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Nonsymmetric unified field theory. II. Phenomenological aspects
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The nonsymmetric unified field theory of gravitation and electromagnetism developed in a previous paper in
vacuum is here supplemented by introducing the sources. The sources of the field, the matter energy-
momentum tensor and the electromagnetic current, are introduced explicitly into the Lagrangian providing a
close contact with elementary particle physics concepts in the linear approximation of the theory and an
explicit form for the conservation laws. The theory is shown to be free of ghost-negative energy particles and
tachyons as well. The equations of motion of test charged particles are established through the invariance of the
interaction Lagrangian.
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I. INTRODUCTION

In a previous paper@1#, herefrom referred to as I, a non
symmetric unified field theory of gravitation and electroma
netism has been developed in vacuum. The antisymme
part of the metricg[ab] has been made to describe a massl
spin-1 field obeying Maxwell’s equations in the flat spa
linear approximation of the theory, supporting then its ide
tification to the electromagnetic strength tensorFab , as in
Eq. ~2.6! below. By having this flat space Maxwellian beha
ior of g[ab] guaranteed the theory was shown to be free
negative-energy radiative modes even when expanded a
a Riemannian background space. The Einstein-Maxw
theory appears to lowest order about a general relati
~GR! curved space. The theory provides a new version
Einstein’s unified theory@2#, by modifying the Bonnor@3#
and Moffat-Boal @4# ~MB! unified theories. Bonnor intro
duced an extra term in the Einstein Lagrangian in such a
that the Coulomb force could be obtained in the equation
motion to lowest order and MB offered later a different i
terpretation of the Bonnor theory by suggesting the iden
cation of the antisymmetric part of the metricg[ab] to the
electromagnetic field tensorFab , within a universal constan
p as in Eq.~2.6! below, instead of to its dual as Bonnor ha
it, after Einstein. Yet, although the divergence Maxw
vacuum equation is present in the MB theory, the curl eq
tion appears only in the limit of a vanishingp this being only
a formal limit however. We could have it for fixedp, as it
actually is. The Maxwellian behavior ofg[ab] was made pos-
sible by modifying the Einstein part of the Bonnor Lagran
ian, by keeping only that piece of the Einstein tensor@2#
which contains the symmetric part of the connection on
By doing so the Bonnor term end up to play the decisive r
in the curl-type field equation, determining then the appe
ance of Maxwell’s curl equation in the linear approximati
for fixed p.

Here we introduce the sources of the field, the pheno
enological matter energy-momentum-stress tensor and e
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tromagnetic current explicitly into the Lagrangian. A
pointed out in I, our approach to the unified theory follow
the procedure that we have adopted previously@5# to develop
a nonsymmetric theory of gravitation~pure gravitation with
no association of the antisymmetric part of the metric to
electromagnetic field tensor!, where the sources of the metr
field are the matter energy-momentum tensor and the ma
fermionic number current. The role of this current will b
played here by the electromagnetic current.

The introduction of the sources is actually not in the sp
of Einstein’s thoughts on his unified theory because these
phenomenological quantities of non-gravitational charac
as emphasized by him, which are being put into a the
from which, in principle, everything should follow. How
ever, we have done so, at least in the actual stage of
theory. With the sources at hand we shall then be able
study the particle content of the theory when going to the
space linear approximation, where field theoretical conce
of particle physics are to be discussed, showing that it is f
of ghost-negative energy particles and tachyons. Also,
shall be able to obtain the explicit form of the conservati
laws, from which we shall be in position to obtain the equ
tion of motion of test charged point particles in the theo
which generalizes the Einstein-Maxwell equation of motio
Therefore, in the present theory the proposed modification
the Einstein Lagrangian is crucial: it permits us to obtain
massless spin-1 Maxwellian character forg[ab] in the flat
space linear approximation, to avoid the appearance
negative-energy radiative modes when expanded abo
Riemannian background space and to prevent the appear
of unphysical particles in the flat space limit, all at the sa
time.

Lastly, the equation of motion of charged point test p
ticles is obtained, this being accomplished directly from t
coordinate invariance of the matter interaction Lagrangia

The paper is organized as follows. In Sec. II we write t
Lagrangian, reviewing the origin of the field part of it a
studied in I, and display the field equations in Sec. III.
Sec. IV we analyze the particle content of the theory. T
equations of motion of test charged particles are discusse
Sec. V and in Sec. VI we draw our conclusions.
©2001 The American Physical Society19-1
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S. RAGUSA PHYSICAL REVIEW D 63 084019
II. THE LAGRANGIAN

We write the Lagrangian density as

L5
1

16p F2gab~Uab1G [a,b] !1
1

p2
g[ab]g[ab] G1L M .

~2.1!

The first term is the field part of the Lagrangian written in
here with the factor (16p)21. We use the notationX
5A2gX whereg is the determinant ofgab whose inverse
gab is defined by

gabgag5gbagga5dg
b . ~2.2!

Next,

Uab5G (ab),s
s 2G (sa),b

s 1G (ab)
s G (sl)

l 2G (al)
s G (sb)

l ,
~2.3!

symmetric and containing only the symmetric part of t
connection, is the analogue of the usual Ricci tensor
Ga5G [ag]

g 5 1
2 (Gag

g 2Gga
g ) is the torsion vector.Uab is actu-

ally that piece of the Einstein tensor@2# which contains only
the symmetric part of the connection. The second term in
square brackets is the term introduced by Bonnor (p being
here the inverse of hisp) in his modification of the Einstein
unified theory so as to have the Coulomb force present in
theory. We have taken the multiplicative parameter toG [a,b]
of I with value d51 without any loss of generality becaus
Ga , working as a Lagrange multiplier, will not appear in th
field equations. Next,L M is the matter part of the Lagrangia
@6# modeled after the one of GR, containing here the gen
alized nonsymmetric~Hermitian! matter energy-momentum
stress tensorTab and electromagnetic currentJa, as given by

dL M5
1

2
A2gTabdgab1

1

4
pA2gJadGa , ~2.4!

that is,

Tab5
2

A2g

dL M

dgab
~2.5!

andJa5(4/pA2g)dL M /dGa . The second term in Eq.~2.4!
has the same form of the usual electromagnetic coup
term of GR, 2JadAa , if we recall the relation Aa
52421pGa derived in I for the vector potential, whe
d51.

We recall that the vacuum field Lagrangian was built o
so as to make the identification ofg[ab] to Fab , defined by

g[ab]5pFab , ~2.6!

a possibly consistent procedure. It was built out from co
sidering in the first place the most general form of t
second-order tensor, containing at most first-order der
tives and quadratic products of the affine connection, des
to play the role of the Einstein tensor, satisfying Einstei
condition of Hermiticity @2#. This means invariance unde
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transposition, which is defined as the transformation that
changes the indices of the metric tensor and the lower o
of the connection, followed by an exchange of the two in
ces of any second-order tensor that depends on the m
and connection. This symmetry property has the phys
meaning@2# that the same field equations are satisfied
positive and negative charges, the transformation taking
into the other. One is then left with four out of an initia
seven parameters. Next, by requiring that the vacuum M
well’s equations should hold in the linear flat space limit t
remaining parameters present in the field equations were
forced to have specific values, leading to the final vacu
field equations of the theory. These equations were t
shown to be derivable directly from the free part of the L
grangian written above, in Eq.~2.1!, by varying the corre-
sponding action with respect togab, G (ab)

s , andGa . This is
what we shall do now in the present context, with the sour
present. Let us note that asGa changes sign under transpo
sition, invariance ofL under this operation will demand tha
Ja in the second term on the right of Eq.~2.4! changes sign.
This charge conjugation transformation materializes th
Einstein’s assertion that Hermiticity reflects the symmetry
the theory in describing positive and negative charges.

We close this section with a few comments concern
the nonsymmetric stress-energy. Together with the do
indices stressTab we shall be working with the upper
indicesTmn defined by the variation with respect togmn ,

Tmn52
2

A2g

dL M

dgmn
, ~2.7!

as in GR. This second stress is related to the first one b

Tab5gangmbTmn, ~2.8!

which follows from the relationdgmn /dgab52gangmb re-
sulting from the variation of Eq.~2.2!. It should be kept in
mind that Eq.~2.8! does not imply a rule for lowering indice
because this operation is not defined for a nonsymme
metric. A better name for the upper-indices stress ten
would probably beSmn but we shall use the sameT for both
tensors. Notice that the inverse relation isTmn5gmbganTab
and that both have the same tracegabTab5gmnTmn. Notice
also that Eq.~2.8! preserves the Hermiticity of both tensor

Now consider the situation in which we are dealing with
perfect pressureless fluid, as in fact we shall when study
the equation of motion in Sec. V. Then it is natural to ta
for Tmn the symmetric dust-like energy tensorTd

mn

5ruaub, r being the matter rest densiy andua the velocity.
Actually, as we shall see, once the symmetry of this tenso
assumed its form will be determined by the conservat
laws. Thence, Eq.~2.8! tell us that even for this symmetri
tensor,Tab will have a symmetric and an antisymmetric pa
as well, both involving the symmetric and the antisymmet
part of the metric. Another situation in which a nonsymm
ric Tab appears is when one consider Lagrangians of ma
fields in the new scheme, oriented by those of GR as a gu
9-2
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NONSYMMETRIC UNIFIED FIELD THEORY. II. . . . PHYSICAL REVIEW D63 084019
but with a nonsymmetric metric. We shall do so in Sec.
considering the Lagrangian of the massive charged bo
field as a working example.

III. FIELD EQUATIONS

Variations of the action*L d4x with respect togab,
G (ab)

g , andGa yields the field equations. The former leads

Uab1G [a,b]2Kab58pT̄ab , ~3.1!

where

T̄ab5Tab2 1
2 gabT, ~3.2!

with T5gabTab , and@3#

Kab5
1

p2 S g[ab]1gamg[mn]gnb1
1

2
gabg[mn]g[mn] D .

~3.3!

The symmetric and antisymmetric parts of Eq.~3.1! are

Uab2K (ab)58pT̄(ab) ~3.4!

and

G [a,b]2K [ab]58pT̄[ab] , ~3.5!

which, upon taking its curl, gives

K [ab,g]528pT̄[ab,g] . ~3.6!

Here we have used the indicationX[ab,m]5X[ab],m
1X[ma],b1X[bm],a for the curl ofX[ab] . Of course, the curl
of G [a,b] is zero. The variation with respect toG (ab)

g will
give the same result as in I,

g(ab)
,g1g(as)G (gs)

b 1g(bs)G (gs)
a 2g(ab)G (sg)

s 50.
~3.7!

Next, as the Ga term of Eq. ~2.1! can be written
(16p)21g[ab]

,bGa up to a total derivative, the variation wit
respect toGa gives

1

p
g[ab]

,b524pJa, ~3.8!

which is Maxwell’s inhomogeneous generalized equati
Equations~3.4!, ~3.6!, ~3.7!, and~3.8! are the field equations
of the theory. Equation~3.6! gives in vacuum the generalize
homogeneous Maxwell equation. Inside matter this equa
gets a coupling to the antisymmetric part of the ener
momentum tensor. As discussed in I for the vacuum case
a first-order expansion about a Riemannian space the
equations reduce to the corresponding equations of
Einstein-Maxwell theory which, we briefly discuss at the e
of this section.A fortiori they reduce to the usual Maxwell’
equations when expanded about a Minkowski flat spa
Equation~3.7! can be solved forG (ab)

s . We get@1#
08401
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G (ab)
s 5 1

2 g(sl)~sal,b1slb,a2sab,l!1Vab
s , ~3.9!

where

Vab
s 5

1

4
~g(sl)sab2da

sdb
l2da

ldb
s!S ln

s

gD
,l

~3.10!

andsab , symmetric, and with determinants is the inverse of
g(ab), as defined by

sabg(ag)5db
g. ~3.11!

When the antisymmetric part ofgab vanishes,sab will be
equal togab and the right-hand side of Eq.~3.9! becomes the
usual Christoffel symbol, as it should. The symmetric a
antisymmetric parts ofKab are, from Eq.~3.3!,

K (ab)5
1

p2 S g(am)g
[mn]g[nb]1g(bm)g

[mn]g[na]

1
1

2
g(ab)g

[mn]g[mn] D ~3.12!

and

K [ab]5
1

p2 S g[ab]1g(am)g
[mn]g(nb)1g[am]g

[mn]g[nb]

1
1

2
g[ab]g

[mn]g[mn] D . ~3.13!

This completes the discussion of the unified theory w
sources. The field equations could also be obtained from
general considerations developed in I, by requiring that
usual Maxwell inhomogeneous divergence equation and
vacuum curl equation should be present in the flat sp
linear approximation of the theory.

We briefly mention now the linearization of the fiel
equations about a Riemannian background with metricgab

(0) ,
as discussed in I in vacuum. This can be achieved by
expansion

gab5gab
(0)1gab

(1) , ~3.14!

wheregab
(1) is the perturbation. The inverse ofgab , as de-

fined in Eq.~2.2!, is then

gab5g(0)ab2g(1)ba, ~3.15!

where the sub- and superscripts are moved by the initial m
ric tensorgab

(0) , that is, g(1)ab5g(0)amg(0)bngmn
(1) . We then

have g(ab)5g(0)ab2g(1)(ab) and g[ab]5g(1)[ab] . Thence,
to first order Eq.~3.8! reads

1

p
~A2g(0)g(0)amg(0)sng[mn]

(1) ! ,s524pA2g(0)Ja.

~3.16!

On the other hand, as Eq.~3.13! gives
9-3
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S. RAGUSA PHYSICAL REVIEW D 63 084019
K [ab]
(1) 5

2

p2
g[ab]

(1) , ~3.17!

we find that Eq.~3.5! yields

G [a,b]
(1) 2

2

p2
g[ab]

(1) 58pT[ab] , ~3.18a!

or

g[ab,g]
(1) 58pT[ab,g] . ~3.18b!

The conclusion from Eq.~3.16! is then thatg[ab]
(1) satisfies the

inhomogeneous Maxwell equation of the Einstein-Maxw
theory and Eq.~3.18b! gives in vacuumthe Maxwell curl
equation. They are then recuperated with the identificatio
g[ab]

(1) to the electromagnetic field strengthF̃ab of that theory,

g[ab]
(1) 5pF̃ab , ~3.19!

corresponding to the first-order part of Eq.~2.6!.
We end this section by writing the relation betweeng[ab]

andg[ab]5pFab , showing then the explicit form of the in
homogeneous equation that generalizes the correspon
Maxwell first equation. We have@7#

g[ab]5
1

g S gSaamabng[mn]1
1

2
AgA«abmng[mn] D ,

~3.20!

whereaab is the inverse ofg(ab) as defined by

aabg(ag)5dg
b , ~3.21!

gS5det(g(ab)) and gA5det(g[ab] ), which is given byAgA
5821«abmng[ab]g[mn] . The determinants are related byg
5gS(11 1

2 amnaabg[ma]g[nb] )1gA . If gAÞ0 the second
term inside the parentheses of Eq.~3.20! is equal togAmab,
wheremA

ab is the inverse ofg[ab] as defined bymabg[ag]

5dg
b . The explicit form of the generalized inhomogene

equation is then

X2
1

A2g
S gSaamabnFmn

1
1

16
p2«gdrsFgdFrs«abmnFmnD C

,b

524pA2gJa, ~3.22!

where

g5gS~11 1
2 p2amnaabFmaFnb!16421p4~«abmnFabFmn!2.

On the other hand, the explicit form ofK [ab] will result from
the substitution of Eq.~3.20! into Eq.~3.13!, to be then taken
into the curl equation Eq.~3.6!. We are then facing highly
08401
l
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nonlinear equations involvingFmn . It is to be noted that in
itself this Fmn is expected to be related nonlinearly to th
Reissner-Nordstro¨m F̃ab .

In the next section we shall study the particle content
the theory by analyzing the form of the propagator. This w
be obtained from the expansion of the Lagrangian to sec
order about a Minkowski flat space, where particle phys
concepts will be discussed.

IV. PARTICLE CONTENT: A GHOST FREE THEORY

In this section we shall study the particle content of t
theory through the study of the propagator. For that purp
we shall expand the Lagrangian in Eq.~2.1! to second order
about a Minkowski flat space with metrichab5(1,21,21,
21), by writing

gab5hab1hab , ~4.1!

whereuhabu!1. The inverse of this equation is

gab5hab2hba, ~4.2!

where the sub- and superscripts are moved by the me
hab , that is, hba5hbmhanhmn . Notice that g(ab)5hab

2h(ba) and g[ab]5h[ab] . To second order theU term will
be identical to the result of GR. This can be checked
direct calculation by using@1# the first-order result coming
from Eq. ~3.9!,

G (ab)
s(1)5 1

2 hsr~h(ar),b1h(br),a2h(ab),r!, ~4.3!

as in GR. Adopting the conventionaaba5habaabb and
writing h5ha

a , one finds, for the second-order part ofL ,

L5LGR1L 8, ~4.4!

where

LGR5
1

16p S 1

4
h(mn),lh(mn),l1

1

2
h,mh(ma),a2

1

4
h,mh,m

2
1

2
h(ma),ah(mb),bD2

1

2
h(ab)T(ab) , ~4.5!

is precisely the Lagrangian of GR and, up to a total deri
tive,

L 85
1

16p S haGa1
1

p2
h[ab]h[ab] D 1

1

4
pGaJa

1
1

2
h[ab]T[ab] , ~4.6!

where ha5h[ab],
b. The graviton spectrum, which is con

tained inLGR , is known to be free of ghosts so we consid
only L 8. Let us note that if it were not for the last,T[ab] ,
term of Eq.~4.6! the theory would be obviously ghost-fre
becauseL 8 would be just that of electromagnetism in fir
order form, as discussed in vacuum in I, but now with t
current present. In fact, without ith[ab] could be eliminated
9-4



n
t
n

u-
e
e

a
.
w

pa

o
op

t
ng
r
o

n

e

n

b-
o-
Eq.
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in favor of G [a,b] by using Eq.~3.18a! to yield Maxwell’s
Lagrangian in second order form with the current prese
Going back to ourL 8, we follow the study of the ghos
properties of generalized theories of gravitation of Mann a
Moffat @8# who followed the analysis of Sezgin and Nie
wenhuizen@9# on higher-derivative gravity, extending th
results of Neville@10#. To keep in close contact with th
notation of Ref.@8# we put

1
4 pGa5La ; t [ab]5

1
2 T[ab] , ~4.7a!

and

C5
1

4pp
; D52

1

8pp2
. ~4.7b!

ThenL 85L081L M8 where

L085ChaLa2 1
2 Dh[ab]h[ab] ~4.8!

is the free part of the Lagrangian and

LM8 5LaJa1h[ab]t [ab] ~4.9!

is the matter interaction part. Its form depends on what m
ter field the fieldsh[ab] and La are taken to interact with
After discusssing the ghost properties of the propagator
shall consider the massive charged pion field. The free
of the Lagrangian in Fourier, momentum (k), space is

L085 1
2 iCkb~h@ab#

* La2La* h[ab] !2 1
2 Dh@ab#

* h[ab] ,
~4.10!

which is written under the form@10#,

L085
1

2 (
A,B

FA* OABFB , ~4.11!

where in our case,FA5(h[mn] ,Lm) and FB5(h[ab] ,La),
OAB being the wave operator. The ghost properties are c
tained in its inverse. Next one uses the spin-projection
erator formalism@11# and invert the wave operatorOAB to
get the saturated propagator,

P52(
A,B

SAOAB
21SB , ~4.12!

whereSA5(t [mn] ,Jm). In Appendix A we show how to ge
the saturated propagator in such a simple situation by usi
more down to earth approach of semi-classical field theo
offering in this way a little more insight into the problem. T
go on, ash[ab] decomposes into a spin212 part (h[0 i ] ) and
a spin211 part (h[ i j ] ), and asLa decomposes into a spi
212 part (L i) and a spin201 part (L0), the relevant spin-
projection operators with whichOAB is to be constructed ar
@8#

P~11!mnab5 1
2 ~umaunb2unaumb!, ~4.13!

P~01!ab5vab , ~4.14!
08401
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andP(12) is the 232 matrix corresponding to the two spi
212 fields h[0 i ] andL i , with elements

P11~12!mnab5 1
2 ~umavnb2umbvna2unavmb1unbvma!,

~4.15a!

P12~12!mna5
1

A2k2
~knuma2kmuna!, ~4.15b!

P21~12!mab5P12~12!abm , ~4.15c!

and

P22~12!ma5uma . ~4.15d!

Here

uab5hab2
kakb

k2
, ~4.16a!

and

vab5
kakb

k2
. ~4.16b!

In terms of these quantities, Eq.~4.10! can be written as

L085
1

2 Fa~11!h@mn#
* P~11!mnabh[ab]

1(
m,n

amn~12!Fm* Pmn~12!FnG , ~4.17!

where the coefficients are

a~11!52D, ~4.18a!

next, with the indication (12) being implied,

a1152D; a2250,

a1252a215 iCA1

2
k2,

~4.18b!

and a(01)50. The propagator for each component is o
tained by inverting the nonzero coefficient matrices in m
mentum space. The saturated propagator is then, from
~4.12!,

P52a21~11!t [mn] P~11!mnabt [ab]

2(
m,n

amn
21~12!SmPmn~12!Sn , ~4.19!

and the coefficients are

a21~11!52
1

D
, ~4.20a!
9-5
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S. RAGUSA PHYSICAL REVIEW D 63 084019
and

a11
2150; a22

215
2D

C2k2
,

a12
2152a21

215
i

C
A2/k2. ~4.20b!

From Eq. ~4.20a! we see that the spin-11 sector does no
propagate: only a contact term appears here. Next, the c
rium for freedom of ghosts in the massless spin-12 sector is
that @9# the residue of the trace of the matrixa21(12) at
k250, which is equal to 2DC22, be negative: and that i
exactly what we have, because, from Eq.~4.7b!,

2D

C2
524p. ~4.21!

Therefore the theory is free of tachyons and ghosts. Wri
in full, the propagator is

P522pp2T[mn] P~11!mnabT[ab]2
2p ip

k2
T[mn]

3~knuma2kmuna!Ja1
2p ip

k2
Ja~knuma2kmuna!T[mn]

1
4p

k2
JauabJb . ~4.22!

We call attention for some facts. First, the two middle ter
on the right of this last equation do not cancel since
source terms attached to the left~right! belong to the left
~right!-hand side of the propagator. For instance, if we ha
the scattering of particles 1 and 2, and if we attach the
source terms to 1, the right ones will be attached to 2, tha
we shall have the two combinationsT1[mn]J2a and
2J1aT2[mn] . Consider now the last term. AskbJb50,
which is the equation of continuity ink-space, that term can
be written as 4pk22JaJa on account of Eq.~4.16a!. Well,
this is just what we obtain from field theory in lowest orde
as it should. The discussion in Appendix A will make a
these things very clear. Finally, by again making use of
~4.16a!, the propagator can be simplified to

P522pp2T[mn]S hnb2
2

k2
knkbD T[mb]

2
4p ip

k2
~T[an]knJa2JaknT[an] !

1
4p

k2
JaJa . ~4.23!

One remark before we continue. The free part of the
grangian studied in@8# contains in the antisymmetric secto
two additional terms with coefficientsA andB ~here upper-
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cases! which with C and D make a set of four constant
which assume values depending on the type of theory c
sidered. Then, with the coefficient of the first term satisfyi
the conditionA.0 it is concluded that the Bonnor term ca
not be present because it leads to a ghost~if C.0) or a
tachyon~if C,0). This the case of the Bonnor and Moffa
Boal theories as it can easily be checked. Then, without
Bonnor term one is back to the Einstein Lagrangian, lead
then to a spin-0, scalar, character forh[ab] , as it has been
shown by Moffat and Mann@12#. This type of theory would
then doubly damage a unified theory of gravitation and el
tromagnetism: no Coulomb force and no Maxwellian spin
character forh[ab] . In the present theory those two coeffi
cientsA andB are absent and that is why we could keep t
Bonnor term, which actually turn out to be responsible
the desired Maxwellian behavior ofh[ab] in vacuum.

We end this section by considering a possible structure
the sources terms, discussing the massive chargedp-meson
field as a working example. We shall assume that the
grangian has a form similar to the one of GR but now with
nonsymmetric metric, with a possible extra nonsymme
term and with the vector potencialAa52La , from Eq.
~4.7a! and the remark after Eq.~2.5!, that is,

L M5A2g@g(mn)~Dmf!* Dnf

1 ig [mn]~Dmf!* Dnf2m2f* f#, ~4.24!

where

Dm5]m1 ieAm5]m2 ieLm , ~4.25!

and with the extra nonsymmetric term having ani factor for
the Lagrangian to be real. Before going on let us calcul
the stress tensor of Eq.~2.5! and the electric current. We ge

Tab5@~Daf!* Dbf1a↔b#

1 i @~Daf!* Dbf2a↔b#

2gab@g(mn)~Dmf!* Dnf

1 ig [mn]~Dmf!* Dnf2m2f* f#, ~4.26!

with a symmetric and an antisymmetric part. On the oth
hand, the currentJa51(1/A2g)dL M /dLa is given by

Ja52 ieg(ma)@~Dmf!* f2f* Dmf#

1eg[ma]@~Dmf!* f1f* Dmf#. ~4.27!

These are the quantities to be used on the right-hand sid
Eqs.~3.1! and ~3.8!.

To lowest order the antisymmetric part of Eq.~4.26! is

T[ab]5 i ~]af* ]bf2a↔b!, ~4.28!

and Eq.~4.27! gives, to lowest order,

Ja52 ie~]af* f2f* ]af!. ~4.29!
9-6
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These are the quantities to be placed on the right-hand
of Eq. ~4.9!. Notice that from Eq.~4.24!, the part of the
interaction Lagrangian containing the antisymmetric sec
is, to lowest order,

L 8M52 ie~]mf* f2f* ]mf!Lm1 ih [mn]~]mf* ]nf!,
~4.30!

which, on account of Eqs.~4.28! and ~4.29!, reproduces Eq
~4.9!, as it should. In Appendix A we write the full saturate
propagator for thisp-scattering process.

V. THE EQUATION OF MOTION OF TEST
CHARGED PARTICLES

From the coordinate invariance of the field Lagrang
densityL05L2L M in Eq. ~2.1!, we obtain the four general
ized Bianchi identities

~gabGlb1gbaGbl! ,a1gab
,lGab50, ~5.1!

whereGlb5Ulb2Klb2 1
2 glb(U2K). On the other hand

from the coordinate invariance of the matter part of the L
grangian densityL M , in Eq. ~2.4!, and using the fact that th
variation of a vector under the infinitesimal coordinate tra
formation xa→x8a5xa1«a(x) is dGa52«l

,aGl

2Ga,l«l, we get by direct calculation@13# the four conser-
vation laws

~gabTlb1gbaTbl! ,a1gab
,lTab2pG [l,b]J

b50,
~5.2!

which can also be obtained through the use of the field eq
tions in the Bianchi identities. In terms of the upper-indic
stress tensorTmn we get, from Eqs.~2.8! and ~2.2!,

galTab
,b1glaTba

,b12@ab,l#Tab2pG [l,b]J
b50,

~5.3!

where

@ab,l#5 1
2 ~gal,b1glb,a2gab,l!. ~5.4!

Following the method of Papapetrou@14#, one can now es-
tablish the equation of motion of test particles. We will quo
here only the final result and give the details in Appendix
There we show that by using Papapetrou’s method ther
no need to assume the full, dust-type, form ofTab but only
that it is symmetric, its form actually being determined
the method itself. On the other hand, if one does assume
dust-type form, the calculation is straightforward witho
any need of the method, as it has been done by Fock@15# for
a point mass in the case of GR. The equation of motion
the particle with massm and chargee is

dua

dt
1Cbg

a ubug5
ep

2m
aabK [bg]u

g, ~5.5!

whereua5dXa/dt is the velocity of the particle,aab is the
inverse ofg(as) as defined by

aabg(sb)5db
a , ~5.6!
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and

Cbg
a 5 1

2 aas~g(bs),g1g(gs),b2g(bg),s! ~5.7!

is the Christoffel symbol formed with the symmetric part
the metric, with g(ab) referring to the background non
Riemannian field where the test particle moves. To fir
order in an expansion about a Riemannian background w
metric gab

(0) , Eq. ~5.5! becomes the Einstein- Lorentz equ
tion of motion. This is so because in that limit we have, fro
Eqs.~3.17! and ~3.19!, pK[ab]

(1) 52F̃ab andaas→g(0)as.

VI. CONCLUSIONS

We have developed a unified field theory of gravitati
and electromagnetism with sources by introducing the ma
energy-momentum tensor and the electromagnetic cur
explicitly into the Lagrangian. This is actually not in th
spirit of Einstein’s thoughts, because these are phenom
logical quantities of non-gravitational character as by h
emphasized, which are being put into a theory from whi
in principle, everything should follow. However, we hav
done so at least in the actual stage of the theory, in orde
get in contact with the field theoretical concepts of parti
physics, when going to the linearization of the theory, and
order to get an explicit form for the conservation laws. W
could then study the particle content of the theory, show
that no unphysical particles appear: the theory is shown to
free of ghost-negative energy particles and tachyons.

The equation of motion of a test charged particle has b
established through the invariance of the interaction
grangian. It is found that the deviation of the geodesic p
of the non-Riemannian space is due solely to the grav
electromagnetic contribution coming from the Bonnor ter
In the first order of approximation about a Riemannian sp
the equation goes into the Einstein-Lorentz equation of m
tion.

In a forthcoming paper we shall study the solution of t
field equations for a pointlike charged source with a sph
cally symmetric field. Once we have this solution we shall
able to get the explicit form of the equation of motion of
test charged particle and thus determine the deviation
Coulomb’s law in the new theory. This deviation should d
pend on the universal parameterp and could probably be
used to determinep to some degree.

APPENDIX A: THE PROPAGATOR FROM SEMI-
CLASSICAL FIELD THEORY

To illustrate the method let us consider electrodynam
The Lagrangian density is

L52
1

16p
FmnFmn1Lint , ~A1!

with the same indices convention of Sec. IV, whereFmn

5An,m2Am,n and

Lint52JmAm ~A2!
9-7
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is the interaction Lagrangian density. The Euler-Lagran
equation givesFmn,n524pJm , which leads to

hAm54pJm ~A3!

for the vector potential satisfyingAn,n50. Equation~A3!
can be solved by the usual Green’s function method. O
writes

Am~x!5E D~x,x8!Jm~x8!d4x8, ~A4!

where the Green’s functionD, the propagator, satisfies

hD~x,x8!54pd~x2x8! ~A5!

or, in its integral form,

D~x,x8!52
4p

~2p!4E 1

q2
e2 iq(x2x8)d4q, ~A6!

as it can easily be checked by applyingh to it. ~It is to be
understood the Feynman definition of the poles,q2→q2

1 i«, when going to the semi-classical arguments.! Substitu-
tion of Eq. ~A4! into Eq. ~A2! gives, for the interaction La-
grangian itself,

E Lint d3x5E E Jm~x!D~x,x8!Jm~x8!d4x8 d3x,

~A7!

showing the current-current interaction structure mediated
the propagator. Following Mo¨ller @16# let us see how one ca
get the scattering amplitude of two charged particles, 1
2, in lowest order of perturbation theory by using field th
oretical semi-classical arguments. Ifp1 and p2 (p18 and p28)
are the momenta of the initial~final! particles we associat
each current to each particle and write

Jm~x!5J1m~0!ei (p182p1)x ~A8!

as thep1⇀p18 transition current for particle 1 and

Jm~x8!5J2m~0!ei (p282p2)x8 ~A9!

the p2⇀p28 one for particle 2. The signs in the exponentia
are chosen to give the right energy-momentum conserva
for the process, with the exponentials proportional
exp(2iEt) for destruction of a particle and exp(iEt) for cre-
ation, as in usual quantum mechanics for the transitions
tween two energy levels~we are using units with\51).
With these prescriptions the probability for the transiti
(p1,p2)→(p18,p28), or scattering amplitude, is@16#

S5 i E Lint~x!d4x. ~A10!

Using Eqs.~A6!, ~A8!, and~A9! in Eq. ~A7! we get

S5 i ~2p!4d~p181p282p12p2!P ~A11!
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where, with the indication

k5p182p15p22p28 , ~A12!

P5J1m~0!
4p

k2
J2m~0! ~A13!

is the saturated propagator of quantum electrodynamic
lowest order. The propagator itself is 4pk22, in momentum
space. To come back to the whole discussion, what we
saying in a short way is that we are taking Eq.~A2! at point
x with Jm(x) as the transition current for particle 1 and wi
Am(x) representing the potential due to particle 2, that is

Lint52J1m~0!ei (p182p1)xA2m~x!, ~A14!

where, from Eqs.~A4!, ~A6!, and~A9!

A2m~x!52
4p

k2
J2m~0!e2 ikx, ~A15!

with k5p22p28 . Notice that, with Eq.~A9!, this result also
follows directly from Eq.~A3! calculated at pointx8 @that is
h8Am(x8)54pJm(x8)#, after taking the final answer a
point x. Substituting Eq.~A15! into the previous one leads t
Eq. ~A11! with P given by Eq.~A13!.

Now, all this can dramatically be abbreviated if we wo
directly in momentum~k! space. Just notice that in mo
mentum space the interaction is, from Eq.~A2!,
2J1m(0)A2m(0) while Eq. ~A3! gives 2k2A2m(0)
54pJ2m(0). By eliminatingA2m(0), one isimmediately led
to Eq. ~A13!. If, for instance, we have Dirac particles on
writes the currents in terms of spinors depending on the m
menta and the calculation to obtain the cross-section goes

Consider now our Lagrangian in Eq.~4.6!. The Euler-
Lagrange equations forh[ab] andGa are, respectively,

1

2
~Ga,b2Gb,a!5

2

p2
h[ab]18pT[ab] ~A16!

and

h[ab],b524ppJa , ~A17!

which are, respectively, Eqs.~3.5! and~3.8! to lowest order.
Contracting the first one of these equations with]b and using
the second one we obtain the equation forGa , using Gb,b
50,

hGa5216pS 1

p
Ja2T[ab],bD . ~A18!

Solving this we can obtainh[ab] from Eq. ~A16!. Lets go
now to the semi-classical arguments as illustrated in the e
tromagnetic case to get the propagator, working directly
momentum space. The interaction Lagrangian for the sca
ing of particles 1 and 2 is, from Eq.~4.6! with sources due to
particle 1,
9-8
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Lint5
1
4 pJ1a~0!G2a~0!1 1

2 T1[ab]~0!h2[ab]~0!.
~A19!

The solution of Eq.~A18! is, for the torsion due to particle 2

G2a5
16p

k2 S 1

p
J2a1 ikbT2[ab] D ~0!e2 ikx. ~A20!

Using this result in Eq.~A16!, the field due to particle 2 is
then

h2[ab]~0!524pp2H T2[ab]1
i

k2

3FkbS 1

p
J2a1 ikgT2[ag] D2a↔b D G .

~A21!

Substituting Eqs.~A20! and~A21! into Eq. ~A19! and using
Eq. ~A10! yields the saturated propagator

P5
4p

k2
J1aJ2a2

4p ip

k2
~klT1[al]J2a2J1aklT2[al] !

22pp2S T1[ab]22
kbkg

k2
T1[ag] D T2[ab] , ~A22!

with the zeros being implied, which reproduces Eq.~4.23!. In
the case of the chargedp-meson scattering process discuss
in Sec. IV, thepa⇀pa8 transition current for particlea51,2
is, from Eq.~4.29! in momentum space,

Jaa~0!5e~paa8 1paa!fa8~0!fa~0!, ~A23!

and the corresponding transition stress is

Ta[ab]5 i ~paa8 pab2a↔b!fa8~0!fa~0!, ~A24!

where fa(0)5(2p)23/2(2Ea)21/2 with Ea5(pa
21m2)1/2

@16#. These are the quantities to be substituted on the righ
Eq. ~4.23! on the left-hand side source terms fora51 and
right-hand side source terms fora52, for thep-scattering
process at hand.

APPENDIX B: EQUATION OF MOTION
OF TEST CHARGED PARTICLES

We shall describe the motion of a charged test part
moving outside massive bodies. Then the energy-momen
tensor and the current of the massive bodies vanish at
position of the test particle and near it. Therefore,Tab and
Ja in Eq. ~5.3! reduce to those of the particle. Also, th
being a test particle we shall neglect its contribution to
metric and torsion vector. Thereforegab andGa in Eqs.~3.8!
and~5.3! refer only to the background field produced by t
massive bodies.

Following the moment method of Papapetrou@14#, we
shall derive the equation of the charged test particle fr
08401
d

of

e
m
he

e

Eqs. ~3.8! and ~5.3!. We then consider an extended, sma
system with reference pointXa with velocity ua5dXa/dt
and we shall take moments ofTab and Ja aroundXa. By
demanding that the dimensions of the system tend to zer
the very end of the calculation, this point will give us th
world line of our pointlike charged particle. For such
simple system, we shall assume thatTab is symmetric with-
out fixing its form however. The method will give it to us
Then the first two terms of Eq.~5.3! can be written
2g(al)T

ab,b . After contraction of the equation with the in
verseasl to g(sl) , as defined in Eq.~5.6!, we obtain

Tsb
,b1Cab

s Tab2 1
2 paslG [l,b]J

b50, ~B1!

where, because of the symmetry ofTab,

Cab
s 5 1

2 asl~g(al),b1g(bl),a2g(ab),l! ~B2!

is the Christoffel symbol formed with the symmetric part
the background metric only. We shall need also the relat

~xaTsb! ,b5Tsa1xaTsb
,b . ~B3!

Next we writexa5Xa1dxa and neglect first-order moment
of Tab. We then integrate both Eqs.~B1! and~B3! over the
three dimensional space for constantt. Space divergence
integrate to zero so that we get, from Eq.~B1!,

d

dtE Ts0 d3x1Cab
s ~X!E Tab d3x2

1

2
p~aslG [l,b] !~X!

3E Jb d3x50, ~B4!

where we have already taken the Christoffel symbol and
G term at the reference pointXa(t). From Eq. ~B3! we
obtain

d

dt S XaE Ts0 d3xD5E Tsa d3x1Xa
d

dtE Ts0 d3x,

~B5!

where, again,xa inside the integrands have been put equa
Xa. From here we get

vaE Ts0 d3x5E Tsa d3x, ~B6!

where,va5dXa/dt. Puttings50 in this equation we get

vaE T00d3x5E T0a d3x. ~B7!

Therefore, due to the symmetry ofTsa, Eq. ~B6! can be
written

E Tsa d3x5vavsE T00d3x. ~B8!

Both these last two relations are to be substituted in Eq.~B4!.
Before we do so, we shall prove the relation
9-9
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E Ja d3x5eva, ~B9!

wheree is the charge of the particle. For that purpose we fi
integrate the equation of continuityJa,a50, which follows
from Eq.~3.8!, and then the relation (xaJb) ,b5Ja. From the
first integration, we obtainde/dt50, wheree5*J0 d3x is
the charge of the particle, which is then a constant. Then
integrating the second one and puttingxa5Xa inside the
integrand we are led to Eq.~B9!. Now we substitute Eqs
~B8! and ~B9! into Eq. ~B4!, multiply the resulting equation
by u05dt/dt and notice thatu0vs5dXs/dt5us. After us-
ing the relationG [a,b]5K [ab] , which follows from Eq.~3.5!
outside the massive bodies where the particle moves, we

d

dt
~mus!1mCab

s uaub2
1

2
epaslK [lb]u

b50, ~B10!

where we have used the indication

m5
1

u0E T00d3x. ~B11!

Contracting Eq.~B10! with g(as)u
a and usingg(as)u

aus

5gasuaus51 together with Eqs.~B2! and ~5.6!, we get
dm/dt50. We then conclude thatm is a constant, which we
identify with the rest mass of the particle. Then going ba
to Eq. ~B10! we finally get

dus

dt
1Cab

s uaub5
ep

2m
aslK [lb]u

b, ~B12!
,

s.
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which is the equation of motion, in Eq.~5.5!. Notice now
that Eq.~B8! can be written

uoE Tas d3x5muaus. ~B13!

Thence, callingr the rest state mass density of the syste
defined by

m5uoE rA2g d3x, ~B14!

we can write

Tas5ruaus. ~B15!

This gives, in fact, the form~dust-like! of the energy-
momentum tensor of the system.

We show now that if we assume Eq.~B15! together with
the corresponding relationJa5reu

a for the current, where
re is the rest state charge density, the calculation is strai
forward, as it has been shown by Fock@15# for a point mass
in the case of GR. Taking these results into Eq.~B1! and
using again the relationG [a,b]5K [ab] , outside the massive
bodies, we get

~rusub! ,b1Cab
s ruaub2 1

2 paslK [lb]reu
b50.

~B16!

By making use of the equation of continuity for the matt
part, (rub) ,b50, the first term becomesrubus

,b
5r dua/dt. For a point particle atX(t) one hasr(x)
5md@x2X(t)# andre(x)5ed@x2X(t)#, and upon integra-
tion the equation of motion, Eq.~B12!, follows.
B
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