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Exact relativistic treatment of stationary counterrotating dust disks: Physical properties
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This is the third in a series of papers on the construction of explicit solutions to the stationary axisymmetric
Einstein equations which can be interpreted as counterrotating disks of dust. We discuss the physical properties
of a class of solutions to the Einstein equations for disks with constant angular velocity and constant relative
density which was constructed in the first part. The metric for these spacetimes is given in terms of theta
functions on a Riemann surface of genus 2. It is parametrized by two physical parameters: the central redshift
and the relative density of the two counterrotating streams in the disk. We discuss the dependence of the metric
on these parameters using a combination of analytical and numerical methods. Interesting limiting cases are the
Maclaurin disk in the Newtonian limit, the static limit which gives a solution of the Morgan and Morgan class
and the limit of a disk without counterrotation. We study the mass and the angular momentum of the space-
time. At the disk we discuss the energy-momentum tensor, i.e., the angular velocities of the dust streams and
the energy density of the disk. The solutions have ergospheres in strongly relativistic situations. The ultrarela-
tivistic limit of the solution in which the central redshift diverges is discussed in detail: In the case of two
counterrotating dust components in the disk, the solutions describe a disk with diverging central density but
finite mass. In the case of a disk made up of one component, the exterior of the disks can be interpreted as the
extreme Kerr solution.

DOI: 10.1103/PhysRevD.63.084025 PACS number~s!: 04.20.Jb, 02.10.2v, 02.30.Jr
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I. INTRODUCTION

Relativistic dust disks have been studied since the
1960s@1#; the reasons for the interest in these configurati
being both physical and mathematical. The physical moti
tion arises from the importance of disk-shaped matter dis
butions in certain galaxies and accretion disks. Whereas
eral relativistic effects do not play a role in the context
galaxies, they have to be taken into account in the cas
disks around black holes since black holes are genuin
relativistic objects. Moreover disks can be considered as
iting configurations of fluid bodies for vanishing pressu
~see e.g.,@2#!. From a more mathematical point of view, du
disks offer the opportunity to obtain global spacetimes c
taining matter distributions which can be physically inte
preted. The Einstein equations for an ideal fluid do not se
to be integrable even in the stationary axisymmetric ca
Infinitesimally thin disks provide a possibility to circumve
this problem because the matter is reduced to two sp
dimensions. This leads to ordinary differential equations
side the disk which can be integrated at least in princip
Consequently one has to solve a boundary value problem
the vacuum equations where the boundary data follow fr
the properties of the matter in the disk. Since dust disks h
no radial pressures one can place the disks without los
generality in the equatorial plane even in the standard W
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coordinates. Thus one avoids the complications of a f
boundary value problem where the location of the disk ha
be determined as part of the solution of the boundary va
problem. The first solutions for relativistic dust disks we
given by Morgan and Morgan@1#. They considered static
spacetimes with disks which can be interpreted as be
made up of two counterrotating dust streams with vanish
total angular momentum. Bardeen and Wagoner@2# studied
numerically a uniformly rotating disk consisting of a sing
dust component and as a post-Newtonian expansion. T
compared this stationary solution to the Einstein equation
the static and the Newtonian case and gave a detailed dis
sion of the physical features of the spacetime. Later Neu
bauer and Meinel@3# gave an explicit solution for the
Bardeen-Wagoner disk in terms of Korotkin’s solutions@4,5#
on a Riemann surface of genus 2~in @6# it was shown that the
solution @3# belongs to the class@4#!.

In the first paper of this series@7# ~henceforth referred to
as I! we studied stationary counterrotating dust disks a
their relation to hyperelliptic functions. As an example
this approach we gave an explicit solution on a Riema
surface of genus 2@8# where the two counterrotating dus
streams have constant angular velocity and constant rela
density. In the limit of only one component one gets t
solution of @3#, in the limit of identical densities one gets
static solution of the Morgan and Morgan class. In the s
ond paper@9# ~henceforth referred to as II! we gave explicit
formulas for the Ernst potential at the axis and the d
which are needed to discuss the energy-momentum te
and considered limiting cases.

In the present paper we discuss the physical feature
the hyperelliptic solutions@10,11# which are a subclass o
©2001 The American Physical Society25-1
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J. FRAUENDIENER AND C. KLEIN PHYSICAL REVIEW D63 084025
Korotkin’s finite gap solutions@4,5# in the example of the
solution of I. We demonstrate how one can extract physic
interesting quantities from the hyperelliptic functions
terms of which the metric is given. The solutions are expl
i.e., all metric functions are given in terms of quadratu
and a set of well-defined functions, the theta functions. T
integrals are evaluated numerically by making use of ps
dospectral techniques. The metric depends on two phys
parameters:e5zR /(11zR) is related to the redshiftzR of
photons emitted from the center of the disk and detecte
infinity; g is the relative density of the counterrotatin
streams in the disk. In the Newtonian limite is approxi-
mately 0 whereas it tends to 1 in the ultrarelativistic lim
where the central redshift diverges. The limit of a sing
component disk is reached forg51 ~we will only consider
positive values ofg), the static limit forg50.

We give analytic expressions for the mass and the ang
momentum as an expansion of the metric functions at infin
and as an integral over the energy-momentum tensor a
disk. The resulting analytic expressions have to be ident
which provides a test for the numerics. In@12# Bičák and
Ledvinka considered infinite disks of finite mass as sour
for the Kerr metric. It was shown that the matter in the d
can be interpreted either as a disk with purely azimut
stresses or as a disk with two counterrotating dust com
nents if the energy conditions are satisfied. The same dis
sion is possible in the case considered here. As in@12# we
discuss the matter in the disk using observers which rotat
a way that the energy-momentum tensor is diagonal
them. We study the angular velocity of these observers w
respect to the locally nonrotating frames, and the ang
velocities and the energy densities of the dust compon
which these observers measure. In the limit of diverging c
tral redshift the spacetime is no longer asymptotically flat
the case of a one component disk, and the axis is no lon
elementary flat. This behavior can be related as in@2# to the
vanishing of the radiusr0 of the disk which was used as
length scale. If one carries out the limitr0→0 for r5” 0, the
metric becomes the extreme Kerr metric. In this limit t
disk vanishes behind the horizon of the extreme Kerr so
tion. In the case of two counterrotating dust components
radius of the disk remains finite even in the limit where t
central redshift diverges. In the ultrarelativistic limit of th
static disks, the matter in the disk moves at the speed
light, the energy density diverges at the center of the disk
the mass remains finite.

We closely follow the discussion in the pioneering pap
@2#, but this time for a class of solutions which depend
two parameters which continuously interpolate between
Newtonian and the ultrarelativistic regime, and the static a
the Bardeen-Wagoner case, respectively. The paper is o
nized as follows: In Sec. II we summarize results of I and
and write down the complete metric corresponding to
Ernst potential of I in terms of theta functions. We outlin
the numerical scheme and present typical plots for the me
functions. In Sec. III we discuss various physical propert
of the solutions: We relate the physical parameterse andg
to the parameters on which the analytic solution depends
discuss mass and angular momentum. The angular velo
08402
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V is discussed as a function ofe and g. We study the
energy-momentum tensor at the disk as in@12# as well as the
occurrence of ergospheres. In Sec. IV we discuss the
trarelativistic limit of the solutions. We briefly discuss th
over-extreme case for the one-component solution where
boundary value problem at the disk is still solved but whe
a ring singularity exists in the spacetime since the parame
of the solution are beyond the ultrarelativistic limit. In Se
V we add some concluding remarks.

II. METRIC FUNCTIONS

A. Ernst potential and metric

We will briefly summarize results of I and II where detai
of the notation can be found. We use the Weyl-Lew
Papapetrou metric~see e.g.,@13#!

ds252e2U~d t1a df!21e22U
„e2k~dr21dz2!1r2df2

…,

~2.1!
wherer andz are Weyl’s canonical coordinates and] t and
]f are the two commuting asymptotically timelike respe
tively spacelike Killing vectors. Withz5r1 i z and the po-
tential b defined by

bz52
i

r
e4Uaz , ~2.2!

and b→0 for z→`, we define the complex Ernst potenti
f 5e2U1 i b which is subject to the Ernst equation@14#

f zz̄1
1

2~z1 z̄!
~ f z̄1 f z!5

2

f 1 f̄
f zf z̄ , ~2.3!

where a bar denotes complex conjugation inC. The metric
function k follows from

kz52r
f zf̄ z

~ f 1 f̄ !2
. ~2.4!

In I ~Sec. III! we have considered disks which can
interpreted as two counterrotating components of press
less matter, so-called dust. The surface energy-momen
tensorSmn of these models is defined on the hypersurfacz
50. The tensorSmn is related to the energy-momentum te
sor Tmn which appears in the Einstein equationsGmn

58pTmn ~we use units in which the Newtonian gravitation
constant and the velocity of light are equal to 1! via Tmn

5Smnek2Ud(z). The tensorSmn can be written in the form

Smn5s1u1
m u1

n 1s2u2
m u2

n , ~2.5!

where greek indices stand for thet, r, andf components and
whereu65(1,0,6V). A physical interpretation of this ten
sor will be given in Sec. III. We gave an explicit solution fo
disks with constant angular velocityV and constant relative
densityg5(s12s2)/(s11s2). This class of solutions is
characterized by two real parametersl andd which are re-
lated toV andg and the metric potentialU0 at the center of
the disk via

l52V2e22U0 ~2.6!

and
5-2
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EXACT RELATIVISTIC TREATMENT OF STATIONARY . . . PHYSICAL REVIEW D63 084025
d5
12g2

V2
. ~2.7!

We put the radiusr0 of the disk equal to 1 unless otherwis
noted. Since the radius appears only in the combinati
r/r0 , z/r0, and Vr0 in the physical quantities it does no
have an independent role. It is always possible to use it
natural length scale unless it tends to 0 as in the case o
ultrarelativistic limit of the one component disk. The Ern
potential will be discussed in dependence of the parame
e5zR /(11zR)512eU0 andg.

The solution of the Ernst equation corresponding to
above energy-momentum tensor is given on a hyperelli
Riemann surfaceS2 of genus 2 which is defined by the a
gebraic relation m2(K)5(K1 i z)(K2 i z̄)) i 51

2 (K2Ei)(K

2Ēi) ~see I, Sec. IV for details of the notation!. We choose
ReE1,0, ImEi,0, andE152Ē2 with Ē25a11 i b1. We
use the cut system of Fig. 1 for the numerical calculatio
since it is adapted to the symmetry of the problem. The b
point of the Abel map isE1.

In this cut system the solution of I~Theorem 7.2! takes
the form

FIG. 1. Cut system.
08402
s

a
he
t
rs

e
ic

s
se

f ~r,z!5
Q@m#„v~`1!1u…

Q@m#„v~`1!2u…
eI , ~2.8!

where Q@m# is the theta function onS2 with half-integer
characteristic@m#, where I 5(1/2p i) *G ln G(t)dv`1`2(t),
where ui5(1/2p i) *G ln Gdvi , whereG is the covering of
the imaginary axis in the1-sheet ofS2 between2 i and i,
where the characteristic@m#5@1

1
0
0#, and where

G~t!5
A~t22a!21b21t211

A~t22a!21b22~t211!
. ~2.9!

The branch points of the Riemann surface are given by
relationEªE1

25a1 i b with a, b real and

a5211
d

2
, b5A 1

l2
1d2

d2

4
. ~2.10!

Regularity of the solutions restricts the range of the phys
parameters to 0<d<ds(l)ª2(11A111/l2) and 0,l
<lc where lc(g) is the smallest value ofl for which e
51. We note that witha andb given, the Riemann surfac
is completely determined at a given point in the spacetim
i.e., for a given value ofP0. The dependence of the solutio
~2.8! on the physical coordinates is exclusively through t
branch pointsP0 and P̄0.

The complete metric~2.1! can be expressed via the
functions~see II, Theorem 2.2 where a different cut system
used!. With the characteristics@ni # given by

@n1#5F1 1

1 1G , @n2#5F0 0

1 1G ,
@n3#5F1 0

1 0G , @n4#5F0 1

1 0G , ~2.11!

the functione2U can be written in the form
y

t. In
e2U5
Q@n1#~u!Q@n2#~u!

Q@n1#~0!Q@n2#~0!

Q@n3#„v~`2!…Q@n4#„v~`2!…

Q@n3#„v~`2!1u…Q@n4#„v~`2!1u…
eI . ~2.12!

The functione2U which is just the real part of the Ernst potential was written in@11# in the form~2.12! with the help of Fay’s
trisecant identity@15#. This form is especially adapted for determining ergospheres which are just the zeros ofe2U. In @11# it
was shown that the real part of the Ernst potential can only vanish ifQ@n1#(u)Q@n2#(u)50 which provides a necessar
condition for the occurrence of ergospheres@the sufficient condition is that the denominator in Eq.~2.12! is non-zero in this
case#.

Korotkin @4# gave an expression for the metric functiona as a derivative of theta functions with respect to the argumen
@11# this formula could be written in the form~2.13! free of derivatives by using the trisecant identity which leads to

~a2a0!e2U52rS Q@n1#~0!Q@n2#~0!

Q@n3#~v~`2!!Q@n4#~v~`2!!

Q@n1#~u!Q@n2#„u12v~`2!…

Q@n3#„u1v~`2!…Q@n4#„u1v~`2!…
21D , ~2.13!

where the constanta052g/V. The constant can be expressed via theta functions on the elliptic surfaceS8 given by m82

5(K2E1
2)(K2Ē1

2) ~see@11#, II!. We denote quantities defined onS8 by a prime and get
5-3
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a05
b1

a1
Aa1

21b1
2S q4

2~0!

q3„v8~`2!…q4„v8~`2!…
D 2

q4„u812v8~`2!…

q4~u8!
e2I 8, ~2.14!

where dv15dv8, dv25dvz2z18 , ui5(1/2p i) *G ln Gdvi , and whereI 85(1/2p i) *G ln Gdv`1`28 . The elliptic theta
functionsq i wherei 51, . . . ,4have the characteristics@1

1#, @0
1#, @0

0#, and@1
0#, respectively.

Whereas the metric functionsa ande2U can be invariantly expressed through the scalar products of the Killing vectors
is not the case for the metric functione2k. Nonetheless it is interesting to know this function because it determines
geometry of the (r, z)-space and because of its relation to thet-function of the linear system associated with the Er
equation~see@16#!. This connection made it possible to derive an explicit expression fork in terms of theta functions of~2.15!
in @17#:

e2k5C
Q@n1#~u!Q@n2#~u!

Q@n1#~0!Q@n2#~0!
expS 2

~4p i!2 EG
E

G
dK1dK2h~K1!h~K2!ln

Qo„v~K1!2v~K2!…

K12K2
D , ~2.15!

whereQo is a theta function with an odd characteristic, whereh(t)5]t ln G(t), and whereC is a constant which is determine
by the condition thatk vanishes on the regular part of the axis and at infinity. It reads

1/C5
q4

2~u8!

q4
2~0!

expS 2

~4p i!2 EG
E

G
dK1dK2h~K1!h~K2!ln

q1~v8~K1!2v8~K2!!

K12K2
D . ~2.16!

In an ergoregion, the functionQ@n1#(u)Q@n2#(u) becomes negative. Since the remaining terms in Eq.~2.15! cannot change
sign, the functione2k is always negative wheree2U is negative. The metric functiong115g225e2(k2U) is consequently
non-negative.

Since we can concentrate on positive values ofz because of the equatorial symmetry of the solution, the Riemann su
can only become singular ifP0 coincides withP̄0, i.e., on the axis, or if it coincides withE2. Coinciding branch points imply
that some of the periods diverge. Although the Ernst potential is regular at the axis, this causes problems for the n
evaluation which affect the accuracy. Therefore we substitute the analytic expression~see II, Theorem 3.1!

f ~0,z!5

q4S E
z1

`1

dv81u8D 2exp„2v2~`1!2u2…q4S E
z2

`1

dv81u8D
q4S E

z1

`1

dv82u8D 2exp„2v2~`1!1u2…q4S E
z2

`1

dv82u8D eI 81u2. ~2.17!

The real part of the Ernst potential can be written in the form

e2U5
q4

2~u8!

q4
2~0!

q4
2S E

z1

`2

dv8D 2exp„22v2~`2!…q4
2S E

z2

`2

dv8D
q4

2S u81E
z1

`2

dv8D 2exp„22v2~`2!22u2…q4
2S u81E

z2

`2

dv8D . ~2.18!

With these analytic formulas on the axis, one can obtain accurate numerical results since, forz5” 0, the metric functions have
an expansion of the formF(r,z)5F(0,z)1r2F2(z)10(r4) in the vicinity of the axis.

If P0 coincides withE2, the Ernst potential and the metric functions can be expressed in terms of quantities defined
Riemann surfaceS9 of genus 0 given bym92(t)5(t2E1)(t2Ē1) i.e., via elementary functions~see II, Theorem 3.2!. For
P05E2 the differentials on S2 reduce to differentials onS9, dv15dvE

2
2E

2
19 , dv25dv Ē

2
2Ē

2
19 , and I 5I 9

5(1/2p i) *G ln Gdv`1`29 where a double prime denotes that the quantity is defined onS9. The Ernst potential reads

f 5

sinh
v1~`1!1u1

2

sinh
v1~`1!2u1

2

eI 9, ~2.19!

the functiona follows from
084025-4



the
by the
in

ns
y

cut

EXACT RELATIVISTIC TREATMENT OF STATIONARY . . . PHYSICAL REVIEW D63 084025
~a2a0!e2U5rS sinh
p12

4

sinh
v1~`1!

2
sinh

v2~`1!

2

3

expS p12

4 D cosh
u11u212v1~`1!12v2~`1!

2
2expS 2

p12

4 D cosh
u12u212v1~`1!22v2~`1!

2

2sinh
u12v1~`1!

2
sinh

u22v2~`1!

2

21D ,

~2.20!

and the functione2k is given by

e2k5C

expS p12

4 D cosh
u11u2

2
2expS 2

p12

4 D cosh
u12u2

2

2sinh
p12

4

expS 1

~4p i!2 EG
E

G

dK1dK2

~K12K2!2
ln G~K1!ln G~K2!

3SA~K12E1!~K22Ē1!

~K12Ē1!~K22E1!
1A~K12Ē1!~K22E1!

~K12E1!~K22Ē1!
22D D , ~2.21!

wherep12 is a component of theb-matrix onS2.
At the disk the branch pointsP0 ,P̄0 lie on the contourG which implies that care has to be taken in the evaluation of

path integrals. The situation is however simplified by the equatorial symmetry of the solution which is reflected
additional involutionK→2K of the Riemann surfaceS2 for z50. This makes it possible to express the metric functions
terms of elliptic theta functions~see@11#!. In II ~Theorem 4.1! we could give especially efficient formulas for the functio
needed to calculate the energy-momentum tensor at the disk. We denote withSw the elliptic Riemann surface defined b
mw

2 5(t1r2)@(t2a)21b2#, and let dw be the associated differential of the first kind withuw

5(1/i p)*2r2
21 ln G(At)dw(t). We cut the surface in a way that thea-cut is a closed contour in the upper sheet around the

@2r2,Ē# and that theb-cut starts at the cut@`,E#. The Abel mapw is defined forPPSw asw(P)5*`
Pdw. Then the real part

of the Ernst potential at the disk can be written as

e2U5
1

Y2d S 2
1

l
2

Y

d S 1

l2
1d

A 1

l2
1dr2

2
1

lD 1AY2
„~r21a!21b2

…

1

l2
1dr2

22Y~r21a!1
1

l2
1dr2D , ~2.22!

where

Y5

1

l2
1dr2

A~r21a!21b2

q3
2~uw!

q1
2~uw!

. ~2.23!

In I it was shown that there exist algebraic relations between the real and imaginary parts of the Ernst potential,

d2

2
~e4U1b2!5S 1

l
2de2UD S 1

l2
1d

A 1

l2
1dr2

2
1

lD 1dS d1r2

2
21D , ~2.24!

and the functionZª(a2a0)e2U
084025-5
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J. FRAUENDIENER AND C. KLEIN PHYSICAL REVIEW D63 084025
Z22r21de4U5
2

l
e2U. ~2.25!

At the rim of the disk (r51 andz50) the value of the
metric functione2U thus has the form

e2U(1,0)512
1

d SA 1

l2
1d2

1

l D . ~2.26!

The imaginary part of the Ernst potential vanishes forg5” 0
at the rim of the disk as (12r2)3/2. These explicit relations
at the rim of the disk can be used as a test for the nume

B. Numerical evaluation of the hyperelliptic integrals

For the numerical evaluation of the above expressions
use pseudospectral methods. First thea andb periods of the
hyperelliptic Riemann surface for the cut system in Fig
have to be determined. These are integrals between br
pointsPi , Pj , i 5” j of the Riemann surface,

E
Pi

Pj tndt

m~t!
, n50,1,2. ~2.27!

With a linear transformation of the formt5at1b they can
be put into the form

E
21

1 a01a1t1a2t2

A12t2
H~ t !dt, ~2.28!

where thea i are complex constants and whereH(t) is a
continuous~in fact, analytic! complex valued function on the
interval@21,1#. This form of the integral suggests to expre
the powerstn in terms of the first three Chebyshev polyn
mialsT0(t)51, T1(t)5t andT2(t)52t221 and to approxi-
mate the functionH(t) by a linear combination of Cheby
shev polynomials

H~ t !5 (
n>0

hnTn~ t !.

Since theTn form a complete orthogonal system on the
terval, this approximation can be made arbitrarily precise
using enough terms. Using the orthogonality relation
tween the Chebyshev polynomials

E
21

1

Tn~ t !Tm~ t !
dt

A12t2
5H p, m5n50,

p/2, m5n5” 0,

0, m5” n,

~2.29!

the value of the integral is a linear combination of the co
ficientsh0 , h1, andh2. To determine these we have impl
mented a fast cosine transform~FCT! within Matlab. It turns
out that we can get accuracies of the order of the mach
precision ('10214) if we use 32, at most 128 terms in th
approximating sum.

Since the sum of thea-periods and the integral over
closed contour around the cut@E1 ,Ē1# must exactly vanish,
08402
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this can be used to test the numerics. When two or m
branch points coincide as on the axis, the analytic exp
sions~2.17! to ~2.21! are substituted.

The differentialsdv i of the first kind are normalized by
the conditionraj

dv i52p i d i j , the differentialdv`1`2 of
the third kind is normalized by the conditions that it h
residues11 and21 at `1 and `2 respectively, and van-
ishing a-periods. The theta function is approximated by t
sum

Q~x!5 (
n152N

N

(
n252N

N

expS 1

2
p11n1

21p12n1n2

1
1

2
p22n2

21n1x11n2x2D . ~2.30!

The rapid convergence of the series due to negatively d
nite real part ofP5(p21

p11
p22

p12) makes it possible in general t

obtain an accuracy of machine precision with valuesN<5.
To calculate the integralsv(`1) we use the fact~see e.g.,
@15#! that theb-periods of Abelian integrals of the third kin
can be expressed via integrals of the first kind:

R
bi

dv`1`25v i~`1!2v i~`2!. ~2.31!

These integrals are thus determined along with theb-periods
of the integrals of the first kind.

At the disk we use formulas~2.22! to ~2.25!. The non-
Abelian integralsui , I are determined also using pse
dospectral methods. They can be written in the form

E
21

1

dtH~ t !, ~2.32!

whereH(t) is a continuous complex-valued function on th
interval @21,1#. The integration is performed by first ap
proximating the integrand by a linear combination of Cheb
shev polynomials as before. Then, making use of the iden

Tm118

m11
2

Tm218

m21
52Tm ~2.33!

one can compute the expansion coefficients of a functiog
on @21,1# with g85H by applying the relation 2kgk
5hk212hk11 (k.0) between the expansion coefficient
Finally, having transformed back, the value of the integra
obtained asg(1)2g(21).

In contrast to the algebro-geometric solutions of in
grable equations like Korteweg–de Vries and Sine-Gord
~see e.g.,@19#!, the characteristic quantities of the Riema
surface as the periods have to be calculated at each poi
the spacetime since the Ernst potential depends on the m
ing branch pointsP0 and P̄0. Thus for each value of (r,z)
one has to calculate nine integrals and to do the summa
of the theta series to obtain the Ernst potential~2.8!. Because
5-6
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FIG. 2. Metric functione2U.
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of the equatorial symmetry, the calculation can be limited
z>0: whereas the metric functions are even inz, the imagi-
nary part of the Ernst potential is an odd function.

To illustrate the metric functions we show plots fore
50.85 andg50.99 (l510.12 andd50.856), i.e., a disk in
a strongly relativistic situation. The metric functione2U ~see
Fig. 2! tends to 1 for large distances from the disk. At t
disk it is continuous but its normal derivatives have a jum
In the vicinity of the disk, the function is negative whic
indicates the presence of an ergosphere. In the exterior o
disk, e2U is completely smooth and does not take a lo
extremum in the whole physical range of the parameters.
function thus shows the same analytic properties as a s
tion to the Laplace equation. The imaginary part of the Er
potential~see Fig. 3! is an odd function inz. Thus it vanishes
in the equatorial plane in the exterior of the disk. For lar
08402
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he
l
e

lu-
t

e

distances from the disk it tends to zero because of
asymptotic flatness of the spacetime. At the disk, the fu
tion has a jump which is zero at the rim of the disk sinceb is
continuous there.

The metric functiona ~see Fig. 4! is equatorially symmet-
ric and everywhere continuous. At the disk, the normal
rivatives ofa have a jump, in the remaining spacetime it
completely regular. On the axis and at infinity the function
identically zero.

The functione2k in Fig. 5 has similar properties: it is
equatorially symmetric and everywhere continuous, the n
mal derivatives have a jump at the disk. The function
identical to 1 on the axis~‘‘elementary flatness’’! and at
infinity ~asymptotic flatness!. The function is only signifi-
cantly different from 1 in the vicinity of the disk. The metri
function e2(k2U) is always positive even in the ergoregion
l.
FIG. 3. Imaginary part of the Ernst potentia
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FIG. 4. Metric functionae2U.
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which implies that the signature of the metric does n
change.

III. PHYSICAL PROPERTIES

A. The physical parameters

We consider the metric as depending on the two phys
parameterse and g. Mathematically more natural are th
parametersl andd. These two sets can be converted throu
the following procedure. The formula~2.18! can be used to
calculate the real part of the Ernst potential at the orig
e2U0, which is related to the redshiftzR of photons emitted
from the center of the disk and detected at infinity,zR
5e2U021,

e2U05
~11X2!~A11l22l!

X22~A11l22l!2
, ~3.1!
08402
t
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,

whereX is the purely imaginary quantity

X5
q3~u8!q4~0!

q1~u8!q2~0!
. ~3.2!

The corresponding values ofl andd follow from Eqs.~2.6!,
~2.7! and ~3.1!. We get, fore5” 1,

d5
12g2

~12e!2

2

l
. ~3.3!

With this value we enter Eq.~3.1! for e2U0 and solve numeri-
cally for l(e,g). For d50 one finds that the first zero o
e2U0 is reached forlc(0)54.62966 . . . . Thefunction has
additional zeros for higher values ofl ~see e.g.,@10#!. We
are only interested in values 0,l,lc(d). For g,1 the
FIG. 5. Metric functione2k.
5-8
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quantity e2U0 is a monotonous function inl for 0,l,`.
Equation ~3.3! then provides the corresponding value
d(e,g).

For e51 there are two cases: ifg51, thend50 andl
5lc(0). Forg5” 1, relation~3.3! implies thatlc(d) must be
infinite. The corresponding value ofd follows with Eqs.
~2.6!, ~2.7!, and~3.1! in the limit l→` as the solution of the
equation

d5
4~12g2!X2

11X2
. ~3.4!

Throughout the article we will consider the following lim
iting cases:

Newtonian limit. e50 (l50), i.e., small velocitiesVr0
and small redshifts in the disk. Forl→0, the integralu8
goes to zero. Thus the quantityX diverges sinceq1 is an odd
function. Consequently one gets from Eq.~3.1! U052V2,
the value for the Maclaurin disk~see II, Theorem 5.1!. There
it was shown that in this limite2U tends to the Maclaurin
disk solution, independently ofg. This solution can be writ-
ten as

U~r,z!52
1

4p i E2 i

i 2l~t211!

A~t2z!21r2
dt. ~3.5!

Ultrarelativistic limit. e51, i.e., diverging central red
shift. For g51 we haveq4(u8)50 and thusX52 i and
f 052 i, i.e., the value of the Ernst potential of the extrem
Kerr metric at the horizon. Forg5” 1, the ultrarelativistic
limit is reached forl→`.

Static limit. g50 @d5ds(l)#. In this limit, the branch
points ofS8 collapse pairwise which leads to a divergingX
and e2U05A11l22l. In II ~Theorem 5.2! it was shown
that this is the Morgan and Morgan solution@1# for constant
V,

U~r,z!52
1

4p i E2 i

i ln G~t!

A~t2z!21r2
dt ~3.6!

with

G512
4

d
~t211!. ~3.7!

At the disk one has

e2U5A1

4
2

1

d
1A1

4
2

1

d
1

r2

d
, ~3.8!

with V2d51.
One component. g51 (d50), i.e., no counterrotating

matter in the disk. This is the disk which was studied n
merically by Bardeen and Wagoner@2#. The analytic solution
is the solution by Neugebauer and Meinel@3# in the notation
of @10#.

The parameterl can be viewed as a ‘‘relativity’’ param
eter: for small values ofl, one is in the Newtonian regime
08402
-

for larger values relativistic effects become more and m
dominant up to the ultrarelativistic limit where the centr
redshift diverges. The values ofl itself, however, do not
have an invariant meaning. Thus it seems better to use
central redshiftzR in e5zR /(11zR) as a parameter as in@2#,

e512eU0, ~3.9!

whereeU0 is taken from Eq.~3.2!.
In the ultrarelativistic limit, the values ofd must be be-

tween 0 ~the one-component case! and 4 ~the static limit,
whereg50 andX2→`). We plot e as a function ofl for
g51 andg50 in Fig. 6. In the caseg51, the function goes
to 1 at finite values ofl whereas forg5” 1 it goes monotoni-
cally to 1 asl goes to infinity as in the static caseg50.

B. Mass and angular momentum

The Arnowitt-Deser-Misner~ADM ! massM and the an-
gular momentumJ of the spacetime~see e.g.,@18#! can be
obtained by expanding the axis potential~2.17! in the vicin-
ity of infinity. The real part of the Ernst potential fore,1
reads e2U5122M /z1o(1/z) and the imaginary partb
52J/z21o(1/z2). In II ~Corollary 3.2! it was shown that the
ADM mass is given by the formula

M52D`2ln q4~u8!2
1

4p i EG
ln G dv1,̀ 1, ~3.10!

and that the angular momentum is given by

J52
g

V S D`2ln q4~u8!1D`2ln q2~u8!

1
1

2p i EG
ln G dv1,̀ 1D , ~3.11!

whereDPF„v(P)… denotes the coefficient of the linear ter
in the expansion of a functionF in the local parameter in the
vicinity of P.

FIG. 6. The functione in dependence ofl for g51 andg50.
5-9
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In the Newtonian limit this leads to

M5
4V2

3p
, ~3.12!

the value of the Maclaurin disk, and

J5
8gV3

15p
. ~3.13!

In the ultrarelativistic limit of the one component dis
q4(u8)50, both the mass and the angular momentum
verge. In this limit the dimensionless quotientM2/J remains
bounded and goes to 1, the value of the extreme Kerr me

We plot the dimensionless quantityM2/J in Fig. 7. As a
function ofe it varies monotonically between the Newtonia
value

M2

J
5

10V

3pg
~3.14!

and the value in the ultrarelativistic case which is alwa
bigger than 1 forg,1. For fixede it increases monotoni
cally with g.

C. Energy-momentum tensor

The energy-momentum tensor of the disk is given by E
~2.5! which has to be considered as an algebraic definition
the tensor components. Since the vectorsu6 are not normal-
ized, the quantitiess6 have no direct physical significance
The energy-momentum tensor was chosen in a way to in
polate continuously between the static case and the
component case with constant angular velocity. An ener
momentum tensorSmn with three independent componen
can always be written as

Smn5sp* vmvn1pp* wmwn, ~3.15!

FIG. 7. The dimensionless quantityM2/J in dependence ofe for
several values ofg.
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wherev and w are the unit timelike respectively spacelik
vectors (vm)5N1(1,0,vf) and where (wm)5N2(k,0,1).
This corresponds to the introduction of observers@called
f-isotropic observers~FIOs! in @12## for which the energy-
momentum tensor is diagonal. The conditionwmvm50 de-
terminesk in terms ofvf and the metric,

k52
g031vfg33

g001vfg03
. ~3.16!

If we introduce the four-velocitiesũ65N6u6 , the quan-
tities s6N6

2 are proper densities in the sense of@2#. The
quantitys which appears in the Einstein equations~see I! is
related tos̃5s11s2 via s5ek2Us̃. In I it was shown that
s is given by

s5
br

8prV2~a2a0!e2U
. ~3.17!

It vanishes forr→1 with infinite slope: in the non-static
case it was shown in II~Corollary 4.1! that br is always
proportional toA12r2 while in the static case one gets

s5
1

4p2VS d

4
211r2DarctanA 12r2

d

4
211r2

. ~3.18!

Sinceb5b01O(r2) in the vicinity of the origin fore5” 1,
the density is regular in the whole disk fore,1 andg5” 0.
This is however not true in the ultrarelativistic limit of th
static disks which we will discuss in more detail in the fo
lowing section.

The FIOs can interpret the matter in the disk as havin
purely azimuthal pressure or as a disk of two counterrota
dust streams ifpp* /sp* ,1. One can show numerically tha
pp* /sp* is a monotonically decreasing non-negative functi
of g which vanishes identically only forg51. Thus, it is
maximal in the static case as expected. There we have

12
pp*

sp*
512V2r2e24U5e2(U02U)>0. ~3.19!

The last equation follows from Eq.~2.25!.
The only case wherepp* 5sp* is the ultrarelativistic limit

of the static disks. In this case the matter rotates with
velocity of light while in all other cases, the velocit
App* /sp* is smaller than 1. Thus the energy-momentum te
sor can be written in the form

Smn5
1

2
sp* ~U1

m U1
n 1U2

m U2
n ! ~3.20!

where (U6
m )5U* (vm6App* /sp* wm) are unit timelike vec-

tors. This is the sum of two energy-momentum tensors
dust. Furthermore it can be shown that the vectorsU6 are
geodesic vectors with respect to the inner geometry of
disk: this is a consequence of the equationS;n

mn50 together
5-10
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with the fact thatU6 is a linear combination of the Killing
vectors. Consequently the FIOs can interpret the matte
the disk as two streams of dust with proper energy den
sp* /2 which are counterrotating with the same angular vel
ity Vcª(N2 /N1)App* /sp* . This is the interpretation we wil
refer to in our discussion.

Except for the static caseg50 the FIOs are not at res
with respect to the locally non-rotating frames which rota
with angular velocity

v lª2
g03

g33
~3.21!

with respect to the inertial frame at infinity. Therefore, t
quantities we will discuss in the following are the angu
velocities v l , vf , Vc , and the energy densitys*
ªe(k2U)sp* .

We discuss the angular velocities in units ofV which has
no invariant meaning but which provides a natural scale
the angular velocities in the disk. It is constant with resp
to r but depends on the parameterse andg. In the Newton-
ian limit it is small sinceU052V2. Thus independently o
g, the angular velocityV behaves asAe for e'0. The fact
that the ultrarelativistic limit for the one-component disk
reached for a finite value ofl implies via Eq.~2.6! that V
must vanish in this limit. This behavior will be discussed
more detail in Sec. IV. Thus, ase varies between 0 and 1, fo
g51, V starts near zero in the Newtonian regime, reache
maximum smaller than 1 and then goes to zero. For 0,g
,1, it reaches a maximum, too, but then it does not go
zero in the ultrarelativistic limit. In the static case (g50)
one has

V~e,0!5
1

2
A12~12e!4, ~3.22!

which grows monotonically from zero to 1/2 in the ultrarel
tivistic limit. We plot V as function ofe for several values of
g in Fig. 8.

The angular velocityv l of the locally non-rotating ob-
servers is a measure for the frame dragging due to the r
ing disk. We depictv l in dependence ofr at the disk for
g50.7 and several values ofe in Fig. 9. There is obviously
no frame dragging in the Newtonian case,v l is of orderV3

for small V. The angular velocityv l increases monotoni
cally with e for fixed r and g. However the curves fore
>0.85 are so close to the curve withe50.85 that we omitted
them in Fig. 9. Since the density~see below! is peeked at the
center of the disk fore→1, the frame dragging increase
strongly near the center. In Fig. 10 we plotv l at the disk for
e50.8 for several values ofg. In the static case it is identica
to zero. The frame dragging increases monotonically withg
for fixed r and e since more counterrotating matter mak
the spacetime more static. Since the central density decre
with g for fixed e, the frame dragging at the center is f
g,1 closer to the one-component case than at the rim of
disk. The angular velocityv l is always smaller thanV for
08402
in
ty
-

r

r
t

a

o

at-

ses

e

g,1. In the ultrarelativistic limit forg51 the ratiov l /V
becomes identical to 1 in the disk.

In terms of the components of the energy-momentum t
sor, the angular velocityvf reads

vf5
1

2S3
0 ~S3

32S0
02A~S3

32S0
0!214S3

0S0
3!. ~3.23!

For fixedr ande, the angular velocityvf is monotonically
increasing ing from zero in the static case toV in the
one-component limit. Forr50 it is identical togV which is
also the value in the Newtonian limit. The ratiovf /V is
depicted in dependence ofr for g50.7 for several values o
e in Fig. 11.

The angular velocity of the dust streamsVc with respect
to the FIOs follows from

FIG. 8. Angular velocityV in dependence ofe for several val-
ues ofg.

FIG. 9. Angular velocity v l for g50.7 and e
50.05,0.15, . . . ,0.85.
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Vc5Avf
2 22vfgV1V2

122kgV1V2k2
. ~3.24!

For fixed r and e the angular velocityVc increases mono
tonically in g from 0 in the one-component case to 1 in t
static case. In the former case the observer follows the
and can interpret the dust which is at rest in his coordin
system as ‘‘two’’ non-rotating dust components. Forr50
the functionVc is identical toVA12g2 which is also the
value in the Newtonian limit. We plotVc in dependence ofr
for g50.7 for several values ofe in Fig. 12.

The proper densitysp* for a FIO is given by

sp* 5
s̃

12kvf

r2

kg031g33
~122kgV1k2V2!. ~3.25!

FIG. 10. Angular velocity v l for e50.8 and g
50.1,0.2, . . . ,0.90,0.95,0.99,1.

FIG. 11. Angular velocityvf for g50.7 and from top to bottom
e50.05,0.15, . . . ,0.95.
08402
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The density is finite except in the ultrarelativistic limit of th
static disks. In the Newtonian limit, the density reads

s* 5s̃„11V2@~12g2!r222#…5
2V2

p2
A12r2

~3.26!

the value for the Maclaurin disk. The dependence ofs* on r
is shown forg50.7 for several values ofe in Fig. 13. With
increasinge, the central density grows and the matter is mo
and more concentrated at the center of the disk. Fore50.8
the density is plotted for several values ofg in Fig. 14. With
increasingg, the central density increases.

In @2# and@1# the observer dependent ‘‘rest mass densit
s0,6 of the dust streams was defined ass0,65s* /2U6

0

which leads to the total rest mass densitys0 in the asymp-
totically fixed frame

FIG. 12. Angular velocityVc for g50.7 and and from top to
bottome50.05,0.15, . . . ,0.95.

FIG. 13. Energy densitys* for g50.7 and several values ofe.
5-12
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EXACT RELATIVISTIC TREATMENT OF STATIONARY . . . PHYSICAL REVIEW D63 084025
s05s*
N1

U*
. ~3.27!

The total rest mass of the diskM0 is then the integral

M052pE
0

1

s0rdr. ~3.28!

The binding energy of the disk is defined in@2# and@1# as
the difference between the total rest mass and the A
mass,Eb5M02M . We plot Eb /M0 as a function ofe for
several values ofg in Fig. 15. In the Newtonian limit, the
binding energy is independent ofg,

Eb /M5
1

5
V2. ~3.29!

In the caseg51, the binding energy increases monotonica
up to a value ofEb /M0'0.37 in the ultrarelativistic limit.

FIG. 14. Energy densitys* for e50.8 and several values ofg.

FIG. 15. Binding energy of the disks in dependence ofe for
several values ofg.
08402
For g,1 it reaches a maximum for a finite value ofe and
can become even negative. In the static limitEb /M0 di-
verges to2` in the ultrarelativistic limit since the rest mas
of the disk goes to zero. We plotEb /M0 as function ofe for
several values ofg in Fig. 15.

The ADM mass can also be calculated in standard man
@18# at the disk, in our case

M52pE
0

1

~S3
32S0

0!ek2Urdr. ~3.30!

Similarly, one gets for the angular momentum

J52pE
0

1

S3
0ek2Urdr. ~3.31!

The above formulas can be used to check the numerics s
they must reproduce the results of Eqs.~3.10! and ~3.11!.

D. Ergospheres

In strongly relativistic situations it is possible that the a
ymptotically timelike Killing vector] t becomes null or even
spacelike. The vanishing ofe2U defines an ergosphere~al-
though it does not have the topology of a sphere here! i.e.,
the boundary of a region of spacetime where there can b
static observer with respect to infinity.

The surface plot of the metric functione2U in Fig. 2
shows the typical behavior of these functions: they are co
pletely smooth in the exterior of the disk while the norm
derivatives are discontinuous at the disk. The function d
not assume a local extremum in the exterior of the disk a
goes to 1 at infinity,e2U5122M /uzu1 . . . . Since the ADM
mass is always positive in the physical range of the para
eters~see Sec. IV D!, the real part of the Ernst potential i
always less than 1. At the disk, however, the function m
have a global minimum.

In the Newtonian regime, the so-called gravito-magne
effects such as ergospheres do not play a role. When
parametere increases from zero to one, the functione2U may
vanish at some points in the spacetime. Since it assume
minimum value at the disk, this means that an ergosph
necessarily first appears at the disk when the minimum va
becomes zero. For larger values ofe the minimum drops
below zero in these cases so that the ergosphere grow
increasing values ofe. In the ultrarelativistic limite51 it
reaches the axis.

To illustrate the dependence of ergospheres on the pa
etere for fixed g, we plot them in Fig. 16 forg51. The plot
shows the (r, z) plane with the disk on ther-axis between
zero and one. The potential is regular in the equatorial pl
in the exterior of the disk which implies that the equipote
tial surfaces hit the plane orthogonally there. At the di
however, the normal derivatives have a jump which leads
a cusp of the equipotential contours at the disk. The er
sphere grows withe and includes the whole spacetime in th
ultrarelativistic limit which will be discussed in the next se
tion.
5-13
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Qualitatively, one would expect that counterrotati
makes a solution more static, i.e., that effects like er
spheres are suppressed. Thus in situations with the same
tral redshift but differentg, the ergoregion will always be
smaller in the case of more counterrotation if there is
ergoregion at all. In Fig. 17 we show the ergospheres foe
50.95 and several values ofg. It follows from Eq. ~2.26!
that the ergosphere goes through the rim of the disk if

d512
2

l
. ~3.32!

This means that for disks withd.1 possible ergoregions ar
confined to values ofr,1. One finds numerically tha
smaller values ofg i.e., more counterrotating matter impl
that the ergoregion forms at bigger values ofe i.e., in stron-
ger relativistic situations if it is to appear at all. The ergo
gions are also formed closer to the axis. In the static c
there is obviously no ergosphere. The functione2U only van-

FIG. 16. Ergospheres forg51 and several values ofe.

FIG. 17. Ergospheres fore50.95 and several values ofg.
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ishes in the ultrarelativistic limit at the center of the dis
There are no ergoregions for values ofg,gc50.707 . . . .

IV. ULTRARELATIVISTIC LIMIT

A. Ultrarelativistic limit of the static disks

The main features of the ultrarelativistic limit can alrea
be found in@1#. The potentiale2U in the disk and its norma
derivative there have the form

e2U5
r

2
, ~e2U!z5

1

p
arctanA12r2

r2
, ~4.1!

whereas the metric functionk is of orderr2 for smallk. The
behavior of the metric functions can be obtained from E
~3.8! and ~2.4!. The angular velocity in the disk isV51/2.
The matter in the disk moves with the velocity of light sin
the four-velocity becomes null in the whole disk. Th
energy-densitys ~3.18! diverges at the center as 1/r2, the
density s* 52g00s diverges as 1/r. The ADM mass is
however finite,M51/(4p). Since the matter moves with th
velocity of light, the rest mass of the disk must vanish. Th
the gravitational binding energy is negative.

The linear proper radius

rpªE
0

r

ek2Udr8 ~4.2!

is finite in the disk since the integrand behaves near the c
ter ~see II, Corollary 4.1! as 1/Ar and is finite in the rest of
the disk. The proper circumferential radius in the disk,

rc5Ag33~r!5A2r, ~4.3!

is also finite. Thus the ultrarelativistic limit of the static disk
with uniform rotation is a disk of finite radius with divergin
central redshift and diverging central density but finite ma
The matter in the disk consists of particles with zero r
mass which move with the velocity of light.

B. Ultrarelativistic limit for 0 ËgË1

The ultrarelativistic limit of stationary counterrotatin
disks bears similarities with the static case in the sense
the axis remains regular: the constantsa0 and C in Eqs.
~2.14! and~2.16! which are 0 and 1 respectively in the stat
case remain finite here since they can only diverge
q4(u8)50 which can happen only forg51. The integrals in
the respective exponents of Eqs.~2.14! and~2.16! are always
finite though lnG(t) has a term lnt in the limit l→` as can
be easily seen. Thus the axis remains elementary flat in
case g,1 even in the ultrarelativistic limit. Sincea05
2g/V is non-zero for 0,g,1, the angular velocityV re-
mains finite in the limit, too, as can be seen in Fig. 8.

In II ~Corollary 4.1! it was shown that the potentiale2U is
linear inr near the origin unlessg5gc ~which is just defined
by this condition! where it is quadratic inr. For g.gc there
are ergospheres in the spacetime, forg,gc the potentiale2U

is positive in the whole spacetime. We plote2U at the disk
5-14
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for several values ofg in the ultrarelativistic limit in Fig. 18.
We note that the metric functionae2U in the disk is also
linear in r in the vicinity of the origin ife2U is. For g→0,
the metric functione2U in the disk approachesr/2. For g
→1 the limiting function is also linear inr in the whole
disk. One has to note that the limitsg→1 ande→1 do not
commute. The ultrarelativistic limit of the caseg51 is dis-
cussed Sec. IV C. The limitg→1 of the ultrarelativistic so-
lutions for g,1 are always obtained forl→`. If one goes
with g→1 (d→0) in this cases, the limiting function is on
of the ‘‘overextreme’’ solutions which are discussed in S
IV D.

In contrast to the static case, the energy densitys* is
finite even in the ultrarelativistic limit. The proper linear r
dius~4.2! and the proper circumferential radius~4.3! are both
finite in the disk. The velocity of the counterrotating strea
in the diskApp* /sp* is less than 1, i.e., the velocity of light i
the limit e51 for 0,g,1.

FIG. 18. Metric functione2U at the disk for several values ofg.
08402
.
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C. Ultrarelativistic limit of the one-component disks

The ultrarelativistic limit of the caseg51 is different
from the previously discussed cases since it is reached
q4(u8)50. This implies with Eqs.~2.14! and ~2.16! that
both constantsa0 andC diverge ase→1. These constants d
not have a direct physical importance. The fact that th
diverge merely indicates that the axis cannot remain elem
tary flat in the ultrarelativistic limit. A consequence of th
diverging constanta0 is that the angular velocityV, which is
the coordinate angular velocity in the disk as measured fr
infinity, vanishes. A diverging constantC implies that all
linear proper distances~4.2! diverge. The function
e2(k2U)12U0 is however bounded.

The axis is in fact singular in the sense that the me
function e2U vanishes there identically which can be se
from Eq.~2.18!. The Ernst potential is identical to2 i on the
axis for z.0. In the limit e→1, the ergosphere become
bigger and bigger. When it finally hits the axis fore51, the
whole axis and infinity form the ergosphere and the funct
e2U is negative in the remainder of the spacetime. We p
the potential in Fig. 19. The fact thate2U vanishes on the
whole axis implies moreover that all multipole moments
verge. The dimensionless quotientM2/J remains however
finite and tends to 1, the value of the extreme Kerr me
~see Sec. III D!.

The vanishing ofV5Vr0 in the limit e51 indicates that
either the angular velocity or the radius of the disk go to z
in this case. Bardeen and Wagoner@2# argued that the space
time can be interpreted in the limite→1 andr0→0 as the
extreme Kerr metric in the exterior of the disk. In@10# it was
shown that such a limit~diverging multipoles, singular
axis, . . . ! can occur in general hyperelliptic solutions an
can always be interpreted as an extreme Kerr spacetime
an algebraic treatment of the ultrarelativistic limit of th
Bardeen-Wagoner disk see@20#. In the ultrarelativistic limit
of the above disks forg51, the spacetime becomes an e
treme Kerr spacetime withm51/(2V). The physical inter-
FIG. 19. Metric functione2U in the ultrarela-
tivistic limit for g51.
5-15
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FIG. 20. Metric functione2U

in the over-extreme region forg
51.
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pretation of this fact as already given in@2# is that the disks
become more and more redshifted for increasinge. Its radius
shrinks and the disk finally vanishes behind the horizon
the extreme Kerr metric which forms in the ultrarelativis
limit.

D. Over-extreme region

Since the ultrarelativistic limit of the one-compone
disks is reached for a finite valuelc of l, the question arises
what the solution~2.8! describes forl.lc , the smallest
value ofl wheree51. In I it was shown that the boundar
conditions at the disk are still satisfied. Moreover the re
tions between the metric functions at the disk ensure that
functions are bounded at the disk~they have at most a jump
discontinuity there!. The proof for global regularity given in
I does not hold in the ‘‘over-extreme’’ regionl.lc . It in-
dicates that a singularity in the equatorial plane is proba
which in fact can be verified numerically. A typical plot
presented in Fig. 20. In the ultrarelativistic limit, the erg
sphere stretches to infinity, in the over-extreme region w
e,1 it is confined to a finite region of spacetime. The s
gularity in the equatorial plane is of the form 1/(r2rs) at rs
since the elliptic theta functions in the equatorial plane h
zeros of first order. In@10# it was shown that the singularit
leads to a negative ADM mass for certainl.lc . The space-
time is thus physically unacceptable. This is a striking e
ample that it is not sufficient to solve a boundary value pr
lem locally at the disk within the class of solutions@4#, but
that one has to find in addition the range of the physi
parameters where the solution is globally regular outside
disk.
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V. CONCLUSION

In this paper we have discussed a class of solutions to
Ernst equation which can be interpreted as counterrota
disks of dust. The solutions are given on a Riemann surf
of genus 2. We presented the numerical evaluation of
explicit formulas for the mass and angular momentum,
energy-density, angular velocities in the disk in terms
theta functions. Most of these relations hold for general
lutions on Riemann surfaces of genus 2. A generalization
arbitrary finite genus is straight forward in most cases. T
discussion here is intended to provide an example on how
extract physical information out of the solutions of the for
~2.8!. Of special interest is the ultrarelativistic limit in whic
the redshift of photons emerging from the center of the d
diverges. In the case of only one component, the disk shr
to a point and the exterior of the solution can be interpre
as the extreme Kerr solution. If counterrotating matter
present, the disk has a always a finite radius even in
ultrarelativistic limit. It would be interesting to study numer
cally the light cone structure of the spacetime which will
the subject of further research.
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