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Brans-Dicke corrections to the gravitational Sagnac effect
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The exactformulation for the effect of the Brans-Dicke scalar field on the gravitational corrections to the
Sagnac delay in the Jordan and Einstein frames is presented. The results completely agree with the known
parametrized post Newtonian factors in the weak-field region. The calculations also reveal how the Brans-
Dicke coupling parametets appears in various correction terms for different types of source or observer
orbits. A first-order correction of roughly 2.8310™* fringe shift for visible light is introduced by the gravity—
scalar field combination for Earth-bound equatorial orbits. It is also demonstrated that the final predictions in
the two frames do not differ. The effect of the scalar field on the geodetic and Lense-Thirring precession of a
spherical gyroscope in a circular polar orbit around the Earth is also computed with an eye towards the
Stanford Gravity Probe-B experiment currently in progress. The feasibility of optical and matter-wave inter-
ferometric measurements is discussed briefly.
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I. INTRODUCTION surements of higher-order corrections to this effect might be
possible in the near futurg2]. Motivated by this prospect,
Ever since its discovery, the Sagnac effedthas played Tartaglia[12], in a recent interesting paper, has considered
a very important role in the understanding and developmenthe Einsteinian general relativistitEGR) effects on the
of fundamental physics. For a recent review, see the works giroper delay time when the source or receiver orbits a mas-
Stedman[2]. The effect stems from the basic physical factsjve rotating bodya “massive turntable,” as it weje The
that the round-trip time of light around a closed contour,author considered the Kerr metric for a rotating body and
when its source is fixed on a turntable, depends upon thgbtained the EGR corrections to the Sagnac effect in the
angular velocity, say}, of the turntable. Furthermore, this cases when the light source or receiver executes equatorial,
round-trip time is different for light corotating and counter- polar, and geodesic circular motions.
rotating with the turntable. Using the special theory of rela-  On the other hand, there is a recent surge of interest in the
tivity (STR), and assuming)r <c, one obtains the proper non-Einsteinian theories of gravity, such as the celebrated
time differencedrs when the two beams meet again at the Brans-Dicke(BD) theory[13] or other scalar tensor theories.

starting point ag3] The motivation comes from the fact that the occurrence of
scalar fields coupled to gravity seems inevitable in super-

Sree 40 S & string theorieg14], higher-order theoriegl5], as well as in

ST 2> the extended16] and hyperextendefdl7] inflationary theo-

ries of the early universe. Moreover, scalar tensor theories
wherec is the vacuum speed of light ar{=r?) is the  provide a rich arena for investigations into wormhole physics
projected area of the contour perpendicular to the axis of18-23. One also recalls that the standard solar system tests
rotation. Note that the expressidf) represents a lack of of gravity were calculated in the BD theory that displayed
simultaneity as recorded by a single rotating cldffom  the effect of the scalar field on those tests. Current experi-
where the beams depart and reuniteis thus a real physical mental estimates place the BD coupling parameter500.
effect in the sense that it does not involve any arbitrary synin the same spirit, it seems quite desirable that the effect of
chronization convention which is required between two dis-the scalar field on the corrections to the Sagnac effect, geo-
tant clockd 3,4]. Moreover, the effect is universal as it mani- detic, and Lense-Thirring precession be also calculated using
fests not only for light rays but also for all kinds of waves, a Kerr-like solution of the BD theory. This precisely is the
including matter wavefs5—11]. aim of the present paper, and we follow exactly the same

The formula(1) has been tested to a good accuracy ancgrocedure as in Ref12] for the Sagnac part.

the remarkable degree of precision attained lately by the ad- In dealing with scalar-tensor theories in general and BD
vent of ring laser interferometry raises the hope that the meaheory in particular, one envisages two types of variables

delineating two types of frames, viz., the Jordan and Einstein

frames which are connected by the scalar field. In Sec. Il we

*Email address: kamalnandi@hotmail.com discuss the rotating solutions in the two frames. Sections |l
"Email address: alsing@ahpcc.unm.edu and IV derive, respectively, the exact and approximate ex-
*Email address: jcevans@ups.edu pressions for the proper time delay in the case of the
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equatorial trajectory of the source or observer. The polar anth what follows. In order to see how the different arbitrary
geodesic trajectories are considered in Secs. V and VI, rezonstants are related, it is necessary to display the static BD

spectively. In Sec. VII the relevant corrections in the Ein-splution which, in “isotropic” coordinatest(p, 6, ¢), is
stein frame are considered. Section VIII contains a broad

discussion which is divided into various sections containing ro 1% ro 20 -c i
numerical estimates for the Sagnac delay in STR and BD 1_2;' o4 1_2;’
theory for Earth-bound experiments, a comparison with the ds?= P d?—| 1+=2 P
usual parametrized post NewtoniéPPN factors as well as 1 +r:0_ 2p 1+ fo
the possibility of using optical and matter-wave interferom- 2p 2p
eters to measure the correction factors. In Section IX we . _ )
calculate the geodetic and Lense-Thirring precession in the X[dp?+p?d6?+p? sir? 9 de?], (6)
weak-field limit of the Kerr-like BD metric for a satellite in a - en
circular polar orbit about the Earth. We end with a summary 1 To
of our results in Sec. X. 2o
$=do| — | @
Il. ROTATING SOLUTIONS IN THE JORDAN AND 1+;0_
EINSTEIN FRAMES 2p ]

Let us first define what are meant by the Jordan and Einwhere\,C, ¢,,r, are constants, and the first two relatesto
stein frameg15,20. The pair of variablegg,,,, scalar¢)  as
defined originally in the BD action constitute what is called a c
Jordan frame. Consider now the conformal rescaling Azz(CJrl)z_C( 1— m_) 8

2
T, =1($)9,,, d=h(¢), (2)

such that, in the redefined actiog, couples minimally to ds?=g, ,dx“dx”
., for some functions(¢) andh(¢). Then the new pair .

((<J scalarg) is said to constitute an Einstein frame. Some-
times, it is mathematically preferable to use this latter frame
for computation of experimental predictions. In the Jordan
pair, the scalar fieldp plays the role of a component of +sir? 0 de?
gravity in the sense thdip)~G 1, whereG is the Newton-
ian constant of gravity, signifying the Machian character of .
the BD theory. On the other hand, in the Einstein pair, the b= (l— ﬂ) o= E+n-1 _ E (10)
scalarg plays the role of some kind of matter source. These ° ’ 7 2\
features will become evident from the field equations that
follow. Throughout this paper, we také=c=1 unless they
are explicitly restored.

The matter-free Jordan frame BD action is given by

The KB solution generated from the above is given by

2ror\ 7 2ror\ ¢ [dr?
1—70) (dt—wdgo)z—(l—To) p(—+d02

A

+2

2ror\@
1—7 w(dt—wde)de, (9)

w=asir’ §, p=r?+a®cos ¥,

A=r2+a2—2ryr, r=p(l+ro/2p)2. (11)

The solutiong9)—(11) represent the exterior metric due to
gr ¢,M¢’,v) ﬁ d?x, a massi've bod'y rotqting with respect to the fixed stars, the

scalar field being given by Eq10). As one can see, the
presence of the coupling parameter in the solution is
énanifested through the expressioi@ and (10). For £=0,
o=0, =1, one recovers the usual Kerr metric in Boyer-
Lindquist coordinates. Herg,=GM/c?, M is the mass of
(¢*).,=0, (4)  the source, and is the ratio between the total angular mo-
mentumJ and the mas#/, that is,a=J/M.

1 w
SJ[g/.LVV(b]: EJ (d’R_ E

wherew = const is a dimensionless coupling parameter. Th
resultant field equations are

w 1 1 The Einstein frame action is obtained from the BD action
Ry~ EQ,WRI ? b ub 59#y¢,a¢'0 + g[d);,u;v (3) by means of a particular conformal transformation, called
the Dicke transformations, given by
=9(#%) 6], 5 1
where the semicolon indicates a covariant derivative with gW:E(bgW’ (12
respect tog,,. Following the procedure of Newman and s
Janis[24], a two-parameter rotating solution of the above - [w+3 d¢
field equations has indeed been found by Krori and Bhatta- d¢=( - 5 (13

charjee(KB) [25] from the static BD solution. They called it
a Kerr-like solution but we choose to call it the KB solution where« is an arbitrary constant. The action then is
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S0, P1- [ 1R-a0"3,3 V"G ()
The resulting field equations are
S T P U
R,LLV_Eg,u,VR:a ¢1M¢1v_§guv¢,a’¢‘ ' (15)
(¢),,=0. (16)

The KB solutions of the above Einstein minimally coupled

equationg15) and (16) can be explicitly written out as

ds?=T,,, dx* dx”

2ror\ 77
=(1——°) (dt—w dg)?
p
2ror\ 677 (dr? o 5
—(1—7) p(T-i-dﬁ +Slr]20dq0
+2w(dt—w de)de, (17)
31172
_ ‘G)'+§ 2r0r
b=— oinf 1- =%, (18)
a p
w=asirf 9, p=r2+a?cos 0,

A=r?+a’—2rgr.

Here also, fora=0, the solutiong17) and (18) go over to
Buchdahl solution$20,26] in “standard” coordinates under
a suitable radial transformation defined below.

The vacuum KB solutior{9) resembling the Kerr metric
is defined for the radial coordinatein the rangero+(r§
—a?cog 6)Y?<r <o which translates in “standard” radial

coordinateRr into the range 82R< whereR is defined by

PHYSICAL REVIEW D 63 084027

Ill. EQUATORIAL TRAJECTORY

Consider that the source or receiver of two oppositely
directed light beams is moving around the gravitating body,
along a circumference at a radius R=const[R>r0+(r§
—a?cog 6)?] on the equatorial plan&=7/2. Suitably
placed mirrors send back to their origin both beams after a
circular trip about the central body. Let us further assume
that the source or receiver is moving with uniform orbital
angular spee@, with respect to distant stars such that the
rotation angle is

R

o= wol. (20
Under these conditions, the KB met(i@) reduces to
d?=[ ywj+2a(P’—P")wy+ P7]dt?,
x=P7a?— P{R?-2P"a?, (21)
(2] o

The trajectory of a light ray is given bgs>=0 which im-
mediately gives
0=Xw2+ 2a(P°—PNwo+P'=x(0—Q, )(0—Q_),
(23)

where w is the orbital angular speed of photons. The two
roots() . satisfy the following equations:

2a(P7—P7) p7
Q.+ =——, Q0,0 =—. (29
X X
The rotation angles for light are then
=0t (25
Eliminating t between Eqs(20) and (25), we get
e 26
Q== $o- (26)

The first intersection of the world lines of the two light rays

with the world line of the orbiting observer after emission at

time t=0 occurs when

£
_ ﬂ) ) (19)

R%= (1
P p
Q

=g+ 2, _=@og—2m, oOr = pg= + 2,
The solution does exhibit a curvature singularity at the origin Frm o P w YO %0
R=0 which is not clothed by an event horizon and hence is (27)

naked. In fact, the singularity has the topology of a point asyhere + refers to corotating ane refers to counterrotating
the area of the equipotential surfaces and proper Iengths ®feams. Solving forp,, we get

closed curves on these surfaces all reduce to zero sig as
—0. The coupling between gravity and a massless scalar
field renders the event horizon to collapse to a point and one
has gravitation V.V'thOUt black hol¢&7]. At any rate, we are he proper time of the rotating observer is deduced from Eq.
interested only in the effects due to a normal, uncollapse(él) as

rotating star coupled to a scalar field. Hence, the Penros

conjecture of cosmic censorshipreventing the occurrence

of naked singularitigs for which a precise formulation is yet
unavailable, should not concern us here. Indeed, we will see
that the PPN calculations precisely agree with those follow-Therefore, integrating betweesy,, and¢,_, we obtain the
ing from the KB metrics in both Jordan and Einstein frames.Sagnac delay

27wy

o+ = ir_wo : (29)

d
dr=[xwi+2a(P*—Pwg+PTI—>. (29
0
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. wo+— Po— This too coincides with the calculations in the Kerr case
dr=\[xw5+2a(P"—P7)wo+ Pl — — (300 when appropriate values and 7 are chosen. However, the
0 effect of the scalar field is manifest in the determination of
From Eq.(28), we have values foro and » away from the Kerr values.
One may also reexpress the deléy, in terms of the
) Q,+Q_—2w, (31 Lense-Thirring effect(see Sec. IX given by (using arg
- _=4LTTW . —
Po+—~ %o 0 (Q+—w0)(Q_—w0) —IQo)
Using this expression in E¢30), we find oLr=—m7 (39)

x[(Q:+Q_)—2w,]

or=(2m . (32 and the result is
ok Vxwi+2a(P?—P%) wq+ P”
8w r
We see that the delagr is zero if the angular speed of the O0Tp= RLT(U— 7)(7R%)| 1+ ﬁo(l—U) . (39

orbiting observer is

If the observer is fixed on the equator, theg=Q,, and

Q.+ = a(P"—P?) then the delayr can also be expressed in termd af,, and

W= wp=

2 X Qo,
a(P7—P) |
~ P7a’~ PIRZ-2P"a’’ 339 —(P7=P7)—x
0
provideda#0. In the usual Kerr case, the above reduces to o1=(4700) 2102 » (40
(ro=M) \/XQ§+ 2 (PT—P7)+P7
2aM fo
“n~ R+ a?R+2Ma?’ (34 where

. . . . 2 2
which is exactly the same as the one obtained by Tartaglia 12 204

— 0 2 o
[12]. The observers having the angular spegdare locally X~ _rg_m_ R*PE-2P 2 (4D
nonrotating and may be imagined to be equivalent to the
static observers in the Schwarzschild geometry for whom nd\ll these reduce to the corresponding expressions in the Kerr
Sagnac effect exists. On the other hand, if the observers keaase.
fixed positions with regard to distant stars so tagt=0,

then the Sagnac delay becomes V. APPROXIMATIONS
S519= 87( 0)=( )(P”— P?) 39 For our convenience, let us adopt the following abbrevia-
70=07(wp=0)=(47ma) ———. 5 . ]
° ° JP7 tions:

. =a/R, Vv=wyR = R. 42
In the usual Kerr case, one obtains from the above (=alR, @R, &=To/ (42)

Since we shall be concerned mainly with Earth-bound ex-

B 8maM B 8mJ B 8lofdo periments, it is useful to have an idea of how small the quan-
07o= oM B oM - oM tities ¢, ¢, ande are. For Earth, these afexact individual
R\/1- — RA\/1- — RA[/1-— values of the pieces will be given lajer
R
(36) _ 8 _woRs 5
gﬂ} R@C 10 ’ 'ﬁ@ c 10 ]

in which we have used the expression for the moment of
inertial g given byJ=aM=1,Q,, whereQ is the angular GM
speed of the rotating source, assumed to be solid and spheri-
cal with uniform density. The expressidB86) again is the
same as in Ref12].

To the order in 1R? we have, from Eq(35),

52

_ 109
Eg R@ C2 10 ’ (43)

and for Sun, these are

{o~o~e0~107C (44)

8mar, ro 2ro|7?
dro=—pg—(0=n) 1+ 5(l-0o=—n||1- 5= Let us rewrite Eq(32) as
_ 8mar ro or Y(XIR?) +{(P"=P7)
= R (0-_ 77) 1+ ﬁ(l_O') . (37) 4’7TR_ [P77+ ¢12(X/R2)+2§III(P”_Pn)]llz' (45)
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With the values displayed in Eqe&t3) and(44) in mind, we  suming uniform motion again, we také= wyt. Then, we

use the expansions have, usinglr=0, de=0, df= wydt, andds’=0, from the
metric (9)
X _ .2 2
=2P7—Pf-27%P°
RZ¢ ¢ d0_+(R2—2rOR+a2—azsin2 )12 53
=—1+2fe+2£(6-1)e2+2+0( )3, (46) dt = (R+a’cos )7 "R
P"—P”—-l— 2ro|” i 2ro|” Under the assumption tha?/R?<1, and assuming=0
| ?_ R when 6=0, we have
=-2(o—m)e[1+(1-o—n)e]O( )3 (47) R
[ 2rg]” 2 3 = [ 2rg| R ’
P7= l—? =1-2ne+2n(n—21)e“+0O( )°, 1_3
) ) 48
9 S
whereO()?® stands for any cubic terms in the small quanti- a® R 2 2 o o
ties ¢, i, . Using these expansions, we obtain the delay, To5R or €22 0 cos6'dd
denoting it byérg, (1— ?)
5TE
Top=¢t2(c—nelt(n=28)ey R
4R .
ST arg o on?
+PP+2(n—o)(o—1)e’y—3(4né+aE—4¢ —?)
—2n—n)e?Y+342+0( )™ 49
n=n)e"Yt 3¢+ 0() (49) 2no|(nm+1) g
After cross multiplying and substituting in the definitions of a? R 2 2
small quantities in Eq(49), we get + IR 2rg| 7 2R
Sramrat SO (L gt JR(p— 26)+ Ama? ( _?)
TE=O0T — (o0 — Twol - mTa w
EZ9TsT TR m 07077 0 X (cosf sin 6+ 6)
8mria -
+—R (p—o)(o—1)—2mwir5(4né+4E—4€
R
—7?=2n)+2meiR*+0O( )% (50) = (TW
1_ R
The second term above represents the correction due to the R
moment of inertial of the rotating sourcear,=1,), the o CEr1) £
third term represents the correction due to the mass param- ) [( — _0)( U ) + 7]}
eterry, and the remaining higher-order terms represent vari- a R 2 2 P
ously combined effects df r,, and€Q,. Most importantly, 4R 2o\ (7 E¥202
one can now visualize the effects of the scalar field through "R
the factorsy, o, andé.
In the absence of a scalar field and for a homogeneous 1- 2rg\(mp—&+1 N §—nm
spherical object whose radius R, one has a2 R 2 _ 54
— TR sin 26. 54
| = & mpRE=MR?. (5 oR (1— %)
p is the densityassumed to be unifornof the object. Hence
a for the sphere is approximately During this time, the rotating observer describes an afigle
~2p2 while light travels an angle 2=+ 6, (once again,+ for the
=5R Q0. (52) corotating beam anet for the counterrotating begnso that
V. POLAR (CIRCULAR) ORBITS 0 q
: . . —=(p+a)(27+ 6p) = sin 26, (55
We shall now investigate the effect when the light rays o 2

move along a circular trajectory passing over the poles. In
this case, too, we may take= R=const andp=const. As-  where
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2ro\(m—§&+1) &7 f 2roR\ 7 2roR\E ]2
q 2R 21, (—E+2)12 )
1-— =R?+a? coS(wot 65
R For short enouglw,t, we have cosgpt)=1, sin(wgt)=0. Fur-
p= o\ (2" (56) ther, neglecting terms of the ordBr 2 in the integrand, we
(1— —0) have
R
. 2r 7 1/2

Assume, as we did already, a low speed observer and that the r=l1-207 w3R?| t. (66)
angle 2, is so small as to justify sin@=26,. Then R

bo Therefore, the time delay in the polar case, denotedhy,
w_o_(p+Q)(277i o) = Q0. (57) is given by
Solving for 6y, we get 2ro7m 12
N 5rps(1— = —wiR?| (t,—t.)
p+q
0o+ =21 1 (59 12
= Z(pta)Tq S PR VAR
(O] R 0
Finally, the difference between two round trip “coordinate” 2 3a® 8ro(n—&)
times (recalling the approximations already usedmes to X| TwoR% 4+ =7 R - (67
t,—t = 90+~ bo- Therefore, to the first and second ordersZjny, ande, we
o have
a? a?
X+ 55 Y| X+ EY} Stp=075(1— ne)[1+ 5+ 2(n—§)]
=47wq L, 2 12 (59) =61 1+372+ (n—2¢&)e].
Z —wq X+ EY
Comparing with the equatorial case, the excess is, using Eq.
where (49),
2r A Stg— 6 2(o— 3
X=R(1——0), (60) Ar_dme—ore 20 ”)58__3_ 68)
R 57’8 575 l,b 4
V= ( 1— ﬁ) ( n—ét1 i £ 7 61) The term (p—2£)e cancels out due to the spherical symme-
R 2 2’ try of the orbits considered. After cross multiplying bys,
we get
2r0 (n—§&+2)12
Zz{l—ﬁ} (62) 87_”.0a

Neglecting terms of ordeR 2 and w3R? and higher, we get
8ro(n—§)

—=R [
Thus, the correction due to the angular momentum of th

source is independent & in this case. The term is in fact
given by, using Eq(52),

3a?

t+—tzww0R2(4+Ez— (63

12
25

3malwo= 32 TR{Qowo, (64)

Ar= 61— 61p= (0—7n)—3a’7w,. (69

R

It may be observed from Eq$50) and (69) that the scalar
field appears only in the terms that contain the gravitating
mass parameter,. This fact is quite consistent with the
éorm of the KE metric which also has this property.

VI. GEODESICS

Let us now consider the geodesic motion of the source or
receiver having a four-velocity*(=dx*/ds). The geodesic

whereR, is the radius of a source sphere of uniform density.£auations are
In order to obtain what the rotating observer measures, we

must calculate the proper time in his/her frame. This is done

as follows: From the metric Eq9),

Jut
ox”

u’+I'% u'u®=0, (70
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whereI”, are the Christoffel symbols formed from the KB in Eq. (73) is positive. Butdg,,/d¢ in Eq. (74) has the

metric (9). We can simplify the problem by taking= /2,

leading term—2rP¢<0. Thusw, as defined by Eq73) is

that is,u’=0. The geodesic equations do allow such a solu-actually negative in the Kerr limit and similarty_>0. Thus

tion [12]. In this case, sif#=1, cosf=0, w=a, andP=1

if we were to change thes — = on the right-hand side of

—2r,/r. For a circular geodesic orbit with a constant radiusEq. (73) .(in the large square bracketthen Eq.(78) would
r=R, the condition isu"=0. Then the radial equation be- read, using the notations of Sec. IV, as

comes

T (uh)2+T7 (u?)?+ 2T u'u?=0. (71)

Defining the angular speed of rotation of the source or re©n Using this in Eq(49), we get the delay

ceiver asw=u®/u', we get

wizrf—l“{wi \/(F{¢)2—F{tfzp¢. (72
[
The above expression simply turns out to be
0= - — 9ty + \/ s 2_ % —&gw (73
T 09, ar ar ar or |’
ar
where
d 2
gf‘p = (r_2 [a%roP7 1—r3pé—grir pét
—20a%r P71, (74)
d 2
%z—(r—z [apgroP” 1—aor P’ 1], (75)
J0tt 2 _
7=(r—2)[77r0P’7 . (76)
Thus, atr=R, we finally haveP=1-2r,/R and
P
wi::l (77)
Q

where
P=aM(yP7 1= P 1)+ [ yR3(P¢" 7 1+ a%g?rgp2o 2

+ ﬂngrgP§+ 7]—2]1/2’

Q=7a’r P 1—R3P{—¢R?r P 1—2ga%r P71,

Dividing the numerator and denominator®f. by R®P¢ and
retaining terms up t@a/R, we find

ar

1 7o
Rz (0= 7).

0L =F=

- R R

(78)

The sign flip in this equation can be rectified. Suppose we

follow the convention thatw >0 andw_<0 in the Kerr

Ye=w.R== e+ (o n)sl. (79
076+ =4mR[ . +2(0—n)e{+(n—285)e ). ],
which yields, to the lowest order ig,
S16.=4nR[* e +3(c—n)el+0()*?]. (80)

Now the traditional Sagnac effect is RgL2], obtained here
by setting in Eq(80), a=0, »=1, ando=0,

0Ts+ =4mRyYy. =471 MR,

so that we have

32
7o

127ar r
V575i+ 0 2

OTG+= T(U—ﬁ)+O(R

(81)

Thus, unlike the case of polar or equatorial orbits, the tradi-
tional part of the Sagnac effect is multiplied by a factor
Vnro/M. lts value will be found from the PPN form of the
metric (9) in Sec. VIII.

VII. EINSTEIN FRAME

It is instructive to calculate the relevant corrections in the
Einstein frame as well, already defined in Sec. Il. The metric
to be used now is Eq17) and the steps to be followed are
precisely the same as those in Secs. llI-VI. However, it is
not necessary to do them explicitly. Instead, one may simply
use the replacements given by— n—o, é—§—o0, ando
—o—o in the desired expressions computed in the Jordan
frame.

A. Equatorial orbits

As can be verifiedw, of Eq. (33) remains completely
unaffected, that isp) = " . This implies that the defini-
tion of “static” observers, for which no Sagnac delay exists,
is preserved even though the physics in the two frames dif-
fers widely. However 7, of Eq. (39) changes to

57'(0E): ETBJ)~87T(0LTR2(U— 7). (82

limit, that is, the £ signs onw- indicate the sign of the The exact expression for the delay, that is, thebetween

frequency. Then, from Eq75), assuminga>0, we find that

the two frames are also related in the same way and under

99, /9r <0, so that the numeratéthe large square brackgts the approximations as before, we find from E80),
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8mroa (47R?)(wo+ Q)
578 =857 V=57r + o— OTsTR= , (87)
stTR o) SR (1— 0%R%) — 20,QR?— w2R?
+ 4t gRwg( - 28— ). 83)

where() and w, are, respectively, the angular speed of the
coordinate system rotating about the origtarntable and
B. Polar orbits the orbital angular speed of the source or observer with re-
It can easily be noticed from Eq¢56) that p®)=p(? ~ spect to this 'gurntablé28]. If the coordinate system is non-
q® =g so that we havet(—t_)B=(t,—t_)® and rotating, thatis(t=0 butwy#0, then
consequently, from Eq68),

870 —o=(4mwR?)(1— wjR?) 12 (88)
ST =611+ 3%+ (n—2&+0)e]. (84)
_ _ and conversely, if the source or observer is fixed to the turn-
The difference becomes, using E§9), table such thatsy=0 butQ+0, then
A7®=(8rg— 67p)® 870, —0=(4TQR?) (1-Q2R?) 12 (89)
8marg 5 . .
=—R (0=7)—37ma%w,. (85  The effect is doubled if the source or observer hgs=
#0
C. Geodesics 51(woe=0)=(87OR?)(1-40%R?) 1?2 (90)

The exact expression fmr(f) can be easily obtained from
Eq. (77) under the specified replacements. We shall her
write only the approximated final result from E®@1),

éemd is zero ifwg=—, that is, when the source observer is
moving on the turntable opposite to its rotation but with the
same angular spedd.
- (7—o)rg 12rpa(o— 1) ro| 32 Tartaglia[12] considers the case when the source or ob-
0TG4 = T5Tsi+ TJrO R - server is fixed to the equator of the Earth, which means one
86) has to consider Eq89) with ) =Q . where the symbo
denotes Earth values. Expanding E§9), and restoringg,

Although some of the terms in Eq&83), (84), and(86) look ~ We get
different from the corresponding terms in the Jordan frame, a

PPN approximation will show that they are actually the 4mQ R 2mQ3RY
same. In fact, the coefficients in the first terms in E@4) 01(wo=0)= 2zt c T (91)
and(86) are both unity.
whereR,, denotes the radius of the Earth.
VIIl. DISCUSSIONS Now recall the relevant data for Earth,
A. STR numerical estimates R, =6.37x 100 m,
In the foregoing we calculated the effect of the BD scalar

field on the gravitational corrections to the Sagnac effect in 0, =7.27<10 %rad/s,
the Jordan and Einstein frames. Three types of source or
observer trajectories were considered, viz., equatorial, polar, G
and geodesic. In the Jordan frame the corresponding expres- jie=4.4>< 10 3m,
sions are Eqs(50), (69), and (81), while in the Einstein ¢
frame, these are Eq33), (85), and(86). All these expres-
sions reveal the effect of the scalar field through the presence a;=9.81x10° m?’s,
of 7, & ando. Since these parameters are connected by Eq.
(10), it is clear that the knowledge of any two would suffice c=3x10°mi/s.
in determining the remaining one. Measurements of the cor-
rection terms would place upper limits on the valuegy@ind  Substituting these values into E@9) we obtain
o. These limits would translate into a limit an, via Eqs.(8)
and (10), just as it happened in the static BD solutions with ~ §7gr(we=0)=[4.12X10""+4.6x10 *+---] s.
respect to solar system tests. Conversely, we can take the (92
solar system values =500 and calculate the expected nu-
merical values ofy, o, andé. Therefore, the basic Sagnac delay, Ef}, amounts to 4.12

For the sake of comparison, let us now estimate the nux 10 ’s. To compare the above terms with the correspond-
merical values of the basic as well as the correction terms iing ones in the BD theory, we must first determine the un-
STR. Consider the exact proper time delay from STR  known constants appearing there. This is achieved by using
given by (under similar circumstances as in Sec) Il the PPN approximation, discussed below.
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B. PPN approximation

Our aim in this section is to express the KB parameigrs
o, £in terms of the coupling constant. The first step in this
direction is to rewrite Eq(8) in the form

1—(p—0)’=(2w+3)0? (93

by noting that
1 ~C A-C-1 04
=N 0= T o0 — (94

The next step is to consider the PPN parameters, y
which appear in the metric

M 2

p

(dp?+ p?dQ?).

d32~—[1—2a

M)+z
|28

)

Since 7, o, ¢ already appear in the static form of the metric

+1+2y (95

(9), and we are considering only the weak-field form of the

metric, we can, for the moment, assume 0. In isotropic
coordinategp, 6, ¢) given by

2

.
1+ -2

r=p 2p

the reduced metri€9) becomes

o 27 o 26-2
- 1_ —
2 2 ro\?
ds?= - A2+ P 1+ —°>
110 1+ > 2
2p 2p
X (dp?+ p2dQ?). (96)
Comparing the corresponding orders, we get
20

The usual PPN value of is y=(1+w)/(2+w) [29] and

using Eq.(92) we get
B 2w+4
2wta)’ | No2w+3

B 1
7 J2w13)

&E=1-n+20. (98)

PHYSICAL REVIEW D 63 084027

2M\ 7 2M\ 7
1_ﬁ - 1_ﬁ
|5TO| = (47Ta) X 2M nl2 (99)
-5

which yields, to second order if{/R)?,

8maM
R

2w+3
2w+4

M

"R

1
2w+4

\/m
2w+4

(100

|5To|“

Equation(50) represents the corrections due to other physi-
cal factors(such as the moment of inertia, et@nd using the
boundary values in Eq$98) one can easily deduce how the
scalar field combines with them through the appeardoce
absencgof .

An exact expression for the Sagnac delay for polar orbits
can be obtained by plugging in the value of t_) from
Eqg. (59) into Eq.(65). A similar expression can be obtained
for the geodesic motion using Eqg5), (77), and(79). Ex-
pansion of these exact expressions would enable us to assess
the influence of other physical factors as well as the involve-
ment of the scalar field.

A simple demonstration will reveal that calculations in
both the Jordan and Einstein frames lead to shenew
factors for the corrections. Turning to the calculations in the
Einstein frame for which the KB metric is given by Ed.8),
we find from the PPN requirement that

M B 2w+3

(p—0)ro=M, o—n—0o n—\/2m+4,
B 2w+4

TN N2+ 3

1—(p—0)?=(2w+3)0?.

(101

Then the first-order correction term in E®3) reads

8maM
R

2w+3
2w+4

which is precisely the same as the first term in @§0. Use
of Egs.(101) would enable us to see also that E(g0) and
(83), (69) and(85), and(81) and(86) are actually the same.

C. BD numerical estimates
In order to compare Eq92) with the corresponding situ-

Let us now consider the weak-field rotational part given byation in the BD theory, we should consider the case when the

4(p—0)(ro/p®)(x dy—y dx)dt (see later in Sec. IX Us-
ing ro=M/7%, we find that the effect of the scalar field is
equivalent to multiplying the Kerr part by the factpf2w=
+3)/(2w +4)], which is exactly the PPN prediction as
well.

Regarding the values given in EqQ8) as those deter-

mined from the weak-field boundary conditions, we can now

rewrite the exact form of Sagnac delay given in E2p)

source or observer is fixed on the surface of the Earth, viz.,
wo={ . The various correction terms are, for the equato-
rial orbit, settingwy={ in Eq. (50) and using the identifi-
cationry=M/ 7,

2¢

2
1- 7) ~2.84% 10-16< 1- ¢

—'s,
(102

47GM 4R,
C4
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oy a @

87GM.a
2roe % ;—1)~1.89><10—16(;—'7—1) s. (103 ‘

R, c*

These estimates suggest that the first two corrections in Eg
(50) are at least three orders of magnitude higher thanthe — \XJ =/ /g
STR one ify and o assume nearly Kerr values. For visible
light, v~10"Hz, and ignoring for the moment the BD pa-
rameters (+2¢/n) and (o/ p—1), the expected fringe shift
would be~10"? and the parameters would alter the above
multiplicative coefficients. Thus, depending on the deviation
of the observed shift from this resulting value, we might B

conclude about the existence of BD scalar field.

In computing the polar and geodesic cases, Tartadih o ® dctoctor
considers polar and geodesic trajectories of the same radiu W, L2717 ;)
R=7x10° m. Then, our Eq(68) for polar orbits reveals the W
following: If we take wo=(1/R) VGM/R, the first and the
second terms are of order10 %(1-2¢/7)s and
~10 18s, respectively. Considering the first term, one has
an expected fringe shift of order 10~ 1(1—2&/ %) s for vis- -
ible light. From the difference in Eq69), we find that the
first term on the right-hand sidéhs) is of ~10 %o/ 7 mier
—1) s, or equivalent to a I¢(o/7—1) fringe shift, but the P Laput Outputports "
advantage of this equation is that one need not fix a “zero”

or a “pure” Sagnac tern‘(that is, the one unaffected by FIG. 1. (@ A schematic illustration of an idealized light or
either gravity or scalar field matter-wave interferometer used as a rotation sensor or gyroscope

For a circularly orbiting geodesic source or observer(after[30). The interferometer has circular arms of lengttand
(Earth-bound satellites, for examplevith an orbit radius, rotates with angular velocit® with N atoms passing one-at-a-time
say, R=7X 108 m. the first term on the rhs of Eq81) is through a beam splitter. The path difference between the upper and

6 . . . lower branchesa and B is given by AL=2RQT, where T
7.35<10 . Th|_s delay_ corresponds _to a fringe shift of — 2R/ for light andT— =R/ for matter. (b) A two-input-port
~10° for visible light, which should be immensely measur- .
able. A first-order correction to this, namely, the second tern"guantum interferometer. Quantum states are entariglatelated
. ) - ! ' t the input ports and phase shifts are measured at the output ports.
in Eq. (81) is of the order~10 %o/ 7—1) s. Therefore, a put b P put b

. . e The use of correlated quantum states in the interferometer allows
better correction term still follows from Eqs50) [which is o yinimum phase sensitivities which scale &g=O(1/N) ver-

of the order of~10""(1—2¢/7)] and it would pUt.boundS sus the uncorrelated state shot-noise limit\af=O(1/{N).
on w. One then has to compare these bounds with the Kerr

values in order to determine whether a BD scalar field is On the other hand, the use of material particles instead of
feasible or not. Even if we take the lowest value @orviz.,  light holds great promise in the field of interferometry and
w =500, the coefficients in Eq$102 and (103), respec- rotational sensors. The advantage of using matter over light
tively, would change only very minutely. Accordingly, the in interferometers can be seen as follows: consider an inter-
required measurement has to be very precise so that suéérometer with semicircular arms rotating with angular fre-
small deviations are detectable. Feasibilities of such meeaguency() about an axis through its center and normal to the
surements are discussed next. loop plane depicted in Fig.(&). In a given timeT, particles
traversing in the same and opposite rotational sense as the
interferometer will travel a distance, =27R+RQT and
L_=27R—RQOT, respectively, yielding a path difference of
Bounds onw at least from the leading term @&M/ AL=2RQOT. For light with a single beam-splitter input/
R)[ (2w +3)/(2w +4)] should be within the realm of ex- output port we havd =2=7R/c, so that we recover Ed1)
perimental feasibility. The discussion in Sec. VIII C revealsvia §7s=AL/c. However, for particles of mass traveling
that Earth-bound verification of the Kerr and/or BD correc-at velocity v, with a beam-splitter output port located dia-
tions to the basic Sagnac effect requires the detection of dewnetrically opposite the input port, we hae= wR/v. This
lays O(10 -10"'8s) or O(1-10 %) fringes, or equiva- leads toS¢mare=KAL=2A0/\ v, where,=\/2 is the
lently, O(10-10"19Q ., in interferometry experiments. In reduced wavelength. For mattar,=#/mu is the de Broglie
single-input-port optical gyroscopes and rotation sensors th&avelength and the phase signal is given B, atier
minimal detectable phase scalestag=O(1/\/N), whereN =2A0m/%. For light, we can define the “photon mass” by
is the number of particles passing through the device per un'myc2=ﬁw. Thus the inherent sensitivity of a matter-wave
time [30]. Currently devices are operating near this shotinterferometer exceeds that of a photon-based system by the
noise limit and can detect angular velocities®f10 9,  mass-enhancement factonc®/%w~10°"*1 This impres-
[31]. sive mass-enhancement factor for matter-wave interferom-

D. Optical and matter-wave interferometric measurements
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eters is offset by a factor o®(10% for smaller particle puting the parallel transport equation for the spih of the

fluxes andD(10*) smaller number of cavity round trigesu-  gyroscope as it is carried about the polar circular orbit. Iso-

ally 1 for matter and 1bfor light). Matter-wave interferom-  tropic coordinatesx,y,2 are used since a change in the rect-

etry experiments have seen to date a sensitivity of 2angular components of the spin vector can be immediately

%1078 (rad/s)/Hz [32], which is comparable to the best attributed to the curvature of space time, whereas a change in

active ring laser gyroscopes, and they are getting better. Curvilinear components contains contributions both from the
The use of quantum entangled input states or correlatediurvature of the coordinates and the curvature of space time.

two-input-port interferometers offers exciting possibilities Ve begin with the KB metric in the Jordan frame, £9),

for the future[30]. A single input-port interferometer can be @nd expand it to first order is, { to obtain

considered as a two-input-port device where light or matter

enters in one porti.e., (F))nepside of a beam spl?tiems the ds’=(1-27e)dt"~[1-2(¢~1)e]dr?

source and the ever present vacuum enters the second —(1—2&e)(r2d6?+r?sir 6de?)
(empty port. The minimal detectable phase scalesAas .
=0(1/YN), where N is the number of particles passing +4(n—o)elsin’ ordedt. (104

through the device in unit time. In a two-input-port device, a
nonvacuum state is presented to each port and is correlated
the input beam splitter as shown in Figlbl The use of
guantum entangled staté®er both matter and lightleads to
minimal detectable phase sensitivity scales asp
=0O(1/N). It can be shown that a two-input-port matter-
wave interferometer can be &fore sensitive than a single-
input-port matter-wave interferometer, a two-input-port opti-
cal interferometer can be 1Gimes more sensitive than a
single-port optical interferometer, and a two-input-port
matter-wave interferometer can be an impressiv¥ files
more sensitive than a single-input port optical interferometer.

Clearly there are considerable technical challenges to ds?=
overcome in bringing such devices to fruitidbecoherence
the intrinsic quantum decay that ensues when a quantum roa
system is coupled to undesired states, can degrade the per- +4(n—o0) —7 (xdy—y dx)dt. (105
formance of matter-wave or entangled quantum detectors P

and reduce the phase sensitivity .back down _Mﬁ Comparison with the Kerr metri35,36 allows us to iden-
=O(1//N) [33]. This result can sometimes occur since, al-4ify the last term of Eq(105) with the rotation of the masd

though the phase sensitivity increases with the number herer ,=GM/c?). In going from the Kerr to the KB met-
particlesN used in the interferometer, the decoherence rateic \we hoave the identificatiomyg=(1— o/ 7)ax where
err»

grows commensurately. However, even with decoherence IS5= _ 3/Mc is the angular momentum per unit mass of the

sues consi_dered, current experiments are already making Siﬁitating body(for a body rotating in the positive sende
nificant strides towards realizations of matter-wave and en g 4is negative, sef36], p. 258
tangled quantum state interferometers useful for measuring We are now ir,1tereste’d i.n cohputing the change in the
the Sagnac effe¢B2]. With such promise, we may someday spatial components of the sp8t of a gyroscope in a circu-

soan be aple_ to exper_imentally detect the higher-order HET polar orbit, as depicted in Fig. 2. We will first evaluate
eral relat|y|st|c corrections to the Sagnac effect and be ablrﬁ1e parallel transport equations for the spin at a single point
to place tighter bounds on the BD parameters. p=(0,0,0) of the orbit where the four-velocity is given by

xt=dx*/dr=(1,0,0p) and where the velocity of the sat-
IX. GEODETIC AND LENSE-THIRRING PRECESSION ellite has a value on the order qiGM/p. The equation for

We can also investigate the effects of the KB metric onthe parallel transport of the spin is given by
the precession of a spherical gyroscope in a circular polar
orbit around the Earth as a means to experimentally measure Sp=—— = _I‘,Zﬁsa)'(ﬁ_ (106
or bound the values of the parameterst, o or justw. The T
Stanford Gravity Prob®& experiment[34] is just such an ) ) .
experiment which will use a superconducting niobium-A lengthy, though straightforward, calculation yields the
coated quartz spherical gyroscofeachined to a precision Christoffel symbols evaluated at the popw (0,0,0) to be
greater than 10° cm) to detect gravitational precession ef- 0 )
fects arising from the geodetic motion of the satellite and due Lox=7rolp®,
to the rotation of the Earttthe Lense-Thirring effegt In the

fge change to a radial isotropic coordinate is the same as in
the Schwarzschild cagsee[36], p. 196ff and p. 256jfand
is given byr=p(1+ro/2p)2~p(1+ry/p), Wherep is the
radial isotropic marker. To lowest order—e'=ry/p, ¢
—{'=alp, and from now on we drop the primes @n ¢.
Carrying out the change to a radial isotropic coordinate and
using coordinates x=p sinfcos¢, y=psindsing, z
=pcosh, |dp|>=dx*+dy?+dZz? fixed to the center of the
Earth and nonrotating with respect to the distant stars, and
noting p? sir’ 6d¢=x dy—y dx we arrive at

2nr
1- 27 O)dtz—
p

r
1+2(1—2§>;°)|dﬁ|2

F(1)2= —3(n—o)realpd,

1 _ 1 _
following, we follow the calculation of Ohanian and Ruffini To=—(n—o)realp®, Ti=—(1-2&)realp?,
[35] by writing the KB metric to first order ik =ry/r and ) 5 5 5
{=alr, converting to isotropic coordinates, and then com-  I'te=7ro/p%  T'pa=(n—0o)realp®,

084027-11



K. K. NANDI, P. M. ALSING, J. C. EVANS, AND T. B. NAYAK PHYSICAL REVIEW D63 084027

-

bz =p(0,coswd,sinwd), wherews is the angular velocity of the
satellite. Insertingy=dp/dt=v(0,—sinwd,coswd), where
v=pwsandV®d=r,/p?(0,coswd,sinwd) into Eq.(109 and
averaging over one period yields

N r R N
v (S)=(1+7i2-26) 7 (~ S+ 9= 0P,

SKB ro._ . 2 -
Og"=(1+7/2=28) 5px0= 3 (3/2- 28 7)Qg,
(110

whereﬁgB is the geodetic precession which reduces to the

Schwarzschild and Kerr forrﬁg=3M/2p3ﬁ><z7 [35] in the

limit {7— 1,6=0—0}. The geodetic precession of the spin

< P > ﬁg is in the plane of the orbit and in the direction of the
orbital motion of the satellite.

FIG. 2. A spherical gyroscope in a circular polar orbit about the A similar calculation can be performed for the “gravito-
Earth. At one instant, the gyroscope is at the posikerD, y=p, magnetic” terms proportional ta in Eq. (108. These

z=0 with instantaneous spatial velocityalong thez direction. Lense-Thirring terms lead to the precession of the spin in the
direction perpendicular to the orbit and in the same sense as
ril: _rgzzrgsz(l—zg)ro/p{ the rotation of the Eartl(“frame dragging”),
3_ _(1_ 2 - (p—o)arg(3 _ . _\ . -
Io=~(1=20r0lp" GO0 Gig=——r (55506 ) ~8u=(1- ol m)€hur,

We note that in the comoving reference frame of the satellite (111
the spin is purely spatiab’°=0, and the four-velocity is .

purely temporal,Xx’'"=(1,0,0,0) so that the relationship whereS, is a unit vector in the direction of the spin of the
9,58 “%'#=0 holds. Since this is a tensor equation, it mustEarth (here S, =2). As we observed earlier from the metric
also hold in the reference frame centered on the Earthgq. (105), this is just the usual Kerr Lense-Thirring preces-
gaBS“x'Bzo. This constraint allows us to solve f@ = sion O, 7 [35] with axe=(1— 0/ 7)aye,. Performing the

—1(Qoot+ 0909 Zi-1,(Gio+v0ia) S =vS°+O(e).  Substi-  {ime average as above one obtains
tuting this and the Christoffel symbols into E{.06) yields

the equations ~kp (m—o)arg. "
(Qrr)= TS@:(l_U/ (Qur). (112

g_lf
3 )
p For a 650-km circular polar orbit, as depicted in Fig. 2, with
the spin of the satellite in the plane of the orbit,
P=— rpLgs?)_ r,j_fsl, =JGM/p and{7n—1,6=0—0} we obtain the valuef}|

=6.6'/yr, |Q,1|=0.042/yr [35]. Thus, for the KB metric in
both the frames, these values would be multiplied by
'53:_252. (108 213(3/2-2&1n) and (1—-o/7), respectively[obtained by
using ro=M/#n or ro=M/(np—0c)]. Since the Gravity
Probe-B experiment is capable of measuring the Haye
—1,6=0—0} values of these precessions, any possible de-

sio_n 'while those_ proportional ta give rise to the Lense- viations due to the Kerr-like BD scalar field should be de-
Thirring precession. Although Eq108 was derived for a tectable

specific point on the orbit, we can generalize to any point on
the orbit as follows. Foa=0 we can write Eq(108) as

The terms proportional to give rise to the geodetic preces-

X. SUMMARY
§g= —(1+ n—2§)(5~§g)ﬁ®+(1—2§)(§g- V)5, In the foregoing, our aim was to examine how the pres-
(109 ence of a BD scalar field modifies the gravitational correc-
_ tion terms to the Sagnac effect. To our knowledge, such an
whereS; refers to the geodetic contribution to the spin andanalysis has not been undertaken heretofore. A first-order
®=-GM/p is the Newtonian gravitational potential. We effect on the geodetic and Lense-Thirring precession was
are interested in the long-term secular change in the spin. Aslso computed. It was found that the presence of the scalar

o

such we express the orbit of the satellte gs field introduces a combination of different BD factojso, &
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into the correction terms. The obtained results are of botlbe measurable given the accuracy being attained by the cur-
theoretical and practical importance: The valuesy@dndo  rent technology. The most exciting promise is offered by the
away from the Kerr values would indicate the presence of th&tanford Gravity Probe-B experiment which is attempting to
BD scalar field. measure the geodetic and Lense-Thirring precessions for
The paper derivegxactexpressions for the scalar field Earth-bound orbits. As shown above, the multiplying factors
modified Sagnac delay. The unknown BD factors can be degy the first-order corrections are, respectivelg[ 3
termined in terms ofw by using an input from the PPN —(2¢l75)] and 1-(o/ 7). For an estimate, takings =500,
analysis, viz.;y=(1+w)/(2+ ), as aboundarycondition.  \\q find, using the PPN values in EG98), that |2¢/7|
From the expansion of the exact expressions, it is possible tQ 5 ggx 1073, |0/ 7| ~9.96x 10" 4.
directly find out corrections tall orders, visualize the physi- It was demonstrated that the observable predictions in the
cal characters of these terms, and assess how the scalar fi% frames are identical, as expected. All the equations pre-
modifies each of them. Thus, the present formulation offer§ented in this work reduce to those in the Kerr case. Lastly,
two distinct theoretical advantagd4) It is applicable also in Eq. (35) represents the exact BD expression for the gravita-
the strong field where the usual PPN analysis féa@slt has  ional analog of the Aharonov-Bohm effel0,37,38. We

a flexibility in the sense thatny functional choice of(w) is vl have more to say about this in a forthcoming paper.
admissible leading to forms of(w) ando(w) different from

those in Eqs(98). The possibility of a non-PPN and its
physical implications are discussed in Rg9], but are not
pursued in this paper. One of us(K.K.N.) is grateful to Dr. Arunava Bhadra,

From a practical standpoint, a first-order fringe shift of Center for High Energy and Cosmic Ray Physics, University
~10 1(1-2¢/7) is predicted for the Sagnac delay for of North Bengal, for stimulating discussions and technical
Earth-bound equational orbitRE& 7 10° m), which should — assistance.

ACKNOWLEDGMENTS

[1] G. Sagnac, C. R. Acad. Sci. Pafi§7, 708 (1913. Phys. Rev. D57, 823 (1998; P. E. Bloomfield,ibid. 59,
[2] G. E. Stedman, Rep. Prog. Phgf), 615 (1997. 088501(1999; K. K. Nandi, ibid. 59, 088502(1999.
[3] L. D. Landau and E. M. LifschitzThe Classical Theory of [21] K. K. Nandi, B. Bhattacharjee, and S. M. K. Alam, Gen. Rela-
Fields (Pergaman, Oxford, 1975Vol. 2. tiv. Gravit. 30, 1331(1998.

[4] 3. M. Cohen and H. E. Moses, Phys. Rev. L&9, 1641 [22] L. A. Anchordoqui, S. P. Bergliaffa, and D. F. Torres, Phys.
(1977; D. W. Allan and M. A. Weiss, Scienc228 69 (1985. Rev. D55, 5226(1997.

[5] J. M. Cohen and B. Mashhoon, Phys. Lett181, 353(1993; [23] S. Cotsakis, P. Leach, and G. Flessas, Phys. Rei9,[5489
B. Mashoon,ibid. 173 347 (1993. (1994.

[6] A. H. Rostomyan and A. M. Rostomyan, Phys. Status Solidi A[24] E. T. Newman and A. I. Janis, J. Math. Phgs 915 (1965.
126, 29 (199)). [25] K. D. Krori and D. R. Bhattacharjee, J. Math. Ph8, 637

[7] A. Werner, J. Staudenmann, and R. Colella, Phys. Rev. Lett.  (1982.
42, 1103(1979. [26] H. A. Buchdahl, Phys. Rewi15 1325(1959.

[8] F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and Ch. J. Borde,[27] A. G. Agnese and M. La Camera, Phys. Rev.3D 1280
Phys. Rev. Lett67, 177 (199J. (1985.

[9] J. Anandan, Phys. Rev. P4, 338(198). [28] Take the rotating coordinate system of STRIS?
[10] J. J. Sakurai, Phys. Rev. 21, 2993(1980. =—(1-Q%r?)dt?>+2Qr%de dt+dr?+r2de?+dZz?, rotating
[11] M. Dresden and C. N. Yang, Phys. Rev.2D, 1846(1979. with uniform angular velocity() about thez axis. Let the
[12] A. Tartaglia, Phys. Rev. [38, 064009(1998. source or observer be orbiting in a circle of radiusR with
[13] C. H. Brans and R. H. Dicke, Phys. Rek24, 925 (1961). angular speed, on a plane so thailz=0. Then follow the
[14] B. Green, J. M. Schwarz, and E. WitteBuperstring Theory procedure of Sec. lll to arrive at E¢B7).

(Cambridge University Press, Cambridge, England, 1987 [29] R. V. Wagoner and D. Kalligas, iRelativistic Gravitation and
[15] G. Magnano and L. M. Sokolowski, Phys. Rev.d3D, 5039 Gravitational Radiation edited by J.-A. Marck and J.-P. La-

(19949. sota(Cambridge University Press, Cambridge, England, 1997
[16] D. La and P. J. Steinhardt, Phys. Rev. Lé®, 376(1989; A. pp. 433-435.

M. Laycock and A. R. Liddle, Phys. Rev. &9, 1827(1994). [30] J. P. Dowling, Phys. Rev. A7, 4736(1998; M. O. Scully and
[17] E. W. Kolb, D. Salopek, and M. S. Turner, Phys. Rev4D) J. P. Dowling,ibid. 48, 3186(1993.

3925 (1990; P. J. Steinhardt and F. S. Accetta, Phys. Rev.[31] W. Schleich and M. O. Scully\lew Trends in Atomic Physics

Lett. 64, 2740(1990; A. R. Liddle and D. Wands, Phys. Lett. edited by G. Grynberg and R. Stora, Les Houches 1982,

B 293 32(1992. (North-Holland, Amsterdam, 1984pp. 995-1124; G. Sted-
[18] H. Feng and L. Liu, Chin. Phys. Leti6, 394 (1999. manet al, Phys. Rev. /61, 4944(1995; I. Ciufolini and J. A.
[19] K. K. Nandi, J. Evans, and A. Islam, Phys. Rev.5B, 2497 Wheeler,Gravitation and Inertia(Princeton University Press,

(1997. Princeton, NJ, 1995

[20] K. K. Nandi, B. Bhattacharjee, S. M. K. Alam, and J. Evans, [32] A. Lenet, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A.

084027-13



K. K. NANDI, P. M. ALSING, J. C. EVANS, AND T. B. NAYAK PHYSICAL REVIEW D63 084027

Rubenstein, and D. E. Pritchard, Phys. Rev. L&&, 760 (Elsevier, Amsterdam, 1986
(1997; T. L. Gustavson, P. Bouyer, and M. A. Kasevidbid. [35] H. C. Ohanian and R. RuffinGravitation and Spacetime&nd
78, 2046(1997. ed. (Norton & Co., New York, 1994

[33] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. [36] R. Adler, M. Bazin, and M. Schifferintroduction to General
B. Plenio, and J. I. Cirac, Phys. Rev. Let®, 3865(1997. Relativity (McGraw-Hill, New York, 1975.

[34] Information and technical references on the Gravity Probe-B37] M. D. Semon, Found. Phy42, 49 (1982.
experiment can be found at http://www.einstein/standford.edu[38] E. G. Harris, Am. J. Phy$4, 378(1996. An exact treatment
See also J. P. Turneaugeal,, Proceedings of the Fourth Mar- is given in P. M. Alsing,ibid. 66, 779 (1998.
cel Grossmann Meeting on Relativitgdited by R. Ruffini  [39] T. Matsuda, Prog. Theor. Phy47, 738 (1972.

084027-14



