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We present a detailed discussion of the duality between dilaton gravity on AdS2 and open strings. The
correspondence between the two theories is established using their symmetries and field theoretical, thermo-
dynamic, and statistical arguments. We use the dual conformal field theory to describe two-dimensional black
holes. In particular, all the semiclassical features of the black holes, including the entropy, have a natural
interpretation in terms of the dual microscopic conformal dynamics. The previous results are discussed in the
general framework of the anti–de Sitter/conformal field theory dualities.
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I. INTRODUCTION

One of the most striking features of the anti–de Sitt
conformal field theory~AdS/CFT! correspondence@1# is the
possibility of relating physical theories that appear co
pletely different at first sight. Although the meaning of th
AdS/CFT correspondence is yet to be fully clarified, we e
pect it will help shed light on fundamental issues of conte
porary theoretical physics, such as the nonperturbative
gime of Yang-Mills and string theories.

Lower-dimensional models are often used in theoret
physics as simplified models to investigating complex s
tems. This approach allows us to formulate the problem
der investigation in a mathematically simpler context, y
retain the crucial characteristics of the original model. A
plying this strategy to the AdS/CFT correspondence we
led to investigate the lowest-dimensional,d52, member of
the AdSdCFTd21 family. In this case the AdS/CFT conjec
ture states that gravity on AdS2 is dual to a one-dimensiona
conformal field theory living on the timelike boundary o
AdS2. Widely investigated in the recent literature, th
AdS2 /CFT1 correspondence has, however, revealed it
much more puzzling than its higher dimensional counterp
@2–9#. Specific features of two-dimensional gravity and
the conjectured CFT living on the boundary of AdS2 con-
spire indeed to make the whole subject very difficult to a
lyze. Classical two-dimensional~dilaton! gravity is a confor-
mal theory itself. It can be formulated as a nonlinear sig
model @10#, which, at the classical level, is endowed wi
conformal symmetry. So we would naively expect gravity
AdS2 to be dual to atwo-dimensionalCFT. However, it has
been shown that the conformal symmetry associated w
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AdS2 is infinite dimensional and is generated by a Viraso
algebra. Moreover, there is some evidence that it can be
alized in terms of boundary fields describing deformations
the boundary of AdS2 @3–5#. These results seem to indica
that the conformal theory is actually a one-dimensional CF
though the search for a viable candidate has not been
cessful yet~see Refs.@3,4,7#!.

The above features have a strong impact on the stud
two-dimensional gravity structures@11#, i.e., black holes, by
means of conformal field theory techniques. Previous
tempts to calculate the statistical entropy of AdS2 black holes
were only partially successful@3–5#. ~A mismatch of a factor
A2 between the thermodynamic and statistical entropy w
found.! Though the free energy of AdS2 black holes depends
quadratically on the Hawking temperature@12#, a feature
which is typical of two-dimensional CFTs, it has been sho
that AdS2 black holes are completely characterized by t
charges associated with the asymptotic symmetries of A2

@3,4#. These charges are defined on the timelike boundar
AdS2, suggesting that AdS2 black holes admit a descriptio
in terms of a one-dimensional conformal field theory.

In this paper we take a step forward in clarifying th
meaning of the AdS/CFT duality in two dimensions. Starti
from the nonlinear sigma model description of tw
dimensional dilaton gravity@10# we discuss in depth the du
ality between two-dimensional dilaton gravity on AdS2 and
open strings. We show that in the weak-coupling regi
two-dimensional dilaton gravity on AdS2 has two different
degeneration limits which correspond to Neumann and
richlet boundary conditions for the open string, respective
We put the modes of the gravitational theory on the bou
ary in a one-to-one correspondence with the string mo
and explain the semiclassical properties of the AdS bl
hole—including the entropy—in terms of the dual CFT m
croscopic dynamics. Some results of this paper have b
anticipated in a previous paper@13#. Here we extend and
complete those results, in particular we present a detailed
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-
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systematic discussion of the AdS2/CFT duality and clarify
the meaning of Dirichlet and Neumann boundary conditio
We also speculate on the relevance of our results in the m
general framework of higher-dimensional AdS/CFT dua
ties.

The structure of the paper is as follows. In Secs. II and
we briefly review the main features of two-dimensional di
ton gravity on AdS2 and its formulation as a nonlinear sigm
model, respectively. We also show that in the weak-coup
regime the theory is described by an open bosonic string
Sec. IV we compare the symmetries of two-dimensional
laton gravity on AdS2 to the symmetries of the string. In Se
V we use the previous results and further field theoret
arguments to show that gravity on AdS2 is dual to the
bosonic string. In Sec. VI we put in a one-to-one corresp
dence the string modes with the asymptotic modes of A2
gravity. In Sec. VII we use the AdS/CFT correspondence
explain the semiclassical properties of the AdS2 black hole in
terms of the microscopic conformal dynamics. Finally,
Sec. VIII we discuss our results.

II. THE TWO-DIMENSIONAL DILATON
GRAVITY THEORY

Our starting point is the two-dimensional dilaton grav
action

A5
1

2E d2x A2g @fR1V~f!#. ~1!

The scalar fieldf is related to the usual definition of th
dilaton w by f5exp(22w). The two-dimensional model~1!
has been widely investigated in the literature@14#. Because
of its simplicity it has been used to address fundame
problems of quantum gravity and black hole physics in
mathematically simplified context.

In this paper we restrict attention on dilaton gravity mo
els that have AdS2 as classical solution. The prototype
these models is the Jackiw-Teitelboim~JT! theory @15#,
which is obtained settingV(f)52l2f in Eq. ~1!. Although
the JT theory may look rather uninteresting—there are
local physical degrees of freedom, the general solution
scribes a spacetime of constant negative curvature—a c
examination reveals a much richer structure. In particu
the theory admits black hole solutions@12#. In the following
we will briefly review the main features of AdS2 black holes,
referring the reader to the vast literature on the subject fo
more detailed discussion.~See, e.g., Ref.@12#, and references
therein.!

Owing to the extended Birkhoff theorem the general
lution of the JT model in the Schwarzschild gauge is

ds252S l2r 22
2mbh

lf0
Ddt21S l2r 22

2mbh

lf0
D 21

dr2,

f5f0lr , mbh>0. ~2!

The general theory~1! admits the existence of the gaug
invariant, local conserved quantity@16#
08402
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M5N~f!2gmn¹mf¹nf, N~f!5Ef

df8V~f8!.

~3!

On the classical orbitM is constant and proportional to th
Arnowitt-Deser-Misner~ADM ! mass of the system@17#. For
the JT black hole we haveM52f0lmbh . For purely dimen-
sional reasons two-dimensional dilaton gravity does not
low a dimensionful analog of the four-dimensional Newt
constant. However,f21 represents the~coordinate depen-
dent! coupling constant of the theory. For the JT model,
particular, f0

21 plays the role of a dimensionless Newto
constantG2. The metric ~2! represents different, locally
equivalent, parametrization of AdS2 according to the value
of mbh . The presence of the scalar fieldf makes these pa
rametrizations globally inequivalent@12#. In this paper, fol-
lowing the notations of Ref.@12#, solutions withmbh.0 and
mbh50 will be denoted by AdS2

1 and AdS2
0, respectively.

AdS2
1 can be interpreted as a black hole of massmbh with a

singularity at r 50, a timelike boundary atr 5`, and an
event horizon atr 5(2m/l3f0)1/2. AdS2

0 can be considered
as the ground state, zero mass solution. In this case the
gularity at r 50 is lightlike. Let us stress that the globa
topology of both AdS2

0 and AdS2
1 is different from the topol-

ogy of the full AdS2 geometry ~the maximally extended
spacetime!. The latter is a geodesically complete spaceti
with cylindrical topology and two timelike boundaries. Be
cause of the singularity atr 50 both AdS2

1 and AdS2
0 are

singular spacetimes with a single timelike boundary ar
5`.

Since AdS2
1 and AdS2

0 are locally equivalent, a coordinat
transformation exists that maps the solution~2! with mbh
.0 into the solution withmbh50 @12#. Later on this paper
we will make use of this coordinate transformation. In t
conformal gauge the AdS2

0 metric is

ds25
1

l2x2 ~2dt21dx2!. ~4!

The metric of the AdS2
1 black hole is

ds25
a2

sinh2~als!
~2dt21ds2!, ~5!

wherea5(2mbh /f0l)1/2. The two metrics above are relate
by the change of coordinates

t5
1

al
ealtcosh~als!, x5

1

al
ealtsinh~als!. ~6!

In the following, we will also use the light-cone coordinat

u5
1

2
~ t1x!, v5

1

2
~2t1x!. ~7!

In this coordinate frame the AdS2
0 solution is
4-2
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ds25
4

l2~u1v !2 dudv, f52f0@l~u1v !#21. ~8!

The black hole solution~2! can be interpreted as a therm
dynamic system and the usual thermodynamic parame
can be associated with it. The black hole mass depends
dratically on both the Hawking temperatureT and the en-
tropy Sbh @12#:

mbh5
2p2f0

l
T2, Sbh54pAmbhf0

2l
. ~9!

A fundamental question concerns the statistical interpreta
of the thermodynamic quantities in Eq.~9!. In particular, one
would be able to identify the microscopic degrees of freed
whose dynamics produces the huge degeneracy whic
contained in Eq.~9!.

At the semiclassical level black holes are unstable
cause of the Hawking effect. In the two-dimensional cont
the Hawking evaporation process has a simple and nice
planation. From the coordinate transformation~6! we find
that the relation between AdS2

1 and AdS2
0 is formally equiva-

lent to the relation between Rindler and Minkowski spa
times. By quantizing a scalar field in the fixed backgroun
defined by AdS2

1 and AdS2
0 one finds that the positive fre

quency modes of the quantum field with respect to Killi
vector ] t are not positive frequency modes with respect
Killing vector ]t . Hence, the vacuum state which is seen
an observer in the (t,s) reference frame appears filled wit
thermal radiation to an observer in the (t,x) frame. The flux
corresponds to a Planck spectrum with temperature given
Eq. ~9! @12#. The relation between mass and temperature
Eq. ~9! is nothing else but the two-dimensional Stefa
Boltzmann law. The previous features strongly suggest
existence of an underlying two-dimensional field theo
whose microscopic dynamics is responsible for the therm
dynamic behavior of the black hole.

III. THE SIGMA MODEL APPROACH TO TWO-
DIMENSIONAL DILATON GRAVITY

The dilaton gravity action~1! can be cast in a nonlinea
conformal sigma model form@10#. The two-dimensional
Ricci scalarR(2)(g) can be locally written as

R(2)~g!52 ¹mAm, Am5
¹m¹nx¹nx2¹n¹nx¹mx

¹rx¹rx
,

~10!

wherex is an auxiliary scalar function. Equation~10! can be
checked using conformal coordinates and general covaria
arguments. Differentiating Eq.~3!, settingx5f in Eq. ~10!,
and integrating per parts, the action~1! can be written as a
functional ofM andf:

A5
1

2ES
d2x A2g

¹mf¹mM

N~f!2M
. ~11!
08402
rs
a-

n

is

-
t
x-

-
s

y

by
in
-
e

-

ce

Clearly, the action~11! describes a two-dimensional nonlin
ear sigma model. In the canonical form, using the me
parametrization

gmn5rS a22b2 b

b 21D , ~12!

the super-Hamiltonian and supermomentum are

H052@N~f!2M #pfpM1
1

2@N~f!2M #
f8M 8, ~13!

H152f8pf2M 8pM . ~14!

The canonical action must be complemented by a bound
term at the spatial boundaries to make the action finite
differentiable. According to Ref.@18# the boundary term co-
incides with the conserved charge, i.e., the mass, of the b
hole @see below, Eq. ~32!#. The canonical chart
(f,pf ,M ,pM) is related to the canonical cha
(f,Pf ,r,Pr) by the map

M5N~f!2
4r2Pr

22f82

r
,

pM5
r2Pr

4r2Pr
22f82

, ~15!

pf5Pf2
r2Pr

4r2Pr
22f82 FV~f!12PrS f8

rPr
D 8G .

Equation~15! proves the equivalence of Eq.~1! and Eq.~11!
at the canonical level.

Let us consider the JT model. In this case it is conveni
to define the ‘‘coupling constant’’ field

c52
1

2l2f
. ~16!

In terms ofM andc the JT action is

A5E d2x A2g ]mM]mc
1

124l2c2 M
. ~17!

The boundary of the spacetime is now located atc50. The
action ~17! can be expanded aroundc50,

A5E d2x A2g ]mM]mcF11 (
k51

1`

~2l!2kMkc2kG .

~18!

Equation~18! is both a weak-coupling expansion in terms
the coordinate-dependent gravitational coupling of the mo
and an expansion near the boundary of AdS2. This fact sug-
gests that the gravitational theory can be represented pe
batively as an expansion around the boundary. The first t
~zero order! of the expansion coincides with the action for
bosonic string living in a two-dimensional flat target spac
4-3
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time and describes the~off-shell! weak-coupled gravitationa
theory. It can be cast in the usual form~see Ref.@19# for
notations!

A05
1

2pa8
E d2z]Xm]̄Xm

5
1

2pa8
E d2z~2]X0]̄X01]X1]̄X1!

5
1

2pa8
E d2z~]X2]̄X21]X1]̄X1!, ~19!

by defining the new fields

Apa8M5
1

2
~X11 iX2!5

1

2
~X11X0!,

~20!

Apa8c5
1

2
~X12 iX2!5

1

2
~X12X0!,

whereAa8 is the string length, and

z[u5
1

2
~s11 is2!, z̄[v5

1

2
~s12 is2!. ~21!

Higher orders in the expansion~18! can be interpreted a
interaction terms for the bosonic string~19!. They describe
perturbative~off-shell! effects induced by the gravitationa
bulk on the boundary. Classically, the two-dimensional
model is a topological theory with no propagating physi
degrees of freedom. Owing to the Birkhoff theorem@10# the
physics on the gauge shell, i.e., in the fundamental stat
completely determined by the spacetime boundary where
conserved charge is defined, whereas the bulk is pure ga
In the perturbative sigma model approach the first term
the expansion~18! can be interpreted as describing both t
~off-shell! gravitational theory on the boundary and t
weak-coupling regime of the theory. Therefore, we exp
that the free bosonic string~19!—with properly fixed bound-
ary conditions—describes the semiclassical properties of
theory. Higher orders in the coupling constant perturbat
expansion~18! describe the corrections to the off-shell d
namics on the boundary and lead, in the quantum theory
gravitational corrections to the classical geometry.~See, e.g.,
Ref. @20# where quantum corrections to the ADM mass
the Schwarzschild black hole have been calculated at
second order in the curvature expansion.!

The boundary conditions to be imposed on the f
bosonic string~19! are essential in determining the physic
content of the AdS/CFT correspondence. First of all, we n
that AdS2 has a timelike boundary atx50, so the CFT~19!
must necessarily describe open strings. Since open str
propagating in a two-dimensional target spacetime do
have transverse excitations, we can impose either Diric
boundary conditions@]aXm(x50)50# or Neumann bound-
ary conditions@na]aXm(x50)50, wherena is the normal to
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the boundary#. Expanding the fields on the boundary@see
below Eq.~33!#, in the former case we have

Xm~x50!5Apa8M0~ t !5const, ~22!

whereM0(t) is the~constant! zero mode of the mass fieldM
on the boundary. Dirichlet boundary conditions break tra
lation invariance. Moreover, they hold fixed the end point
the string on the boundary and do not allow any dynami
degree of freedom on the boundary itself. Hence, Dirich
boundary conditions realize a AdS2 /CFT2 correspondence
The one-dimensional boundary can be interpreted a
D-brane ~0-brane!. Possibly, a nontrivial dynamics on th
brane can be generated by the introduction of Chan-Pa
factors~see, e.g., Ref.@19#!.

Neumann boundary conditions do not break translat
invariance. They allow for excitations on the boundary,

Xm~x50!5Apa8M0~ t !. ~23!

Since Neumann boundary conditions allow dynamical
grees of freedom on the boundary, they seem to realiz
AdS2 /CFT1 correspondence, where CFT1 is a genuine one-
dimensional CFT generated by the charges living on
boundary@3,4#.

In addition to the timelike boundary atx50, AdS2
0 has an

inner null boundary. However, the presence of the latter d
not influence the dynamics of the open string. In the conf
mal coordinate frame (t,x) the metric of AdS2

0 is given by
Eq. ~4! and the presence of the dilaton requires

2`,t,`, 0<x,`. ~24!

In this coordinate frame the inner null boundary is located
x5`. Equation~4! implies that AdS2

0 is conformal to the
Minkowski spacetime. Hence, because of conformal inva
ance open strings on AdS2

0 are equivalent to open strings o
the region of the (t,x) Minkowski spacetime defined by Eq
~24!. In the next section we will discuss how the symmetr
of the bosonic string~19! reflect in the asymptotic symme
tries of the two-dimensional gravitational theory~1!.

IV. SYMMETRIES OF TWO-DIMENSIONAL GRAVITY
AND SYMMETRIES OF THE STRING

AdS2 is a maximally symmetric space, so the JT theo
admits three Killing vectors that generate theSO(1,2)
;SL(2,R) group of isometries. In the JT theory the presen
of the dilaton actually breaks theSL(2,R) symmetry @5#.
However, this is irrelevant for the present discussion. Inde
in the weak-coupling regimec→0 one naturally expects th
SL(2,R) symmetry to be enlarged to the full asymptot
symmetry group of AdS2. Since Eq.~18! is a near-boundary
expansion, the only relevant symmetries are the symme
that leave the AdS2 metric asymptotically invariant.

The symmetries of the bosonic string~19! are related to
the asymptotic symmetry group of AdS2. The latter has been
studied in detail in Refs.@3,4#. The asymptotic symmetries o
AdS2 can be found by imposing suitable boundary con
tions for the metric atr→`. These boundary conditions ex
4-4
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press the intuitive notion of ‘‘asymptotically anti–de Sitter
spacetime and allow the charges associated with the sym
try to be properly defined.

In the Schwarzschild gauge the boundary conditions to
imposed on the metricds25gmndxmdxn and on the scala
field f are @3,4#

gtt52l2r 21g tt1OS 1

r 2D ,

gtr5
g tr

l3r 3
1OS 1

r 5D , ~25!

grr 5
1

l2r 2 1
g rr

l4r 4
1OS 1

r 6D ,

and

f5f0Flr 1rlr 1
gff

lr
1OS 1

r 2D G , ~26!

respectively. In the previous equations theg ’s and r are
arbitrary functions oft and can be thought as characterizi
the deformations of the boundary of AdS2 and of the dilaton
field. In the conformal gauge the boundary of AdS2 is lo-
cated atu52v and the above conditions~at the orderk)
read

guu5U0~u2v !1•••1Uk~u2v !~u1v !k1O@~u1v !k11#,

guv5
2

l2~u1v !2 1Y0~u2v !1•••1Yk~u2v !~u1v !k

1O@~u1v !k11#,

~27!

gvv5V0~u2v !1 . . . 1Vk~u2v !~u1v !k1O@~u1v !k11#,

f52f0F v21

l~u1v !
1v1l~u1v !1•••1vkl

k~u1v !k

1O@~u1v !k11#G ,
where the coefficientsQk5(Uk ,Vk ,Yk ,vk) are arbitrary
functions ofu2v. By definition the leading terms in Eqs
~27! are invariant under the transformations generated by
asymptotic symmetry group. The functionsQk change ac-
cording to a representation of the asymptotic symme
group. Solving the Killing equations for the metric~27!, we
find that the asymptotic symmetry group is generated by
Killing vectors

xAdS5xu~u,v !]u1xv~u,v !]v , ~28!

where
08402
e-

e

e
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xu5
1

2 Fe1e8~u1v !1
1

2
e9~u1v !2G1au,

xv5
1

2 F2e1e8~u1v !2
1

2
e9~u1v !2G1av. ~29!

Here,e is an arbitrary function ofu2v, 8 denotes differen-
tiation with respect tou2v, andau,v5(k53

1` ak
u,v(u2v)(u

1v)k. The functionsau,v represent ‘‘pure gauge’’ diffeo-
morphisms of the two-dimensional gravitational theory th
fall off rapidly on the boundary. Expanding the functio
e(u2v) in power series, the Killing vectors~28! are recog-
nized to define a conformal group which is generated by
Virasoro algebra

@Lm
AdS,Ln

AdS#5~m2n!Lm1n
AdS . ~30!

The boundary fieldsQk span a representation of the confo
mal group. Their transformation law is

deQk5eQk81~h1k!e8Qk1•••, ~31!

where ellipses denote terms that depend on higher der
tives ofe and on pure gauge diffeomorphisms, andh52 for
Uk ,Vk ,Yk , and h50 for vk , respectively. Note that the
pure gauge transformations affect the boundary fields
leave invariant the charge associated with the falloff con
tions

J~e!5elf0F2v11
1

8
~U01V012Y0!G5e

M0~ t !

2lf0
,

~32!

whereJ(e) has been calculated forv2151. Both the mass
functional M and the coupling constant fieldc can be ex-
panded in power series around the boundary

M5 (
k50

1`

Mk~u2v !~u1v !k, c5 (
k51

1`

ck~u2v !~u1v !k.

~33!

Using Eqs.~3! and~16! both Mk andck can be expressed in
terms of the boundary fields. They transform according
Eq. ~31! with h50. The two-dimensional dilaton gravity ac
tion or, alternatively, the sigma model action can be e
panded around the boundary as well. Expanding in po
series the Lagrangian densityL5(k50

1` Lk(u2v)(u1v)k,
we find thatLk transform according to Eq.~31! with h52,
as is expected for a two-dimensional conformal field theo

The sigma model action~11! is classically invariant unde
the conformal transformations of the two-dimensional wo
sheet. This invariance is not manifest in its two-dimensio
gravitational counterpart~1!. Conformal invariance of two-
dimensional dilaton gravity is more subtle and can be und
stood in terms of the Weyl-rescaling invariance of the tar
space coordinatesc andM @21#. At the leading order in the
c→0 expansion the conformal symmetry of the sigm
4-5
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model is the usual two-dimensional conformal symme
group of the free bosonic string~19! which is generated by
the Killing vectors

xCFT5x~z! ]1x̃~ z̄! ]̄. ~34!

The transformation law of a generic CFT2 field X(z,z̄) of
weights (h,h̃) is

dx,x̃X5~x]1h]x!X1~ x̃ ]̄1h̃]̄ x̃ !X. ~35!

Expandingx(z) and x̃( z̄) as

x~z!5 (
m52`

1`

gmz2m11, x̃~ z̄!5 (
m52`

1`

g̃mz̄2m11,

~36!

we have

xCFT5 (
m52`

1`

~gmLm
CFT1g̃mL̃m

CFT!, ~37!

where

Lm
CFT5z2m11], L̃m

CFT5 z̄2m11]̄, ~38!

each satisfy the Virasoro algebra~30!. Finally, the stress-
energy tensor is

Tzz52
1

2pa8
]Xm]Xm

522]M]C5
1

2p (
m52`

1`

Lm
CFTz222m. ~39!

In the next section we will see that the asymptotic sy
metry group of AdS2 ~with fixed pure gauge diffeomor
phisms! coincides with the conformal symmetry group of th
free bosonic string with properly chosen boundary con
tions.

V. DUALITY OF TWO-DIMENSIONAL GRAVITY
ON ADS2 AND OPEN STRINGS

The duality between gravity on AdS2 and the open string
can be realized by putting in a one-to-one corresponde
the symmetries of the string and the asymptotic symmet
of AdS2. The physical content of the AdS2 /CFT correspon-
dence varies according to the boundary conditions that
chosen for the bosonic string~19!. We will consider first
Dirichlet and then Neumann boundary conditions.

A. Dirichlet boundary conditions

Equations~29! suggest that theu andv components of the
Killing vectors of the asymptotic symmetry groupxu andxv

are not independent. Let us neglect initially the pure ga
08402
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diffeomorphisms in Eqs.~29! and define two auxiliary func-
tions x(u) and x̃(v) that satisfy the relation~notations will
be clear soon!

x@~ t1x!/2#ux5052x̃@~2t1x!/2#ux505
1

2
e~ t !. ~40!

At the second order in the expansion theu andv components
of the Killing vectors~28! can be recognized to be the fir
three terms of the expansion aroundx50 of the functions
x(u) and x̃(v)

x5
1

2 (
k50

1`
1

k!

dke

d~u2v !k
~u1v !k,

x̃52
1

2 (
k50

1`

~21!k
1

k!

dke

d~u2v !k
~u1v !k. ~41!

Assuming that the equivalence is valid at any order and t
ing into account Eq.~21!, we find that the CFT2 Killing
vectors ~34! coincide with the AdS2 Killing vectors ~28!
where the gauge diffeomorphisms have been fixed as

ak
u5~21!k11ak

v5
1

2k!

dke

d~u2v !k
. ~42!

Hence, the asymptotic symmetry group of AdS2 coincides
with the symmetry group of the bosonic open string~19!. In
order to obtain the second one from the first one we nee
fix the gauge diffeomorphisms of the gravitational theo
This gives a nontrivial relation between the diffeomorphis
of the two-dimensional dilaton gravity theory and the diffe
morphisms of the conformal field theory.

The previous equations follow from the Dirichlet cond
tion for the functionX(u,v)[x(u)1x̃(v), i.e.,

X~u,v ![x~u!1x̃~v !50, ~43!

on the boundaryu1v50. This equation implies that the
conformal symmetry is generated by a single copy of
Virasoro algebra and the weights (h,h̃) appear in the trans
formation law~35! only in the combinationw5h1h̃.

The correspondence between the conformal group of
bosonic string and the asymptotic AdS2 group can be ob-
served directly on the AdS2 fields Qk , Mk , ck , and Lk .
Each of these fields can be interpreted as the coefficien
the expansion of the corresponding CFT2 field around the
boundary with given weightw5h1h̃ and pole of orderp.

Table I represents the AdS2 /CFT2 correspondence in
terms of fields. The AdS2 fields are interpreted as objects
the two-dimensional CFT. Using Eq.~35! together with Eqs.
~41! we recover the transformation~31! of the AdS2 fields.

The AdS2 /CFT2 correspondence allows us to determi
the Virasoro generators of the asymptotic symmetry group
AdS2 from CFT2. Let us consider the Virasoro generato
~38!. Using the (t,x) coordinates we have
4-6



e

nd

th
n-

ing
S
n-

bi-
s
e
oro
are

he
time
t a
p
be

ry
p of
tric

ns

in

w

eu-

OPEN STRINGS, 2D GRAVITY, AND AdS/CFT . . . PHYSICAL REVIEW D 63 084024
Lm
CFT52m21(

k50

1`

t2m112kxkbm22,k~] t1]x!, ~44!

where

bm22,k5S 12m

k D . ~45!

A similar expression holds forL̃m
CFT. We have seen that th

asymptotic symmetry group of AdS2 can be obtained from
the conformal group of the string by imposing Eq.~43!. Ap-
plying the condition ~43! to Eq. ~37! we find gm5

(21)mg̃m . From Eq.~44! the Killing vectors for the Dirich-
let boundary conditions read

xCFT5 (
m52`

1`

gmLm8 , ~46!

where

Lm8 52m(
k50

1`

@bm22,2kt
2m1122kx2k] t

1bm22,2k11t2m22kx2k11]x#. ~47!

The Killing vectors~46! coincide with the Killing vectors of
the asymptotic symmetry group of AdS2 ~28! with fixed pure
gauge diffeomorphisms@see Eq.~42!#. Indeed, let us con-
sider Eq.~29! with fixed gauge diffeomorphisms and expa
e(t) in power series

e~ t !5 (
m52`

1`

2memt2m11. ~48!

The Killing vectors~28! are cast in the form

xAdS5 (
m52`

1`

emLm
AdS, ~49!

where

TABLE I. CFT characterization AdS2 fields.

AdS2 Field h h̃ w p

Uk 2 0 2 0
Vk 0 2 2 0
Yk 1 1 2 22
vk 0 0 0 21
Mk 0 0 0 0
ck 0 0 0 1
Lk 1 1 2 0
08402
Lm
AdS52mH F t2m111

1

2
~2m11!~2m!t2m21x21•••G

3] t1@~2m11!t2mx1•••#]xJ 5Lm8 . ~50!

Settingem5gm the Killing vectors of the AdS2 asymptotic
symmetry group and the Killing vectors of the string wi
Dirichlet boundary conditions coincide. Therefore, they ge
erate both the full symmetry group of the bosonic open str
and the gravitational asymptotic symmetry group of Ad2
with fixed pure gauge diffeomorphisms. The Virasoro ge
erators of the AdS2 asymptotic symmetry group are

Lm
AdS52m21$@~ t1x!2m111~ t2x!2m11#] t

1@~ t1x!2m112~ t2x!2m11#]x%. ~51!

The Virasoro generators~51! are simply obtained from the
Virasoro generators of the string by taking the linear com
nation Lm

AdS5Lm
CFT1(21)mL̃m

CFT and changing coordinate
to (t,x). This relation implies that the symmetries of th
open string are generated by a single copy of the Viras
algebra. On the boundary the Virasoro generators
Lm

AdSux5052mt2m11] t .
It should be noted that both the Killing vectors and t

Virasoro generators are now defined outside the space
boundary. By fixing the gauge diffeomorphisms we selec
subgroup of the full two-dimensional diffeomorphism grou
of the gravitational theory. This subgroup is recognized to
the conformal group of the string with Dirichlet bounda
conditions. The latter can also be defined as a subgrou
the diffeomorphisms that leave the two-dimensional me
asymptotically invariant (AdS2 /CFT2 duality!.

Finally, let us conclude this section with a few equatio
that will be useful in the following. The subalgebraSL(2,R)
of the Virasoro algebra is generated by

L0
AdS5t] t1x]x , L1

AdS52] t , L21
AdS5

1

2
~ t21x2!] t1xt]x .

~52!

The Virasoro generatorL0
AdS does not generate translations

t but dilatations. Changing coordinates to (t,s) @see Eq.~6!#
the Virasoro generators become

Lm
AdS5~2al!me2malt

1

al
@cosh~mals!]t

2sinh~mals!]s#. ~53!

In this reference frameL0
AdS generates translations in the ne

time coordinatet.

B. Neumann boundary conditions

Let us now discuss the AdS2 /CFT duality when Neu-
mann boundary conditions are enforced. Imposing the N
mann boundary conditions on the functionX(u,v) @see Eq.
~43!# we have, on the boundaryu1v50,
4-7
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]ux~u!1]vx̃~v !50. ~54!

Equation~54! is solved by the condition

x@~ t1x!/2#ux505x̃@~2t1x!/2#ux505
1

2
e~ t !. ~55!

Using Eq. ~55! we try and put in a one-to-one correspo
dence the symmetry group of the open string with Neum
boundary conditions with the asymptotic symmetry group
AdS2. Imposing the condition~55! on the CFT Killing vec-
tors ~37! we findgm52(21)mg̃m . The Virasoro generator
of the asymptotic AdS2 group with Neumann boundary con
ditions are

Lm
AdS52m21$@~ t1x!2m112~ t2x!2m11#] t

1@~ t1x!2m111~ t2x!2m11#]x%. ~56!

From the previous equation it follows that the Virasoro ge
erators vanish on the boundary. Hence, the asymptotic s
metry group of AdS2 cannot be put in correspondence wi
the conformal symmetry group of the open string when N
mann boundary conditions are enforced. We will see in
next section that this is due to the impossibility of realizi
the symmetry in terms of local string oscillators. Neuma
boundary conditions lead to a topological theory without
cal degrees of freedom and the AdS2 asymptotic symmetry
group can be realized uniquely by the charges@3,4#.

VI. MODE EXPANSION AND HOLOGRAPHY

The AdS2 /CFT correspondence can be realized using
cal oscillator degrees of freedom as well. Let us expand
string field in normal modes

Xm5xm2 ipmloguzu21 i S a8

2 D 1/2

(
m52`

1`
1

m
~am

mz2m1ãm
m z̄2m!.

~57!

Substituting the previous expansion in Eqs.~20! and compar-
ing the result to the expansion of the fieldsM andc

M5 (
k50

1`

(
m52`

1`

Mk,mxktm, c5 (
k51

1`

(
m52`

1`

ck,mxktm,

~58!

we find ~we assumet.0 for simplicity!

am
m52 iAp221/22m@mM0,2m2M1,212m6c1,212m#,

ãm
m52 iAp221/22m~21!m@mM0,2m1M1,212m

7c1,212m#, ~59!

where the6 signs refer to the 0 and 1 components ofam
m ,

respectively. Equation~59! puts the modes of the string in
one-to-one correspondence with the ‘‘gravitational’’ mod
of the fieldsM andc.
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Let us now enforce Dirichlet and Neumann boundary co
ditions on the string field. Neumann boundary conditions i
ply Mk,m50, ck,m50 for k>1, so Eq.~59! becomes

am
m5~21!mãm

m52 iAp221/22m~mM0,2m!. ~60!

The generators of the Virasoro algebra of CFT2 vanish
identically,

Lm
CFT5

1

2 (
n52`

1`

am2n
m amn50. ~61!

Therefore, the AdS2 /CFT duality cannot be realized in term
of local oscillators. This result has a natural interpretati
The gravitational theory with Neumann boundary conditio
is a topological theory with no local degrees of freedom. T
two-dimensional CFT action depends only onM1,2m and
Mk,m , ck,m with k.1, so vanishes at any order of the e
pansion.

The Dirichlet boundary conditions imply

pm50, am
m5~21!m11ãm

m→M0,m50 for mÞ0
~62!

and Eq.~59! becomes

am
m5 iAp221/22m@M1,212m7c1,212m#. ~63!

The Virasoro generators of CFT2 are

Lm
CFT5

1

2 (
n52`

1`

am2n
m amn

52p22m (
n52`

1`

M1,212nc1,212m1n . ~64!

The previous results have two important consequen
First, we see that the mass fieldM is constant on the bound
ary. This is due to the breaking of translational invariance
the boundary that follows from the Dirichlet conditions@see
also Eq.~22!#. M0,0 is essentially the conserved charge a
does not appear in the definition of the string modes. S
ondly, with a bit of algebra it can be proved that the gra
tational modesMk,m and ck,m satisfy the two recurrency
relations

Mk12,m225
m~m21!

~k12!~k11!
Mk,m ,

ck12,m225
m~m21!

~k12!~k11!
ck,m . ~65!

Substituting Eq.~62! in the recurrency relations above, an
recalling that for the AdS2 geometryc0,m50, the gravita-
tional modes are
4-8
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k5even: Mk,m50, ck,m50,

k5odd: Mk,m[Mk,m~M1,m ,c1,m!,

ck,m[ck,m~M1,m ,c1,m!. ~66!

The gravitational modesMk,m and ck,m are completely de-
termined byM1,m andc1,m which are, in turn, determined b
the string modes through Eq.~63!. Therefore, the modes o
the bosonic string determine completely the sigma mo
i.e., the full gravitational theory. The latter can be expres
as a function of the gravitational modesMk,m and ck,m by
the perturbative expansion~18!. Then, owing to Eq.~63! and
Eq. ~66!, the perturbative expansion~18! can be written as a
function of the string modes. We conclude that gravity
AdS2 is completely determined by the~interacting! Dirichlet
open string. Vice versa, the asymptotic two-dimensio
gravitational modes near the boundary, that describe bou
ary deformations, determine completely CFT2. This is a sort
of holographic principle: the physics on the spaceti
boundary determines the properties of the theory in the b
However, it should be stressed that we have here a some
unusual realization of the holographic principle. Usually,
the context of the AdS/CFT correspondence we have a gr
tational theory defined on ad-dimensional bulk which is dua
to a CFT theory living on its (d21)-dimensional boundary
In our case the picture is reversed: The CFT open string l
on the two-dimensional bulk, whereas the gravitatio
theory is completely defined by a boundary theory. We h
already pointed out that this property is related to the pe
liar nature of gravity in two spacetime dimensions, which
itself a conformal field theory.

The free bosonic string describes the off-shell dynam
of the classical black hole with massmbh ~the fundamental
state of the theory!. Higher order terms in the expansio
~18!—the interaction vertices of the string—describe the o
shell corrections to the fundamental state due to effects of
bulk. This result is a natural consequence of the topolog
nature of the theory. It holds in the quantum theory as w
where the~on-shell! fundamental state of a black hole wit
given classical massmbh is given by the eigenstate of th
mass operator, whereas the sigma model describes the~off-
shell! black hole excitations~quantum Birkhoff theorem
@10#!. We recover the result that have previously anticipat
The Dirichlet bosonic string describes the off-shell semicl
sical properties of the theory whereas the interaction term
the perturbative expansion describe higher order correct
to the off-shell dynamics that lead, in the quantum form
ism, to the gravitational corrections of the classical geo
etry.

It is worth noticing that the degrees of freedom involv
in the correspondence~63! are local, pure gauge, degrees
freedom. Both two-dimensional dilaton gravity and stri
theory with two-dimensional target spacetime are topolog
theories. So the gravitational modesM1,k ,c1,k and the string
modesak

n describe pure gauge degrees of freedom. Since
are dealing with pure gauge degrees of freedom, criticis
could be raised about the relevance of the correspond
that we are discussing. In the next section we will use
08402
l,
d

l
d-

e
k.
ow

i-

s
l
e
-

s

-
e

al
l,

:
-
in
ns
-
-

l

e
s
ce
e

correspondence to calculate the statistical entropy of t
dimensional black holes. The reader might argue that we
not counting physical states of the two-dimensional b
theory. However, this approach is consistent as long as
restrict our discussion to topological theories such as tw
dimensional dilaton gravity and three-dimensional pure gr
ity theories@22,23#. Our treatment of two-dimensional dila
ton gravity and that of Refs.@22,23# suggest the existence o
a nontrivial relation between local pure gauge degrees
freedom on the bulk and topological degrees of freedom
the boundary. In the three-dimensional case Carlip has fo
an explicit realization of this relation@22#. In our case we
have not been able to find a similar relation, yet the dua
that we have found provides a strong evidence in this dir
tion.

The discussion of this section has profound implicatio
on the statistical interpretation of the thermodynamic qu
tities in Eq.~9!. It is commonly believed that the thermody
namic relations~9! hold within some sort of semiclassica
approximation to gravity. If the free open string really d
scribes semiclassical AdS2 gravity then it should provide a
statistical description of the thermodynamic relations~9!.
This is indeed the case, as we will see in the next sectio

VII. TWO-DIMENSIONAL BLACK HOLES AS
OPEN STRINGS

The AdS2 /open string duality discussed in the previo
sections allows to interpreting the excitations of the grav
tional theory, i.e., of the black holes, in terms of the exci
tions of the string. Naively, we would be tempted to use
equations of Secs. V and VI to work out the corresponde
explicitly. For instance, we could try and use Eq.~64! to
calculate the mass of the string state which is associated
the gravitational excitations described by the mod
M1,k ,c1,k . Unfortunately, we do not know how to relat
explicitly the sigma model modes with the physical para
eters of the black hole. So most of the equations of the p
vious sections cannot be employed to describe black h
straightforwardly. However, the knowledge of the exact fo
of the correspondence is not necessary. The bare fact th
two-dimensional black hole has a dual description in ter
of a two-dimensional conformal field theory with centr
chargec is sufficient to explain the semiclassical behavior
the black hole.

The energy of the CFT excitation is given by the eige
valuemCFT of the Virasoro operatorL0

CFT

mbh5lmCFT. ~67!

~With our conventionsmCFT is dimensionless.! The energy-
temperature and entropy-mass relations of a two-dimensi
CFT are@23,24#,

mCFT5
p

12
a8cT2, SCFT52pAc mCFT

6
, ~68!

respectively. The previous equations reproduce the fu
tional behavior of the thermodynamic parameters of
black hole, Eq.~9!. In order to show that the thermodynam
4-9
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behavior of the two-dimensional black hole has a direct
terpretation in terms of the microscopic dynamics of the tw
dimensional CFT, we must show that Eqs.~68! match Eqs.
~9! exactly. This can be done by expressing the cen
chargec associated with the central extension of the Viras
algebra generated byLm

CFT in terms of the physical param
eters of the two-dimensional black hole.

The central charge can be determined using its interpr
tion as a Casimir energy~see, for instance, Ref.@19#!. The
transformation law of the stress-energy tensor under
change of coordinates~6! is

Tww
(2)5~]wz!2Tzz

(2)2
c

12
$w,z%~]wz!2, ~69!

wherew5t1s and$w,z% is the Schwarzian derivative. Th
vacuum energy is shifted byl 0→ l 02a2c/24, wherel 0 is the
eigenvalue ofL0

CFT which is associated to the vacuum. Th
shift corresponds to a Casimir energyE52a2cl/24.

The coordinate transformation~6! maps the AdS2
0 ground

state ~4! into the AdS2
1 black hole ~5! with mass mbh

5a2f0l/2. Because of the duality relation between t
gravitational theory and the Dirichlet string we can interp
the previous map as the gravitational theory counterpar
the shift of L0

CFT in CFT2 and equate the Casimir energyE
with mbh . Actually, the equation picks up a minus sign

E52mbh , ~70!

because the coordinate transformation~6! maps observers
An observer in the AdS2

1 vacuum sees the AdS2
0 vacuum

filled with thermal radiation with negative flux@12#. Using
Eq. ~70! one easily finds

c512f0 . ~71!

Inserting Eq.~71! into Eqs.~68!, expressing the string lengt
in terms ofl, a852p/l2, and eventually using Eq.~67!,
Eqs.~68! reduce to Eqs.~9!.

The statistical interpretation of the two-dimensional Ad2
black hole entropy by means of the two-dimensional conf
mal theory confirms the AdS2 /CFT2 duality while stressing
the peculiarity of the two-dimensional case in the AdS/C
family. In the case under consideration the duality ma
theories that live in spacetimes of identical dimensional
So the relation is not holographic in the usual sense, bec
it does not imply the huge reduction of the number of d
grees of freedom which is typical of the holographic pr
ciple.

This result is also understood through a different, alb
related, argument. The holographic principle puts an up
bound to the information that can be encoded in a space
region. This upper bound is given by the Bekenste
Hawking entropy

Sbh5
A

4G
, ~72!
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whereA is the area of the boundary surrounding the reg
~the area of the black hole horizon! and G is the Newton
constant. In our two-dimensional case the entropy can
written

Sbh52pfh52pr hlf0 , ~73!

wherefh and r h are the dilaton and the radius evaluated
the horizon, respectively. Sincef0

21 plays the role of the
two-dimensional Newton constant, the previous relation c
be rewritten asSbh52pAl/G2, whereA5r h . This relation
is interpreted as an information bound rather than as a h
graphic bound. Indeed,A is not the area of the boundary—i
our case the boundary is a point—but the area of the t
dimensional bulk region 0,r<r h . Note that the previous
arguments are only valid for the Dirichlet open string. Wh
Neumann boundary conditions are imposed the realizatio
the AdS/CFT duality is more problematic. In this case a co
sistent AdS/CFT duality can be realized exclusively by
one-dimensional CFT on the boundary which supports
conventional notion of holography. On the other hand
two-dimensional Stefan-Boltzmann law~9! seems to rule out
a realization of the conformal symmetry on the boundary
means of a quantum mechanical system.

The Hawking evaporation process of the two-dimensio
AdS2 black hole@12# has a natural interpretation in the co
text of the AdS2 /CFT2 correspondence as well. In Sec. V w
pointed out that in the (t,x) coordinate frameL0

AdS generates
dilatations, whereas in the coordinate frame (t,s) generates
time translations. The coordinate transformation~6! maps the
AdS2

0 ground state~4! into the AdS2
1 black hole~5!. Since

positive frequency modes of a quantum field with respec
Killing vector ] t are not positive frequency modes with r
spect to Killing vector]t , the AdS2

1 vacuum state appear
filled with thermal radiation to an observer in the AdS2

0

vacuum. The particle spectrum can be obtained calcula
the Bogoliubov coefficients between the two vacua@12#. One
finds that an observer in the AdS2

0 vacuum detects a therma
flux of particles with Planck spectrum and temperature~9!.
The value of the total Hawking flux has been calculated
Ref. @12#. Therefore, the Hawking evaporation effe
emerges in the CFT context by requiring thatL0

AdS is the
generator of time translations.

Up to now we have restricted our considerations to the
model. Our results can be extended to the general dila
gravity model~1! provided that its solutions behave asym
totically as in Eq.~25! and Eq.~26!. A sufficient condition is
that the potentialV(f) in Eq. ~1! behaves forf→` as @4#

V~f!52f10~f22!. ~74!

One can easily check that in this case the leading term in
weak-coupling expansion~17! describes a free bosoni
string. Moreover, Eqs.~9! describe the thermodynamic be
havior of the corresponding black solutions at the lead
order in the largembh expansion@4#. Hence, the results ob
tained in Sec. VII for the JT model hold for the gener
model ~74! at the leading order in the largembh expansion.
4-10
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Let us conclude this section with a remark concerning
relevance of our results for four-dimensional black hol
The two-dimensional dilaton gravity model~1! represents
not only a toy model for studying gravitational physics in
simplified context, but describes asymptotically flat fou
dimensional black holes in the near-horizon, near-extre
approximation@25# as well. It can be showed that a class
black hole solutions of the effective string theory who
near-horizon behavior is AdS23S2, and f varies linearly,
exist. Our derivation of the statistical entropy appli
straightforwardly to these solutions.

VIII. DISCUSSION

In the previous sections we have been able to work ou
detail the correspondence between two-dimensional dila
gravity on AdS2 and open strings. Actually, the exact for
of the correspondence is perturbative and has only been s
ied at the leading order in the weak-coupling expansionc
→0. We have seen that in this regime two-dimensional
laton gravity has two degeneration limits that are descri
by open strings with Dirichlet and Neumann boundary co
ditions, respectively. Since the description of this degener
is based on boundary conditions, it is, however, not co
pletely satisfactory. One would like to understand it in ter
of different regions in the parameter space of the theory

The previous formulation of the AdS/CFT duality is ve
useful not only because it makes direct contact with
original Maldacena conjecture@1#, but also because it ca
shed some light on several puzzling issues of the AdS/C
correspondence. The main point of this formulation is
observation that the weak-coupling limitc→0 can be ob-
tained in two different ways. Sincef5f0lr , the weak-
coupling limit can be reached by lettingf0→` at r
5l21ff0

215 constant. So we have two weak-coupling r
gimes:~i! r @1/l5Aa8/2p and ~ii ! r;1/l5Aa8/2p. Note
that these weak-coupling limits require that the wea
coupling expansions of the previous sections are written
terms the variablesx/f0 and (u1v)/f0, respectively. Since
f0 is equal to 1/12 of the central charge of the CFT, it cou
the degrees of freedom and is the two-dimensional analo
of N in the Maldacena conjecture. The limit~i! corresponds
to a one-dimensional CFT on the boundary and describes
excitations of the endpoints of a Neumann open string. T
limit ~ii ! describes a two-dimensional CFT in the bulk a
describes the excitations of a Dirichlet open string.

The duality discussed in our paper has been obtaine
the zeroth order in the perturbative expansion~18!. Let us
discuss qualitatively how the picture is affected by the pr
ence of higher order terms in Eq.~18!. Potential terms in the
perturbative expansion of the sigma model do not des
~classical! conformal invariance. Now the model describ
open strings propagating in a curved target spacetime.
AdS2 boundary can be regarded as the~asymptotic! vacuum
state of the theory and the string field is expanded in nor
modes around this vacuum. Imposing Dirichlet bound
conditions we find the correspondence between the gra
tional modes and the string modes Eq.~63!. The theory can
08402
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then be expressed at any order as a function of the first o
gravitational modesM1,m , c1,m , or, alternatively, as a func
tion of the string modesam

m . The potential term at a given
order gives the interaction term for the modes. Obvious
dealing with an interacting theory, the relation between
stress-energy tensor and the Virasoro generators~39! is not
valid. Though the first order gravitational modes defi
uniquely the stress-energy tensor, the relation of the la
with the string modes is more complicated than Eq.~39!.
Consequently, we expect the central charge to be diffe
from the central charge of the free theoryc512f0, and the
thermodynamic relations~9! to be altered. This is no sur
prise. Higher order~off-shell! corrections to the free theor
on the boundary induce~quantum! corrections to the black
hole geometry that affect the derivation of the thermod
namic relations~9!. Calculating at a given perturbative orde
the black hole geometry and the central charge one co
find out how the statistical derivation of the entropy is a
fected by the presence of the interaction terms.

The existence of two degeneration limits of the wea
coupled dilaton gravity theory clarifies some controvers
issues of the two-dimensional AdS/CFT corresponden
The two-dimensional CFT with Dirichlet boundary cond
tions gives a consistent explanation of the features of
dilaton gravity theory. We might conclude that the micr
scopic dynamics of two-dimensional black holes is fully ca
tured by a two-dimensional CFT. This conclusion is n
completely satisfactory, however, because a one-dimensi
CFT living on the boundary of AdS2 emerges in our picture
as well. The role of the AdS2 /CFT1 correspondence, and it
relation to the AdS2 /CFT2 duality, are not yet fully under-
stood and deserve further investigations. In this respect,
results of this paper seem to give contradictory indicatio
Although a CFT1 fits naturally in our scheme, it is indee
very difficult to understand how it could explain the energ
temperature relation~9!.

It has been proposed@7# that conformal mechanics, pos
sibly in the form of largeN Calogero models, describes th
ground state of the two-dimensional black holes arising
near-horizon geometry of the four-dimensional Reissn
Nordström black hole, which is characterized by a consta
dilaton. If we could extend this proposal to our case, which
characterized by a nonconstant dilaton, the conformal m
chanics would describe the ground state, whereas the
dimensional CFT would describe the black hole excitatio
@9,26,27#. However, the existence of a mass gap that se
rates the ground state from the continuous part of
spectrum—typical of the Reissner-Nordstro¨m-like black
holes but absent in the JT case—seems a crucial mis
ingredient to make this proposal feasible.
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