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Exact relativistic treatment of stationary counterrotating dust disks: Physical properties
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This is the third in a series of papers on the construction of explicit solutions to the stationary axisymmetric
Einstein equations which can be interpreted as counterrotating disks of dust. We discuss the physical properties
of a class of solutions to the Einstein equations for disks with constant angular velocity and constant relative
density which was constructed in the first part. The metric for these spacetimes is given in terms of theta
functions on a Riemann surface of genus 2. It is parametrized by two physical parameters: the central redshift
and the relative density of the two counterrotating streams in the disk. We discuss the dependence of the metric
on these parameters using a combination of analytical and numerical methods. Interesting limiting cases are the
Maclaurin disk in the Newtonian limit, the static limit which gives a solution of the Morgan and Morgan class
and the limit of a disk without counterrotation. We study the mass and the angular momentum of the space-
time. At the disk we discuss the energy-momentum tensor, i.e., the angular velocities of the dust streams and
the energy density of the disk. The solutions have ergospheres in strongly relativistic situations. The ultrarela-
tivistic limit of the solution in which the central redshift diverges is discussed in detail: In the case of two
counterrotating dust components in the disk, the solutions describe a disk with diverging central density but
finite mass. In the case of a disk made up of one component, the exterior of the disks can be interpreted as the
extreme Kerr solution.
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[. INTRODUCTION coordinates. Thus one avoids the complications of a free
boundary value problem where the location of the disk has to
Relativistic dust disks have been studied since the latbe determined as part of the solution of the boundary value
19609[1]; the reasons for the interest in these configurationgroblem. The first solutions for relativistic dust disks were
being both physical and mathematical. The physical motivagiven by Morgan and Morgahl]. They considered static
tion arises from the importance of disk-shaped matter distrispacetimes with disks which can be interpreted as being
butions in certain galaxies and accretion disks. Whereas gemaade up of two counterrotating dust streams with vanishing
eral relativistic effects do not play a role in the context oftotal angular momentum. Bardeen and Wagdérstudied
galaxies, they have to be taken into account in the case afumerically a uniformly rotating disk consisting of a single
disks around black holes since black holes are genuinelgust component and as a post-Newtonian expansion. They
relativistic objects. Moreover disks can be considered as limeompared this stationary solution to the Einstein equations to
iting configurations of fluid bodies for vanishing pressurethe static and the Newtonian case and gave a detailed discus-
(see e.g.[2]). From a more mathematical point of view, dust sion of the physical features of the spacetime. Later Neuge-
disks offer the opportunity to obtain global spacetimes conbauer and Meinel[3] gave an explicit solution for the
taining matter distributions which can be physically inter- Bardeen-Wagoner disk in terms of Korotkin's solutigAso]
preted. The Einstein equations for an ideal fluid do not seeman a Riemann surface of genugi [6] it was shown that the
to be integrable even in the stationary axisymmetric casesolution[3] belongs to the clagst)).
Infinitesimally thin disks provide a possibility to circumvent  In the first paper of this serid§] (henceforth referred to
this problem because the matter is reduced to two spatials |) we studied stationary counterrotating dust disks and
dimensions. This leads to ordinary differential equations intheir relation to hyperelliptic functions. As an example of
side the disk which can be integrated at least in principlethis approach we gave an explicit solution on a Riemann
Consequently one has to solve a boundary value problem fasurface of genus 28] where the two counterrotating dust
the vacuum equations where the boundary data follow fronstreams have constant angular velocity and constant relative
the properties of the matter in the disk. Since dust disks haveensity. In the limit of only one component one gets the
no radial pressures one can place the disks without loss &folution of[3], in the limit of identical densities one gets a
generality in the equatorial plane even in the standard Wetatic solution of the Morgan and Morgan class. In the sec-
ond papeff9] (henceforth referred to as)lie gave explicit
formulas for the Ernst potential at the axis and the disk
*Current address: Theoretische Astrophysik, Univérsiiabin-  which are needed to discuss the energy-momentum tensor

gen, Auf der Morgenstelle 10, 72076 Gingen, Germany. and considered limiting cases.
TCurrent address: Max-Planck-Instituf rfiPhysik, Foehringer In the present paper we discuss the physical features of
Ring 6, 80805 Muchen, Germany. the hyperelliptic solution$10,11] which are a subclass of
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Korotkin's finite gap solutiong4,5] in the example of the  is discussed as a function ef and y. We study the
solution of I. We demonstrate how one can extract physicallyenergy-momentum tensor at the disk agliéi] as well as the
interesting quantities from the hyperelliptic functions in occurrence of ergospheres. In Sec. IV we discuss the ul-
terms of which the metric is given. The solutions are explicittrarelativistic limit of the solutions. We briefly discuss the
i.e., all metric functions are given in terms of quadraturesover-extreme case for the one-component solution where the
and a set of well-defined functions, the theta functions. Thdoundary value problem at the disk is still solved but where
integrals are evaluated numerically by making use of pseu@ ring singularity exists in the spacetime since the parameters
dospectral techniques. The metric depends on two physic&f the solution are beyond the ultrarelativistic limit. In Sec.
parameterse=zg/(1+zg) is related to the redshifty of Vv we add some concluding remarks.
photons emitted from the center of the disk and detected at
infinity; y is the relative density of the counterrotating Il. METRIC FUNCTIONS
streams in the disk. In the Newtonian limit is approxi-
mately O whereas it tends to 1 in the ultrarelativistic limit
where the central redshift diverges. The limit of a single We will briefly summarize results of | and Il where details
component disk is reached for=1 (we will only consider ~Of the notation can be found. We use the Weyl-Lewis-
positive values ofy), the static limit fory=0. Papapetrou metritsee e.g.[13])

We give analytic expre_ssions for the mass arnd the gngglaa s?=—e?V(dt+adg)?+e 2Y(eX(dp2+d?)+ p2d $?),
momentum as an expansion of the metric functions at infinity 2.1

and as an integral over the energy-momentum tensor at the , . _
disk. The resulting analytic expressions have to be identical/hérep and{ are Weyl's canonical coordinates andand

which provides a test for the numerics. [Ih2] Bi¢ék and ¢4 are the two commuting asymptotically timelike respec-
Ledvinka considered infinite disks of finite mass as sourcedVely spacelike Killing vectors. Witle=p+i{ and the po-
for the Kerr metric. It was shown that the matter in the disktentialb defined by
can be interpreted either as a disk with purely azimuthal W
stresses or as a disk with two counterrotating dust compo- b,=— ;e az, (2.2
nents if the energy conditions are satisfied. The same discus- ) )
sion is possible in the case considered here. ARLE} we  2Nd kz’jo for z—, we define the complex Ernst potential
discuss the matter in the disk using observers which rotate ih=€"~ i b which is subject to the Ernst equatiob4]
a way that the energy-momentum tensor is diagonal for 2

(fz+f)= fo—fzf?. 2.3

A. Ernst potential and metric

them. We study the angular velocity of these observers with f+ =
respect to the locally nonrotating frames, and the angular 2(z+2)
velocities and the energy densities of the dust componentshere a bar denotes complex conjugationCinThe metric
which these observers measure. In the limit of diverging cenfunction k follows from

tral redshift the spacetime is no longer asymptotically flat in £

the case of a one component disk, and the axis is no longer k,=2p ——. (2.4)
elementary flat. This behavior can be related aRijrto the (f+£)2

vanishing of the radiug, of the disk which was used as a |, | (Sec. Il) we have considered disks which can be

length scale. If one carries out the limi§—0 for p#0, the  jyierpreted as two counterrotating components of pressure-
metric becomes the extreme Kerr metric. In this limit the|ggs matter. so-called dust. The surface energy-momentum

d_isk vanishes behind the horizon of the extreme Kerr solUtensorSt” of these models is defined on the hypersurféace
tion. In the case of two counterrotating dust components the. 3 The tensoS*" is related to the energy-momentum ten-
radius of the disk remains finite even in the limit where theg, T4v \which appears in the Einstein equatio@*”

central redshift diverges. In the ultrarelativistic limit of the =87 T (we use units in which the Newtonian gravitational

static disks, the matter in the disk moves at the speed of ) stant and the velocity of light are equal tbvia T+
light, the energy density diverges at the center of the disk bULS/wekfuts(g) The tensoiS*” can be written in the form
the mass remains finite. '

We closely follow the discussion in the pioneering paper S*=g uful +o_utu”, (2.5
[2], but this time for a class of solutions which depend on
two parameters which continuously interpolate between th&here greek indices stand for the, and¢ components and
Newtonian and the ultrarelativistic regime, and the static andvhereu. =(1,0,£0Q). A physical interpretation of this ten-
the Bardeen-Wagoner case, respective|y_ The paper is orgaor will be given in Sec. lll. We gave an explicit solution for
nized as follows: In Sec. Il we summarize results of | and I1disks with constant angular velocify and constant relative
and write down the complete metric corresponding to thedensityy=(o,—o_)/(o,+0o_). This class of solutions is
Ernst potential of | in terms of theta functions. We outline characterized by two real parametarand & which are re-
the numerical scheme and present typical plots for the metritated to{) andy and the metric potential, at the center of
functions. In Sec. Il we discuss various physical propertieshe disk via
of the solutions: We relate the physical parameteend vy A =202e 2o (2.6)
to the parameters on which the analytic solution depends and ’
discuss mass and angular momentum. The angular velocignd
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Olml(o(=")+u) 08
O[ml(w(=")—u)

f(p,{)=

where ®[m] is the theta function or®, with half-integer
characteristicim], where | =(1/271) [ In G(7)dw..+.—(7),

where u;=(1/27i) [t In Gdw;, whereI" is the covering of
the imaginary axis in ther-sheet ofX, between—i and i,

where the characterist[cm]=[18], and where

(72— )%+ g2+ 72+ 1
(72— )2+ p2—(r2+1)

The branch points of the Riemann surface are given by the
relationE:=E?=a+i 8 with «, S real and

142 5 [1 52
5= . 2. -1+ 2 Y e
02 2.7 a=-1+3, B )\2+5 T (2.10

We put the radiug, of the disk equal to 1 unless otherwise Regularity of the solutions restricts the range of the physical
noted. Since the radius appears only in the combinationgarameters to € 5<d54(\):=2(1+ 1+ 1/)\2) and O<\
plpo, {Ipo, andQpq in the physical quantities it does not <) where () is the smallest value ok for which e
have an independent role. It is always possible to use it as & 1. We note that withx and 3 given, the Riemann surface
natural length scale unless it tends to 0 as in the case of the completely determined at a given point in the spacetime,
ultrarelativistic limit of the one component disk. The Ermstj e, for a given value oP,. The dependence of the solution
potential will be diSCllJJSSGd in dependence of the parameter 8) on the physical coordinates is exclusively through the
e=zp/(l+zg)=1-€"0andy. . _ branch pointsP, and P,,.

The solution of the Ernst equation corresponding to the The complete metrid2.1) can be expressed via theta

at_)ove energy-momentum tensor i_s gi_ven on a hyperellipti(functions(see II, Theorem 2.2 where a different cut system is
Riemann surfac&, of genus 2 which is defined by the al- used. With the characteristickn; ] given by
. I

gebraic relation u?(K)=(K+i z)(K—i?)Hizzl(K—Ei)(K

G(7n)=

(2.9

—E;) (see |, Sec. IV for details of the notatipriWe choose [n]= 11 [n,]= 0 0}

ReE;<0, IME;<0, andE; = — E, with Ey=a;+i ;. We S A e A A

use the cut system of Fig. 1 for the numerical calculations

since it is adapted to the symmetry of the problem. The base 0 0 1

point of the Abel map i< ;. [nal={; o M= o (2.11
In this cut system the solution of (Theorem 7.2 takes

the form the functione? can be written in the form

u_OMNWOIN W) B[ngl(w(= )lnw(= )

- (2.12
O[n11(0)O[N2](0) O[Nnz](w(e~)+u)O[N,](w()+u)

The functione®” which is just the real part of the Ernst potential was writtefilifi] in the form(2.12 with the help of Fay’s
trisecant identityf15]. This form is especially adapted for determining ergospheres which are just the zefds bf [11] it
was shown that the real part of the Ernst potential can only vaniéh iif; [(u)®[n,](u)=0 which provides a necessary
condition for the occurrence of ergosphefd® sufficient condition is that the denominator in E2.12) is non-zero in this
casd.

Korotkin [4] gave an expression for the metric functi@as a derivative of theta functions with respect to the argument. In
[11] this formula could be written in the forrf2.13 free of derivatives by using the trisecant identity which leads to

0[n.](0)8[n,](0) O[Nn](W)O[N,](U+2w (7))

~1], (2.13
O[ng](w(°"))B[Ny](w(*")) O[Nz](U+w(*))O[N](U+ w(>"))

(a—ag)e’=—

where the constardy,=— y/{). The constant can be expressed via theta functions on the elliptic stifagaven by u'?
=(K—Ei)(K—E§) (see[11], II). We denote quantities defined &l by a prime and get
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92(0) 29U +20 (7)),
N e 214
@1 Fa(w' (7)) %40’ (7)) F,4(u")
where doy=do’, dw,=dw;- ., Uu=(1/27i)[rInGdw, and wherel’=(1/2mi)[InGdw..,-. The elliptic theta
functions 9 wherei=1, . .. 4have the characteristi¢s], [3], [3], and[?], respectively.

Whereas the metric functiorsande?V can be invariantly expressed through the scalar products of the Killing vectors, this
is not the case for the metric functicet. Nonetheless it is interesting to know this function because it determines the
geometry of the §, ¢)-space and because of its relation to th&unction of the linear system associated with the Ernst
equation(see[16]). This connection made it possible to derive an explicit expressiokifoterms of theta functions d2.15
in [17]:

e B[N I(WO[N](u) ®°<“’<Kl>“"“<2”), (2.19

2
=C[nl](0>®[n2]<0>exp<<4m)zfrfrdKldth(Kl)h(Kz)'” Ki- K,

where®, is a theta function with an odd characteristic, whie¢e) = 7. In G(7), and whereC is a constant which is determined
by the condition thak vanishes on the regular part of the axis and at infinity. It reads

95 2 B1(0' (Ky) — ' (Ky)
1/C= 2(0) ex;{ i) fr deKldth(Kl)h(KZ)ln KK,

. (2.1

In an ergoregion, the functio®[n,](u)®[n,](u) becomes negative. Since the remaining terms in(E4.5 cannot change
sign, the functione®® is always negative where?V is negative. The metric functiog,;=g,,=e**"Y is consequently
non-negative.

Since we can concentrate on positive valueg because of the equatorial symmetry of the solution, the Riemann surface
can only become singular R coincides withPy, i.e., on the axis, or if it coincides with,. Coinciding branch points imply
that some of the periods diverge. Although the Ernst potential is regular at the axis, this causes problems for the numerical
evaluation which affect the accuracy. Therefore we substitute the analytic exprésssgol, Theorem 3)1

e
”84( J’ N dw'—l—u'

ot
—exq—wz(%+)—u2)ﬁ4(j do'+u’
-

f(0)= . - el tu2, (2.17)
ﬁ4(f+ da),_U,)_exq_wZ(oo+)+U2)ﬁ4<f dw,_U,)
¢ .
The real part of the Ernst potential can be written in the form
2(u) ai( L+ dw')—exp(—zwz(oo))ai( L_ dw’)
V=— - - . (2.18
#2(0) 92 u'+f dw’)—exp(—ZwZ(oo‘)—2u2)19£21 u’+f dw’)
- -

With these analytic formulas on the axis, one can obtain accurate numerical results sigeeQfdhe metric functions have
an expansion of the for&(p,¢) =F(0,0) + p?F,({)+0(p*) in the vicinity of the axis.
If Py coincides withE,, the Ernst potential and the metric functions can be expressed in terms of quantities defined on the
Riemann surfac&” of genus 0 given by."?(7)=(7— El)(r—El) i.e., via elementary functionsee I, Theorem 3)2 For
P,=E, the differentials on X, reduce to differentials onX”, dwlzdw%q , £ and 1=1"

=(1/271i) [ InGdw,_- where a double prime denotes that the quantity is defined’orThe Ernst potential reads

n
dw,=dog-
2

_wy(0)+uy
sin >
IN
. w1(°°+)_ule ' 219
smh—2

f=

the functiona follows from
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sinthT12
_ 2U _
ey sinh2 g2 =)
I 2 pe) I 2
12 Up+Up+2w9(0 ") +2w,( ™) 12 Up—Up+2w9(% ™) —2w,(0™)
exp — | cosh —exp — ——|cosh
4 2 4 2 1
- pinpi 1) e w22 ) |
T 2 pe) I 2
(2.20
and the functiore®® is given by
T12 u;+up 12 u;—up
ae ex;{ T) COShZ— — ex;( — T) COShZ— 1 d Kld K2
Zsthlz (47 )? JrJr(K;—Ky)
K, —Eq)(K,—E; K,—Eq)(K,—E
x( (Ki—E)(Kp—Ey)  [(Ki—E))(Ko—Ey) 2)) 221
(Ky—Ep)(Ky—Ey) (K;1—E1)(K;—Ey)

wheremy, is @ component of the-matrix onX .

At the disk the branch pointB,, P, lie on the contoul” which implies that care has to be taken in the evaluation of the
path integrals. The situation is however simplified by the equatorial symmetry of the solution which is reflected by the
additional involutionk — — K of the Riemann surfacE, for {=0. This makes it possible to express the metric functions in
terms of elliptic theta functiongsee[11]). In Il (Theorem 4.1 we could give especially efficient formulas for the functions
needed to calculate the energy-momentum tensor at the disk. We denot®& witie elliptic Riemann surface defined by
wa=(r+pd)[(r—a)?+p?], and let dw be the associated differential of the first kind withu,
=(1/i w)f:iz In G(y/7)dw(7). We cut the surface in a way that taecut is a closed contour in the upper sheet around the cut

[—pZE] and that theb-cut starts at the ciite,E]. The Abel mapw is defined forP € ., asw(P) = [Pdw. Then the real part
of the Ernst potential at the disk can be written as

1
_2+5 20 2 24 2
1 1 v Y 1 Y2((p2+ )2+ B2) 1
e2U— S R =2Y(p?+a)+—+8p? |, (2.22
Y-6| A & 1 \ 1 \?
—2+(Sp2 ;"'5[)2
A

where

—+ 5p2
22 95(uy)

Y= .
V(p%+ )%+ B2 93(uy)

In | it was shown that there exist algebraic relations between the real and imaginary parts of the Ernst potential,

(2.23

1
—

52 1 A2 1
— (Vb= ——seV || ————— |+
2 A

1 )\
N 2
)\2+5p
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2 this can be used to test the numerics. When two or more
Z%—p*+ 5e4U=X82U- (229  pranch points coincide as on the axis, the analytic expres-
sions(2.17) to (2.21) are substituted.
At the rim of the disk p=1 and{=0) the value of the The differentialsdw; of the first kind are normalized by

the third kind is normalized by the conditions that it has
20(L0) 1 1 1 residues+1 and—1 ate™ ande«~ respectively, and van-
e =1-< F+ o— NE (226 ishing a-periods. The theta function is approximated by the

sum

The imaginary parlt of the Errzlsglzpotentlal van_lshesfd_ro N N

at the rim of the disk as (% p©)*~'“. These explicit relations O(x) = 2 E < 2,

at the rim of the disk can be used as a test for the numerics. (X)_nf,N =N €XP 2 TN ™ TN,

B. Numerical evaluation of the hyperelliptic integrals T 5722n§+ Ny + n2x2>. (2.30

For the numerical evaluation of the above expressions we

use pseudospectral methods. First ahendb periods of the _ _ . '
hyperelliptic Riemann surface for the cut system in Fig. 1The rapid convergence of the series due to negatively defi-

have to be determined. These are integrals between brangie real part offl= (7™ makes it possible in general to

pointsP;, P;, i#] of the Riemann surface, obtain an accuracy of machine precision with valies5.
N To calculate the integrale(=") we use the factsee e.g.,
ijT_dT n=012 (2.27) [15]) that theb-periods of Abelian integrals of the third kind
p (7))’ T ' can be expressed via integrals of the first kind:
With a linear transformation of the form=at+b they can
be put into the form ﬁ oo +op-=wi(* ") — wi(*7). (2.3)
1 aptaqt+ a2t2 . . ) )
—F————H(b)dt, (2.28  These integrals are thus determined along withtHperiods
-1 vi-t of the integrals of the first kind.
At the disk we use formulag2.2? to (2.25. The non-

where theq; are complex constants and whett) is a
continuoug(in fact, analyti¢ complex valued function on the
interval[ — 1,1]. This form of the integral suggests to express
the powers" in terms of the first three Chebyshev polyno- 1
mials To(t)=1, T,(t)=t andT,(t)=2t?—1 and to approxi- f dtH(t), (2.32
mate the functiorH(t) by a linear combination of Cheby- -1

shev polynomials

Abelian integralsu;, | are determined also using pseu-
dospectral methods. They can be written in the form

whereH(t) is a continuous complex-valued function on the
H(t) = 2 h.T.(t) interval [ —1,1]. The integration is performed by first ap-
=, "M proximating the integrand by a linear combination of Cheby-
shev polynomials as before. Then, making use of the identity
Since theT, form a complete orthogonal system on the in-
terval, this approximation can be made arbitrarily precise by Ther Thoa
using enough terms. Using the orthogonality relation be- m+l m—1
tween the Chebyshev polynomials

=27, (2.33

one can compute the expansion coefficients of a funagion
1 dt on [—1,1] with g’=H by applying the relation Rg
j To()Tm(t) ===\ 72, m=n#0, 229 =n,_,—h,; (k>0) between the expansion coefficients.
-t 1-t 0, m#n, Finally, having transformed back, the value of the integral is
obtained agy(1)—g(—1).
the value of the integral is a linear combination of the coef- In contrast to the algebro-geometric solutions of inte-
ficientshg, hy, andh,. To determine these we have imple- grable equations like Korteweg—de Vries and Sine-Gordon
mented a fast cosine transfofCT) within Matlab. It turns  (see e.g.[19]), the characteristic quantities of the Riemann
out that we can get accuracies of the order of the machinsurface as the periods have to be calculated at each point of
precision 10" 1% if we use 32, at most 128 terms in the the spacetime since the Ernst potential depends on the mov-
approximating sum. ing branch points$?, and P,. Thus for each value ofg({)
Since the sum of the-periods and the integral over a one has to calculate nine integrals and to do the summation
closed contour around the duE,,E;] must exactly vanish, of the theta series to obtain the Ernst poter®a8). Because

T, m=n=0,

084025-6



EXACT RELATIVISTIC TREATMENT OF STATIONARY . .. PHYSICAL REVIEW D63 084025

FIG. 2. Metric functione®V.

of the equatorial symmetry, the calculation can be limited todistances from the disk it tends to zero because of the
{=0: whereas the metric functions are everijrthe imagi-  asymptotic flatness of the spacetime. At the disk, the func-
nary part of the Ernst potential is an odd function. tion has a jump which is zero at the rim of the disk sibde

To illustrate the metric functions we show plots fer  continuous there.
=0.85andy=0.99 \=10.12 and5=0.856), i.e., a disk in The metric functiora (see Fig. 4is equatorially symmet-
a strongly relativistic situation. The metric functied” (see  ric and everywhere continuous. At the disk, the normal de-
Fig. 2 tends to 1 for large distances from the disk. At therivatives ofa have a jump, in the remaining spacetime it is
disk it is continuous but its normal derivatives have a jump.completely regular. On the axis and at infinity the function is
In the vicinity of the disk, the function is negative which identically zero.
indicates the presence of an ergosphere. In the exterior of the The functione® in Fig. 5 has similar properties: it is
disk, eV is completely smooth and does not take a localequatorially symmetric and everywhere continuous, the nor-
extremum in the whole physical range of the parameters. Thmal derivatives have a jump at the disk. The function is
function thus shows the same analytic properties as a soludentical to 1 on the axig“elementary flatness) and at
tion to the Laplace equation. The imaginary part of the Ernsinfinity (asymptotic flatnegs The function is only signifi-
potential(see Fig. 3is an odd function irf. Thus it vanishes cantly different from 1 in the vicinity of the disk. The metric
in the equatorial plane in the exterior of the disk. For largefunction e?®~Y) is always positive even in the ergoregions

FIG. 3. Imaginary part of the Ernst potential.

084025-7



J. FRAUENDIENER AND C. KLEIN PHYSICAL REVIEW D63 084025

FIG. 4. Metric functionae?V.

which implies that the signature of the metric does notwhereX is the purely imaginary quantity
change.

o Da(u)D4(0)

Ill. PHYSICAL PROPERTIES = , :
B1(u")9,(0)

(3.2
A. The physical parameters

We consider the metric as depending on the two physical "€ corresponding values afand ¢ follow from Egs.(2.6),
parameterse and y. Mathematically more natural are the (2-7) and(3.1. We get, fore#1,
parameterd andé$. These two sets can be converted through 5
the following procedure. The formul®.18 can be used to 5= 1-9" 2
calculate the real part of the Ernst potential at the origin, (1—e)2 N’
e?Yo, which is related to the redshifiz of photons emitted

from the center of the disk and detected at infinigk  with this value we enter Eq3.1) for €20 and solve numeri-
=e Vo1, cally for \(e,y). For 5=0 one finds that the first zero of

(3.3

e?Yo is reached for\.(0)=4.6296 . . .. Thefunction has
2 [ 2__ C
2Uq_ (14X (VI+A"—N) (3.1) additional zeros for higher values &f (see e.g.[10]). We

X2—(J1+AZ-\)2 are only interested in values<O\<\.(6). For y<1 the

FIG. 5. Metric functione®
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quantity e2Yo is a monotonous function in for 0<\ <.
Equation (3.3) then provides the corresponding value of
8(€,y).

For e=1 there are two cases: #f=1, thené=0 and\
=Ac(0). Fory#1, relation(3.3) implies that\ () must be
infinite. The corresponding value of follows with Egs.
(2.6), (2.7), and(3.1) in the limit A — o0 as the solution of the
equation

4(1- )X

3.4
1+ X? 349

Throughout the article we will consider the following lim-
iting cases:

Newtonian limit e=0 (A=0), i.e., small velocitie€)p,
and small redshifts in the disk. Far—0, the integralu’
goes to zero. Thus the quant¥ydiverges sinca}, is an odd
function. Consequently one gets from H§.1) Uy=—0?2,
the value for the Maclaurin disfsee Il, Theorem 5)1 There
it was shown that in this limie?Y tends to the Maclaurin
disk solution, independently of. This solution can be writ-
ten as

i 2N(7°+1) g
,

Ultrarelativistic limit. e=1, i.e., diverging central red-
shift. For y=1 we haved,(u’)=0 and thusX=—i and
fo=
Kerr metric at the horizon. Foy# 1, the ultrarelativistic
limit is reached forA —oo.

Static limit y=0 [6=6s(\)]. In this limit, the branch
points ofX,’ collapse pairwise which leads to a divergikg
and e?Yo=\1+X\?—\. In Il (Theorem 5.2 it was shown
that this is the Morgan and Morgan solutiph] for constant
Q,

U(p,{)=— (3.9

4qri

3 [ InG(7)
U(pig)__4ﬂ_| | de (36)
with
G=1- %(T% 1). (3.7
At the disk one has
1 1 1
= \/Z \/ p (3.9

with Q25=1.

One componenty=1 (6=0), i.e., no counterrotating

matter in the disk. This is the disk which was studied nu-

merically by Bardeen and Wagon&]. The analytic solution
is the solution by Neugebauer and Meif®] in the notation
of [10].

The parametek can be viewed as a “relativity” param-
eter: for small values ok, one is in the Newtonian regime,

—i, i.e., the value of the Ernst potential of the extreme

PHYSICAL REVIEW D63 084025
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FIG. 6. The functione in dependence of for y=1 andy=0.

for larger values relativistic effects become more and more

dominant up to the ultrarelativistic limit where the central
redshift diverges. The values af itself, however, do not

have an invariant meaning. Thus it seems better to use the

central redshifizg in e=zgz/(1+zg) as a parameter as [id],

e=1—eY, (3.9
whereeVo is taken from Eq(3.2).

In the ultrarelativistic limit, the values of must be be-
tween 0O (the one-component casand 4 (the static limit,
where y=0 andX?—x). We plot e as a function ofx for
vy=1 andy=0 in Fig. 6. In the case =1, the function goes
to 1 at finite values ok whereas fory+ 1 it goes monotoni-
cally to 1 as\ goes to infinity as in the static cage=0.

B. Mass and angular momentum

The Arnowitt-Deser-MisnefADM) massM and the an-
gular momentum) of the spacetimdsee e.g.[18]) can be
obtained by expanding the axis poteniial1l?) in the vicin-
ity of infinity. The real part of the Ernst potential fer<1
reads e®Y=1-2M/{+o0(1/) and the imaginary parb
=2J/{%+0(1/£%). In Il (Corollary 3.3 it was shown that the
ADM mass is given by the formula

M

1
_Doc—ln ﬂ4(u,)_4_ﬂ'ifr |nG dwlyoo'*’, (31@

and that the angular momentum is given by

Ra
Q

J (Dx—ln V4(U')+D,-InFy(u")

1
+ﬁf]‘ InG dwl‘er), (3.1

whereDpF (w(P)) denotes the coefficient of the linear term
in the expansion of a functioR in the local parameter in the
vicinity of P.
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14 ' ' ' ' ' : : ' ' wherev andw are the unit timelike respectively spacelike
vectors ¢*)=N3(1,0w,) and where W*)=Ny(«,0,1).
This corresponds to the introduction of observécalled
¢-isotropic observer$FlOs) in [12]] for which the energy-
momentum tensor is diagonal. The conditanuv*=0 de-
terminesk in terms ofw 4 and the metric,

J’_
K= — gO?’—w‘/’g?’?’_ (3.16
Joot @ 4903

M2

If we introduce the four-velocities. =N. u. , the quan-
tities otNg_, are proper densities in the sense[&]. The
quantity o which appears in the Einstein equatiqsse ) is

related too =0, + o_ viac=€“"Vo. In | it was shown that
o is given by

0 L L L L L 1 1 L L
0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 1
€

b
P
; ; 277 o= . (3.17
FIG. 7. The dimensionless quantit§</J in dependence of for 87rp92(a— ao)eZU

several values of.

S It vanishes forp—1 with infinite slope: in the non-static
In the Newtonian limit this leads to case it was shown in I[Corollary 4.1 thatb, is always

proportional to\'1— p? while in the static case one gets

M= 407 (3.12
- 37 ' 1 1—p
o= 5 arctan 5 (3.18
the value of the Maclaurin disk, and 4729(2 —1+p? it p?
3
J= 8,0 _ (3.13 Sinceb=by+O(p?) in the vicinity of the origin fore#1,
157 the density is regular in the whole disk fexx1 andy+0.

This is however not true in the ultrarelativistic limit of the
In the ultrarelativistic limit of the one component disk, static disks which we will discuss in more detail in the fol-
¥4(u’)=0, both the mass and the angular momentum difowing section.
verge. In this limit the dimensionless quotievt/J remains The FIOs can interpret the matter in the disk as having a
bounded and goes to 1, the value of the extreme Kerr metrigurely azimuthal pressure or as a disk of two counterrotating

We plot the dimensionless quantiyy?/J in Fig. 7. Asa  dust streams ip}/o%<1. One can show numerically that

value of y which vanishes identically only foy=1. Thus, it is

) maximal in the static case as expected. There we have

M< 100 31

T3y (3.14 oF

1- L2 =1-0%2 =e2Uo-V=0, (3.19
*

and the value in the ultrarelativistic case which is always Ip

bigger than 1 fory<1. For fixede it increases monotoni-

The last equation follows from Eq2.25.
cally with y. d 42.29

The only case wherpy = o7 is the ultrarelativistic limit
of the static disks. In this case the matter rotates with the

C. Energy-momentum tensor velocity of light while in all other cases, the velocity

The energy-momentum tensor of the disk is given by Eq.VPp/0}, is smaller than 1. Thus the energy-momentum ten-
(2.5) which has to be considered as an algebraic definition o80r can be written in the form
the tensor components. Since the vectorsare not normal-
ized, the quantitiesr.. have no direct physicgl significan(_:e. Sﬂyzlg*(UﬁUi+ U“U?) (3.20
The energy-momentum tensor was chosen in a way to inter- 2°°P
polate continuously between the static case and the one-
component case with constant angular velocity. An energywhere U%)=U*(v** pp/o;w*) are unit timelike vec-
momentum tensoB*” with three independent components tors. This is the sum of two energy-momentum tensors for

can always be written as dust. Furthermore it can be shown that the vectdts are
. . geodesic vectors with respect to the inner geometry of the
St=opvtv+pywiw?, (319 disk: this is a consequence of the equat®fi=0 together

084025-10
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with the fact thatU .. is a linear combination of the Killing o5 ' : ' ' ; =3
vectors. Consequently the FIOs can interpret the matter ir .| =07
the disk as two streams of dust with proper energy density 30
a; /2 which are counterrotating with the same angular veloc- °4f o ]
ity Qc:=(N,/Ny) Vpp /oy . This is the interpretation we will ozl oot ]

refer to in our discussion.
Except for the static casg=0 the FIOs are not at rest ~ *f " 1
with respect to the locally non-rotating frames which rotate 4 ozs| ' i

with angular velocity
02 L

0.15 b

o= — 28 (3.21)
J33 0.1 E

with respect to the inertial frame at infinity. Therefore, the °*® l
quantities we will discuss in the following are the angular o ' - ' ' ' ' - ' -

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

velocities w, wg, ¢, and the energy densityr* e
=el U)_‘T* : o ) , FIG. 8. Angular velocityQ) in dependence of for several val-
We discuss the angular velocities in units(@fwhich has 5 of,.
no invariant meaning but which provides a natural scale for
the angular velocities in the disk. It is constant with respecty<1_ In the ultrarelativistic limit fory=1 the ratiow, /Q
to p but depends on the parameterand y. In the Newton- : . : :
ian limit it is small sinceUo= — Q2. Thus independently of ccOTes dentical to 1 in the disk.
. 0 ' P y In terms of the components of the energy-momentum ten-
v, the angular velocitf) behaves as/e for e~0. The fact sor, the angular velocity,, reads
that the ultrarelativistic limit for the one-component disk is ~ ' ¢
reached for a finite value of implies via Eq.(2.6) that Q)
must vanish in this limit. This behavior will be discussed in 1
more detail in Sec. IV. Thus, asvaries between 0 and 1, for qu:z—sg(
y=1, Q) starts near zero in the Newtonian regime, reaches a
maximum smaller than 1 and then goes to zero. Far)0
<1, it reaches a maximum, too, but then it does not go tcror fixedp ande, the angular velocity , is monotonically
zero in the ultrarelativistic limit. In the static casg=0) increasing iny from zero in the static case tQ in the
one has one-component limit. Fos=0 it is identical toyQ) which is
also the value in the Newtonian limit. The ratio, /() is
1 depicted in dependence pffor y=0.7 for several values of
Qe0)=5V1-(1-€), (322  ¢in Fig. 11.
The angular velocity of the dust streafis with respect

. . . to the FIOs follows from
which grows monotonically from zero to 1/2 in the ultrarela-

tivistic limit. We plot Q) as function ofe for several values of
v in Fig. 8.

The angular velocityw, of the locally non-rotating ob-
servers is a measure for the frame dragging due to the rotat *[
ing disk. We depictw, in dependence op at the disk for
y=0.7 and several values @fin Fig. 9. There is obviously 05
no frame dragging in the Newtonian casg,is of orderQ?®
for small (). The angular velocityw, increases monotoni- o4
cally with € for fixed p and y. However the curves foe g
=0.85 are so close to the curve witk- 0.85 that we omitted 03
them in Fig. 9. Since the densitgee belowis peeked at the
center of the disk fore—1, the frame dragging increases
strongly near the center. In Fig. 10 we plot at the disk for
e=0.8 for several values af. In the static case it is identical
to zero. The frame dragging increases monotonically with
for fixed p and e since more counterrotating matter makes
the spacetime more static. Since the central density decreast % 01 02 08 04 05 o6 o7 o8 o3 1
with vy for fixed €, the frame dragging at the center is for
v<1 closer to the one-component case than at the rim of the FIG. 9. Angular velocity o, for y=07 and e
disk. The angular velocity, is always smaller tha) for =0.05,0.15...,0.85.

S-S0 V(S3-S9)?+4S3S).  (3.23

0.2
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0.7 3

0.68- b

0.66- i

<]

0641 4

<)

0.62 S

0.6

058 b

0'560 0{1 0!2 0{3 0!4 075 0!6 077 0!8 079 1
P
FIG. 10. Angular velocity o, for €=0.8 and y FIG. 12. Angular velocityQ), for y=0.7 and and from top to
=0.1,0.2...,0.90,0.95,0.99,1. bottome=0.05,0.15...,0.95.
> 2 The density is finite except in the ultrarelativistic limit of the
©5— 2w,y +Q o o .
_ ¢ ¢ 3.24) static disks. In the Newtonian limit, the density reads
c > 3.
1-2kyQ+Q%k

2

~ 2
For fixed p and e the angular velocity), increases mono- o* =01+ Q[(1-y)p*—2])=—51-p*
tonically in y from 0 in the one-component case to 1 in the ™
static case. In the former case the observer follows the dust
and can interpret the dust which is at rest in his coordinate
system as “two” non-rotating dust components. For0  the value for the Maclaurin disk. The dependencebfon p
the function(), is identical toQ)\1—? which is also the is shown fory=0.7 for several values of in Fig. 13. With
value in the Newtonian limit. We pld2 . in dependence gf increasinge, the central density grows and the matter is more
for y=0.7 for several values of in Fig. 12. and more concentrated at the center of the disk. d=00.8
The proper densityr’g for a FIO is given by the density is plotted for several valuesyfn Fig. 14. With
increasingy, the central density increases.
~ 5 In [2] and[1] the observer dependent “rest mass dergsity”
;:1 i p (1-2kyQ+K202). (325  “o= of the dust streams was deflned. affgji:a*/zui
—Kwy KJozt Ja3 which leads to the total rest mass densityin the asymp-
totically fixed frame

(3.26

o

0.7 A——— T T T T T
\ o
£=0.5!
065 S|
0.2 q
0.6 7 £=0.45
g 0.15 q
o
3
x
b
055 b
€=0.35
0.1 q
€=0.25
0.5 3
0.05 q
&=0.15
045 L L L L 1 L 1 L 1 £=0.05
[¢] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p o 1 ) 1 1 L 1 ) ] T
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

FIG. 11. Angular velocityw , for y=0.7 and from top to bottom
€=0.05,0.15...,0.95. FIG. 13. Energy densitg* for y=0.7 and several values af
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FIG. 14. Energy densityg* for e=0.8 and several values of.

oo=0* —. (3.27
The total rest mass of the did$i, is then the integral

1
Mo=277f oopdp. (3.28
0

The binding energy of the disk is defined[@] and[1] as

PHYSICAL REVIEW D63 084025

For y<1 it reaches a maximum for a finite value efand
can become even negative. In the static lifgg/M, di-
verges to—« in the ultrarelativistic limit since the rest mass
of the disk goes to zero. We pl&t, /M, as function ofe for
several values o¥ in Fig. 15.

The ADM mass can also be calculated in standard manner
[18] at the disk, in our case

1
M=2wfo(§—sg)ek—updp. (3.30

Similarly, one gets for the angular momentum

1
Jzzwf S3ekYpdp. (3.30)
0

The above formulas can be used to check the numerics since
they must reproduce the results of E¢3.10 and(3.11.

D. Ergospheres

In strongly relativistic situations it is possible that the as-
ymptotically timelike Killing vectord; becomes null or even
spacelike. The vanishing @V defines an ergosphefal-
though it does not have the topology of a sphere hieg
the boundary of a region of spacetime where there can be no
static observer with respect to infinity.

The surface plot of the metric functioe?” in Fig. 2

the difference between the total rest mass and the ADMshows the typical behavior of these functions: they are com-

mass,E,=My—M. We plotE, /M, as a function ofe for
several values ofy in Fig. 15. In the Newtonian limit, the
binding energy is independent ¢f

1
E,/M= 502. (3.29

pletely smooth in the exterior of the disk while the normal
derivatives are discontinuous at the disk. The function does
not assume a local extremum in the exterior of the disk and
goes to 1 at infinitye?Y=1—2M/|z|+ . ... Since the ADM
mass is always positive in the physical range of the param-
eters(see Sec. IV, the real part of the Ernst potential is
always less than 1. At the disk, however, the function may

In the casey=1, the binding energy increases monotonically haye a global minimum.

up to a value ofg,/My=~0.37 in the ultrarelativistic limit.

04 T T T T T T T T T

0.3
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0.1

]

-0.1

Eb/MO
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-0.4

-0.5

0.6 L L L L L L L L
0 0.1 0.2 0.3 0.4 05 0.6 07 0.8 09 1

€

FIG. 15. Binding energy of the disks in dependenceedbr
several values of.

In the Newtonian regime, the so-called gravito-magnetic
effects such as ergospheres do not play a role. When the
parametek increases from zero to one, the functefY may
vanish at some points in the spacetime. Since it assumes its
minimum value at the disk, this means that an ergosphere
necessarily first appears at the disk when the minimum value
becomes zero. For larger values ofthe minimum drops
below zero in these cases so that the ergosphere grows for
increasing values o&. In the ultrarelativistic limite=1 it
reaches the axis.

To illustrate the dependence of ergospheres on the param-
etere for fixed y, we plot them in Fig. 16 fory=1. The plot
shows the p, {) plane with the disk on thg-axis between
zero and one. The potential is regular in the equatorial plane
in the exterior of the disk which implies that the equipoten-
tial surfaces hit the plane orthogonally there. At the disk,
however, the normal derivatives have a jump which leads to
a cusp of the equipotential contours at the disk. The ergo-
sphere grows witle and includes the whole spacetime in the
ultrarelativistic limit which will be discussed in the next sec-
tion.
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ishes in the ultrarelativistic limit at the center of the disk.
There are no ergoregions for valueswf y.=0.707 . . ..

IV. ULTRARELATIVISTIC LIMIT

A. Ultrarelativistic limit of the static disks

The main features of the ultrarelativistic limit can already
be found in[1]. The potentiak?V in the disk and its normal
derivative there have the form

2

1 1—
ezuzg, (e?Y),=—arcta p, (4.1

== >

whereas the metric functidkis of orderp? for smallk. The

behavior of the metric functions can be obtained from Egs.

(3.8 and(2.4). The angular velocity in the disk i =1/2.

The matter in the disk moves with the velocity of light since
FIG. 16. Ergospheres foy:l and several values ef the fOUr-VelOCity becomes null in the whole disk. The

energy-densityr (3.189 diverges at the center asp?/ the

Qualitatively, one would expect that counterrotationdensity o*=—goo diverges as . The ADM mass is

makes a solution more static, i.e., that effects like ergolowever finiteM=1/(4m). Since the matter moves with the

spheres are suppressed. Thus in situations with the same c&f@locity of light, the rest mass of the disk must vanish. Thus

tral redshift but differenty, the ergoregion will always be the gravitational binding energy is negative.

smaller in the case of more counterrotation if there is an 'n€ linear proper radius

ergoregion at all. In Fig. 17 we show the ergospheresefor )

=0.95 and several values of. It follows from Eq. (2.2.6) pp:zf ek"Ydp’ 4.2

that the ergosphere goes through the rim of the disk if 0

is finite in the disk since the integrand behaves near the cen-
o=1- N (3.32 ter (see Il, Corollary 4.1as l/\/E and is finite in the rest of
the disk. The proper circumferential radius in the disk,

This_means that for disks with>1 po_ssible ergor_egions are pe= \/m: V2p, (4.3
confined to values ofp<1l. One finds numerically that

smaller values ofy i.e., more counterrotating matter imply is also finite. Thus the ultrarelativistic limit of the static disks
that the ergoregion forms at bigger valuesedfe., in stron-  with uniform rotation is a disk of finite radius with diverging
ger relativistic situations if it is to appear at all. The ergore-central redshift and diverging central density but finite mass.
gions are also formed closer to the axis. In the static cas€he matter in the disk consists of particles with zero rest
there is obviously no ergosphere. The funct@sH only van-  mass which move with the velocity of light.

3

B. Ultrarelativistic limit for 0 <y<1

The ultrarelativistic limit of stationary counterrotating
] disks bears similarities with the static case in the sense that
the axis remains regular: the constamats and C in Egs.
(2.14) and(2.16 which are 0 and 1 respectively in the static
case remain finite here since they can only diverge if
¥4(u’)=0 which can happen only foy=1. The integrals in
1 the respective exponents of E¢8.14) and(2.16) are always
finite though InG(7) has a term Irrin the limit A —o as can
be easily seen. Thus the axis remains elementary flat in the
case y<1 even in the ultrarelativistic limit. Sincegy=
— /€ is non-zero for B<y<1, the angular velocity) re-
. mains finite in the limit, too, as can be seen in Fig. 8.

In Il (Corollary 4.1 it was shown that the potentiafV is
linear inp near the origin unlesg= . (which is just defined

N 25 3 by this condition where it is quadratic ip. For y> v, there
are ergospheres in the spacetime, fet y. the potentiak?V
FIG. 17. Ergospheres far=0.95 and several values of is positive in the whole spacetime. We pketV at the disk
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FIG. 18. Metric functione®” at the disk for several values of

for several values of in the ultrarelativistic limit in Fig. 18.
We note that the metric functioae?V in the disk is also
linear in p in the vicinity of the origin ife?Y is. For y—0,
the metric functione?" in the disk approaches/2. For y
—1 the limiting function is also linear ip in the whole
disk. One has to note that the limiigs—1 ande—1 do not
commute. The ultrarelativistic limit of the cage=1 is dis-
cussed Sec. IV C. The limig— 1 of the ultrarelativistic so-
lutions for y<<1 are always obtained for—c. If one goes

PHYSICAL REVIEW D63 084025

C. Ultrarelativistic limit of the one-component disks

The ultrarelativistic limit of the casey/=1 is different
from the previously discussed cases since it is reached for
U,4(u’)=0. This implies with Egs(2.14 and (2.16 that
both constantay andC diverge as=— 1. These constants do
not have a direct physical importance. The fact that they
diverge merely indicates that the axis cannot remain elemen-
tary flat in the ultrarelativistic limit. A consequence of the
diverging constand, is that the angular velocit{2, which is
the coordinate angular velocity in the disk as measured from
infinity, vanishes. A diverging constar@ implies that all
linear proper distances(4.2) diverge. The function
e?k=U+2Uo js however bounded.

The axis is in fact singular in the sense that the metric
function e?V vanishes there identically which can be seen
from Eq.(2.18. The Ernst potential is identical tei on the
axis for {>0. In the limit e—1, the ergosphere becomes
bigger and bigger. When it finally hits the axis fer 1, the
whole axis and infinity form the ergosphere and the function
e?V is negative in the remainder of the spacetime. We plot
the potential in Fig. 19. The fact thaf" vanishes on the
whole axis implies moreover that all multipole moments di-
verge. The dimensionless quotiekt?/J remains however
finite and tends to 1, the value of the extreme Kerr metric
(see Sec. llID.

The vanishing of) =Qp, in the limit e=1 indicates that
either the angular velocity or the radius of the disk go to zero
in this case. Bardeen and Wagoh2} argued that the space-

with y—1 (6—0) in this cases, the limiting function is one time can be interpreted in the limit—1 andp,—0 as the
of the “overextreme” solutions which are discussed in Sec.extreme Kerr metric in the exterior of the disk.[Ih0] it was

IV D.
In contrast to the static case, the energy densityis

shown that such a limit(diverging multipoles, singular
axis, . ..) can occur in general hyperelliptic solutions and

finite even in the ultrarelativistic limit. The proper linear ra- can always be interpreted as an extreme Kerr spacetime. For

dius(4.2) and the proper circumferential radi(#3) are both

an algebraic treatment of the ultrarelativistic limit of the

finite in the disk. The velocity of the counterrotating streamsBardeen-Wagoner disk s¢20]. In the ultrarelativistic limit
in the disky/py /o7 is less than 1, i.e., the velocity of lightin of the above disks foy=1, the spacetime becomes an ex-
the limit e=1 for 0<y<1.

treme Kerr spacetime witin=1/(2Q2). The physical inter-

FIG. 19. Metric functione?” in the ultrarela-
tivistic limit for y=1.
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FIG. 20. Metric functione?V
in the over-extreme region foy
=1.

4 P

pretation of this fact as already given|ig] is that the disks V. CONCLUSION
become more and more redshifted for increagints radius
shrinks and the disk finally vanishes behind the horizon of In this paper we have discussed a class of solutions to the
the extreme Kerr metric which forms in the ultrarelativistic Ernst equation which can be interpreted as counterrotating
limit. disks of dust. The solutions are given on a Riemann surface
of genus 2. We presented the numerical evaluation of the
D. Over-extreme region explicit formulas for the mass and angular momentum, the

Since the ultrarelativistic limit of the one-component €nergy-density, angular velocities in the disk in terms of
disks is reached for a finite value. of \, the question arises theta functions. Most of these relations hold for general so-
what the solution(2.8) describes forx>\., the smallest lutions on Riemann surfaces of genus 2. A generalization to
value of A wheree=1. In | it was shown that the boundary arbitrary finite genus is straight forward in most cases. The
conditions at the disk are still satisfied. Moreover the rela-discussion here is intended to provide an example on how to
tions between the metric functions at the disk ensure that thextract physical information out of the solutions of the form
functions are bounded at the diékey have at most a jump (2.8). Of special interest is the ultrarelativistic limit in which
discontinuity therg The proof for global regularity given in the redshift of photons emerging from the center of the disk
| does not hold in the “over-extreme” region>\.. It in-  diverges. In the case of only one component, the disk shrinks
dicates that a singularity in the equatorial plane is probablgo a point and the exterior of the solution can be interpreted
which in fact can be verified numerically. A typical plot is as the extreme Kerr solution. If counterrotating matter is
presented in Fig. 20. In the ultrarelativistic limit, the ergo- present, the disk has a always a finite radius even in the
sphere stretches to infinity, in the over-extreme region withitrarelativistic limit. It would be interesting to study numeri-
e<1 itis confined to a finite region of spacetime. The sin-ca|ly the light cone structure of the spacetime which will be

since the elliptic theta functions in the equatorial plane have

zeros of first order. 1110] it was shown that the singularity
leads to a negative ADM mass for certaib-\ .. The space-
time is thus physically unacceptable. This is a striking ex-
ample that it is not sufficient to solve a boundary value prob- i i
lem locally at the disk within the class of solutiof], but We thank A. Bobenko, R. Kerner, D. Korotkin, H. Pfister,
that one has to find in addition the range of the physicap- Richter and U. Schaudt for helpful remarks and hints. One

parameters where the solution is globally regular outside th&f Us (C.K.) acknowledges support by the Marie-Curie pro-
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