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Convergence to a self-similar solution in general relativistic gravitational collapse

Tomohiro Harada* and Hideki Maeda†

Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan
~Received 14 November 2000; published 27 March 2001!

We study the spherical collapse of a perfect fluid with an equation of stateP5kr by full general relativistic
numerical simulations. For 0,k&0.036, it has been known that there exists a general relativistic counterpart
of the Larson-Penston self-similar Newtonian solution. The numerical simulations strongly suggest that, in the
neighborhood of the center, generic collapse converges to this solution in an approach to a singularity and that
self-similar solutions other than this solution, including a ‘‘critical solution’’ in the black hole critical behavior,
are relevant only when the parameters which parametrize initial data are fine-tuned. This result is supported by
a mode analysis on the pertinent self-similar solutions. Since a naked singularity forms in the general relativ-
istic Larson-Penston solution for 0,k&0.0105, this will be the most serious known counterexample against
cosmic censorship. It also provides strong evidence for the self-similarity hypothesis in general relativistic
gravitational collapse. The direct consequence is that critical phenomena will be observed in the collapse of
isothermal gas in Newton gravity, and the critical exponentg will be given by g'0.11, though the order
parameter cannot be the black hole mass.

DOI: 10.1103/PhysRevD.63.084022 PACS number~s!: 04.20.Dw, 04.25.Dm, 04.40.Nr
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I. INTRODUCTION

There is no characteristic scale in general relativity
well as in Newton gravity. A set of field equations is inva
ant by scale transformations if we assume appropriate m
fields. It implies the existence of scale-invariant solutions
the field equations. Such solutions are called self-similar
lutions, which are defined by the existence of a homoth
Killing vector field. Although the self-similar solutions ar
only special solutions of Einstein equations, it often has b
supposed that these solutions play an important role in s
ations where gravity is an essential ingredient in a sph
cally symmetric system~for example, Carr@1#!. Such an as-
sumption can be called theself-similarity hypothesis.

A spherically symmetric self-similar system of a perfe
fluid has been widely researched. Self-similar solutions
Newton gravity have been researched in an effort to ob
simple and realistic solutions of gravitational collapse@2–5#.
In particular, the Larson-Penston solution, which is one
the self-similar solutions, is believed to describe the cen
part of generic spherical collapse of isothermal gas. Rec
numerical simulations and results of mode analyses stro
support this proposition@6–9#. In general relativity, a spheri
cally symmetric self-similar system was discussed in vari
situations, such as cosmological voids, gravitational collap
primordial black holes@10–12#, and so on. The detaile
structure of self-similar collapse solutions were analyz
@13#. The discovery of the black hole critical behavior sh
light on the importance of a self-similar solution as a critic
solution @14,15#. Several very recent works have been do
in complete classification of self-similar solutions@16–20#.

In the context of the black hole critical behavior, the se
similar critical solution is not an attractor. A renormalizatio
group approach showed that the critical solution has only
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repulsive mode@21,22#. The critical exponent which appear
in the scaling law of the formed black hole mass is equa
the inverse of the eigenvalue of the repulsive mode fo
perfect fluid case.

In the context of cosmic censorship@23,24#, a spherical
system of a pressureless fluid~dust! has been extensively
examined since it can be solved exactly. It has been sh
that a naked singularity forms in generic spherical collap
of dust from an analytic initial density profile@25,26#. It is
noted that this solution is not self-similar at all. In the pre
ence of pressure, self-similar solutions were investigated
Ori and Piran@13,27,28#. For an adiabatic equation of sta
P5kr (0,k&0.4), they found a discrete set of self-simil
solutions which are analytic both at the center and at
sonic point. They discovered the general relativistic coun
part of the Larson-Penston solution for 0,k&0.036. They
observed that a naked singularity forms in this solution
0,k&0.0105. They also observed that there exist anal
self-similar solutions with naked singularity for everyk.
Harada@29# showed the generic occurrence of naked sin
larity in spherical collapse of a perfect fluid for 0,k&0.01
by numerical simulations using the code based on
Hernandez-Misner formulation without the ansatz of se
similarity.

The aim of this paper is to examine the validity of th
self-similarity hypothesis for a spherical system of a perf
fluid and to understand the relation of the self-similarity h
pothesis, critical behavior and cosmic censorship. In this
per, we adopt the geometrized unit.

II. BASIC EQUATIONS

A. Einstein equation

We adopt the comoving coordinates. The line element
spherically symmetric spacetime is given by

ds252es(t,r )dt21ev(t,r )dr21R2~ t,r !~du21sin2udf2!.
~2.1!
©2001 The American Physical Society22-1
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It is noted that the comoving coordinates may be able
cover even inside of the apparent horizon. We conside
perfect fluid

Tmn5~r1P!umun1Pgmn. ~2.2!

Then the Einstein equations and the equations of motion
the matter are reduced to the following simple form:

]m

]r
54pR2r

]R

]r
, ~2.3!

]m

]t
524pR2P

]R

]t
, ~2.4!

]s

]r
52

2

r1P

]P

]r
, ~2.5!

]v

]t
52

2

r1P

]r

]t
2

4

R

]R

]t
, ~2.6!

m5
R

2 F11e2sS ]R

]t D 2

2e2vS ]R

]r D 2G , ~2.7!

wherem(t,r ) is called the Misner-Sharp mass. We assu
the following equation of state:

P5kr, ~2.8!

where we assume that 0,k,1. For a barotropic equation o
state, the existence of self-similar solution demands
above form. Moreover, this equation of state will be valid f
isothermal gas in Newton limit and for relativistically high
density polytropes@13#. We define the following dimension
less functions@12#:

h[8pr 2r, ~2.9!

S[
R

r
, ~2.10!

M[
2m

r
. ~2.11!

We also define the following zooming coordinates:

t[2 ln~2t !, ~2.12!

z[
r

2t
. ~2.13!

It is found that Eqs.~2.5! and ~2.6! can be integrated as

es5as~ t !z
4k

11kh2
2k

11k, ~2.14!

ev5av~r !h2
2

11kS24, ~2.15!

whereas(t) andav(r ) are arbitrary functions. This integra
bility is the advantage of the comoving coordinates. Th
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arbitrary functions correspond to the freedom of rescaling
time and radial coordinates ast̃ 5 t̃ (t) and r̃ 5 r̃ (t). Hereaf-
ter, we restrict this gauge freedom by choosingas5const
andav51.

Being transformed into the zooming coordinates, the fi
equations are reduced to

M1M 85hS2~S1S8!, ~2.16!

Ṁ1M 852khS2~Ṡ1S8!, ~2.17!

M

S
511as

21~hz22!2k/~11k!z2~Ṡ1S8!2

2h
2

11kS4~S1S8!2, ~2.18!

where the derivatives are abbreviated as

˙[
]

]t
, ~2.19!

8[
]

] ln z
. ~2.20!

For later convenience, we define the quantityy which is one
third of the ratio of the ‘‘average density’’ of the regio
interior to r to the local density atr, defined as

y[
M

hS3
. ~2.21!

If we consider the regular center, then it is found from E
~2.3! that

y5
1

3
~2.22!

at the regular centerz510. We can define two velocity
functions Vz and VR . The Vz is the velocity of thez
5const line relative to the fluid element, which is written

Vz52ze~v2s!/2, ~2.23!

while VR is the velocity of theR5const line relative to the
fluid element, which is written as

VR[2e~v2s!/2
S ]R

]t D
S ]R

]r D 5Vz

Ṡ1S8

S1S8
. ~2.24!

B. Self-similar solutions

For self-similar solutions, we assume that all dimensio
less quantities depend only onz: i.e.,

h5h~z!, ~2.25!

S5S~z!, ~2.26!
2-2
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CONVERGENCE TO A SELF-SIMILAR SOLUTION IN . . . PHYSICAL REVIEW D63 084022
M5M ~z!, ~2.27!

s5s~z!, ~2.28!

v5v~z!. ~2.29!

The field equations are reduced to the following form:

~ ln M !85
k

11k
~y2121!, ~2.30!

~ ln S!852
1

11k
~12y!, ~2.31!

~12y!2Vz
22~k1y!21~11k!2h2 2/~11k!S26S 12

M

S D50,

~2.32!

whereVz andVR are written as

Vz[2as
21/2z~12k!/~11k!h2 ~12k!/~11k!S22 ~2.33!

and

VR52Vz

12y

k1y
, ~2.34!

respectively. It is noted that, although the apparent form
these equations does not seem to be an autonomous sy
the original system before we have performed explicit in
grations is, of course, an autonomous system. We can
that the fluid velocity, with respect toR5const, vanishes
only if Vz50 or y51. The above set of equations togeth
with appropriate boundary conditions is enough to determ
the unknown functionsM (z), S(z) and h(z). However, in
addition to the above equations, the following depend
equation is used:

~ ln h!8522
4yVz

22~11k!2S24h2~12k!/~11k!

2~Vz
22k!

.

~2.35!

Using the fact thaty51/3 is satisfied atz510, from Eqs.
~2.30!–~2.32!, we find the behavior of the solution aroun
the regular centerz510 as

M5
Ck

3
~2D !k/~11k!z2k/~11k![11O~z2(113k)/3(11k)!],

~2.36!

S5Ck
1/3~2D !2 1/3(11k)z2 2/3(11k)

3@11O~z2(113k)/3(11k)!#, ~2.37!

h52Dz2@11O~z2(113k)/3(11k)!#, ~2.38!

and

y5
1

3
@11O~z2(113k)/3(11k)!#, ~2.39!
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whereCk is a constant determined byk as

Ck[
3~11k!

113k
, ~2.40!

and the parameterD is defined as

D[
1

2
lim

z→10
z22h54pr~ t,0!t2. ~2.41!

Therefore, solutions that have regular centers are par
etrized by only one parameterD. Now that we find

es5as~2D !2 2k/~11k! ~2.42!

at the regular center, we letes be unity at the regular cente
by choosing the constantas as

as5~2D !2k/~11k!. ~2.43!

This gauge fixing gives the physical meaning to the para
eterD. Then the behavior ofVz around the regular center i
written as

Vz52Ck
22/3~2D !2 1/3(11k)z~113k!/3(11k)

3@11O~z2(113k)/3(11k)!#. ~2.44!

The system of equations has an apparent singularity
point z5zsp at which the relative velocity ofz5const world
line with respect to the fluid element is equal to the sou
speed, i.e.,

Vz
25k. ~2.45!

Such a point is called a sonic point. The regularity requi
the following condition at the sonic point:

4yk2~11k!2h2 ~12k!/~11k!S2450. ~2.46!

Every regular solution must cross the sonic point, satisfy
Eq. ~2.46!.

Ori and Piran@13# discovered the band structure of sol
tions regular both at the center and at the sonic point.
particular, there is only a discrete set of solutions which
analytic at the sonic point. Here, we give special attention
such solutions. One of such solutions is the flat Friedma
~FF! solution. There are another types of analytic solutio
which are called the ‘‘black hole’’ type solutions, in which
massive singularity forms att50 and after that the mass o
the singularity grows linearly witht, and the ‘‘repulsive’’
type solutions, in which the central singularity which form
at t50 disappears instantaneously and the cloud begin
expand att50. The solutions are characterized by the nu
ber of oscillations in the velocity fieldVR .

Then we consider the behavior of the analytic similar
solutions. For the FF solution it is found that

D5
2

3

1

~11k!2
. ~2.47!

The solution is written as
2-3
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TABLE I. Values ofD for self-similar solutions.

k50.001 0.008 0.01 0.03

FF 2/(331.0012) 2/(331.0082) 2/(331.012) 2/(331.032)
GRLP 1.640 1.480 1.439 1.119
GRHA 1.6753103 1.3453103 1.2653103 7.2043102

GRHB 7.1703104 4.9033104 4.4143104 1.6503104

FIG. 1. Self-similar solutions fork50.01. ~a! ln M, ~b! ln S, ~c! ln h, ~d! y, ~e! 2Vz , and~f! 2VR are plotted. In~g!, the ordinate and
abscissa are 4prt2 andR/(2t), respectively.
084022-4



CONVERGENCE TO A SELF-SIMILAR SOLUTION IN . . . PHYSICAL REVIEW D63 084022
FIG. 1. ~Continued.!
k/~11k!
M5
Ck

3 S 4

3~11k!2D z2k/~11k!, ~2.48!

S5Ck
1/3S 4

3~11k!2D 2 1/3(11k)

z2 2/3(11k),

~2.49!

h52Dz2, ~2.50!
08402
TABLE II. Models for numerical simulations.

Models Initial density profile Initial compactness (M/Rs,i)

A Homogeneous 1/10
B Inhomogeneous 1/10
C Homogeneous 1/30
D Inhomogeneous 1/30
2-5
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y5
1

3
~2.51!

and

Vz52Ck
2 2/3 ~2D !2 1/3(11k)z~113k!/3(11k). ~2.52!

FIG. 2. Time evolution of the density profile as for models~a! A
and~b! B for k50.01 are plotted. The ordinate and abscissa are
densityr and the circumferential radiusR, respectively. The unit is
chosen so that the ADM massM is unity.
08402
For the FF, the big crunch occurs att50, i.e., the singularity
occurs at the same time everywhere.

For k&0.036, there exists a pure collapse solution.
tends to the Larson-Penston solution in Newton gravity
the limit k→0. Hereafter we call this solution the gener
relativistic Larson-Penston~GRLP! solution. For this solu-
tion, we have found that the value of the parameterD is

e
FIG. 3. Time evolution of the density profile for models~a! A

and ~b! B for k50.01. The ordinate and abscissa are 4prt2 and
R/(2t), respectively. For comparison, the FF and GRLP are a
plotted.
2-6
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CONVERGENCE TO A SELF-SIMILAR SOLUTION IN . . . PHYSICAL REVIEW D63 084022
given by

D'1.439 ~2.53!

for k50.01. This coincides with the result of Ori and Pira
@13,27,28#.

We have another two analytic solutions. These soluti
are general relativistic counterparts of Newtonian self-sim
solutions, Hunter~a! and ~b! @5#. We call these solutions
GRHA and GRHB solutions, respectively. These similar
solutions are displayed in Figs. 1~a!–1~g!.

The FF is the only solution which has the big crun
singularity. Unlike the FF, the solution of the black hole a
repulsive types is regular att50, except for atr 50. It im-
plies that the dimensionless physical quantities, such asM, S
andh, are finite, i.e.,

M5M` , ~2.54!

S5S` , ~2.55!

h5h`5
M`

S`
3

, ~2.56!

y51, ~2.57!

and

VR5VR` , ~2.58!

at z56`. The solution is black hole type ifVR`.0 and
repulsive type ifVR`,0. It is found that the GRLP and
GRHB are black hole type solutions while the GRHA is
repulsive type one. From the above equations, we find

r5
h`S`

2

8pR2
, ~2.59!

at t50. The velocity functionVz diverges asz→` as

Vz'2~2D !2 k/~11k!h`
2~12k!/~11k! S`

22z~12k!/~11k!.
~2.60!

The number of oscillations ofVR , which coincides with the
number of zeroes of (y21) in the domain 0,z,`, is 0, 0,
1 and 2 for the FF, GRLP, GRHA, and GRHB, respective
The value ofD we have obtained for self-similar solution
are summarized in Table I fork50.001, 0.008, 0.01, and
0.03.

III. NUMERICAL EVIDENCE FOR CONVERGENCE
TO GRLP

A. Numerical simulations

In order to see the generic feature of gravitational c
lapse, we have numerically simulated the spherical colla
of a perfect fluid. We have numerically solved the full Ei
stein equations~2.3!–~2.7! by the standard Misner-Shar
code without the self-similarity ansatz. The finite differen
equations have been given by the staggered-leapfrog sch
08402
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The distribution of grid points has been not homogene
but concentrated in the neighborhood of the center. The t
number of the grid points has been 10000. See Harada@29#
for details of the numerical code and references are ther

For simplicity we display the results for time symmetr
initial data. It should be noted that we have confirmed t
the results do not change so much for several models
which initial data is not time symmetric. As a set of initia
data, we have prepared both homogeneous and inhom
neous balls of a perfect fluid which are momentarily sta
with vacuum external. For the inhomogeneous models,
density profile has been given by

r5H rc,iF12S R

Rs,i
D 2G , 0<R<Rs,i ,

0, Rs,i,R.

~3.1!

Since we have confirmed that the results do not depend
much on the detailed form of the density profile, the abo
functional form is considered to represent a typical situati
The models which we have simulated are summarized
Table II, whereM is the Arnowitt-Deser-Misner~ADM !
mass of the ball.

For k50.01, we plot the time evolution of the densi
profile of models A and B in Figs. 2~a! and 2~b!, respec-
tively. We can see that model B collapses in a self-sim
manner near the center as the collapse proceeds. In par
lar, the density profile around the center tends tor}R22 in
an approach to the occurrence of singularity, which is ch
acteristic to the self-similar solutions as we have seen
order to see more clearly that the collapse approaches
self-similar solution, we plot in Figs. 3~a! and 3~b! the time
evolution of the density profile of models A and B fork
50.01, respectively. The ordinate and abscissa are dim
sionless quantities 4prt2 andR/(2t), respectively, wheret
is the proper time at the center andt50 is chosen as the
occurrence of singularity. For comparison, we also plot
FF and GRLP in these figures using the relations 4prt2

5(1/2)hz22 andR/(2t)5Sz. It is found that model B ap-
proaches the GRLP while model A approaches the FF in
approach to the singularity. As seen in Figs. 1~b! and 1~e!,
R/(2t).0.26 and 0.28 at the sonic point for the FF a
GRLP, respectively. Therefore, from Figs. 3~a! and 3~b!, it is
found that the approach to the FF and GRLP is not only
the subsonic region but also for the supersonic region.

Moreover, in order to see which self-similar solution th
collapse approaches, we have calculated the quantityD
which is defined by

D[4prct
2, ~3.2!

whererc is the central density. This definition is consiste
with Eq. ~2.41!. Actually, we have determined the origin oft
by requiring that the above definedD tends to be constant
The results fork50.001, 0.008, 0.01, and 0.03 are plotted
Figs. 4~a!–4~d!. Then, we have found that fork50.008,
0.01, and 0.03 most models converge to the GRLP. Mode
for k50.001, 0.008, and 0.01 and model C fork50.001 turn
out to be trivial counterexamples against the convergen
2-7
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FIG. 4. D54prct
2 for ~a! k50.001,~b! k50.008,~c! k50.01, and~d! k50.03 are plotted. The abscissa is the central densityrc . The

values ofD for the FF (D50.6653, 0.6561, 0.6535, and 0.6284) and for the GRLP (D51.640, 1.480, 1.439, and 1.119) fork50.001,
0.008, 0.01, and 0.03 are also denoted, respectively.
la
d
ls
y
e

,

od
We will discuss them later. The results of numerical simu
tions are summarized in Table III. The resolution of our co
has not been sufficient to show the convergence of mode
and D to the GRLP fork50.001, although some tendenc
towards the GRLP has been observed. For dust collapsk
08402
-
e
B

(

50), we can easily find that the above definedD approaches
2/3, using the Lamaiˆtre-Tolman-Bondi solution. Therefore
from the continuity with respect tok, it is expected that the
convergence to the GRLP becomes slower ask goes to zero.
In fact, since the Newtonian approximation becomes go
2-8
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CONVERGENCE TO A SELF-SIMILAR SOLUTION IN . . . PHYSICAL REVIEW D63 084022
for k!1, it can be said that the convergence to the GRLP
k!1 has been confirmed by Newtonian SPH simulations,
Tsuribe and Inutsuka@6#. Then, we conclude that the resul
of numerical simulations strongly suggest that gene
spherical collapse converges to the GRLP in an approac
the singularity occurrence in both space and time.

B. Interpretation

As we have seen in Sec. III A, most collapse models
proach the GRLP, though several models do not appro
the GRLP. Here we interpret the results analytically.

First, we consider homogeneous models such as mod
for k50.001, 0.008, and 0.01 and model C fork50.001. For
an initially time symmetric homogeneous ball, the evoluti
of the central region is described by the closed Friedm
solution until the rarefaction wave propagates from the s
face to the center. The line element of the homogene
central region is written as

ds252dt21a2@dx21sin2x~du21sin2udf2!#. ~3.3!

The initial valueai of the scale factora and the surface value
xs of the comoving coordinatex are written using the initial
densityr i and the initial circumferential radiusRs,i as

ai
25

3

8pr i
, ~3.4!

xs5Arc sinS Rs,i

ai
D . ~3.5!

Therefore, the central region of the initially time symmet
ball begins to contract fork.21/3. We restrict our attention
to k.0. If the sound wave does not reach the center until
central Friedmann region collapses to the big crunch sin
larity, the central region approaches not the GRLP, but
FF. Fork!1, the central homogeneous part is well describ
by the closed Friedmann solution with dust, which has
parametrized representation as

a5ai

11cos 2u

2
, ~3.6!

t2t i5ai S u1
1

2
sin 2u D . ~3.7!

TABLE III. Asymptotic behavior of the collapse models.

Models k50.001 0.008 0.01 0.03

A FF FF FF GRLP
B GRLP? GRLP GRLP GRLP
C FF GRLP GRLP ~Dispersion!
D GRLP? GRLP GRLP ~Dispersion!
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The big crunch occurs atu5p/2, i.e., t2t i5pai /2
5A3p/(32r i). The trajectory of the rarefaction wave wit
the sound speedcs5Ak which emanates from the surface
t5t i satisfies

a
dx

dt
52cs , ~3.8!

which can be integrated as

x5xs22csu. ~3.9!

Therefore, the condition for the sound wave not to reach
center before the big crunch is given by

xs

cs
.p. ~3.10!

Using the free-fall velocityv f f defined as

v f f[A2M
Rs,i

, ~3.11!

we find the condition

cs

v f f
,

1

p
, ~3.12!

or that the compactnessM/Rs,i satisfies

M
Rs,i

.
p2

2
k, ~3.13!

where we have usedk!1. Equation~3.13! can explain the
results of the numerical simulations. Condition~3.12! com-
pletely agrees with that for Newton gravity derived b
Tsuribe and Inutsuka@6#, although the present situation ca
be highly relativistic. In particular, the present analysis
valid even for the evolution inside an apparent horizon. A
though we have discussed the initially time symmetric ca
it is easy to derive a similar condition for the collapse
which the central homogeneous region, which is not sw
by the rarefaction wave, is described by the Friedmann s
tion, which may be not only the closed Friedmann soluti
but also the flat or open Friedmann solution. The result is
same as Eq.~3.13!.

In general, we can enumerate the following trivial cou
terexamples against the convergence to the GRLP. If
central region can be initially described by the Friedma
solution, then the central region does not approach
GRLP, but the FF instead, if the big crunch occurs before
rarefaction wave reaches the center.

Moreover, it is clear that theexactself-similar solutions
other than the GRLP do not approach the GRLP. There
another kind of counterexamples. We divide the initial da
at R5Rp into two regions: the central region and the su
rounding region. If the initial data in the central region is t
same as those of the exact self-similar solutions other t
the GRLP, andRp is so large that the sound wave cann
2-9
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reach the center until the central singularity forms, the c
lapse in the neighborhood of the center is described no
the GRLP but by the self-similar solution initially prepare
in the central region.

Finally, it should be noted that there exists another type
counterexamples, which can be obtained by theexact fine-
tuning of parameters which characterize the initial data. W
will discuss this type of counterexamples in Sec. IV.

Anyway, it is clear that a set of the above trivial counte
examples occupies only zero-measure in the space of
whole of regular initial data.

IV. MODE ANALYSIS

As we have seen in Sec. III, the results of numerical sim
lations suggest that only the GRLP has an attractive nat
In order to confirm this, we examine the behavior of mod
in linear perturbations of the self-similar solutions.

A. Perturbation equations

We consider the spherically symmetric perturbati
around the fixed self-similar solution. We attach the suffix0
for the background solution. Using the rescaling freedom,
set the arbitrary functionsas and av to the background
value, i.e.,

as5as05~2D !2k/~11k!, ~4.1!

av5av051. ~4.2!

We define the perturbation quantities as

M5M0~z!@11eM1~t,z!1O~e2!#, ~4.3!

S5S0~z!@11eS1~t,z!1O~e2!#, ~4.4!

h5h0~z!@11eh1~t,z!1O~e2!#, ~4.5!
08402
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y

f

e
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e

y5y0~z!@11ey1~t,z!1O~e2!#, ~4.6!

wheree is a small parameter which controls the expansi
Then we find the equations for perturbations up to line
order ofe as

M1852
k

11k

y1

y
2

1

11k
~Ṁ11ky21Ṡ1!, ~4.7!

S185
1

11k
yy12

1

11k
y~Ṁ11ky21Ṡ1!, ~4.8!

1

2
~11k!2yh2 ~12k!/~11k!S24~M12S1!

5Vz
2F ~12y!2S k

11k
h11S1D

2~11k!~12y!~Ṡ11S18!G
2F ~k1y!2S 1

11k
h113S1D1~11k!~k1y!S18G ,

~4.9!

y15M12h123S1 , ~4.10!

where we have omitted the suffix0 for simplicity.
Assuming the time dependence of the perturbative qu

tities Q1(t,z)5eltQ1(z), we find the following set of si-
multaneous equations:

M1852
k

11k

y1

y
2

l

11k
~M11ky21S1!, ~4.11!

S185
1

11k
yy12

l

11k
y~M11ky21S1!, ~4.12!
~Vz
22k!~12y!~k1y!y15FkVz

2~12y!22~k1y!22
1

2
~11k!3h2 ~12k!/~11k!yS241~11k!y~Vz

2~12y!1~k1y!!lGM1

1F ~122k!Vz
2~12y!223k~k1y!21

1

2
~11k!3h2 ~12k!/~11k!yS24

2~11k!~Vz
2~12y!2k~k1y!!lGS1 . ~4.13!

We can derive another dependent equation as

~Vz
22k!~12y!~k1y!y185FkVz

2~12y!~~12y!~ ln Vz
2!822y~ ln y!8!22~k1y!y~ ln y!8

2
1

2
~11k!3h2 ~12k!/~11k!yS24S 2

12k

11k
~ ln h!81~ ln y!824~ ln S!8D

1~11k!y~~Vz
2~122y!1~k12y!!~ ln y!81Vz

2~12y!~ ln Vz
2!8!lGM1
2-10



CONVERGENCE TO A SELF-SIMILAR SOLUTION IN . . . PHYSICAL REVIEW D63 084022
1FkVz
2~12y!22~k1y!22

1

2
~11k!3h2 ~12k!/~11k!yS241~11k!y~Vz

2~12y!1~k1y!!lGM18

1F ~122k!Vz
2~12y!~~12y!~ ln Vz

2!822y~ ln y!8!26k~k1y!y~ ln y!8

1
1

2
~11k!3h2 ~12k!/~11k!yS24S 2

12k

11k
~ ln h!81~ ln y!824~ ln S!8D

2~11k!~Vz
2~12y!~ ln Vz

2!82~Vz
21k!y~ ln y!8!lGS1

1F ~122k!Vz
2~12y!223k~k1y!21

1

2
~11k!3h2 ~12k!/~11k!yS24

2~11k!~Vz
2~12y!2k~k1y!!lG

3S182@Vz
2~12y!~k1y!~ ln Vz

2!81~Vz
22k!~12k22y!y~ ln y!8#y1 , ~4.14!
ur
w

th

th

-
am-

. It
t
t.
-
and

the

a-
where (lny)8 and (lnVz
2)8 are given by

~ ln y!85~ ln M !82~ ln h!823~ ln S!8, ~4.15!

~ ln Vz
2!852

12k

11k
22

12k

11k
~ ln h!824~ ln S!8. ~4.16!

Then we examine boundary conditions which the pert
bation quantities should satisfy at the boundaries. First,
consider the regular centerz510. At the regular center, the
definition of y implies that the perturbation ofy must vanish
at z510, since the background solution already satisfies
boundary condition in full order. Then we obtain

y150 ~4.17!

at z510. From Eq.~4.13!, it implies the following condi-
tion:

M113kS150. ~4.18!

Then, the perturbation solutions, which are regular at
center for fixedl, are parametrized by one parameterD. The
boundary condition atz510 is written as

y150, ~4.19!

M15
k

11k
D, ~4.20!

S152
1

3~11k!
D, ~4.21!

where

D[h1~0!5
dr

r
~ t521,r 50!. ~4.22!
08402
-
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D only scalesy1 , M1, andS1 because we are only consid
ering the linear perturbations. Hence, we can set the par
eterD asD51 without loss of generality.

Next, we consider the sonic pointz5zsp. At the sonic
point, we require that the density perturbation is regular
implies thatM1 , S1, andy1 must satisfy the condition tha
the right-hand side of Eq.~4.14! vanishes at the sonic poin
Only for a discrete set ofl, there exists a solution of pertur
bation equations that is regular both at the regular center
at the sonic point. Thus we can obtain eigenvaluesl and the
associated eigenmodes.

B. Results of mode analysis

It is found that the system has a gauge mode with
eigenvaluel given by

l5
12k

11k
. ~4.23!

The mode functions are given by

M15
D

2
~ ln M !8, ~4.24!

S15
D

2
~ ln S!8, ~4.25!

y15
D

2
~ ln y!8. ~4.26!

This mode corresponds to the following gauge transform
tion:

~2t !→~2t !2e
D

2
~2t !2k/~11k!, ~4.27!
2-11
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r→r ~4.28!

or, equivalently,

t→t2e
D

2
e~12k!/~11k! t, ~4.29!

z→z1e
D

2
e~12k!/~11k! tz. ~4.30!

The eigenvalues of physical repulsive modes fork
50.001, 0.008, 0.01, and 0.03 are summarized in Table
wherelPR is assumed. For the FF and GRLP, there ex
no repulsive mode. On the other hand, the GRHA a
GRHB have one and two repulsive modes, respectiv
Therefore, it is found that only the FF and GRLP can d
scribe the final stage of the central region of generic collap
Together with the existence of the ‘‘kink’’ instability in th
FF and the self-similar solutions which are not analytic at
sonic point@13,30#, we conclude that the GRLP is the on
self-similar solution that can be an attractor. For the GRH
there exists only one repulsive mode. This solution cor
sponds to the critical solution in the black hole critical b
havior. Only when one parameterp, which parametrizes ini-
tial data, is fine-tuned around the critical valuep* for the
black hole formation, this solution has importance as a c
cal solution. The critical exponentg, which appears in the
scaling law of the formed black hole massMBH}(p2p* )g,
is given by the inverse of this repulsive mode. Fork50.01,
the eigenvalue we have obtained agrees well with Mai
@22#. Since the GRHA solution has a repulsive mode, it is
relevant for the behavior of generic collapse. In particu
the final stage of the collapse can be described by the GR
if the parameter isexactly fine-tuned, i.e.,p5p* . The
GRHB has two repulsive modes. It is expected from
mode analyses in Newton gravity@7#, that the solution withn
oscillations hasn repulsive modes. In order for the solutio
with n oscillations to be relevant,n parameters must be fine
tuned. If the fine-tuning is not exact, the perturbation gro
into nonlinear regime. Then, it is expected that the colla
will approach to the GRLP or disperse away.

V. DISCUSSIONS

First, we discuss the validity of self-similarity hypothes
The results of the numerical simulations and mode anal
strongly suggest that generic spherical collapse of a per
fluid with small k converges to the GRLP in an approach
the singularity. This means that the GRLP is an attrac

TABLE IV. Eigenvaluesl for repulsive modes of self-simila
solutions.

k50.001 0.008 0.01 0.03

FF None None None None
GRLP None None None None
GRHA 9.39 8.88 8.75 7.62
GRHB 5.43 5.10 5.02 4.27

5.62310 4.90310 4.71310 3.30310
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solution. Moreover, in Sec. III B, we have discussed seve
counterexamples against the convergence to the GRLP.
surprising that these counterexamples are exactly self-sim
or at least asymptotically self-similar in the neighborhood
the center. It should be noted that non-flat Friedmann so
tion also approaches to the FF asymptotically in an appro
to the big crunch. Therefore, we can conjecture thatany
cloud of a perfect fluid collapses in a self-similar manner
an approach to the singularity.

Next we discuss the implications of the convergence
the GRLP in the context of the cosmic censorship. The c
mic censorship conjecture states that a naked singula
does not form in the gravitational collapse which develo
from generic initial data with matter fields which obey
physically reasonable equation of state. For spherical
lapse, the convergence to the GRLP, which we have
served in this paper, means that a naked singularity form
generic collapse for an equation of stateP5kr for 0,k
&0.0105, because the GRLP has a naked singularity for
range ofk @13,27,28#.

Here we should give the precise terminology of a nak
singularity. In this article, we refer to a singularity that ca
be seen by some observer as a naked singularity. In cont
a naked singularity that can be seen from infinity is calle
globally naked singularity. Whether a naked singularity
globally naked is determined not only by the central reg
but also by the surrounding region. In fact, a naked singu
ity treated here can be globally naked through the match
of the central region with an appropriate surrounding regi

Now that we have the precise terminology, we can disc
the consistency of our results with previous works on
black hole critical behavior. At first sight, our results seem
be inconsistent with the formation of an apparent horiz
observed in numerical simulations showing the black h
critical behavior. In fact, this is not the case. Since the c
vergence is only for the neighborhood of the center, we c
not say whether the formed naked singularity is locally n
ked or globally naked. Because the formation of an appa
horizon only implies the existence of an event horizon o
side or coinciding with it, it does not exclude the formatio
of locally naked singularity at the center.

If the cosmic censorship is true, then there are three p
sibilities. One is that deviations from spherical symme
may play a crucial role in the nakedness of the formed s
gularity. Although there has been no systematic study on
effect of violation of spherical symmetry in inhomogeneo
gravitational collapse, Shapiro and Teukolsky@31# reported
some numerical results that suggest the occurrence of n
singularity in the axisymmetric collapse of collisionless pa
ticles. In contrast, Iguchiet al. @32–34# and Nakaoet al. @35#
reported some kind of instability along the Cauchy horiz
associated with a globally naked singularity. The second p
sibility is that the small value ofk is not allowed for ex-
tremely high-density matter fields. However, it seems to
strange that the consistency of classical theory of gra
restricts the equation of state for high-density matter fiel
which is determined by a collection of various microscop
physics. The third possibility is that the fluid description f
high-density matter may be responsible.
2-12
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Whether or not the cosmic censorship conjecture is tr
the convergence to the GRLP strongly suggests that t
can appear an extremely high-density or high-curvature
gion which can be seen by an observer. Even for such
‘‘approximate’’ naked singularity, it has been shown th
explosive radiation is emitted due to quantum effects@36–
43#. Furthermore, in a practical sense, if the curvature sc
reaches the Planck scale, it should be regarded as a sing
ity because it is considered beyond the scope of class
general relativity.

Self-similar solutions we have obtained here appro
those in Newton gravity in the limitk→0. Therefore, the
important consequence is that critical phenomena assoc
with the Hunter~a! Newtonian self-similar solution shoul
be observed in the collapse of isothermal gas in New
gravity. These critical phenomena will be very similar to t
critical phenomena in the black hole formation in gene
relativity. Only one parameterp has to be fine-tuned closel
to the critical valuep* . In particular, some order paramet
A follows the scaling lawA}(p2p* )g in the near critical
regime, whereg is given by the inverse of the eigenvalue
the only one repulsive mode of the Hunter~a! solution. Un-
fortunately, the eigenvalue of the repulsive mode of
Hunter ~a! solution has not been known yet. However,
extrapolating our results on the GRHA to the limitk→0, we
can predict that the critical exponentg is given byg'0.11.
The candidate for the order parameterA will be, for ex-
ra

av

av
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ample, the mass of the initially formed core, if we assu
the realistic equation of state for dense gas.

VI. CONCLUSIONS

The results of the numerical simulations and mode ana
sis strongly suggest that the general relativistic Lars
Penston solution is an attractor solution of spherically sy
metric gravitational collapse of a perfect fluid with a
adiabatic equation of stateP5kr for 0,k&0.036 in general
relativity. Since a naked singularity forms in the general re
tivistic Larson-Penston solution for 0,k&0.0105, the analy-
sis in this paper means the violation of cosmic censorship
spherically symmetric case. This will be the strongest kno
counterexample against the cosmic censorship ever.
also provides strong evidence for the self-similarity hypo
esis in general relativistic gravitational collapse.
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