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Nonsymmetric unified field theory. 1l. Phenomenological aspects
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The nonsymmetric unified field theory of gravitation and electromagnetism developed in a previous paper in
vacuum is here supplemented by introducing the sources. The sources of the field, the matter energy-
momentum tensor and the electromagnetic current, are introduced explicitly into the Lagrangian providing a
close contact with elementary particle physics concepts in the linear approximation of the theory and an
explicit form for the conservation laws. The theory is shown to be free of ghost-negative energy particles and
tachyons as well. The equations of motion of test charged particles are established through the invariance of the
interaction Lagrangian.
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I. INTRODUCTION tromagnetic current explicitly into the Lagrangian. As
pointed out in I, our approach to the unified theory follows
In a previous pape€rl], herefrom referred to as |, a non- the procedure that we have adopted previo{fS]yto develop
symmetric unified field theory of gravitation and electromag-a nonsymmetric theory of gravitatiqipure gravitation with
netism has been developed in vacuum. The antisymmetrigo association of the antisymmetric part of the metric to the
part of the metriqg; 5 has been made to describe a masslesglectromagnetic field tenspmwhere the sources of the metric
spin-1 field obeying Maxwell's equations in the flat spacefield are the matter energy-momentum tensor and the matter
linear approximation of the theory, supporting then its iden-fermionic number current. The role of this current will be
tification to the electromagnetic strength tengqy;, as in  played here by the electromagnetic current.
Eqg.(2.6) below. By having this flat space Maxwellian behav-  The introduction of the sources is actually not in the spirit
ior of g, guaranteed the theory was shown to be free obf Einstein’s thoughts on his unified theory because these are
negative-energy radiative modes even when expanded aboplhenomenological quantities of non-gravitational character,
a Riemannian background space. The Einstein-Maxwelhs emphasized by him, which are being put into a theory
theory appears to lowest order about a general relativitfrom which, in principle, everything should follow. How-
(GR) curved space. The theory provides a new version ogver, we have done so, at least in the actual stage of the
Einstein’s unified theory2], by modifying the Bonnof3]  theory. With the sources at hand we shall then be able to
and Moffat-Boal[4] (MB) unified theories. Bonnor intro- study the particle content of the theory when going to the flat
duced an extra term in the Einstein Lagrangian in such a wagpace linear approximation, where field theoretical concepts
that the Coulomb force could be obtained in the equation obf particle physics are to be discussed, showing that it is free
motion to lowest order and MB offered later a different in- of ghost-negative energy particles and tachyons. Also, we
terpretation of the Bonnor theory by suggesting the identifishall be able to obtain the explicit form of the conservation
cation of the antisymmetric part of the metgg,s to the  laws, from which we shall be in position to obtain the equa-
electromagnetic field tensér,;, within a universal constant tion of motion of test charged point particles in the theory
p as in Eq.(2.6) below, instead of to its dual as Bonnor had which generalizes the Einstein-Maxwell equation of motion.
it, after Einstein. Yet, although the divergence Maxwell Therefore, in the present theory the proposed modification of
vacuum equation is present in the MB theory, the curl equathe Einstein Lagrangian is crucial: it permits us to obtain a
tion appears only in the limit of a vanishimgthis being only ~ massless spin-1 Maxwellian character g5 in the flat
a formal limit however. We could have it for fixeol as it  space linear approximation, to avoid the appearance of
actually is. The Maxwellian behavior g, was made pos- negative-energy radiative modes when expanded about a
sible by modifying the Einstein part of the Bonnor Lagrang- Riemannian background space and to prevent the appearance
ian, by keeping only that piece of the Einstein teng®f  of unphysical particles in the flat space limit, all at the same
which contains the symmetric part of the connection onlytime.
By doing so the Bonnor term end up to play the decisive role Lastly, the equation of motion of charged point test par-
in the curl-type field equation, determining then the appearticles is obtained, this being accomplished directly from the
ance of Maxwell’s curl equation in the linear approximation coordinate invariance of the matter interaction Lagrangian.
for fixed p. The paper is organized as follows. In Sec. Il we write the
Here we introduce the sources of the field, the phenombtagrangian, reviewing the origin of the field part of it as
enological matter energy-momentum-stress tensor and elestudied in |, and display the field equations in Sec. lll. In
Sec. IV we analyze the particle content of the theory. The
equations of motion of test charged particles are discussed in
*Email address: ragusa@if.sc.usp.br Sec. V and in Sec. VI we draw our conclusions.
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Il. THE LAGRANGIAN transposition, which is defined as the transformation that ex-
changes the indices of the metric tensor and the lower ones
of the connection, followed by an exchange of the two indi-
ces of any second-order tensor that depends on the metric
1 1 . ; :
L=— _gaﬁ(uaﬁ+r[a,ﬁ])+_g[aB]g[aB] +Lly. and connection. This symmetry property has the_ p_hyswal
16w p? meaning[2] that the same field equations are satisfied for
(2.2 positive and negative charges, the transformation taking one
i i _ ) i . into the other. One is then left with four out of an initial
The fII’Sj[ term is the field pa[tlof the Lagrangian ertj[en inl, seven parameters. Next, by requiring that the vacuum Max-
here with the factor (16) " We use the notatiorX \e|is equations should hold in the linear flat space limit the
= ﬁx whereg is the determinant of,; whose inverse yemaining parameters present in the field equations were all
g*” is defined by forced to have specific values, leading to the final vacuum
000,070, 5. 22 Shoun to be dernable ditcty from the e part of the La
y from the free part of the La-
grangian written above, in Ed2.1), by varying the corre-
sponding action with respect tg5*?, I'(.p andl’, . This is
UPPE) AP A pgaﬁ)p(%ﬂ)_ Efm)r(k”ﬁ) , what we shall do now in the present context, with the sources
’ ' (2.3 present. Let us note that &5, changes sign under transpo-
sition, invariance ot under this operation will demand that
symmetric and containing only the symmetric part of theJ« in the second term on the right of E@.4) changes sign.
connection, is the analogue of the usual Ricci tensor anGhis charge conjugation transformation materializes then
Lo=T{y= %(rgy—r;a) is the torsion vectolU .4 is actu-  Einstein’s assertion that Hermiticity reflects the symmetry of
ally that piece of the Einstein tensf®] which contains only  the theory in describing positive and negative charges.
the symmetric part of the connection. The second term in the We close this section with a few comments concerning
square brackets is the term introduced by Bonrmibéing  the nonsymmetric stress-energy. Together with the down-
here the inverse of hig) in his modification of the Einstein indices stressT,; we shall be working with the upper-
unified theory so as to have the Coulomb force present in thindicesT#” defined by the variation with respect ¢y, ,
theory. We have taken the multiplicative parameter'tg 5
of | with valued=1 without any loss of generality because
I',,, working as a Lagrange multiplier, will not appear in the Thr=—_— ¥ (2.7
field equations. Next,,, is the matter part of the Lagrangian V=9 99us
[6] modeled after the one of GR, containing here the gener-

alized nonsymmetri¢Hermitian) matter energy-momentum- 5 in GR. This second stress is related to the first one by
stress tensor ,; and electromagnetic curredit, as given by

We write the Lagrangian density as

Next,

1 1 TaB: gangﬁTMvu (28)
SLm=5\"0Tapdg™ + 7pV=gI%sT,, (24

which follows from the relatiorﬁgwlégaﬁz — 009, €

that is, sulting from the variation of Eq(2.2). It should be kept in
mind that Eq(2.8) does not imply a rule for lowering indices
2 4oLy because this operation is not defined for a nonsymmetric
Taﬁzfg 5g°F (2.9 metric. A better name for the upper-indices stress tensor

would probably bes*” but we shall use the saniefor both
tensors. Notice that the inverse reIationTt’$V=g“'5'g“”Taﬁ
nd that both have the same tr@égTuﬁzg v 17" Notice
Iso that Eq(2.8) preserves the Hermiticity of both tensors.
Now consider the situation in which we are dealing with a
perfect pressureless fluid, as in fact we shall when studying
the equation of motion in Sec. V. Then it is natural to take
for T#” the symmetric dust-like energy tensof§”
=pu®u®, p being the matter rest densiy anfl the velocity.
Otap;=PFap, (2.6)  Actually, as we shall see, once the. symmetry of this tensor is
assumed its form will be determined by the conservation
a possibly consistent procedure. It was built out from condaws. Thence, Eq(2.9) tell us that even for this symmetric
sidering in the first place the most general form of thetensor,T,z will have a symmetric and an antisymmetric part
second-order tensor, containing at most first-order derivaas well, both involving the symmetric and the antisymmetric
tives and quadratic products of the affine connection, desigpart of the metric. Another situation in which a nonsymmet-
to play the role of the Einstein tensor, satisfying Einstein’sric T,z appears is when one consider Lagrangians of matter
condition of Hermiticity[2]. This means invariance under fields in the new scheme, oriented by those of GR as a guide

andJ®=(4/p\/—g) 8Ly /8T, . The second term in E42.4)
has the same form of the usual electromagnetic couplin
term of GR, —J%6A,, if we recall the relationA,
=—4"'pI', derived in | for the vector potential, when
d=1.

We recall that the vacuum field Lagrangian was built out
so as to make the identification gf,4 to F 5z, defined by
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but with a nonsymmetric metric. We shall do so in Sec. IV
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considering the Lagrangian of the massive charged boson

field as a working example.

Ill. FIELD EQUATIONS

Variations of the actionfL d*x with respect tog®?,

I'l.p, andl’,, yields the field equations. The former leads to

Uapt Tiag)— Kap=87Tag, (3.1
where
?a,B:Ta,B— %gaﬁ’Tv (32)
with T=g**T 5, and[3]
1 [1mv] 1 [mv]
Kaﬁ:E g[aﬁ]+ga#g gvﬁ+ Egaﬁg g[/.w] .
(3.3

The symmetric and antisymmetric parts of E8.1) are

Uap—Kap)= 877?(013) (3.9
and
Uiap = Kiap1=87T(ap) » (3.5
which, upon taking its curl, gives
K[“Bv'y]:_SW?[aﬁ,'y] . (36)

Here we have used the indicatioX|,s ,.j=X[ag],u
+ X ual, g X(gu),« for the curl of X, . Of course, the curl
of I't, g is zero. The variation with respect ﬂb{aﬁ) will
give the same result as in |,

g(aﬁ)“y_i_ g(ao')l—‘:(g‘yo_) + g(ﬁ”)rgyo) — g(aﬁ)rgo"y) =0. (3 7)

Next, as theI', term of Eq. (2.1) can be written

(16m) ~'gl*Al ,T", up to a total derivative, the variation with

respect td", gives

1
_g[aﬁlvﬁ: —47]°,

o (3.9

Efaﬁ):%g((r)\)(sa)\,ﬁ+S)\B,a_saﬁ,)\)+Qgﬁ' (3.9
where
o 1 (oN) NN YN S
Qaﬁzz(g saﬁ—éaﬁﬁ—5a5ﬁ) Ina (3.10

A

ands,z, symmetric, and with determinaais the inverse of
g(*#), as defined by

(3.11

When the antisymmetric part @f,; vanishess,; will be
equal tog, ; and the right-hand side of E(3.9) becomes the
usual Christoffel symbol, as it should. The symmetric and
antisymmetric parts oK,z are, from Eq.(3.3),

Saﬁg(a),) = 557

1
K(aB):E a9 1908 * 989" 90
1 [uv]
+ 599" 1w (3.12
and
K =i + [wr] + [uv]
[«f] o? 911 T 99" 90 T a9 91
1 [pnv]
+§g[a5]g O | - (3.13

This completes the discussion of the unified theory with
sources. The field equations could also be obtained from the
general considerations developed in I, by requiring that the
usual Maxwell inhomogeneous divergence equation and the
vacuum curl equation should be present in the flat space
linear approximation of the theory.

We briefly mention now the linearization of the field
equations about a Riemannian background with megfjs:
as discussed in | in vacuum. This can be achieved by the
expansion

(0)

gaﬁzgaﬁ—’_g(oz]g! (314)

vyhergg% is the perturbation. The inverse gf,5, as de-
fined in EQ.(2.2), is then

which is Maxwell's inhomogeneous generalized equation. (3.195
Equations(3.4), (3.6), (3.7), and(3.8) are the field equations

of the theory. Equatiof.6) gives in vacuum the generalized where the sub- and superscripts are moved by the initial met-
homogeneous Maxwell equation. Inside matter this equatioric tensorgg)g, that iS'g(l)aﬁzg(o)aﬂg(O)BVQ(lg. We then
gets a coupling to the antisymmetric part of the energyhave g(##) =g« —g)(«B) gnd g[am:g(l)ffw]. Thence,
momentum tensor. As discussed in | for the vacuum case, itb first order Eq(3.8) reads

a first-order expansion about a Riemannian space the field
equations reduce to the corresponding equations of the
Einstein-Maxwell theory which, we briefly discuss at the end
of this sectionA fortiori they reduce to the usual Maxwell's
equations when expanded about a Minkowski flat space.
Equation(3.7) can be solved fof'(, 5 . We get[1] On the other hand, as E(B.13 gives

gaB: g(o)aﬁ_ g(l)ﬁa,

1
6( [ giOig(O)aiLg(O)UVgEi-L)V])’O_: — A [ gim‘]a.
(3.1
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2 nonlinear equations involving ,, . It is to be noted that in
Kins=—59(ns (3.17  itself thisF,, is expected to be related nonlinearly to the
P Reissner-Nordstra F 5.

In the next section we shall study the particle content of
the theory by analyzing the form of the propagator. This will
2 be obtained from the expansion of the Lagrangian to second
F[a 5 gﬁ)ﬁ]:STfT[aﬂ] , (3.189  order about a Minkowski flat space, where particle physics

2 concepts will be discussed.

we find that Eq(3.5) yields

or IV. PARTICLE CONTENT: A GHOST FREE THEORY

87T (g, - (3.18b In this section we shall study the particle content of the
theory through the study of the propagator. For that purpose

The conclusion from E(3.16) is then thag(l) satisfies the we shall expand the Lagrangian in E.1) to second order

inhomogeneous Maxwell equation of the Einstein-Maxwellabout a Minkowski flat space with metrig,z=(1,—1,-1,

theory and Eq.(3.1809 givesin vacuumthe Maxwell curl —1), by writing

equation. They are then recuperated with the identification of

gi+) to the electromagnetic field strendi ; of that theory,

(1) _
lapn =

gaﬁz 77a/3+ha/3! (41)

where|h, 4/ <1. The inverse of this equation is

g “ pFa , (319
{e1 = PFap geF= peb_pba, 4.2

corresponding to the first-order part of Eg.6). i i
We end this section by writing the relation betwegfif! ~ Where the subBand Bsuperscrlpts are moved(b% the metrlc
andg(as=PF.s, showing then the explicit form of the in- 7ag. that is, h7= 7 “7°"h,,. Notice thatg

homogeneous equation that generalizes the corresponding? h#*) and g[aﬁl htesl, TO second order thel term W'”
Maxwell first equation. We havi] be identical to the result of GR. This can be checked by

direct calculation by using1] the first-order result coming
1 1 from Eq.(3.9),
glef=5 | 9sa™ @ gpu + 5@8“‘3“”9[MV]), "
(3.20 Tty =27 (Nap) ot Negpy .o Neap)p) (43
as in GR. Adopting the conventioa,b,= n”ﬁaabﬁ and

wherea®” is the inverse ofy,4) as defined by writing h=h¢_, one finds, for the second-order partlaf

a*Pg oy =05, (3.21) L=Lgp+L’, (4.4)

Os= det(g(aﬁ)) andga=det(g;,4), Which is given byyg,  Where
=8 lgabn g[amg [uv] - The determinants are related y

—gs(1+ sa*’a%fg (na]9rvp) T9a. If ga#0 the second
term inside the parentheses of £§.20 is equal togAm“B
where mAB is the inverse ofy;,gz as defined bym«# Oay]
—5‘; The explicit form of the generalized inhomogeneus
equation is then

1 (1 1
Lefﬁ(zh(m,xh(wxﬁ Ehvﬂh(#a)v“_ Zhv“h"‘

1
~ 5N Tap) (4.9

= 5 Nwa.aNup).8

( 1 is precisely the Lagrangian of GR and, up to a total deriva-

tive
— gsaaMaBVF Y ’

L'= l(hr+ (aph )+1FJ
1 16 [aBNap] P
+ Epzsvﬁp”Fwas“ﬁWFW)) p?
B 1
+ — .
=—4m\-gJ% (3.22 2 "ast Tias 49

where where ha=h[a,3]'3. The graviton spectrum, which is con-

tained inLgR, is known to be free of ghosts so we consider
9=0s(1+3p%a*"a*fF , F ,p) + 64 p*(e“PH'F 4F )% only L'. Let us note that if it were not for the 1ask;, 4,

term of Eq.(4.6) the theory would be obviously ghost-free
On the other hand, the explicit form &, 5 will result from  because.’ would be just that of electromagnetism in first
the substitution of Eq3.20 into Eq.(3.13), to be then taken order form, as discussed in vacuum in |, but now with the
into the curl equation Eq(3.6). We are then facing highly current present. In fact, without Iit; ., 5; could be eliminated
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in favor of I';, 5 by using Eq.(3.183 to yield Maxwell's andP(17) is the 2<2 matrix corresponding to the two spin
Lagrangian in second order form with the current present—1" fields hj;; andA;, with elements

Going back to ourL’, we follow the study of the ghost

properties of generalized theories of gravitation of Mann andP4(17) ,,05= 3( 0,400 = 0,50,0= 0,,0,51 0,50,,),
Moffat [8] who followed the analysis of Sezgin and Nieu- (4.159
wenhuizen[9] on higher-derivative gravity, extending the

results of Neville[10]. To keep in close contact with the - 1
notation of Ref[8] we put P1A17) pva= W(kﬂﬂa—k,ﬁm), (4.15h
1 1
Zpra:Aa; T[aﬁ]ZET[a/B] ' (473 _ _
PZl(l ),uaB:PIZ(l )aﬂ,u.v (4150
and
and
C= ! ; D= ! 4.70 Poy(17),,=6 4.15
_mv - 87Tp2 ( . ) 22( ),ua_ pa ( . d
Here
ThenL’=Lg+Lyy where
! 1 kakﬁ
LO:ChaAa_ EDh[aﬁ]h[a,B] (48) 60(,8: 7]0(,3—?, (4163
is the free part of the Lagrangian and
and
LI(A:AaJa+h[a,B]T[a,B] (49) k k
aB
is the matter interaction part. Its form depends on what mat- Cap=" 7 - (4.16b

ter field the fieldsh;,z and A, are taken to interact with.
After discusssing the ghost properties of the propagator WE,
shall consider the massive charged pion field. The free part
of the Lagrangian in Fourier, momenturk)( space is

terms of these quantities, EG.10 can be written as

1
LO:E a(1+)th.V]P(1+)MV‘VBh[0‘ﬁ]

Lo=3 iCkﬁ(hFaﬁ]Aa_Azh[aB])_ 2 DhE‘aﬁ]h[O‘B] '

(4.10
L +2 A1) FRPml(17)F,|,  (4.17)
which is written under the forrh10], m.n
o1 . where the coefficients are
Lo=7 2 FAOaeFe, (4.10)

a(1t)=-D, (4.183

where in our casefa=(hy,,),A,) and FB:(h[aﬁ,l Aa), next, with the indication (I) being implied,
Oag being the wave operator. The ghost properties are con-

tained in its inverse. Next one uses the spin-projection op- a;;=—D; axn=0,
erator formalism{11] and invert the wave operat@,g to
get the saturated propagator, 1
a12: - a21: |C Ekz,
= —Ai‘é Sa0n5Se, (4.12 (4.18

, anda(0*)=0. The propagator for each component is ob-
whereSa=(71,,,J,)- In Appendix A we show how to get tained by inverting the nonzero coefficient matrices in mo-
the saturated propagator in such a simple situation by using &entum space. The saturated propagator is then, from Eq.
more down to earth approach of semi-classical field theory(4_12)'

offering in this way a little more insight into the problem. To

go on, ash;,z decomposes into a spiil~ part (hy;;) and = _a—1(1+)7[ P(1%) .
es : . pv] prapTlap]

a spin-1" part (hj;;;), and asA , decomposes into a spin

—17 part (A;) and a spir-0" part (A,), the relevant spin- _ —1/9- -
projection operators with whic® g is to be constructed are % Apnn(17)SnPma(17)Sy, (4.19
(8]
and the coefficients are
P(1+)/_Lva,B: % (0/1&01),8_ 0va0,u,8)1 (413 1
“11+y=— _ —
P(0*) ap=wap. 4.14 a (1)="p, (4.203
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and case$ which with C and D make a set of four constants
which assume values depending on the type of theory con-
2D sidered. Then, with the coefficient of the first term satisfying
W' the conditionA>0 it is concluded that the Bonnor term can-
not be present because it leads to a ghdsC>0) or a
i tachyon(if C<<0). This the case of the Bonnor and Moffat-
ag; = —a2‘11=6 2/K?. (4.20h Boal theories as it can easily be checked. Then, without the
Bonnor term one is back to the Einstein Lagrangian, leading

From Eq.(4.203 we see that the spin‘lsector does not then to a spin-0, scalar, character for,g , as it has been

propagate: only a contact term appears here. Next, the critéown by Moffat and Manfi12]. This type of theory would
rium for freedom of ghosts in the massless spinskctor is then doubly damage a unified theory of gravitation and elec-
that [9] the residue of the trace of the matmx X(17) at tromagnetism: no Coulomb force and no Maxwellian spin-1

k?=0, which is equal to PC~2, be negative: and that is character forh;,g . In the present theory those two coeffi-
exactlly what we have. because. from E4,7b) ' cientsA andB are absent and that is why we could keep the

Bonnor term, which actually turn out to be responsible for

“1_Q. -1_
a;7=0; ay=

2D the desired Maxwellian behavior o,z in vacuum.
—5 = 4. (4.21 We end this section by considering a possible structure of
C the sources terms, discussing the massive chatgateson

Therefore the theory is free of tachyons and ghosts. Wr|tterf1'eId as a working eX‘.”‘”?p'e- We shall assume that th? La

: . grangian has a form similar to the one of GR but now with a

in full, the propagator is ; : X : .
nonsymmetric metric, with a possible extra nonsymmetric

term and with the vector potenci#l,=—A,, from Eq.

= _ZWpZT[MV]P(1+)MV04BT[C¥B]_ 277# o] (4.79 and the remark after E@2.5), that is,
k
7T|p LM: V_g[g(MV)(DM¢)*DV¢
X(kvapa_kueva)‘)a+ 7Ja(kva,ua_k,u0va)-r[,uv] —|—|g[ﬂV](DM¢)* DV(b_mzd)* d)], (424)
A where

D,=d,tieA,=d,—ieA,, (4.295
We call attention for some facts. First, the two middle terms . ) o
on the right of this last equation do not cancel since theand with the extra nonsymmetric term havingietactor for

source terms attached to the léfight) belong to the left the Lagrangian to be real. Before going_ on let us calculate
(right)-hand side of the propagator. For instance, if we havéhe stress tensor of E2.5) and the electric current. We get

the scattering of particles 1 and 2, and if we attach the left

source terms to 1, the right ones will be attached to 2, that is, Top=[(D,¢)*Dgop+a+ ]

we shall have the two combinationd(,,;J,, and Lil(D - b)*D ach—

—J14 T2 - Consider now the last term. AkgJ;=0, (D))" Dpd—acp]

which is the equation of continuity ik-space, that term can —gaﬁ[g(#v)(DM¢)*DV¢

be written as 4rk2J,J, on account of Eq(4.163. Well, . . -

this is just what we obtain from field theory in lowest order, +ig*"(D,¢)*D,¢—mgp*¢], (4.2

as it should. The discussion in Appendix A will make all ] ] ]
these things very clear. Finally, by again making use of EqWith & symmetric and an antisymmetric part. On the other
(4.163, the propagator can be simplified to hand, the currend“= +(1/J—g) oLy /A, is given by
2 J*=—ieg*I[(D,$)* ¢~ ¢*D ]
H: _27Tp2T[MV]< WVB_ _Zka,B)T[,U'B] [pa) . * * :
k +eg#“[(D,d)* ¢+ ¢*D, o] (4.27)

_ 4mip (Trank,d = 3K, Troot) These are the quantities to be used on the right-hand side of
2 [av] a a™v ! [av]
Egs.(3.1) and(3.8).
To lowest order the antisymmetric part of E£¢.26) is

4
T e 423 Trag=1(04 8" Igd— ), (4.29
One remark before we continue. The free part of the Laand Eq.(4.27) gives, to lowest order,
grangian studied ifi8] contains in the antisymmetric sector

two additional terms with coefficientd andB (here upper- Jo=—1e(d,0* d— d* d,0). (4.29
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These are the quantities to be placed on the right-hand sidend
of Eq. (4.9. Notice that from Eq.(4.24), the part of the
interaction Lagrangian containing the antisymmetric sector C%y= 32" (9(80),yt Y(y0).6~ Y(57).0) (5.7
is, to lowest order,
. . . ) . is the Christoffel symbol formed with the symmetric part of
L'v=—i1e(d,¢" = ¢* d,P)A,+in,, (0,8 4,¢), the metric, with g, referring to the background non-
(4 Riemannian field where the test particle moves. To first-

which, on account of Eqg4.28 and (4.29, reproduces Eq. order in an expansion about a Riemannian background with

. ; ) i+ (0 ; ;
(4.9), as it should. In Appendix A we write the full saturated Metric g%}, Eq. (5.5 becomes the Einstein- Lorentz equa-
propagator for thisr-scattering process. tion of motion. This is so because in that limit we have, from

Egs.(3.17 and(3.19, pK{Ly;=2F .5 anda®’— g0,
V. THE EQUATION OF MOTION OF TEST
CHARGED PARTICLES VI. CONCLUSIONS

From the coordinate invariance of the field Lagrangian We have developed a unified field theory of gravitation
densityL,=L —Ly in Eq.(2.1), we obtain the four general- and electromagnetism with sources by introducing the matter

ized Bianchi identities energy-momentum tensor and the electromagnetic current
B B oB _ explicitly into the Lagrangian. This is actually not in the
(@7Crp+ g7 Gpr) o T 9%\ Gap=0, (5.1 spirit of Einstein’s thoughts, because these are phenomeno-

logical quantities of non-gravitational character as by him

from the coordinate invariance of the matter part of the La__emphas_lzed, which are being put into a theory from which,
in principle, everything should follow. However, we have

grangian density.,, in Bq.(2.4), and using the fact that the done so at least in the actual stage of the theory, in order to

variation of a vector under the infinitesimal coordinate trans-__, . . . . )
formation  Xx*—x'*=x%+g%(x) is oT,=—g" T get in contact with the field theoretical concepts of particle
- a at N\

) . . ' physics, when going to the linearization of the theory, and in

val';g};\sla\,/v\éve get by direct calculatiofi3] the four conser- order to get an explicit fo_rm for the conservation laws. We
could then study the particle content of the theory, showing
(gaﬁT)\B+ gﬁaTﬁ)\) +geh \Tas— Pl B]J,B: 0, that no unphysical particles appear: the theory is shown to be

‘ ‘ ’ (5.2) free of ghost-negative energy particles and tachyons.

The equation of motion of a test charged particle has been

which can also be obtained through the use of the field equaestablished through the invariance of the interaction La-
tions in the Bianchi identities. In terms of the upper-indicesgrangian. It is found that the deviation of the geodesic path

whereG, z;=U, 3~ K 3~ 30, 3(U—K). On the other hand,

stress tensof“” we get, from Eqs(2.8) and (2.2), of the non-Riemannian space is due solely to the gravito-
op ba op p electromagnetic contribution coming from the Bonnor term.
Ian T gt Ona T gt 2[aB N T —pI'py 4 37=0, In the first order of approximation about a Riemannian space
3 the equation goes into the Einstein-Lorentz equation of mo-
where tion.

In a forthcoming paper we shall study the solution of the

=1 _ field equations for a pointlike charged source with a spheri-
LaBA]=2(0an5F Onpa™ Gapn): -4 cally symmetric field. Once we have this solution we shall be
Following the method of Papapetr¢li4], one can now es- able to get the explicit form of the equation of motion of a
tablish the equation of motion of test particles. We will quotetest charged particle and thus determine the deviation of
here only the final result and give the details in Appendix B.Coulomb’s law in the new theory. This deviation should de-
There we show that by using Papapetrou’s method there igend on the universal parameterand could probably be
no need to assume the full, dust-type, formTdf but only ~ used to determing to some degree.
that it is symmetric, its form actually being determined by
the method itself. On the other hand, if one does assume the APPENDIX A: THE PROPAGATOR FROM SEMI-
dust-type form, the calculation is straightforward without CLASSICAL FIELD THEORY
any need of the method, as it has been done by Fbgkfor ] ] )
a point mass in the case of GR. The equation of motion of To illustrate the method let us consider electrodynamics.

the particle with massn and chargee is The Lagrangian density is

AU | o ypyr—SP as y L= S E Rt (A1)
F_’_CBYU u =ﬁa K[By]u , (5.5 167 MV my ints
whereu®=dX*/dr is the velocity of the particlea®” is the ~ with the same indices convention of Sec. IV, whétg,
inverse ofg,,, as defined by =A,.~A,,and
a“’g(,5= 84, (5.6) Line=—J,A, (A2)

084019-7



S. RAGUSA PHYSICAL REVIEW D 63 084019

is the interaction Lagrangian density. The Euler-Lagrangevhere, with the indication
equation gives-,,, ,=—4mJ,, which leads to

K=p1—P1=P2— P2, (A12)
OA,=4m), (A3)
for the vector potential satisfying\, ,=0. Equation(A3) H:Jlﬂ(o)d'_w\]zﬁ(o) (A13)
can be solved by the usual Green'’s function method. One k2
writes
is the saturated propagator of quantum electrodynamics to
_ , de, lowest order. The propagator itself istk ™2, in momentum
Au(x)= | DOGX)IL(x")d™", (A4) " space. To come back to the whole discussion, what we are

saying in a short way is that we are taking E42) at point
where the Green'’s functioB, the propagator, satisfies x with J ,(x) as the transition current for particle 1 and with
A, (x) representing the potential due to particle 2, that is,
OD(X,X")=4m8(x—x") (A5)

P i(p1—P1)X
or, in its integral form, Lint=—J1,(0)e"P17P"A (X), (A14)

. where, from Eqs(A4), (A6), and(A9)

(2m*

1 ,
D(x,x')=— f — e 19 dAq, (AB)
q

41 .
Agu(X)=——J5,(0)e"", (A15)
as it can easily be checked by applyingto it. (It is to be K
understood the Feynman definition of the polg$—q?
+ie, when going to the semi-classical argumenBbstitu-
tion of Eq. (A4) into Eq.(A2) gives, for the interaction La-
grangian itself,

with k=p,—p,. Notice that, with Eq(A9), this result also
follows directly from Eq.(A3) calculated at poink’ [that is
O'A,(x")=4mJ,(x")], after taking the final answer at
pointx. Substituting Eq(A15) into the previous one leads to
Eq. (A11) with IT given by Eq.(A13).
f Lintd3X=f f 3L (X)D(X,x")J,,(x")d*x" d3, Now, all this can dramatically be abbreviated if we work
(A7) directly in momentum(k) space. Just notice that in mo-
mentum space the interaction is, from EJA2),
showing the current-current interaction structure mediated by-J1,(0)A2,(0) while Eq. (A3) gives —k>?A,,(0)
the propagator. Following Mier [16] let us see how one can =4wJ,,(0). By eliminatingA,,(0), one ismmediately led
get the scattering amplitude of two charged particles, 1 antP Eq. (A13). If, for instance, we have Dirac particles one
2, in lowest order of perturbation theory by using field the-writes the currents in terms of spinors depending on the mo-
oretical semi-classical arguments.pif andp, (p; and p5) menta a_nd the calculation to ob_tain_the cross-section goes on.
are the momenta of the initigfinal) particles we associate ~ Consider now our Lagrangian in E¢.6). The Euler-
each current to each particle and write Lagrange equations fd, 5 andl', are, respectively,

J (x)=J: (0 ei(Pi—Pl)X A8 1 2
L(x)=31,(0) (A8) E(raﬁ_rﬁ'a):Eh[aﬁﬁaﬂ[aﬁ] (A16)

as thep,— p; transition current for particle 1 and
o ) and
J,(X')=3,(0)e' P2~ P2 (A9)
h[aﬁ],B=_47Tp‘]Dzl (Al?)
the p,— p5 one for particle 2. The signs in the exponentials
are chosen to give the right energy-momentum conservatiowhich are, respectively, Eqé3.5) and(3.8) to lowest order.
for the process, with the exponentials proportional toContracting the first one of these equations wigrand using
exp(—iEt) for destruction of a particle and exgf) for cre-  the second one we obtain the equation gy, usingI's 5
ation, as in usual quantum mechanics for the transitions be=0,
tween two energy levelgwe are using units witth=1).
With these prescriptions the probability for the transition

1
(p1.p2)—(py.P3), or scattering amplitude, i€6] Ore= _167T(EJ“_T[“5]'ﬁ>' (A18)

. Solving this we can obtail;, 4 from Eq. (A16). Lets go
S=i f Lin()d*. (A0} how to the semi-classical aréuﬁr]nents as illustrated in the elec-
tromagnetic case to get the propagator, working directly in
Using Egs.(A6), (A8), and(A9) in Eq. (A7) we get momentum space. The interaction Lagrangian for the scatter-
ing of particles 1 and 2 is, from E¢4.6) with sources due to
S=i(2m)*8(py+ps—p1—p2)1I (A1) particle 1,
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Lint=12 PI1a(0)T 2,(0) + 3 T1[ap(0)ho[0p(0). Egs. (3.9 and (5.3). We then consider an extended, small,
A19) system with reference poirX® with velocity u*=dX*/dr
and we shall take moments @# and J* aroundX®. By
The solution of Eq(A18) is, for the torsion due to particle 2, demanding that the dimensions of the system tend to zero at
the very end of the calculation, this point will give us the
world line of our pointlike charged particle. For such a
simple system, we shall assume ti&€ is symmetric with-
out fixing its form however. The method will give it to us.
Using this result in Eq(A16), the field due to particle 2 is Then the first two terms of Eq(5.3 can be written
then ZQ(M)T“ﬁ,ﬁ. After contraction of the equation with the in-
versea’ to d(on) » as defined in Eq(5.6), we obtain

16w

20~ k2

( pJ2“+ |kBT2W])(0) —ikc (A20)

Norap (0)=—47P%} Topup + —

k2

TP 4+ CogTF— S pa’™ I, 53#=0, (B

where, because of the symmetry Bf”,

1 .
X kB BJ2a+IkyT2[a7]> - 0[<—>,8) ] .

Cgﬁz %a(r}\(g(a)\),ﬁ—’_g(ﬁ)\),a_g(aﬁ),)\) (B2

A2D) is the Christoffel symbol formed with the symmetric part of
Substituting Eqs(A20) and (A21) into Eq.(A19) and using the background metric only. We shall need also the relation
Eqg. (A10) yields the saturated propagator

(x“T”ﬁ),ﬁ= T+ x“T”B,B . (B3)
= 47731&32“ 4mip — (K T1ganjJ2a— J1aKn T2[ar]) Next we writex®=X“+ 6x* and neglect first-order moments
k? 2 of T, We then integrate both Eq&81) and(B3) over the
K three dimensional space for constdntSpace divergences
B integrate to zero so that we get, from EB1),
—270%| Tatan =27 Tt | Tatas . (A22) 0 get, from &G

d 1
T d3+CJ4(X fTaBd3 —5p(@”™r X
with the zeros being implied, which reproduces E23. In dtf X+ CapX) X=5P@7 T g)(X)

the case of the chargettmeson scattering process discussed

in Sec. 1V, thep,— p, transition current for particla=1,2 xf JAd3x=0, (B4)
is, from Eqg.(4.29 in momentum space,
(! / where we have already taken the Christoffel symbol and the
= +
Yoo 0)=€(Payt Paa) $a(0) ¢a(0). (A23) I' term at the reference poit®(7). From Eq.(B3) we
and the corresponding transition stress is obtain
Tafap =1 (PhaPap— @ B) $4(0) 4(0),  (A24) %(x J To0 g3 | = f Tow dPx+ X jt J T00 g3,
where ¢,(0)=(27) %¥3(2E,) Y2 with E,=(pZ+m?)*?2 (BS)

[16]. These are the quantities to be subst|tuted on the right of
Eqg. (4.23 on the left-hand side source terms fo=1 and
right-hand side source terms far=2, for the w-scattering

where, againx® inside the integrands have been put equal to
X%. From here we get

process at hand.
U“J ToO d3x=J To* d3x, (B6)
APPENDIX B: EQUATION OF MOTION
OF TEST CHARGED PARTICLES where,v “=dX*/dt. Puttingo=0 in this equation we get
We shall describe the motion of a charged test particle
moving outside massive bodies. Then the energy-momentum f T00g3 f TO0a g3 (B7)

tensor and the current of the massive bodies vanish at the
position of the test particle and near it. Therefofé? and Therefore, due to the symmetry aF®, Eq. (B6) can be
J* in Eq. (5.3 reduce to those of the particle. Also, this \yritten
being a test particle we shall neglect its contribution to the
metric and torsion vector. Therefogg; andI’,, in Egs.(3.8) v 13 v ol ~0043
and(5.3) refer only to the background field produced by the f T7%d*=0v" IT d°x. (B8)
massive bodies.

Following the moment method of Papapetrdis], we  Both these last two relations are to be substituted in(Bd4).
shall derive the equation of the charged test particle fronBefore we do so, we shall prove the relation
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f J*d®x=ev®, (B9)

wheree s the charge of the particle. For that purpose we first

integrate the equation of continuigf, =0, which follows
from Eqg.(3.8), and then the reIatiomf“Jﬁ),B=J“. From the
first integration, we obtaimle/dt=0, wheree=[J°d3x is

PHYSICAL REVIEW D 63 084019

which is the equation of motion, in E¢5.5. Notice now

that Eq.(B8) can be written
u"f T d3=mu*u’. (B13)

Thence, callingo the rest state mass density of the system,
defined by

the charge of the particle, which is then a constant. Then by

integrating the second one and puttirgj=X“ inside the
integrand we are led to EqB9). Now we substitute Egs.
(B8) and(B9) into Eg. (B4), multiply the resulting equation
by u®=dt/dr and notice thati®v?=dX/dr=u?. After us-
ing the relationl’|, 5 =K,z , Which follows from Eq.(3.9)

outside the massive bodies where the particle moves, we g%is gives

d B 1 A B
E(mu”)erC‘;Bu“u —Eepa" Kpngu”=0, (B10)

where we have used the indication

1
m= —Of T%d3x. (B11)

u

Contracting Eq.(B10) with g(,,)u® and usingg,,u“u”
=g,,u“u’=1 together with Eqs(B2) and (5.6), we get
dm/d7=0. We then conclude thah is a constant, which we

(B14)

m=u°f pyV—g dx,
we can write

T =pu®u?. (B15
in fact, the form(dust-like of the energy-
momentum tensor of the system.

We show now that if we assume E@®15) together with
the corresponding relatiod®= pu® for the current, where
pe is the rest state charge density, the calculation is straight-
forward, as it has been shown by FJd&] for a point mass
in the case of GR. Taking these results into Hgl) and
using again the relatiof[, 5 =K,z , outside the massive
bodies, we get

(pu’uP) g+ C7apuuP— 3 pa™Kj, g pel”=0.
(B16)

identify with the rest mass of the particle. Then going backBy making use of the equation of continuity for the matter

to Eq. (B10) we finally get

du”

ep N
g, Cupu =5 a"Kpgu?,

(B12)

part, (puf) ;=0, the first term becomespufu’ 4
=pdu®/dr. For a point particle atX(t) one hasp(x)
=md[ x— X(t)] andp(x) =ed[ x—X(t)], and upon integra-
tion the equation of motion, Eq4B12), follows.
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