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Convergence to a self-similar solution in general relativistic gravitational collapse
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We study the spherical collapse of a perfect fluid with an equation of Btatep by full general relativistic
numerical simulations. For<0k=<0.036, it has been known that there exists a general relativistic counterpart
of the Larson-Penston self-similar Newtonian solution. The numerical simulations strongly suggest that, in the
neighborhood of the center, generic collapse converges to this solution in an approach to a singularity and that
self-similar solutions other than this solution, including a “critical solution” in the black hole critical behavior,
are relevant only when the parameters which parametrize initial data are fine-tuned. This result is supported by
a mode analysis on the pertinent self-similar solutions. Since a naked singularity forms in the general relativ-
istic Larson-Penston solution for<0k=0.0105, this will be the most serious known counterexample against
cosmic censorship. It also provides strong evidence for the self-similarity hypothesis in general relativistic
gravitational collapse. The direct consequence is that critical phenomena will be observed in the collapse of
isothermal gas in Newton gravity, and the critical expongnuill be given by y~0.11, though the order
parameter cannot be the black hole mass.
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[. INTRODUCTION repulsive modé¢21,22. The critical exponent which appears
in the scaling law of the formed black hole mass is equal to

There is no characteristic scale in general relativity aghe inverse of the eigenvalue of the repulsive mode for a
well as in Newton gravity. A set of field equations is invari- perfect fluid case.
ant by scale transformations if we assume appropriate matter In the context of cosmic censorshi@3,24], a spherical
fields. It implies the existence of scale-invariant solutions toSystem of a pressureless fluidusy has been extensively
the field equations. Such solutions are called self-similar soexamined since it can be solved exactly. It has been shown
lutions, which are defined by the existence of a homotheti¢hat a naked singularity forms in generic spherical collapse
Killing vector field. Although the self-similar solutions are Of dust from an analytic initial density profile5,26. It is
only special solutions of Einstein equations, it often has beefioted that this solution is not self-similar at all. In the pres-
supposed that these solutions play an important role in situence of pressure, self-similar solutions were investigated by
ations where gravity is an essential ingredient in a spheriOri and Piran[13,27,28. For an adiabatic equation of state
cally symmetric systenifor example, Carf1]). Such an as- P=kp (0<k=0.4), they found a discrete set of self-similar
sumption can be called trself-similarity hypothesis solutions which are analytic both at the center and at the

A spherically symmetric self-similar system of a perfect sonic point. They discovered the general relativistic counter-
fluid has been widely researched. Self-similar solutions irpart of the Larson-Penston solution forx&=0.036. They
Newton gravity have been researched in an effort to obtai®bserved that a naked singularity forms in this solution for
simple and realistic solutions of gravitational collapge5]. ~ 0<k=0.0105. They also observed that there exist analytic
In particular, the Larson-Penston solution, which is one ofself-similar solutions with naked singularity for eveky
the self-similar solutions, is believed to describe the centraHarada[29] showed the generic occurrence of naked singu-
part of generic spherical collapse of isothermal gas. Recenarity in spherical collapse of a perfect fluid forxk=0.01
numerical simulations and results of mode analyses stronglpy numerical simulations using the code based on the
support this propositiof6—9]. In general relativity, a spheri- Hernandez-Misner formulation without the ansatz of self-
cally symmetric self-similar system was discussed in variousimilarity.
situations, such as cosmological voids, gravitational collapse, The aim of this paper is to examine the validity of the
primordial black holes/10-12, and so on. The detailed self-similarity hypothesis for a spherical system of a perfect
structure of self-similar collapse solutions were analyzedluid and to understand the relation of the self-similarity hy-
[13]. The discovery of the black hole critical behavior shedpothesis, critical behavior and cosmic censorship. In this pa-
light on the importance of a self-similar solution as a critical per, we adopt the geometrized unit.
solution[14,15. Several very recent works have been done

in complete classification of self-similar solutioft6—20. Il. BASIC EQUATIONS
In the context of the black hole critical behavior, the self-
similar critical solution is not an attractor. A renormalization A. Einstein equation

group approach showed that the critical solution has only one /e adopt the comoving coordinates. The line element in a
spherically symmetric spacetime is given by

*Email address: harada@gravity.phys.waseda.ac.jp ds?=—e’®Ndt2+e“tdr?+ R3(t,r) (d#%+ sirf d ¢?) .
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It is noted that the comoving coordinates may be able tarbitrary functions correspond to the freedom of rescaling the
cover even inside of the apparent horizon. We consider @§me and radial coordinates as-t(t) andr=r(t). Hereaf-
perfect fluid ter, we restrict this gauge freedom by choosmg= const

anda,=1.
MY — My v LV [0}
T (pFP)ufu"+Pg™". 22 Being transformed into the zooming coordinates, the field

Then the Einstein equations and the equations of motion fopduations are reduced to
the matter are reduced to the following simple form:

M+M'=2S%(S+9"), (2.16
om ) JR ) .
= 4R p——, (2.3 M+M’'=—-kpSX(S+S'), (217
am IR M:1+a_1( Z—2)2k/(1+k)22('s+s/)2
—=—47R°P—, (2.4) S o \7
at at
2
9o 2 9P o5 — pT7kSH S+ S')?, (2.18
ar p+P ar’ ' where the derivatives are abbreviated as
dw 2 dp 4R 26 d
G prPa Rt @9 = 219
_RHﬁaRZ [ 9RV? ) P
m= E e E e W ) ( -7) =m- (2-2@

wherem(t,r) is called the Misner-Sharp mass. We assumeFor later convenience, we define the quanyityhich is one
the following equation of state: third of the ratio of the “average density” of the region
interior tor to the local density at, defined as

P=kp, (2.9
where we assume thakk<<1. For a barotropic equation of = i (2.21)
state, the existence of self-similar solution demands the 7S

above form. Moreover, this equation of state will be valid for . o
isothermal gas in Newton limit and for relativistically high- If we consider the regular center, then it is found from Eq.
density polytrope$13]. We define the following dimension- (2.3 that
less function§12]:

1
n=8r?p, (2.9 y= 3 (222
R at the regular center=+0. We can define two velocity
= (210 functions V, and Vk. The V, is the velocity of thez
=const line relative to the fluid element, which is written as
2m w—0
M=—. (2.11) V,=—ze® 92 (2.23
. ) ) ) while Vg is the velocity of theR=const line relative to the
We also define the following zooming coordinates: fluid element, which is written as
r=—In(—1), (2.12 (aR
ot S+9
r = _alo—o)2 "7 _ -
7=—. 2.13 Vg=—¢€ R V, sis (2.29
ar
It is found that Eqs(2.5 and(2.6) can be integrated as
4k 2k B. Self-similar solutions
e7=a,(l)ziky  I7F, (214 For self-similar solutions, we assume that all dimension-
2 less quantities depend only ani.e.,
e’=a,(r)ny TrkS 4 (2.15
n=17(2), (2.29
wherea,(t) anda,(r) are arbitrary functions. This integra-
bility is the advantage of the comoving coordinates. These S=95(2), (2.26
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M=M(z), (2.27 whereC, is a constant determined lhyas
o=0(2), (2.28 _3(1+k)

K= 143k’ (240
w=w(z). (2.29

and the parametdD is defined as
The field equations are reduced to the following form:

1
D=3 lim z 29=4mp(t,0)t2. (2.41
= (v 1_ —+0
(INM)' = 7 (v *=1), (2.30 e
Therefore, solutions that have regular centers are param-
1 etrized by only one paramet&. Now that we find
(N9 == (1-y), (231 yonyonep

e"=ag(2D)‘2k/(1+k) (242

(1—y)2V§—(k+y)2+(1+k)277‘ 2/(1+k)g=6[ 1 — M) =0, at the regular center, we let” be unity at the regular center

S by choosing the constaat, as
(2.32 y g at,
, a,=(2D)A+k), (2.43
whereV, and Vg are written as
This gauge fixing gives the physical meaning to the param-
eterD. Then the behavior 0¥, around the regular center is
written as

V,=— a;uzz(l—k)/(uk) g~ 1-WAthg=2 (533

and
VZ: _ Ck—2/3(2D)— 1/3(1+ k)Z(l+3k)/3(l+k)
1-y
Vg= —vzm, (2.39 X [1+0O(2(A+30/3(1+k)y (2.49

respectively. It is noted that, although the apparent form of 1N€ System of equations has an apparent singularity at a
these equations does not seem to be an autonomous systefRiNtZ=Zsp at which the relative velocity a=const world

the original system before we have performed explicit inte-IN€ With respect to the fluid element is equal to the sound
grations is, of course, an autonomous system. We can fingP€€d: 1-€.,

that the fluid velocity, with respect t®&=const, vanishes V2=k. (2.45
only if V,=0 ory=1. The above set of equations together
with appropriate boundary conditions is enough to determin&ych a point is called a sonic point. The regularity requires
the unknown functiondl(z), S(z) and 7(z). However, in  the following condition at the sonic point:

addition to the above equations, the following dependent

equation is used: 4yk—(1+k)2y~ -W/A+g4=0, (2.46
AyV2— (1+K)25 4y~ (1-RI(1+k) Every regular solution must cross the sonic point, satisfying
(Inp)'=2—-—= _ Eq. (2.46.
2(V§—k) Ori and Piran13] discovered the band structure of solu-

(2.35  tions regular both at the center and at the sonic point. In
particular, there is only a discrete set of solutions which are
analytic at the sonic point. Here, we give special attention to
such solutions. One of such solutions is the flat Friedmann
(FF) solution. There are another types of analytic solutions
C which are called the “black hole” type solutions, in which a
M = _k(z[))k/<1+k>22k/<l+k>[1+o(22(1+3k)/3(1+k))], massive singularity forms at=0 and after that the mass of
3 the singularity grows linearly with, and the “repulsive”

(2.36 type solutions, in which the central singularity which forms

at t=0 disappears instantaneously and the cloud begins to

expand at=0. The solutions are characterized by the num-

Using the fact thay = 1/3 is satisfied at= + 0, from Eqs.
(2.30—(2.32, we find the behavior of the solution around
the regular centez=+0 as

S: C&IS(ZD)_ l/3(l+k)z— 2/3(1+Kk)

X [1+0(z2(1+3K/3(1+k)y (2.37  ber of oscillations in the velocity fielyg.
Then we consider the behavior of the analytic similarity
n=2Dzq 1+ O(Z2(1+3K/3(1+k)) ], (2.39  solutions. For the FF solution it is found that
and 2 1
== > (2.47
1 3 (1+k)
— 11+ O(22(1+3K/3(1+K) _
y 3[1 Oz ] 239 The solution is written as
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(b) (d)

FIG. 1. Self-similar solutions fok=0.01.(a) InM, (b) InS (c) In %, (d) y, (e) —V,, and(f) — Vg are plotted. In(g), the ordinate and
abscissa are #pt? andR/(—t), respectively.

TABLE 1. Values of D for self-similar solutions.

k=0.001 0.008 0.01 0.03
FF 2/(3x1.00F) 2/(3x1.008) 2/(3x1.0P7) 2/(3%1.03)
GRLP 1.640 1.480 1.439 1.119
GRHA 1.675<10° 1.345< 10° 1.265x 10° 7.204x 107
GRHB 7.170<10* 4.903x< 10" 4.414<10* 1.650x 10*
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FIG. 1. (Continued)
K/(1+k)
— % L ZZk/(1+k) (2 48) . . .
3 | 3(1+k)2 ' : TABLE Il. Models for numerical simulations.
~1/3(1+K) Models Initial density profile Initial compactnessA/Rs;)
S=clB 2) z 230k, A Homogeneous 1/10
3(1+k) B Inhomogeneous 1/10
(2.49 C Homogeneous 1/30
D Inhomogeneous 1/30
n=2DZ7? (2.50
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FIG. 2. Time evolution of the density profile as for mod&sA

densityp and the circumferential radiug, respectively. The unit is
chosen so that the ADM mag$t is unity.

and
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FIG. 3. Time evolution of the density profile for modél A
and(b) B for k=0.01 are plotted. The ordinate and abscissa are thand (b) B for k=0.01. The ordinate and abscissa arep4? and
R/(—1), respectively. For comparison, the FF and GRLP are also

plotted.

For the FF, the big crunch occurstat 0, i.e., the singularity
occurs at the same time everywhere.

For k=<0.036, there exists a pure collapse solution. It
tends to the Larson-Penston solution in Newton gravity in
the limit k—0. Hereafter we call this solution the general
relativistic Larson-PenstofGRLP) solution. For this solu-
tion, we have found that the value of the paramdeis
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given by

D~1.439 (2.53

for k=0.01. This coincides with the result of Ori and Piran

[13,27,28.

We have another two analytic solutions. These solution§
are general relativistic counterparts of Newtonian self-simila
solutions, Hunter(a) and (b) [5]. We call these solutions
GRHA and GRHB solutions, respectively. These similarity

solutions are displayed in Figs(al—1(g).

The FF is the only solution which has the big crunch
singularity. Unlike the FF, the solution of the black hole and

repulsive types is regular &&=0, except for ar=0. It im-
plies that the dimensionless physical quantities, sudil,&S
and 7, are finite, i.e.,

M=M.,, (2.54)
S=S., (2.595
M.
=R (2.56
y=1, (2.57
and
Vr=VgRe, (2.58

at z=*, The solution is black hole type ¥.>0 and

I

PHYSICAL REVIEW 3 084022

The distribution of grid points has been not homogeneous
but concentrated in the neighborhood of the center. The total
number of the grid points has been 10000. See Haadh
for details of the numerical code and references are therein.
For simplicity we display the results for time symmetric
initial data. It should be noted that we have confirmed that
he results do not change so much for several models in
which initial data is not time symmetric. As a set of initial
data, we have prepared both homogeneous and inhomoge-
neous balls of a perfect fluid which are momentarily static
with vacuum external. For the inhomogeneous models, the
density profile has been given by

ool

0, Rsi<R.

0= RgRs,i s (3 1)

Since we have confirmed that the results do not depend so
much on the detailed form of the density profile, the above
functional form is considered to represent a typical situation.
The models which we have simulated are summarized in
Table Il, where M is the Arnowitt-Deser-Misne(ADM)
mass of the ball.

For k=0.01, we plot the time evolution of the density
profile of models A and B in Figs.(3) and 2b), respec-
tively. We can see that model B collapses in a self-similar
manner near the center as the collapse proceeds. In particu-
lar, the density profile around the center tendp R 2 in
an approach to the occurrence of singularity, which is char-
acteristic to the self-similar solutions as we have seen. In

repulsive type ifVg,,<<0. It is found that the GRLP and order to see more clearly that the collapse approaches the
GRHB are black hole type solutions while the GRHA is aself-similar solution, we plot in Figs.(8 and 3b) the time

repulsive type one. From the above equations, we find

7.S%

=—— 2.59
87R? 259

p

att=0. The velocity functiorlV, diverges az—o as
V,~—(2D)" k/(l+k)777(lfk)/(l+k) S 25(1-K/(1+k).

(2.60

The number of oscillations df g, which coincides with the
number of zeroes ofy(—1) in the domain 8<z<, is 0, 0,

evolution of the density profile of models A and B far
=0.01, respectively. The ordinate and abscissa are dimen-
sionless quantities #pt? andR/(—t), respectively, wheré

is the proper time at the center abe O is chosen as the
occurrence of singularity. For comparison, we also plot the
FF and GRLP in these figures using the relationspt®
=(1/2)pz 2 andR/(—t)=Sz It is found that model B ap-
proaches the GRLP while model A approaches the FF in an
approach to the singularity. As seen in Figgh)land Xe),
R/(—t)=0.26 and 0.28 at the sonic point for the FF and
GRLP, respectively. Therefore, from FiggaBand 3b), it is
found that the approach to the FF and GRLP is not only for

1 and 2 for the FF, GRLP, GRHA, and GRHB, respectively.ine supsonic region but also for the supersonic region.

The value ofD we have obtained for self-similar solutions

Moreover, in order to see which self-similar solution the

are summarized in Table | fdtk=0.001, 0.008, 0.01, and collapse approaches, we have calculated the quaftity

0.03.

Ill. NUMERICAL EVIDENCE FOR CONVERGENCE
TO GRLP

A. Numerical simulations

which is defined by
D=4mp.t?, (3.2

wherep. is the central density. This definition is consistent
with Eq. (2.4]). Actually, we have determined the origin of

In order to see the generic feature of gravitational col-by requiring that the above definddl tends to be constant.
lapse, we have numerically simulated the spherical collaps&he results fok=0.001, 0.008, 0.01, and 0.03 are plotted in
of a perfect fluid. We have numerically solved the full Ein- Figs. 4a)—4(d). Then, we have found that fdk=0.008,
stein equationg2.3)—(2.7) by the standard Misner-Sharp 0.01, and 0.03 most models converge to the GRLP. Model A
code without the self-similarity ansatz. The finite differencefor k=0.001, 0.008, and 0.01 and model C ko+ 0.001 turn
equations have been given by the staggered-leapfrog schenmit to be trivial counterexamples against the convergence.
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0 P

(b) ¢ (d) ¢

FIG. 4. D=4mp.t? for (@ k=0.001,(b) k=0.008,(c) k=0.01, andd) k=0.03 are plotted. The abscissa is the central depsityThe
values ofD for the FF ©=0.6653, 0.6561, 0.6535, and 0.6284) and for the GRDP- (.640, 1.480, 1.439, and 1.119) for=0.001,
0.008, 0.01, and 0.03 are also denoted, respectively.

We will discuss them later. The results of numerical simula-=0), we can easily find that the above defiri2épproaches
tions are summarized in Table IIl. The resolution of our code2/3, using the Lamé&ie-Tolman-Bondi solution. Therefore,
has not been sufficient to show the convergence of models Bom the continuity with respect th, it is expected that the
and D to the GRLP fok=0.001, although some tendency convergence to the GRLP becomes slowek gees to zero.
towards the GRLP has been observed. For dust colldpse (In fact, since the Newtonian approximation becomes good
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TABLE Ill. Asymptotic behavior of the collapse models. The big crunch occurs atd=m/2, ie., t—t=ma;/2
1 s} 1 (|

=/3m/(32p;). The trajectory of the rarefaction wave with

Models k=0.001 0.008 0.01 0.03 the sound speec,= \k which emanates from the surface at
A FF FF FF GRLP t=t; satisfies

B GRLP? GRLP GRLP GRLP

C FF GRLP GRLP  (Dispersion dy

D GRLP? GRLP  GRLP  (Dispersion ag;” "% (3.8

which can be integrated as
for k<1, it can be said that the convergence to the GRLP for

k<1 has been confirmed by Newtonian SPH simulations, by X=Xs— 2CsH. (3.9
Tsuribe and Inutsukps]. Then, we conclude that the results

of numerical simulations strongly suggest that genericTherefore, the condition for the sound wave not to reach the
spherical collapse converges to the GRLP in an approach t@enter before the big crunch is given by
the singularity occurrence in both space and time.

)E> . (3.10

B. Interpretation Cs

As we have seen in Sec. Il A, most collapse models apUsing the free-fall velocity¢; defined as
proach the GRLP, though several models do not approach
the GRLP. Here we interpret the results analytically. _[2M

First, we consider homogeneous models such as model A Uit= Re;’ (3.11
for k=0.001, 0.008, and 0.01 and model C ko+ 0.001. For ’
an initially time symmetric homogeneous ball, the evolutionwe find the condition
of the central region is described by the closed Friedmann
solution until the rarefaction wave propagates from the sur- 5<£ (3.12
face to the center. The line element of the homogeneous vif ' '
central region is written as

or that the compactnesst/Rg; satisfies
ds?=—dt?+a?[dy?+sifx(d >+ sirfdd¢?)]. (3.3

M 7P
o —>—K, (3.13
The initial valuea; of the scale factoa and the surface value Rsi 2
X5 Of the comoving coordinatg are written using the initial ) ,
densityp; and the initial circumferential radiug; as where we have usekl<1. Equation(3.13 can explain the
' results of the numerical simulations. Conditih12 com-
pletely agrees with that for Newton gravity derived by
al= 3 (3.4 Tsuribe and Inutsuk§6], although the present situation can
' 8mp;’ ' be highly relativistic. In particular, the present analysis is
valid even for the evolution inside an apparent horizon. Al-
R.. though we have discussed the initially time symmetric case,
xs=Arc sin( i) (3.5 it is easy to derive a similar condition for the collapse in
i

which the central homogeneous region, which is not swept
by the rarefaction wave, is described by the Friedmann solu-
Therefore, the central region of the initially time symmetric tion, which may be not only the closed Friedmann solution
ball begins to contract fdk> — 1/3. We restrict our attention but also the flat or open Friedmann solution. The result is the
to k>0. If the sound wave does not reach the center until thesame as Eq(3.13.
central Friedmann region collapses to the big crunch singu- In general, we can enumerate the following trivial coun-
larity, the central region approaches not the GRLP, but théerexamples against the convergence to the GRLP. If the
FF. Fork<1, the central homogeneous part is well describeccentral region can be initially described by the Friedmann
by the closed Friedmann solution with dust, which has thesolution, then the central region does not approach the
parametrized representation as GRLP, but the FF instead, if the big crunch occurs before the
rarefaction wave reaches the center.

Moreover, it is clear that thexactself-similar solutions

a—a 1+cos2 (3.  Other than the GRLP do not approach the GRLP. There are
! 2 ’ ' another kind of counterexamples. We divide the initial data
at R=R, into two regions: the central region and the sur-
1 rounding region. If the initial data in the central region is the
; same as those of the exact self-similar solutions other than
—t=a;| 0+ = . . .
t-t=a 0 2o 26) .7 the GRLP, andR, is so large that the sound wave cannot
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reach _the centgr until the central singularity forms, the col- y=VYo(2)[1+ ey,(7,2)+O(€?)], (4.6)

lapse in the neighborhood of the center is described not by

the GRLP but by the self-similar solution initially prepared Wheree is a small parameter which controls the expansion.

in the central region. Then we find the equations for perturbations up to linear
Finally, it should be noted that there exists another type oprder ofe as

counterexamples, which can be obtained by ¢Ract fine-

tuning of parameters which characterize the initial data. We M=— L Yi_ L( M, +ky 1), (4.7
will discuss this type of counterexamples in Sec. IV. 1+ky 1+k

Anyway, it is clear that a set of the above trivial counter- 1 1
examples occupies only zero-measure in the space of the SI=——yy,— ——y(M;+ky 1S)), (4.9
whole of regular initial data. LT YT T MY

IV. MODE ANALYSIS %(14_ k)2y7f (l*k)/(l+k)sf4(|v|l_ S)

As we have seen in Sec. lll, the results of numerical simu-
lations suggest that only the GRLP has an attractive nature. —VvZ (1-y)?2 +s
In order to confirm this, we examine the behavior of modes z Y g

in linear perturbations of the self-similar solutions.
—(1+K)(1=y)(5,+S))

A. Perturbation equations

We consider the spherically symmetric perturbation 5 )
around the fixed self-similar solution. We attach the suffix | (KEY) T mt3S | (14 K)(k+y)S; |,
for the background solution. Using the rescaling freedom, we
set the arbitrary functions, and a, to the background (4.9
value, i.e., y;=M;— 5,—3S,, (4.10
— — 2k/(1+k
a,=a,0=(2D)?"Y, (43 where we have omitted the suffixfor simplicity.
—a =1 4.2 Assuming the time dependence of the perturbative quan-
Ao =800~ 4.2 tities Q,(7,2)=€""Q,(z), we find the following set of si-
We define the perturbation quantities as multaneous equations:
k vy N
M=Mqy(2)[1+ eM(7,2)+O(€?)], 4.3 -~ it -1
0 1 M7 17k y lek(M1+ky S),  (4.1)
S=Sy(2)[1+ €S,(7,2) + O(€%)], (4.9 L N
r__ = o -1
=21t em(r+O(A], (45 ST Mty TS @42

(Vg—k)(l—Y)(k+y)y1=[ng(l—y)z—(kJrY)z— %(1+ k)3y~ (7RI Y S At (14 K)Y(VA(1—y) +(k+y)N My

1
+| (1=20)VZ(1—-y)?=3k(k+y)2+5 (1+ k)%~ 7H/0H0y 574

—(1+k)(VH1—y)—k(k+y)\ |S;. (4.13

We can derive another dependent equation as

(VZ—K)(1—y)(k+y)y;=|KVA(1-y)((1-y)(InVZ)' —2y(Iny)") = 2(k+y)y(Iny)’

1 1-k
_ - 3. — (1-K/(1+K)y, o4 _ / '’ /
2(1+k) 7 yS —1+k(ln 7) +(Iny)'—4(InS) )

+<1+k>y<<V§<1—2y>+<k+2y>><lny>'+V§<1—y><anE)'>x}Ml
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1
VAL y)? = (k)= (1K) %y~ 1R/ S 4 (LY (VAL —y) + (ke y)N | My

+ (1=2KVZ(1-y)((1=y)(InVZ)’ —2y(Iny)") = Bk(k+y)y(Iny)’

1 1-k
- 3.~ (1-K/(1+K)y, o4 _ / r_ /
+2(1+k) 7 yS ( —1+k(ln 7)' +(Iny)'—4(InS) )

—(1+K)(VA1-y)(InVE)' = (VZ+K)y(Iny) )\ |S,

1
- (1—2k)Vf(1—y)2—3k(k+y)2+§(1+k)37f(1’k)’(1+k)y5’4

—(1+K)(VZ(1—y)—k(k+y)A

XS = [VI(L=y)(k+y)(In V) +(Vi=K)(1-k=2y)y(Iny)'ly;, (4.14
|
where (Iny)" and (Invﬁ)’ are given by A only scalesy;, M4, andS,; because we are only consid-
) , ) , ering the linear perturbations. Hence, we can set the param-
(Iny)’=(InM)"=(In )" =3(InS)’, (419 eterA asA=1 without loss of generality.
ok 1ok Next, we consider the sonic poiat=zg,. At the sonic
(In v§)'=2 0 (Inp)’ —4(InS)’. 4.16 point, we require that the density perturbation is regular. It

1+k "1+Kk implies thatM 1, S;, andy; must satisfy the condition that

the right-hand side of Eq4.14) vanishes at the sonic point.
Then we examine boundary conditions which the pertur-Only for a discrete set of, there exists a solution of pertur-

bation quantities should satisfy at the boundaries. First, wgation equations that is regular both at the regular center and

consider the regular center= +0. At the regular center, the at the sonic point. Thus we can obtain eigenvaluesd the

definition ofy implies that the perturbation gfmust vanish  associated eigenmodes.

atz= +0, since the background solution already satisfies the

boundary condition in full order. Then we obtain B. Results of mode analysis

y;=0 (4.17 It is found that the system has a gauge mode with the
eigenvalue\ given by
atz=+0. From Eq.(4.13, it implies the following condi-
tion: 1-k
N=—. (4.23
M;+3kS;=0. (4.18

The mode functions are given b
Then, the perturbation solutions, which are regular at the g Y

center for fixed\, are parametrized by one parametefThe A
boundary condition at=+0 is written as M;= E(In M), (4.249
k Si=5(ns)’, (4.25

M= mA, (4.20
A !
1 yi=5(Iny)". (4.26
This mode corresponds to the following gauge transforma-
where tion:
Sp A 2KI(1+k

AEn1(0)=7(t=—l,r=0). (4.22 (~=(-D=ex(=1) (1+k), (.27
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TABLE IV. Eigenvalues\ for repulsive modes of self-similar  solution. Moreover, in Sec. Il B, we have discussed several
solutions. counterexamples against the convergence to the GRLP. It is
surprising that these counterexamples are exactly self-similar

k=0.001 0.008 0.01 0.03 or at least asymptotically self-similar in the neighborhood of
FF None None None None the center. It should be noted that non-flat Friedmann solu-
GRLP None None None None tion also approaches to the FF asymptotically in an approach
GRHA 9.39 3.88 8.75 7.62 to the big crunch. Therefore, we can conjecture thay
GRHB 5.43 5.10 5.02 4.27 cloud of a perfect fluid collapses in a self-similar manner in

562¢10  4.90<10  4.71x10  3.30<10  @n approach to the singularity
Next we discuss the implications of the convergence to

the GRLP in the context of the cosmic censorship. The cos-
r—r (4.28 mic censorship conjecture states that a naked singularity
does not form in the gravitational collapse which develops
from generic initial data with matter fields which obey a
A physically reasonable equation of state. For spherical col-
T—7— e el T (4.29 lapse, the convergence to the GRLP, which we have ob-
2 served in this paper, means that a naked singularity forms in
generic collapse for an equation of sta®e=kp for 0<k

or, equivalently,

A
z—z+e- el WAz (4.30  =0.0105, because the GRLP has a naked singularity for that
2 range ofk [13,27,2§.
The eigenvalues of physical repulsive modes for Here we should give the precise terminology of a naked

—0.001. 0.008 0.01. and 0.03 are summarized in Table 1vSingularity. In this article, we refer to a singularity that can
where\ e R is assumed. For the FF and GRLP, there existée seen b_y some observer as a naked smgular]ty.lln contrast,
no repulsive mode. On the other hand, the GRHA an naked singularity that can be seen from infinity is called a
GRHB have one and two repulsive mobles, respectivelyglc’ba"y naked 'singularity. Whether a naked singularity. is
Therefore, it is found that only the FF and GRLP can de-d!0bally naked is determined not only by the central region
scribe the final stage of the central region of generic coIIapsé?Ut also by the surrounding region. In fact, a naked smgul_ar-
Together with the existence of the “kink™ instability in the ity treated here can bg globally nakgd through th? matchmg
FF and the self-similar solutions which are not analytic at theOf the central region with an appropriate surrounding region.
sonic point[13,30, we conclude that the GRLP is the only Now that we have the precise tgrmlnolqu, we can discuss
self-similar solution that can be an attractor. For the GRHA,'[he consistency of our results with previous works on the
there exists only one repulsive mode. This solution corre-bl"‘“?k hole_cntlcal t_)ehawor. Al f'r.St sight, our results seem to
sponds to the critical solution in the black hole critical be—be inconsistent W'th the_formgﬂon of an apparent horizon
havior. Only when one parametgr which parametrizes ini- observed in numerical simulations showing the black hole
tial data, is fine-tuned around the critical valpé for the critical behavior. In fact, this is not the case. Since the con-
black hole formation, this solution has importance as a criti-/$'96NC€ IS only for the nelghborhooq of the_ center, we can-
cal solution. The critical exponent, which appears in the not say whether the formed naked singularity is locally na-
scaling law of the formed black hoie malsks o (p— p* )7 ked or globally naked. Because the formation of an apparent
is given by the inverse of this repulsive moléle ket 0 01’ horizon only implies the existence of an event horizon out-

the eigenvalue we have obtained agrees well with Maisoﬁide or coinciding with it, it does not exclude the formation
[22]. Since the GRHA solution has a repulsive mode, it is notOf ll?(t:r?"y narnt?g S|enngul;':1rr|1tiy ?t ttrr]SeC?Qter:.th re are three pos-
relevant for the behavior of generic collapse. In particular, € cos censorship 1s , then the ep

the final stage of the collapse can be described by the GRH,ﬁibi”tieS' One is. that dgviations from spherical symmetry
if the parameter isexactly fine-tuned, i.e..p=p*. The may play a crucial role in the nakedness of the formed sin-

GRHB has two repulsive modes. It is expected from thegularity. A!thoggh there ha_s been no syst_ematic study on the
mode analyses in Newton gravity], that the solution withn effeqt O.f violation of spherlcgl symmetry in inhomogeneous
oscillations has repulsive modes. In order for the solution gravitational collapse, Shapiro and Teukols®i] reported

with n oscillations to be relevant parameters must be fine- some numerical results that suggest the occurrence of naked

tuned. If the fine-tuning is not exact, the perturbation grOWSsmgulanty in the axisymmetric collapse of collisionless par-

into nonlinear regime. Then, it is expected that the coIIapsé'CleS' In contrast, '9“0“.“ aI.[3_2—34 and Nakacet al.[35].
will approach to the GRLP or disperse away. reported some kind of instability along the Cauchy horizon

associated with a globally naked singularity. The second pos-
V. DISCUSSIONS sibility is that the small value ok is not allowed for ex-
tremely high-density matter fields. However, it seems to be
First, we discuss the validity of self-similarity hypothesis. strange that the consistency of classical theory of gravity
The results of the numerical simulations and mode analysigestricts the equation of state for high-density matter fields,
strongly suggest that generic spherical collapse of a perfesthich is determined by a collection of various microscopic
fluid with smallk converges to the GRLP in an approach tophysics. The third possibility is that the fluid description for
the singularity. This means that the GRLP is an attractohigh-density matter may be responsible.
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Whether or not the cosmic censorship conjecture is trueample, the mass of the initially formed core, if we assume
the convergence to the GRLP strongly suggests that therbe realistic equation of state for dense gas.
can appear an extremely high-density or high-curvature re-
gion which can be seen by an observer. Even for such an
“approximate” naked singularity, it has been shown that
explosive radiation is emitted due to quantum effd&6— The results of the numerical simulations and mode analy-
43]. Furthermore, in a practical sense, if the curvature scalsis strongly suggest that the general relativistic Larson-
reaches the Planck scale, it should be regarded as a singul@enston solution is an attractor solution of spherically sym-
ity because it is considered beyond the scope of classicahetric gravitational collapse of a perfect fluid with an
general relativity. adiabatic equation of stafe=kp for 0<k=0.036 in general

Self-similar solutions we have obtained here approachelativity. Since a naked singularity forms in the general rela-
those in Newton gravity in the limik—0. Therefore, the tivistic Larson-Penston solution forOk=<0.0105, the analy-
important consequence is that critical phenomena associateik in this paper means the violation of cosmic censorship in
with the Hunter(a) Newtonian self-similar solution should spherically symmetric case. This will be the strongest known
be observed in the collapse of isothermal gas in Newtortounterexample against the cosmic censorship ever. This
gravity. These critical phenomena will be very similar to thealso provides strong evidence for the self-similarity hypoth-

VI. CONCLUSIONS

critical phenomena in the black hole formation in generalesis in general relativistic gravitational collapse.

relativity. Only one parameteay has to be fine-tuned closely
to the critical valuep*. In particular, some order parameter
A follows the scaling lawAe(p—p*)? in the near critical
regime, wherey is given by the inverse of the eigenvalue of
the only one repulsive mode of the Huntey solution. Un-
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