) (A2)
mensionally reduced theory we have performed? It is often w,l.m
said that the spherically symmetric reduced theory should
describe thes-wave sector of the higher-dimensional One_reduces Eq(Al) to
Unfortunately in quantum field theory things are not so easy. 5 |

) (1+1)
Let us compare the value we found for the energy density in — P+ =9+ 52— ®u=0. (A3)
the Hartle-Hawking state on the horizon with the corre- r 2
sponding value coming from the quantization of the 4D
theory of Eq.(1.2). Our result(which should be divided by For the case of interest£0) the solutions forp,, are just
47r? to restore four dimensionalityyields the following the ordinary Fourier modes. Taking into account thatr0

prediction for thes-wave contribution to the 4D theory: <% we must impose Dirichlet boundary conditions rat
=0. The correctly normalized modes are then

ACKNOWLEDGMENTS

Insertion of the spherical decomposition

1
(5.7 —i

(HITEH) o=~ o——.
768m°M* Pu

e Wsin(wr), (A4)

2r M
The value found by Andersoet al. [12] quantizing the 4D A
theory is wherew>0. Decomposition of the field operaterin terms

of the modesp,, ,
1

HITH) oy =———.
< | t| >I’ 2M 3840772M4

(5.2 R o R R
3= fo AW Ageu(t,r) +aLekH(LN],  (A5)

The discrepancy is striking. Our 2D derived result is signifi- )

cantly larger than and opposite in sign to the expected 4iVes the siress tensor expectation values

value. One can argue that the value of E%2) includes the )

contribution of alll modes and not just theone. This might n _ |7 v %

be true. However, it seems unlikely that the0 modes (Tu"26= fo dweﬁw_lTM Low ol (A6)
should cancel this=0 result, Eq(5.1), to a sufficiently high

degree to restore agreement with the 4D stress tensor. Thighere
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1 1
Tl ew: 00]= 5 (0u0uduent 0,0 ueh) = 59,u(970,0udseh)- (A7)
Inserting Eq.(A4) into Eq. (A7) and performing the integral in EGA6) we get
-1 0 0 O 0 0 O 0
<>177T20100(1 T2 00 0 O
T 14 — + —
“P4m? 61 0 0 0 Of |3272% 8r?sinkf(24Tr)/|0 0 -1 0O
0 0 0 O 0 0 0 -1
1 0 0 O 1 0 0 O
N i 2aTr) ) 0 -100 1 l[sinf(ZTrTr)] 0 -100 A8)
coth27Tr)— - n
87Tr3 16’]T2r4 0 0 l 0 167T2r4 27TTr O O 1 O
0O 0 01 0O 0 0 1

Multiplying by 4#r? and taking the limitr -« we obtain the result2.33, which describes 2D thermal radiation at the

equilibrium temperaturd =Ty, =(87M) 1.
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