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Brans-Dicke corrections to the gravitational Sagnac effect
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The exactformulation for the effect of the Brans-Dicke scalar field on the gravitational corrections to the
Sagnac delay in the Jordan and Einstein frames is presented. The results completely agree with the known
parametrized post Newtonian factors in the weak-field region. The calculations also reveal how the Brans-
Dicke coupling parameterÃ appears in various correction terms for different types of source or observer
orbits. A first-order correction of roughly 2.8331021 fringe shift for visible light is introduced by the gravity–
scalar field combination for Earth-bound equatorial orbits. It is also demonstrated that the final predictions in
the two frames do not differ. The effect of the scalar field on the geodetic and Lense-Thirring precession of a
spherical gyroscope in a circular polar orbit around the Earth is also computed with an eye towards the
Stanford Gravity Probe-B experiment currently in progress. The feasibility of optical and matter-wave inter-
ferometric measurements is discussed briefly.

DOI: 10.1103/PhysRevD.63.084027 PACS number~s!: 04.20.Jb, 04.80.Cc
e
s
c
ur
th

s
r-
la
r
he

o
f

l
yn
is
i-
s,

n
a
e

be
,
red

as-

nd
the
rial,

the
ted

s.
of

er-

ries
ics
ests
ed
eri-

t of
eo-

sing
e
me

BD
les
tein
we
III

ex-
I. INTRODUCTION

Ever since its discovery, the Sagnac effect@1# has played
a very important role in the understanding and developm
of fundamental physics. For a recent review, see the work
Stedman@2#. The effect stems from the basic physical fa
that the round-trip time of light around a closed conto
when its source is fixed on a turntable, depends upon
angular velocity, sayV, of the turntable. Furthermore, thi
round-trip time is different for light corotating and counte
rotating with the turntable. Using the special theory of re
tivity ~STR!, and assumingVr !c, one obtains the prope
time differencedtS when the two beams meet again at t
starting point as@3#

dtS>
4V

c2 S, ~1!

wherec is the vacuum speed of light andS(5pr 2) is the
projected area of the contour perpendicular to the axis
rotation. Note that the expression~1! represents a lack o
simultaneity as recorded by a single rotating clock~from
where the beams depart and reunite!. It is thus a real physica
effect in the sense that it does not involve any arbitrary s
chronization convention which is required between two d
tant clocks@3,4#. Moreover, the effect is universal as it man
fests not only for light rays but also for all kinds of wave
including matter waves@5–11#.

The formula~1! has been tested to a good accuracy a
the remarkable degree of precision attained lately by the
vent of ring laser interferometry raises the hope that the m
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surements of higher-order corrections to this effect might
possible in the near future@2#. Motivated by this prospect
Tartaglia @12#, in a recent interesting paper, has conside
the Einsteinian general relativistic~EGR! effects on the
proper delay time when the source or receiver orbits a m
sive rotating body~a ‘‘massive turntable,’’ as it were!. The
author considered the Kerr metric for a rotating body a
obtained the EGR corrections to the Sagnac effect in
cases when the light source or receiver executes equato
polar, and geodesic circular motions.

On the other hand, there is a recent surge of interest in
non-Einsteinian theories of gravity, such as the celebra
Brans-Dicke~BD! theory@13# or other scalar tensor theorie
The motivation comes from the fact that the occurrence
scalar fields coupled to gravity seems inevitable in sup
string theories@14#, higher-order theories@15#, as well as in
the extended@16# and hyperextended@17# inflationary theo-
ries of the early universe. Moreover, scalar tensor theo
provide a rich arena for investigations into wormhole phys
@18–23#. One also recalls that the standard solar system t
of gravity were calculated in the BD theory that display
the effect of the scalar field on those tests. Current exp
mental estimates place the BD coupling parameterÃ>500.
In the same spirit, it seems quite desirable that the effec
the scalar field on the corrections to the Sagnac effect, g
detic, and Lense-Thirring precession be also calculated u
a Kerr-like solution of the BD theory. This precisely is th
aim of the present paper, and we follow exactly the sa
procedure as in Ref.@12# for the Sagnac part.

In dealing with scalar-tensor theories in general and
theory in particular, one envisages two types of variab
delineating two types of frames, viz., the Jordan and Eins
frames which are connected by the scalar field. In Sec. II
discuss the rotating solutions in the two frames. Sections
and IV derive, respectively, the exact and approximate
pressions for the proper time delaydt in the case of the
©2001 The American Physical Society27-1
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equatorial trajectory of the source or observer. The polar
geodesic trajectories are considered in Secs. V and VI,
spectively. In Sec. VII the relevant corrections in the E
stein frame are considered. Section VIII contains a bro
discussion which is divided into various sections contain
numerical estimates for the Sagnac delay in STR and
theory for Earth-bound experiments, a comparison with
usual parametrized post Newtonian~PPN! factors as well as
the possibility of using optical and matter-wave interfero
eters to measure the correction factors. In Section IX
calculate the geodetic and Lense-Thirring precession in
weak-field limit of the Kerr-like BD metric for a satellite in
circular polar orbit about the Earth. We end with a summ
of our results in Sec. X.

II. ROTATING SOLUTIONS IN THE JORDAN AND
EINSTEIN FRAMES

Let us first define what are meant by the Jordan and E
stein frames@15,20#. The pair of variables~gmn , scalarf!
defined originally in the BD action constitute what is called
Jordan frame. Consider now the conformal rescaling

g̃mn5 f ~f!gmn ,f̃5h~f!, ~2!

such that, in the redefined action,f̃ couples minimally to
g̃mn for some functionsf (f) andh(f). Then the new pair
~g̃mn , scalarf̃! is said to constitute an Einstein frame. Som
times, it is mathematically preferable to use this latter fra
for computation of experimental predictions. In the Jord
pair, the scalar fieldf plays the role of a component o
gravity in the sense that^f&'G21, whereG is the Newton-
ian constant of gravity, signifying the Machian character
the BD theory. On the other hand, in the Einstein pair,
scalarf̃ plays the role of some kind of matter source. The
features will become evident from the field equations t
follow. Throughout this paper, we takeG5c51 unless they
are explicitly restored.

The matter-free Jordan frame BD action is given by

SJ@gmn ,f#5
1

16p E S fR2
Ã

f
gmvf ,mf ,nDA2g d4x,

~3!

whereÃ5const is a dimensionless coupling parameter. T
resultant field equations are

~f ;r! ;r50, ~4!

Rmn2
1

2
gmnR5

Ã

f2 Ff ,mf ,n2
1

2
gmnf ,sf ,sG1

1

f
@f ;m;v

2gmn~f ;s! ;s#, ~5!

where the semicolon indicates a covariant derivative w
respect togmn . Following the procedure of Newman an
Janis @24#, a two-parameter rotating solution of the abo
field equations has indeed been found by Krori and Bha
charjee~KB! @25# from the static BD solution. They called
a Kerr-like solution but we choose to call it the KB solutio
08402
d
e-
-
d
g
D
e

-
e
e

y

-

-
e
n

f
e
e
t

e

h

a-

in what follows. In order to see how the different arbitra
constants are related, it is necessary to display the static
solution which, in ‘‘isotropic’’ coordinates (t,r̄,u,w), is

ds25F 12
r 0

2r̄

11
r 0

2r̄

G 2/l

dt22S 11
r 0

2r̄
D 4F 12

r 0

2r̄

11
r 0

2r̄

G 2~l2C21!/l

3@dr̄21 r̄2du21 r̄2 sin2 u dw2#, ~6!

f5f0F 12
r 0

2r̄

11
r 0

2r̄

G C/l

, ~7!

wherel,C,f0 ,r 0 are constants, and the first two relate toÃ
as

l2[~C11!22CS 12
ÃC

2 D . ~8!

The KB solution generated from the above is given by

ds25gmndxmdxn

5S 12
2r 0r

r D h

~dt2v dw!22S 12
2r 0r

r D j

rS dr2

D
1du2

1sin2 u dw2D12S 12
2r 0r

r D s

v~dt2v dw!dw, ~9!

f5f0S 12
2r 0r

r D 2s

, s5
j1h21

2
52

C

2l
. ~10!

v5a sin2 u, r5r 21a2 cos2 u,

D5r 21a222r 0r , r 5 r̄~11r 0/2r̄ !2. ~11!

The solutions~9!–~11! represent the exterior metric due
a massive body rotating with respect to the fixed stars,
scalar field being given by Eq.~10!. As one can see, the
presence of the coupling parameterÃ in the solution is
manifested through the expressions~8! and ~10!. For j50,
s50, h51, one recovers the usual Kerr metric in Boye
Lindquist coordinates. Herer 05GM/c2, M is the mass of
the source, anda is the ratio between the total angular m
mentumJ and the massM, that is,a5J/M .

The Einstein frame action is obtained from the BD acti
~3! by means of a particular conformal transformation, cal
the Dicke transformations, given by

g̃mn5
1

16p
fgmn , ~12!

df̃5S Ã1 3
2

a
D 1/2

df

f
, ~13!

wherea is an arbitrary constant. The action then is
7-2
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SE@ g̃mn ,f̃#5E bR̃2ag̃mnf̃ ,mf̃ ,ncA2g̃ d4x. ~14!

The resulting field equations are

R̃mn2
1

2
g̃mnR̃5aF f̃,mf̃,n2

1

2
g̃mnf̃ ,sf̃ ,sG , ~15!

~f̃ ;r! ;r50. ~16!

The KB solutions of the above Einstein minimally coupl
equations~15! and ~16! can be explicitly written out as

ds25g̃mn dxm dxn

5S 12
2r 0r

r D h2s

~dt2v dw!2

2S 12
2r 0r

r D j2s

rS dr2

D
1du21sin2 u dw2D

12v~dt2v dw!dw, ~17!

f̃52FÃ1 3
2

a
G1/2

s lnS 12
2r 0r

r D , ~18!

v5a sin2 u, r5r 21a2 cos2 u,

D5r 21a222r 0r .

Here also, fora50, the solutions~17! and ~18! go over to
Buchdahl solutions@20,26# in ‘‘standard’’ coordinates unde
a suitable radial transformation defined below.

The vacuum KB solution~9! resembling the Kerr metric
is defined for the radial coordinater in the ranger 01(r 0

2

2a2 cos2 u)1/2,r ,` which translates in ‘‘standard’’ radia
coordinateR̄ into the range 0,R̄,` whereR̄ is defined by

R̄25rS 12
2r 0r

r D j

. ~19!

The solution does exhibit a curvature singularity at the ori
R̄50 which is not clothed by an event horizon and hence
naked. In fact, the singularity has the topology of a point
the area of the equipotential surfaces and proper length
closed curves on these surfaces all reduce to zero sizeR̄
→0. The coupling between gravity and a massless sc
field renders the event horizon to collapse to a point and
has gravitation without black holes@27#. At any rate, we are
interested only in the effects due to a normal, uncollap
rotating star coupled to a scalar field. Hence, the Pen
conjecture of cosmic censorship~preventing the occurrenc
of naked singularities!, for which a precise formulation is ye
unavailable, should not concern us here. Indeed, we will
that the PPN calculations precisely agree with those follo
ing from the KB metrics in both Jordan and Einstein fram
08402
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III. EQUATORIAL TRAJECTORY

Consider that the source or receiver of two opposit
directed light beams is moving around the gravitating bo
along a circumference at a radiusr 5R5const@R.r 01(r 0

2

2a2 cos2 u)1/2# on the equatorial planeu5p/2. Suitably
placed mirrors send back to their origin both beams afte
circular trip about the central body. Let us further assu
that the source or receiver is moving with uniform orbit
angular speedv0 with respect to distant stars such that t
rotation angle is

w05v0t. ~20!

Under these conditions, the KB metric~9! reduces to

ds25@xv0
212a~Ps2Ph!v01Ph#dt2,

x[Pha22PjR222Psa2, ~21!

P5S 12
2r 0

R D . ~22!

The trajectory of a light ray is given byds250 which im-
mediately gives

05xv212a~Ps2Ph!v1Ph[x~v2V1!~v2V2!,
~23!

where v is the orbital angular speed of photons. The tw
rootsV6 satisfy the following equations:

V11V252
2a~Ps2Ph!

x
, V1V25

Ph

x
. ~24!

The rotation angles for light are then

w65V6t. ~25!

Eliminating t between Eqs.~20! and ~25!, we get

w65
V6

v0
w0 . ~26!

The first intersection of the world lines of the two light ray
with the world line of the orbiting observer after emission
time t50 occurs when

w15w012p, w25w022p, or
V6

v
w05w062p,

~27!

where1 refers to corotating and2 refers to counterrotating
beams. Solving forw0 , we get

w0656
2pv0

V62v0
. ~28!

The proper time of the rotating observer is deduced from
~21! as

dt5A@xv0
212a~Ps2Ph!v01Ph#

dw0

v0
. ~29!

Therefore, integrating betweenw01 andw02 , we obtain the
Sagnac delay
7-3
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dt5A@xv0
212a~Ps2Ph!v01Ph#

v012w02

v0
. ~30!

From Eq.~28!, we have

w012w0252pv0F V11V222v0

~V12v0!~V22v0!G . ~31!

Using this expression in Eq.~30!, we find

dt5~2p!
x@~V11V2!22v0#

Axv0
212a~Ps2Ps!v01Ph

. ~32!

We see that the delaydt is zero if the angular speed of th
orbiting observer is

v0[vn5
V11V2

2
5

a~Ph2Ps!

x

5
a~Ph2Ps!

Pha22PjR222Psa2 , ~33!

providedaÞ0. In the usual Kerr case, the above reduces
(r 05M )

vn5
2aM

R31a2R12Ma2 , ~34!

which is exactly the same as the one obtained by Tarta
@12#. The observers having the angular speedvn are locally
nonrotating and may be imagined to be equivalent to
static observers in the Schwarzschild geometry for whom
Sagnac effect exists. On the other hand, if the observers
fixed positions with regard to distant stars so thatv050,
then the Sagnac delay becomes

dt05dt~v050!5~4pa!
~Ph2Ps!

APh
. ~35!

In the usual Kerr case, one obtains from the above

dt05
8paM

RA12
2M

R

5
8pJ

RA12
2M

R

5
8pI 0V0

RA12
2M

R
~36!

in which we have used the expression for the momen
inertia I 0 given byJ5aM5I 0V0 , whereV0 is the angular
speed of the rotating source, assumed to be solid and sp
cal with uniform density. The expression~36! again is the
same as in Ref.@12#.

To the order in 1/R2 we have, from Eq.~35!,

dt0>
8par0

R
~s2h!F11

r 0

R
~12s2h!GF12

2r 0

R G2h/2

>
8par0

R
~s2h!F11

r 0

R
~12s!G . ~37!
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This too coincides with the calculations in the Kerr ca
when appropriate valuess andh are chosen. However, th
effect of the scalar field is manifest in the determination
values fors andh away from the Kerr values.

One may also reexpress the delaydt0 in terms of the
Lense-Thirring effect~see Sec. IX! given by ~using ar0
5IV0!

vLT5
IV0

R3 ~38!

and the result is

dt0>
8vLT

R
~s2h!~pR3!F11

r 0

R
~12s!G . ~39!

If the observer is fixed on the equator, thenv05V0 , and
then the delaydt can also be expressed in terms ofI, r 0 , and
V0 ,

dt5~4pV0!

I

r 0
~Ph2Ps!2x

AxV0
21

2IV0
2

r 0
~Ps2Ph!1Ph

, ~40!

where

x5
I 2V0

2

r 0
2 Ph2R2Pj22Ps

I 2V0
2

r 0
2 . ~41!

All these reduce to the corresponding expressions in the K
case.

IV. APPROXIMATIONS

For our convenience, let us adopt the following abbrev
tions:

z[a/R, C[v0R, «[r 0 /R. ~42!

Since we shall be concerned mainly with Earth-bound
periments, it is useful to have an idea of how small the qu
tities z, c, and« are. For Earth, these are~exact individual
values of the pieces will be given later!

z % 5
a%

R%c
;1026, c % 5

v0R%

c
;1027,

« % 5
GM%

R%c2 ;1029, ~43!

and for Sun, these are

zQ;cQ;«Q;1026. ~44!

Let us rewrite Eq.~32! as

dt

4pR
5

c~x/R2!1z~Ps2Ph!

@Ph1c2~x/R2!12zc~Ps2Ph!#1/2. ~45!
7-4
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With the values displayed in Eqs.~43! and~44! in mind, we
use the expansions

x

R2 5z2Ph2Pj22z2Ps

>2112j«12j~j21!«21z21O~ !3, ~46!

Ps2Ph5F12
2r 0

R Gs

2F12
2r 0

R Gh

>22~s2h!«@11~12s2h!«#O~ !3, ~47!

Ph5F12
2r 0

R Gh

>122h«12h~h21!«21O~ !3,

~48!

whereO( )3 stands for any cubic terms in the small quan
ties z, c, «. Using these expansions, we obtain the del
denoting it bydtE ,

dtE

4pR
>c12~s2h!«z1~h22j!«c

1z2c12~h2s!~s21!«2c2 1
2 ~4hj14j24j2

22h2h2!«2c1 1
2 c31O~ !4. ~49!

After cross multiplying and substituting in the definitions
small quantities in Eq.~49!, we get

dtE>dts1
8pr 0a

R
~s2h!14pv0r 0R~h22j!14pa2v0

1
8pr 0

2a

R
~h2s!~s21!22pv0

2r 0
2~4hj14j24j2

2h222h!12pv0
3R41O~ !4. ~50!

The second term above represents the correction due to
moment of inertiaI of the rotating source (ar05IV0), the
third term represents the correction due to the mass pa
eterr 0 , and the remaining higher-order terms represent v
ously combined effects ofI, r 0 , andV0 . Most importantly,
one can now visualize the effects of the scalar field throu
the factorsh, s, andj.

In the absence of a scalar field and for a homogene
spherical object whose radius isR0 , one has

I 5 8
15 prR0

55 2
5 MR0

2. ~51!

r is the density~assumed to be uniform! of the object. Hence
a for the sphere is approximately

a> 2
5 R0

2V0 . ~52!

V. POLAR „CIRCULAR … ORBITS

We shall now investigate the effect when the light ra
move along a circular trajectory passing over the poles
this case, too, we may taker 5R5const andw5const. As-
08402
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suming uniform motion again, we takeu5v0t. Then, we
have, usingdr50, dw50, du5v0dt, andds250, from the
metric ~9!

du

dt
56

~R222r 0R1a22a2 sin2 u!~h2j!/2

~R21a2 cos2 u!~h2j11!/2 . ~53!

Under the assumption thata2/R2!1, and assumingt50
whenu50, we have

t>
R

S 12
2r 0

R D ~h2j!/2 u

1
a2

2R

F S 12
2r 0

R D S h2j11

2 D1
j2h

2 G
S 12

2r 0

R D h2j12/2 E
0

u

cosu8du8

5
R

S 12
2r 0

R D ~h2j!/2 u

1
a2

4R

F S 12
2r 0

R D S h2j11

2 D1
j2h

2 G
S 12

2r 0

R D h2j12/2

3~cosu sinu1u!

5S R

S 12
2r 0

R D ~h2j!/2

1
a2

4R

F S 12
2r 0

R D S h2j11

2 D1
j2h

2 G
S 12

2r 0

R D ~h2j12!/2 D u

1
a2

8R

F S 12
2r 0

R D S h2j11

2 D1
j2h

2 G
S 12

2r 0

R D ~h2j12!/2 sin 2u. ~54!

During this time, the rotating observer describes an angleu0
while light travels an angle 2p6u0 ~once again,1 for the
corotating beam and2 for the counterrotating beam! so that

u0

v0
5~p1q!~2p1u0!6

q

2
sin 2u0 , ~55!

where
7-5
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q5
a2

4R

F S 12
2r 0

R D S h2j11

2 D1
j2h

2 G
S 12

2r 0

R D ~h2j12!/2 ,

p5
R

S 12
2r 0

R D ~h2j!/2 . ~56!

Assume, as we did already, a low speed observer and tha
angle 2u0 is so small as to justify sin 2u0>2u0. Then

u0

v0
5~p1q!~2p6u0!6qu0 . ~57!

Solving for u0 , we get

u0652p
p1q

1

v0
7~p1q!7q

. ~58!

Finally, the difference between two round trip ‘‘coordinate
times ~recalling the approximations already used! comes to

t12t25
u012u02

v0

54pv0

FX1
a2

2R
YGFX1

a2

R
YG

Z22v0
2FX1

a2

R
YG2 , ~59!

where

X5RS 12
2r 0

R D , ~60!

Y5S 12
2r 0

R D S h2j11

2 D1
j2h

2
, ~61!

Z5F12
2r 0

R G ~h2j12!/2

. ~62!

Neglecting terms of orderR23 andv0
2R2 and higher, we get

t12t2>pv0R2H 41
3a2

R2 1
8r 0~h2j!

R J . ~63!

Thus, the correction due to the angular momentum of
source is independent ofR in this case. The term is in fac
given by, using Eq.~52!,

3pa2v05 12
25 pR0

4V0v0 , ~64!

whereR0 is the radius of a source sphere of uniform dens
In order to obtain what the rotating observer measures

must calculate the proper time in his/her frame. This is do
as follows: From the metric Eq.~9!,
08402
the

e
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t5E F S 12
2r 0R

r D h

2S 12
2r 0R

r D j

rv0
2G1/2

dt,

r5R21a2 cos2~v0t !. ~65!

For short enoughv0t, we have cos(v0t)>1, sin(v0t)>0. Fur-
ther, neglecting terms of the orderR22 in the integrand, we
have

t>S 12
2r 0h

R
2v0

2R2D 1/2

t. ~66!

Therefore, the time delay in the polar case, denoted bydtP ,
is given by

dtP>S 12
2r 0h

R
2v0

2R2D 1/2

~ t12t2!

5S 12
2r 0h

R
2v0

2R2D 1/2

3Fpv0R2H 41
3a2

R2 1
8r 0~h2j!

R J G . ~67!

Therefore, to the first and second orders inz, c, and«, we
have

dtP>dtS~12h«!@11 3
4 z212~h2j!#

>dts@11 3
4 z21~h22j!«#.

Comparing with the equatorial case, the excess is, using
~49!,

Dt

dtS
5

dtE2dtP

dtS
>

2~s2h!z«

c
2

3

4
z2. ~68!

The term (h22j)« cancels out due to the spherical symm
try of the orbits considered. After cross multiplying bydtS ,
we get

Dt[dtE2dtP>
8pr 0a

R
~s2h!23a2pv0 . ~69!

It may be observed from Eqs.~50! and ~69! that the scalar
field appears only in the terms that contain the gravitat
mass parameterr 0 . This fact is quite consistent with th
form of the KE metric which also has this property.

VI. GEODESICS

Let us now consider the geodesic motion of the source
receiver having a four-velocityum([dxm/ds). The geodesic
equations are

]um

]xn un1Gna
m unua50, ~70!
7-6
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whereGna
m are the Christoffel symbols formed from the K

metric ~9!. We can simplify the problem by takingu5p/2,
that is,uu50. The geodesic equations do allow such a so
tion @12#. In this case, sinu51, cosu50, v5a, and P51
22r 0 /r . For a circular geodesic orbit with a constant rad
r 5R, the condition isur50. Then the radial equation be
comes

G tt
r ~ut!21Gww

r ~uw!212G tw
r utuw50. ~71!

Defining the angular speed of rotation of the source or
ceiver asv5uw/ut, we get

v65
1

Gww
r 2G tw

r 6A~G tw
r !22G tt

r Gww
r . ~72!

The above expression simply turns out to be

v65
1

]gww

]r

F2
]gtw

]r
6AS ]gtw

]r D 2

2
]gtt

]r

]gww

]r G , ~73!

where

]gww

]r
5S 2

r 2D @ha2r 0Ph212r 3Pj2jr 2r 0Pj21

22sa2r 0Ps21#, ~74!

]gtw

]r
52S 2

r 2D @ahr 0Ph212asr 0Ps21#, ~75!

]gtt

]r
5S 2

r 2D @hr 0Ph21#. ~76!

Thus, atr 5R, we finally haveP5122r 0 /R and

v65
P̃

Q̃
, ~77!

where

P̃[aM~hPh212wPs21!6@hR3r 0Pj1h211a2s2r 0
2P2s22

1hjR2r 0
2Pj1h22#1/2,

Q̃[ha2r 0Ph212R3Pj2jR2r 0Pj2122sa2r 0Ps21.

Dividing the numerator and denominator ofv6 by R3Pj and
retaining terms up toa/R, we find

v6'7
1

R
Ahr 0

R
1

ar0

R3 ~s2h!. ~78!

The sign flip in this equation can be rectified. Suppose
follow the convention thatv1.0 and v2,0 in the Kerr
limit, that is, the6 signs onv6 indicate the sign of the
frequency. Then, from Eq.~75!, assuminga.0, we find that
]gtw /]r ,0, so that the numerator~the large square brackets!
08402
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in Eq. ~73! is positive. But]gww /]w in Eq. ~74! has the
leading term22rPj,0. Thusv1 as defined by Eq.~73! is
actually negative in the Kerr limit and similarlyv2.0. Thus
if we were to change the6→7 on the right-hand side o
Eq. ~73! ~in the large square brackets! then Eq.~78! would
read, using the notations of Sec. IV, as

c6[v6R>6Ah«1~s2h!«z. ~79!

On using this in Eq.~49!, we get the delay

dtG6>4pR@c612~s2h!«z1~h22j!«c6#,

which yields, to the lowest order in«,

dtG6>4pR@6Ah«13~s2h!«z1O~«!3/2#. ~80!

Now the traditional Sagnac effect is Ref.@12#, obtained here
by setting in Eq.~80!, a50, h51, ands50,

dts654pRc6564pAMR,

so that we have

dtG6>Ahr 0

M
dts61

12par0

R
~s2h!1OS r 0

R D 3/2

.

~81!

Thus, unlike the case of polar or equatorial orbits, the tra
tional part of the Sagnac effect is multiplied by a fact
Ahr 0 /M . Its value will be found from the PPN form of th
metric ~9! in Sec. VIII.

VII. EINSTEIN FRAME

It is instructive to calculate the relevant corrections in t
Einstein frame as well, already defined in Sec. II. The me
to be used now is Eq.~17! and the steps to be followed ar
precisely the same as those in Secs. III–VI. However, i
not necessary to do them explicitly. Instead, one may sim
use the replacements given byh→h2s, j→j2s, ands
→s2s in the desired expressions computed in the Jor
frame.

A. Equatorial orbits

As can be verified,vn of Eq. ~33! remains completely
unaffected, that is,vn

(J)5vn
(E) . This implies that the defini-

tion of ‘‘static’’ observers, for which no Sagnac delay exis
is preserved even though the physics in the two frames
fers widely. However,dt0 of Eq. ~39! changes to

dt0
~E!5dt0

~J!'8pvLTR2~s2h!. ~82!

The exact expression for the delay, that is, thedt between
the two frames are also related in the same way and un
the approximations as before, we find from Eq.~50!,
7-7
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dt~E!5dt~J!>dts1
8pr 0a

R
~s2h!

14pr 0Rv0~h22j2s!. ~83!

B. Polar orbits

It can easily be noticed from Eqs.~56! that p(E)5p(J),
q(E)5q(J) so that we have (t12t2)(E)5(t12t2)(J) and
consequently, from Eq.~68!,

dtP
~E!>dtS@11 3

4 z21~h22j1s!«#. ~84!

The difference becomes, using Eq.~69!,

Dt~E!5~dtE2dtP!~E!

5
8par0

R
~s2h!23pa2v0 . ~85!

C. Geodesics

The exact expression forv6
(E) can be easily obtained from

Eq. ~77! under the specified replacements. We shall h
write only the approximated final result from Eq.~81!,

dtG6
~E! 5A~h2s!r 0

M
dts61

12r 0a~s2h!

R
1OS r 0

R D 3/2

.

~86!

Although some of the terms in Eqs.~83!, ~84!, and~86! look
different from the corresponding terms in the Jordan fram
PPN approximation will show that they are actually t
same. In fact, the coefficients in the first terms in Eqs.~81!
and ~86! are both unity.

VIII. DISCUSSIONS

A. STR numerical estimates

In the foregoing we calculated the effect of the BD sca
field on the gravitational corrections to the Sagnac effec
the Jordan and Einstein frames. Three types of sourc
observer trajectories were considered, viz., equatorial, po
and geodesic. In the Jordan frame the corresponding exp
sions are Eqs.~50!, ~69!, and ~81!, while in the Einstein
frame, these are Eqs.~83!, ~85!, and ~86!. All these expres-
sions reveal the effect of the scalar field through the prese
of h, j, ands. Since these parameters are connected by
~10!, it is clear that the knowledge of any two would suffic
in determining the remaining one. Measurements of the c
rection terms would place upper limits on the values ofh and
s. These limits would translate into a limit onÃ, via Eqs.~8!
and ~10!, just as it happened in the static BD solutions w
respect to solar system tests. Conversely, we can take
solar system valueÃ>500 and calculate the expected n
merical values ofh, s, andj.

For the sake of comparison, let us now estimate the
merical values of the basic as well as the correction term
STR. Consider the exact proper time delaydt from STR
given by ~under similar circumstances as in Sec. III!
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dtSTR5
~4pR2!~v01V!

A~12V2R2!22v0VR22v0
2R2

, ~87!

whereV and v0 are, respectively, the angular speed of t
coordinate system rotating about the origin~turntable! and
the orbital angular speed of the source or observer with
spect to this turntable@28#. If the coordinate system is non
rotating, that isV50 but v0Þ0, then

dtV505~4pv0R2!~12v0
2R2!21/2 ~88!

and conversely, if the source or observer is fixed to the tu
table such thatv050 but VÞ0, then

dtv0505~4pVR2!~12V2R2!21/2. ~89!

The effect is doubled if the source or observer hasv05V
Þ0

dt~v0[V!5~8pVR2!~124V2R2!21/2 ~90!

and is zero ifv052V, that is, when the source observer
moving on the turntable opposite to its rotation but with t
same angular speedV.

Tartaglia@12# considers the case when the source or
server is fixed to the equator of the Earth, which means
has to consider Eq.~89! with V5V % where the symbol%
denotes Earth values. Expanding Eq.~89!, and restoringc,
we get

dt~v050!5
4pV %R%

2

c2 1
2pV %

3 R%

4

c
1¯ , ~91!

whereR% denotes the radius of the Earth.
Now recall the relevant data for Earth,

R% 56.373106 m,

V % 57.2731025 rad/s,

GM%

c2 54.431023 m,

a% 59.813108 m2/s,

c533108 m/s.

Substituting these values into Eq.~89! we obtain

dtSTR~v050!5@4.123102714.63102191¯# s.
~92!

Therefore, the basic Sagnac delay, Eq.~1!, amounts to 4.12
31027 s. To compare the above terms with the correspo
ing ones in the BD theory, we must first determine the u
known constants appearing there. This is achieved by u
the PPN approximation, discussed below.
7-8
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B. PPN approximation

Our aim in this section is to express the KB parametersh,
s, j in terms of the coupling constantÃ. The first step in this
direction is to rewrite Eq.~8! in the form

12~h2s!25~2Ã13!s2 ~93!

by noting that

h5
1

l
, s52

C

2l
, j5

l2C21

l
. ~94!

The next step is to consider the PPN parametersa, b, g
which appear in the metric

ds2'2F122aS M

r D12bS M

r D 2Gdt2

1F112gS M

r D G~dr21r2dV2!. ~95!

Sinceh, s, j already appear in the static form of the met
~9!, and we are considering only the weak-field form of t
metric, we can, for the moment, assumea50. In isotropic
coordinates~r, u, w! given by

r 5rS 11
r 0

2r D 2

,

the reduced metric~9! becomes

ds252F 12
r 0

2r

11
r 0

2r

G 2h

dt21F 12
r 0

2r

11
r 0

2r

G 2j22

S 11
r 0

2r D 4

3~dr21r2dV2!. ~96!

Comparing the corresponding orders, we get

a51, b51, g512
2s

h
, hr 05M . ~97!

The usual PPN value ofg is g5(11Ã)/(21Ã) @29# and
using Eq.~92! we get

s5
1

A~2Ã13!~2Ã14!
, h5A2Ã14

2Ã13
,

j512h12s. ~98!

Let us now consider the weak-field rotational part given
4(h2s)(r 0 /r3)(x dy2y dx)dt ~see later in Sec. IX!. Us-
ing r 05M /h, we find that the effect of the scalar field
equivalent to multiplying the Kerr part by the factor@(2Ã
13)/(2Ã14)#, which is exactly the PPN prediction a
well.

Regarding the values given in Eqs.~98! as those deter
mined from the weak-field boundary conditions, we can n
rewrite the exact form of Sagnac delay given in Eq.~35!
08402
y

udt0u5~4pa!3F S 12
2M

hRD h

2S 12
2M

hRD s

S 12
2M

hRD h/2 G ~99!

which yields, to second order in (M /R)2,

udt0u'
8paM

R F2Ã13

2Ã14GF11
M

R S 1

2Ã14
2A2Ã13

2Ã14D G .
~100!

Equation~50! represents the corrections due to other phy
cal factors~such as the moment of inertia, etc.!, and using the
boundary values in Eqs.~98! one can easily deduce how th
scalar field combines with them through the appearance~or
absence! of Ã.

An exact expression for the Sagnac delay for polar orb
can be obtained by plugging in the value of (t12t2) from
Eq. ~59! into Eq. ~65!. A similar expression can be obtaine
for the geodesic motion using Eqs.~45!, ~77!, and~79!. Ex-
pansion of these exact expressions would enable us to a
the influence of other physical factors as well as the invol
ment of the scalar field.

A simple demonstration will reveal that calculations
both the Jordan and Einstein frames lead to thesameÃ
factors for the corrections. Turning to the calculations in t
Einstein frame for which the KB metric is given by Eq.~18!,
we find from the PPN requirement that

~h2s!r 05M , s2h→s2h5A2Ã13

2Ã14
,

h→h2s5A2Ã14

2Ã13
, ~101!

12~h2s!25~2Ã13!s2.

Then the first-order correction term in Eq.~83! reads

8paM

R F2Ã13

2Ã14G ,
which is precisely the same as the first term in Eq.~100!. Use
of Eqs.~101! would enable us to see also that Eqs.~50! and
~83!, ~69! and~85!, and~81! and~86! are actually the same

C. BD numerical estimates

In order to compare Eq.~92! with the corresponding situ
ation in the BD theory, we should consider the case when
source or observer is fixed on the surface of the Earth, v
v05V % . The various correction terms are, for the equa
rial orbit, settingv05V % in Eq. ~50! and using the identifi-
cation r 05M /h,

4pGM%R%V %

c4 S 12
2j

h D'2.84310216S 12
2j

h D s,

~102!
7-9
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8pGM%a%

R%c4 S s

h
21D'1.89310216S s

h
21D s. ~103!

These estimates suggest that the first two corrections in
~50! are at least three orders of magnitude higher than
STR one ifh ands assume nearly Kerr values. For visib
light, v;1014Hz, and ignoring for the moment the BD pa
rameters (122j/h) and (s/h21), the expected fringe shif
would be;1022 and the parameters would alter the abo
multiplicative coefficients. Thus, depending on the deviat
of the observed shift from this resulting value, we mig
conclude about the existence of BD scalar field.

In computing the polar and geodesic cases, Tartaglia@12#
considers polar and geodesic trajectories of the same ra
R573106 m. Then, our Eq.~68! for polar orbits reveals the
following: If we take v05(1/R)AGM/R, the first and the
second terms are of order;10215(122j/h) s and
;10218s, respectively. Considering the first term, one h
an expected fringe shift of order;1021(122j/h) s for vis-
ible light. From the difference in Eq.~69!, we find that the
first term on the right-hand side~rhs! is of ;10216(s/h
21) s, or equivalent to a 1022(s/h21) fringe shift, but the
advantage of this equation is that one need not fix a ‘‘ze
or a ‘‘pure’’ Sagnac term~that is, the one unaffected b
either gravity or scalar field!.

For a circularly orbiting geodesic source or observ
~Earth-bound satellites, for example! with an orbit radius,
say, R573106 m, the first term on the rhs of Eq.~81! is
7.3531026 s. This delay corresponds to a fringe shift
;108 for visible light, which should be immensely measu
able. A first-order correction to this, namely, the second te
in Eq. ~81! is of the order;10216(s/h21) s. Therefore, a
better correction term still follows from Eqs.~50! @which is
of the order of;1021(122j/h)# and it would put bounds
on Ã. One then has to compare these bounds with the K
values in order to determine whether a BD scalar field
feasible or not. Even if we take the lowest value forÃ, viz.,
Ã5500, the coefficients in Eqs.~102! and ~103!, respec-
tively, would change only very minutely. Accordingly, th
required measurement has to be very precise so that
small deviations are detectable. Feasibilities of such m
surements are discussed next.

D. Optical and matter-wave interferometric measurements

Bounds onÃ at least from the leading term (8paM/
R)@(2Ã13)/(2Ã14)# should be within the realm of ex
perimental feasibility. The discussion in Sec. VIII C revea
that Earth-bound verification of the Kerr and/or BD corre
tions to the basic Sagnac effect requires the detection of
lays O(10214– 10218s) or O(1 – 1024) fringes, or equiva-
lently, O(1026– 10210)V % in interferometry experiments. In
single-input-port optical gyroscopes and rotation sensors
minimal detectable phase scales asDf5O(1/AN), whereN
is the number of particles passing through the device per
time @30#. Currently devices are operating near this sh
noise limit and can detect angular velocities ofO(10210)V %

@31#.
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On the other hand, the use of material particles instea
light holds great promise in the field of interferometry a
rotational sensors. The advantage of using matter over l
in interferometers can be seen as follows: consider an in
ferometer with semicircular arms rotating with angular fr
quencyV about an axis through its center and normal to
loop plane depicted in Fig. 1~a!. In a given timeT, particles
traversing in the same and opposite rotational sense as
interferometer will travel a distanceL152pR1RVT and
L252pR2RVT, respectively, yielding a path difference o
DL52RVT. For light with a single beam-splitter input
output port we haveT52pR/c, so that we recover Eq.~1!
via dts5DL/c. However, for particles of massm traveling
at velocity v, with a beam-splitter output port located dia
metrically opposite the input port, we haveT5pR/v. This
leads todfmatter5kDL52AV/l rv, wherel r5l/2p is the
reduced wavelength. For matter,l r5\/mv is the de Broglie
wavelength and the phase signal is given bydfmatter
52AVm/\. For light, we can define the ‘‘photon mass’’ b
mgc25\v. Thus the inherent sensitivity of a matter-wav
interferometer exceeds that of a photon-based system by
mass-enhancement factormc2/\v'1010– 11. This impres-
sive mass-enhancement factor for matter-wave interfer

FIG. 1. ~a! A schematic illustration of an idealized light o
matter-wave interferometer used as a rotation sensor or gyros
~after @30#!. The interferometer has circular arms of lengthR and
rotates with angular velocityV with N atoms passing one-at-a-tim
through a beam splitter. The path difference between the upper
lower branchesa and b is given by DL52RVT, where T
52pR/c for light andT5pR/v for matter. ~b! A two-input-port
quantum interferometer. Quantum states are entangled~correlated!
at the input ports and phase shifts are measured at the output p
The use of correlated quantum states in the interferometer all
for minimum phase sensitivities which scale asDf5O(1/N) ver-
sus the uncorrelated state shot-noise limit ofDf5O(1/AN).
7-10
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eters is offset by a factor ofO(104) for smaller particle
fluxes andO(104) smaller number of cavity round trips~usu-
ally 1 for matter and 104 for light!. Matter-wave interferom-
etry experiments have seen to date a sensitivity of
31028 (rad/s)AHz @32#, which is comparable to the bes
active ring laser gyroscopes, and they are getting better.

The use of quantum entangled input states or correla
two-input-port interferometers offers exciting possibiliti
for the future@30#. A single input-port interferometer can b
considered as a two-input-port device where light or ma
enters in one port~i.e., one side of a beam splitter! as the
source and the ever present vacuum enters the se
~empty! port. The minimal detectable phase scales asDf
5O(1/AN), where N is the number of particles passin
through the device in unit time. In a two-input-port device
nonvacuum state is presented to each port and is correlat
the input beam splitter as shown in Fig. 1~b!. The use of
quantum entangled states~for both matter and light! leads to
minimal detectable phase sensitivity scales asDf
5O(1/N). It can be shown that a two-input-port matte
wave interferometer can be 106 more sensitive than a single
input-port matter-wave interferometer, a two-input-port op
cal interferometer can be 108 times more sensitive than
single-port optical interferometer, and a two-input-po
matter-wave interferometer can be an impressive 1010 times
more sensitive than a single-input port optical interferome

Clearly there are considerable technical challenges
overcome in bringing such devices to fruition.Decoherence,
the intrinsic quantum decay that ensues when a quan
system is coupled to undesired states, can degrade the
formance of matter-wave or entangled quantum detec
and reduce the phase sensitivity back down toDf
5O(1/AN) @33#. This result can sometimes occur since,
though the phase sensitivity increases with the numbe
particlesN used in the interferometer, the decoherence r
grows commensurately. However, even with decoherenc
sues considered, current experiments are already making
nificant strides towards realizations of matter-wave and
tangled quantum state interferometers useful for measu
the Sagnac effect@32#. With such promise, we may someda
soon be able to experimentally detect the higher-order g
eral relativistic corrections to the Sagnac effect and be a
to place tighter bounds on the BD parameters.

IX. GEODETIC AND LENSE-THIRRING PRECESSION

We can also investigate the effects of the KB metric
the precession of a spherical gyroscope in a circular p
orbit around the Earth as a means to experimentally mea
or bound the values of the parametersh, j, s or justÃ. The
Stanford Gravity Probe-B experiment@34# is just such an
experiment which will use a superconducting niobiu
coated quartz spherical gyroscope~machined to a precision
greater than 1026 cm! to detect gravitational precession e
fects arising from the geodetic motion of the satellite and d
to the rotation of the Earth~the Lense-Thirring effect!. In the
following, we follow the calculation of Ohanian and Ruffin
@35# by writing the KB metric to first order in«5r 0 /r and
z5a/r , converting to isotropic coordinates, and then co
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puting the parallel transport equation for the spinSm of the
gyroscope as it is carried about the polar circular orbit. I
tropic coordinates~x,y,z! are used since a change in the re
angular components of the spin vector can be immedia
attributed to the curvature of space time, whereas a chang
curvilinear components contains contributions both from
curvature of the coordinates and the curvature of space t

We begin with the KB metric in the Jordan frame, Eq.~9!,
and expand it to first order in«, z to obtain

ds2>~122h«!dt22@122~j21!«#dr2

2~122j«!~r 2du21r 2 sin2 u df2!

14~h2s!«z sin2 ur df dt. ~104!

The change to a radial isotropic coordinate is the same a
the Schwarzschild case~see@36#, p. 196ff and p. 256ff! and
is given by r 5r(11r 0/2r)2'r(11r 0 /r), wherer is the
radial isotropic marker. To lowest order«→«8[r 0 /r, z
→z85a/r, and from now on we drop the primes on«, z.
Carrying out the change to a radial isotropic coordinate a
using coordinates x5r sinu cosf, y5r sinu sinf, z
5r cosu, udrW u25dx21dy21dz2 fixed to the center of the
Earth and nonrotating with respect to the distant stars,
noting r2 sin2 u df5x dy2y dx, we arrive at

ds2>S 12
2hr 0

r Ddt22S 112~122j!
r 0

r D udrW u2

14~h2s!
r 0a

r3 ~x dy2y dx!dt. ~105!

Comparison with the Kerr metric@35,36# allows us to iden-
tify the last term of Eq.~105! with the rotation of the massM
~wherer 05GM/c2!. In going from the Kerr to the KB met-
ric we have the identificationaKB5(12s/h)aKerr , where
a52J/Mc is the angular momentum per unit mass of t
rotating body~for a body rotating in the positive senseJ
.0, a is negative, see@36#, p. 258!.

We are now interested in computing the change in
spatial components of the spinSm of a gyroscope in a circu-
lar polar orbit, as depicted in Fig. 2. We will first evalua
the parallel transport equations for the spin at a single p
rW 5(0,r,0) of the orbit where the four-velocity is given b
ẋm[dxm/dt5(1,0,0,v) and where the velocityv of the sat-
ellite has a value on the order ofAGM/r. The equation for
the parallel transport of the spin is given by

Ṡm[
dSm

dt
52Gab

m Saẋb. ~106!

A lengthy, though straightforward, calculation yields th
Christoffel symbols evaluated at the pointrW 5(0,r,0) to be

G02
0 5hr 0 /r2, G12

0 523~h2s!r 0a/r3,

G02
1 52~h2s!r 0a/r3, G12

1 52~122j!r 0a/r2,

G00
2 5hr 0 /r2, G01

2 5~h2s!r 0a/r3,
7-11
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G11
2 52G22

2 5G33
2 5~122j!r 0 /r2,

G23
3 52~122j!r 0 /r2. ~107!

We note that in the comoving reference frame of the sate
the spin is purely spatialS8050, and the four-velocity is
purely temporal, ẋ8u5(1,0,0,0) so that the relationshi
gab8 S8aẋ8b50 holds. Since this is a tensor equation, it mu
also hold in the reference frame centered on the Ea
gabSaẋb50. This constraint allows us to solve forS05
21/(g001vg03)( i 51,3(gi01vgi3)Si.vS31O(«). Substi-
tuting this and the Christoffel symbols into Eq.~106! yields
the equations

Ṡ15
r 0a

r3 S2,

Ṡ2522
r 0v
r2 S32

r 0a

r3 S1,

Ṡ35
r 0v
r2 S2. ~108!

The terms proportional tov give rise to the geodetic prece
sion while those proportional toa give rise to the Lense
Thirring precession. Although Eq.~108! was derived for a
specific point on the orbit, we can generalize to any point
the orbit as follows. Fora50 we can write Eq.~108! as

SẆ g52~11h22j!~vW •SW g!¹W F1~122j!~SW g•¹W F!vW ,
~109!

whereSW g refers to the geodetic contribution to the spin a
F52GM/r is the Newtonian gravitational potential. W
are interested in the long-term secular change in the spin
such we express the orbit of the satellite asrW

FIG. 2. A spherical gyroscope in a circular polar orbit about
Earth. At one instant, the gyroscope is at the positionx50, y5r,
z50 with instantaneous spatial velocityv along theẑ direction.
08402
e

t
h,

n

s

5r(0,cosvst,sinvst), wherevs is the angular velocity of the
satellite. InsertingvW 5drW /dt5v(0,2sinvst,cosvst), where

v5rvs and¹W F5r 0 /r2(0,cosvst,sinvst) into Eq.~109! and
averaging over one period yields

^SẆ g&5~11h/222j!
r 0v
r2 ~2S3x̂1S2ŷ![VW g

KB3SW g ,

VW g
KB[~11h/222j!

r 0

r3 rW 3vW 5
2

3
~3/222j/h!VW g ,

~110!

whereVW g
KB is the geodetic precession which reduces to

Schwarzschild and Kerr formVW g53M /2r3rW 3vW @35# in the
limit $h→1,j5s→0%. The geodetic precession of the sp
VW g is in the plane of the orbit and in the direction of th
orbital motion of the satellite.

A similar calculation can be performed for the ‘‘gravito
magnetic’’ terms proportional toa in Eq. ~108!. These
Lense-Thirring terms lead to the precession of the spin in
direction perpendicular to the orbit and in the same sens
the rotation of the Earth~‘‘frame dragging’’!,

VW LT
KB5

~h2s!ar0

r3 S 3

2
^rW •Ŝ% !rW L 2Ŝ% 5~12s/h!VW LT ,

~111!

whereŜ% is a unit vector in the direction of the spin of th
Earth ~hereŜ% 5 ẑ!. As we observed earlier from the metr
Eq. ~105!, this is just the usual Kerr Lense-Thirring prece
sion VW LT @35# with aKB5(12s/h)akerr. Performing the
time average as above one obtains

^VW LT
KB&5

~h2s!ar0

2r3 Ŝ% 5~12s/h!^VW LT&. ~112!

For a 650-km circular polar orbit, as depicted in Fig. 2, w
the spin of the satellite in the plane of the orbit,v
5AGM/r and $h→1,j5s→0% we obtain the valuesuVW gu
56.69/yr, uVW LTu50.0429/yr @35#. Thus, for the KB metric in
both the frames, these values would be multiplied
2/3(3/222j/h) and (12s/h), respectively@obtained by
using r 05M /h or r 05M /(h2s)#. Since the Gravity
Probe-B experiment is capable of measuring the bare$h
→1,j5s→0% values of these precessions, any possible
viations due to the Kerr-like BD scalar field should be d
tectable.

X. SUMMARY

In the foregoing, our aim was to examine how the pre
ence of a BD scalar field modifies the gravitational corre
tion terms to the Sagnac effect. To our knowledge, such
analysis has not been undertaken heretofore. A first-o
effect on the geodetic and Lense-Thirring precession w
also computed. It was found that the presence of the sc
field introduces a combination of different BD factorsh, s, j
7-12
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into the correction terms. The obtained results are of b
theoretical and practical importance: The values ofh ands
away from the Kerr values would indicate the presence of
BD scalar field.

The paper derivesexact expressions for the scalar fiel
modified Sagnac delay. The unknown BD factors can be
termined in terms ofÃ by using an input from the PPN
analysis, viz.,g5(11Ã)/(21Ã), as aboundarycondition.
From the expansion of the exact expressions, it is possib
directly find out corrections toall orders, visualize the physi
cal characters of these terms, and assess how the scala
modifies each of them. Thus, the present formulation off
two distinct theoretical advantages:~1! It is applicable also in
the strong field where the usual PPN analysis fails.~2! It has
a flexibility in the sense thatany functional choice ofg~Ã! is
admissible leading to forms ofh~Ã! ands~Ã! different from
those in Eqs.~98!. The possibility of a non-PPNg and its
physical implications are discussed in Ref.@39#, but are not
pursued in this paper.

From a practical standpoint, a first-order fringe shift
;1021(122j/h) is predicted for the Sagnac delay fo
Earth-bound equational orbits (R573106 m), which should
f

i A

e

e

ev
t.

s
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be measurable given the accuracy being attained by the
rent technology. The most exciting promise is offered by
Stanford Gravity Probe-B experiment which is attempting
measure the geodetic and Lense-Thirring precessions
Earth-bound orbits. As shown above, the multiplying facto

to the first-order corrections are, respectively,2
3 @ 3

2

2(2j/h)# and 12(s/h). For an estimate, takingÃ5500,
we find, using the PPN values in Eq.~98!, that u2j/hu
'2.9831023, us/hu'9.9631024.

It was demonstrated that the observable predictions in
two frames are identical, as expected. All the equations p
sented in this work reduce to those in the Kerr case. Las
Eq. ~35! represents the exact BD expression for the grav
tional analog of the Aharonov-Bohm effect@10,37,38#. We
will have more to say about this in a forthcoming paper.
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