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Asymptotically locally AdS black hole geometries of dimensiond>3 are studied for nontrivial topologies of
the transverse section. These geometries are static solutions of a set of theories labeled by an integerk
P$1,2, . . . ,@(d21)/2#% which possess a unique globally AdS vacuum. The transverse sections of these solu-
tions ared22 surfaces of constant curvatureg, normalized tog561,0 allowing for different topological
configurations. The thermodynamic analysis of these solutions reveals that the presence of a negative cosmo-
logical constant is essential to ensure the existence of stable equilibrium states. In addition, it is shown that
these theories are holographically related to@(d21)/2# different conformal field theories at the boundary.
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I. INTRODUCTION

Several formal arguments suggest that at a fundame
level the cosmological constant (L) should be negative, in
spite of recent observations that favor a positive effect
value at a cosmic scale. As shown by Hawking and Page@1#,
the presence of a negativeL makes it possible for black
holes to reach thermal equilibrium with a heat bath. Mo
over, a negative cosmological constant is required to obta
correct definition of Noether charges representing the m
and angular momentum@2,3#. Even in a spacetime with van
ishing L, the correct results are obtained provided the c
struction is carried out withL,0 and taking theL→0 limit
at the end. In this sense,L acts as a regulator allowing th
canonical ensemble as well as Noether charges, to be
defined.

On the other hand, black holes withL.0 do not admit a
global definition of time, which prevents the existence o
positive energy theorem. This fact is related with the non
istence of a locally supersymmetric extension of gravity
positiveL @4#.

The topological censorship theorem@5# states that in as
ymptotically flat spacetimes only spherical horizons can g
rise to well defined causal structure for a black hole. This
circumvented by the presence of a negative cosmolog
constant, in which case well defined black holes with loca
flat or hyperbolic horizons have been shown to exist@6–8#.
This kind of black hole with topologically nontrivial AdS
asymptotics is relevant in testing the AdS conformal fie
theory~CFT! correspondence@9# in the cases where the the
mal CFT is defined on backgrounds of different topolog
such asS13Rd22, S13Sd22, or S13Hd22 @10–12#. As will
be shown, these backgrounds correspond to the asymp
regions of the solutions discussed below.

As observed in Ref.@13# the renormalization group equa
tion for a CFT at the boundary should be obtained from
0556-2821/2001/63~8!/084015~12!/$20.00 63 0840
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radial Hamiltonian constraint of a gravitation theory wi
higher powers of the curvature.

In dimensions higher than 4, in addition to Einstein
theory, there exist a host of sensible gravity actions wh
contain higher powers of the curvature~for a recent review,
see, e.g., Ref.@14# and references therein!. A particular class
of these theories gives rise to second order field equations
the metric, which possess spherical black hole solutions w
a well defined asymptotically AdS behavior@15#. In this
work, that family of black hole solutions is extended to g
ometries with locally flat and hyperbolic horizons, includin
different nontrivial asymptotic topologies. The thermal b
havior of this class of theories around these solutions is a
lyzed in detail and is shown to be holographically connec
with different thermal CFT’s.

II. AdS GRAVITY THEORIES IN HIGHER DIMENSIONS

A minimally sensible gravity theory should be describ
by an action leading to second order field equations for
metric in order to avoid problems with causality in the cla
sical theory, or ghosts at the quantum level. The so ca
Lanczos-Lovelock gravities are the only purely metric the
ries that satisfy this requirement@16#, although they presen
several problems. For each dimension, they possess a n
ber of arbitrary constants. As a consequence, their field eq
tions allow the existence of spherically symmetric bla
holes with negative energy, as well as positive energy so
tions with naked singularities. Moreover, these solutions
not have a unique asymptotic behavior and can even spo
neously jump between distinct geometries@17–19#.

These problems can be overcome by requiring the th
ries to possessa unique cosmological constant, which
strongly restricts the arbitrary coefficients in the Lanczo
Lovelock actions. Hence one is led to a set of theories wh
for each dimensiond, have a number of Lagrangians labele
©2001 The American Physical Society15-1
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by an integerk which represents the highest power of curv
ture in the Lagrangian. The action reads

I k5kE (
p50

k

cp
kL (p), ~1!

whereL (p) is given by

L (p)5ea1•••ad
Ra1a2

•••Ra2p21a2pea2p11
•••ead, ~2!

and

cp
k5H l 2(p2k)

~d22p! S k

pD , p<k,

0, p.k,

~3!

with

1<k<Fd21

2 G , ~4!

where@x# stands for the integer part ofx.
Unlike a generic Lanczos-Lovelock theory, which wou

be obtained for arbitrary coefficientscp
k , the actionI k pos-

sesses only two fundamental constants,k andl, related to the
gravitational constantGk and the cosmological constantL
through1

k5
1

2~d22!!Vd22Gk
, ~5!

L52
~d21!~d22!

2l 2
, ~6!

whereVd22 is the surface area of a unit (d22)-sphere.

The field equations read

eba1•••ad21
R̄a1a2

•••R̄a2k21a2kea2k11
•••ead2150, ~7!

eaba3•••ad
R̄a3a4

•••R̄a2k21a2kTa2k11ea2k12
•••ead2150, ~8!

whereR̄ab5Rab11/l 2eaeb andTa is the torsion 2-form.
Note that the Einstein-Hilbert action ind dimensions is

obtained by settingk51 in Eq.~1!. This is the only possible
choice in three and four dimensions, while in five or mo
dimensions there are other inequivalent theories withk>2.
In the cased55 andk52 the Lagrangian can be cast as t
Euler-Chern-Simons form for the AdS group@20#. The
Euler-Chern-Simons form is obtained from Eq.~1! in any
odd dimension for the maximum allowed valuek5(d
21)/2. The locally supersymmetric extension of these l

1The gravitational constant has natural units given by@Gk#
5(length)d22k, and l corresponds to the AdS radius. In this wo
the conventions of Ref.@15# are followed.
08401
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kind theories with negative cosmological constant is kno
to exist for any odd dimension, in particular ford511 @21#.

An illustrative example of the kind of theories consider
here, is thek52 case. This action, which exists only ford
.4, is written in tensor components as

I 25
22~d23!!k

l 2 E ddxA2gF l 2R2

2~d23!~d24!
1R2LG ,

~9!

whereR2 stands for the Gauss-Bonnet density,

R2
ª~RmnabRmnab24RmnRmn1R2!. ~10!

In this paper, only torsion-free solutions will be consi
ered, so that Eq.~8! is trivially satisfied.

III. TOPOLOGICAL SOLUTIONS

Let us considerd-dimensional static spacetimes who
spatial sections are foliated along the radial direction byd
22)-dimensional transverse surfacesSg of constant curva-
ture g. In terms of Schwarzschild-like coordinates, the m
ric can be written as

ds252N2~r ! f 2~r !dt21
dr2

f 2~r !
1r 2dsg

2 , ~11!

where2`,t,`, and 0<r ,` is the radial coordinate for
which r→` defines the asymptotic region. The arc leng
dsg

2 corresponds to the distance onSg . Substituting the an-
satz ~11! in the field Eqs.~7!, leads to the following equa
tions for N(r ) and f 2(r ):

dN

dr
50, ~12!

d

dr S r d21FFg~r !1
1

l 2G kD 50, ~13!

where the functionFg(r ) is given by

Fg~r !5
g2 f 2~r !

r 2
. ~14!

By virtue of Eqs.~12! and~13!, N is a constant, which can b
chosen as 1~see Appendix Sec. 1!, and

f 2~r !5g1
r 2

l 2
2aS 2mGk

r d22k21D 1/k

, ~15!

respectively, wherea5(61)k11.
The constantg can be normalized to61,0 by an appro-

priate rescaling of the coordinates. Thus the local geom
of Sg is a sphere, a plane2 or a hyperboloid:

2For g50 it is necessary that at least one direction ofS0 be
compact, otherwise the integration constantm could be rescaled
away.
5-2
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BLACK HOLES WITH TOPOLOGICALLY NONTRIVIAL . . . PHYSICAL REVIEW D 63 084015
Sg locally 5H Sd22, g51,

Rd22, g50,

Hd22, g521.

The solution~15! may vanish for some values ofr. The
largest zero off 2(r ) corresponds to the outer horizonr 1

which allows to express the integration constantm as

m5

r 1
(d22k21)S g1

r 1
2

l 2 D k

2Gk
, ~16!

and is related to the massM through

m5
Vd22

Sd22
M1

1

2Gk
dd22k,g . ~17!

HereSd22 is the volume of the transverse space, andVd22
corresponds to the volume ofSd22. Note that the mass is
shifted with respect to the integration constantm only for d
22k515g, which corresponds to a spherically symmet
solution in Chern-Simons~CS! theory~see Appendix Sec. 1!.
Summarizing, for a fixed value of the labelk in d dimen-
sions, the actionI k in Eq. ~1! is extremized by the metric

ds252Fg1
r 2

l 2
2aS 2Gkm

r d22k21D 1/kGdt2

1
dr2

Fg1
r 2

l 2
2aS 2Gkm

r d22k21D 1/kG 1r 2dsg
2 , ~18!

with a5(61)k11, whose asymptotic behavior is locall
AdS, for any topology ofSg .

Note that them50 solution,

ds252S g1
r 2

l 2 D dt21
dr2

S g1
r 2

l 2 D 1r 2dsg
2 , ~19!

is a locally AdS manifold, which is a common solution to th
Eqs.~7! and~8! for any value ofk, in particular for Einstein’s
theory (k51). As discussed in Refs.@7,8#, when the trans-
verse section is locally hyperbolic (g521), although the
metric ~19! possesses a horizon atr 15 l , it may not describe
a black hole. If the transverse sectionS21 has topology
Rd22, Eq. ~19! is not a black hole, but it could be one pro
vided suitable identifications are performed onS21, analo-
gous to the Ban˜ados-Teitelboim-Zenelli~BTZ! solution
@22,23#.

Note that for theories with oddk, the line element~18! is
real for all values of the integration constants, however,
even k only positive m is allowed. In what follows it is
shown that this metric describes black holes iff 2(r ) has at
least one zero, and they are naked singularities otherwis
08401
r

. It

is apparent from Eq.~18! that the theory withd22k21
50 must be treated separately.

A. Generic theories:dÀ2kÅ1

In Fig. 1, the zeros off 2(r ) correspond to the intersec
tions of the parabolas (g1r 2/ l 2) and the functions
a@2Gkm/(r (d22k21)#1/k, for g50,61, and different values
of a andm, respectively.

It is necessary to consider separately the theories of e
and oddk. The range ofm for which black holes exist is
summarized for different values ofg andk in Table I.

For g521 there is a critical valuemc given by

mc5
~21!kl d22k21

2Gk
A~d22k21!d22k21~2k!2k

~d21!d21
,

~20!

which separates topological black holes with hyperbo
transverse section from naked singularities.

g51: This case corresponds to the static, spherically sy
metric black holes analyzed in Ref.@15#. They have a single
event horizon, providedm.0. For any integerk such that

FIG. 1. The horizons are located at the zeros off 2(r ), which
occur at the intersections of the parabolas (g1r 2/ l 2) and the func-
tionsa@2Gkm/(r d22k21#1/k. These are displayed forg50,61, and
different values ofa and m. There exists a single horizon fora
51 andm>0. Two horizons arise either fora51 andmc,m,0,
or for a521 and 0,m,mc . In the extreme case, both horizon
coalesce form5mc .

TABLE I. Generic theories (d22kÞ1).

g51 g50 g521

Odd k (a51) m.0 m.0 m>mc :mc,0

Evenk m.0 m.0
a51 :m>0

a521 :mc>m>0
5-3
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1<k,(d21)/2, these solutions share a common cau
structure with the Schwarzschild-AdS4 black hole solution of
Einstein’s theory (k51).

g50: In this case, the set of geometries described by
~18! possess locally flat transverse sectionsS0, which are
assumed to be orientable. The metric describes a topolog
black hole for eachk, with a unique event horizon located

r 15~2mGkl
2k!1/(d21), ~21!

for any positivem. Considering that at least one of the tran
verse directions must be compact, this solution can be ca
a black (d23) brane,3 whose world sheet could be furthe
wrapped. The vacuum configuration (m50) is given by the
locally AdS manifold, described by the metric

ds252
r 2

l 2
dt21

l 2

r 2
dr21r 2ds0

2 , ~22!

which has no analogous in the vanishing cosmological c
stant limit.

g521: In this case, the set of metrics in Eq.~18! describe
topological black holes which possess a different behav
depending on whetherk is odd or even. For all values ofk,
the exceptional casem50 possesses a horizon atr 15 l ,
which could be a black hole depending on the topology
the transverse sectionS21. Both subcases—odd and eve
k—must be distinguished.

Generic theories with odd k:For theories with oddk, if
m>0 there is always a single horizon of radiusr 1> l . The
causal structure is the same as that of the caseg51, dis-
cussed above.

It is noteworthy that black hole solutions with negati
mass densities can also exist for oddk. If mc,m,0, with mc
given by Eq.~20!, the singularity atr 50 is surrounded by
two horizons,r 2 and r 1 , and the causal structure is anal
gous to that of the Reissner-Nordstro¨m solution with nega-
tive cosmological constant. For the critical valuem5mc both
horizons coalesce at

r c5 lAd22k21

d21
, ~23!

which corresponds to the extremal solution. The critical
dius r c is the smallest possible size of the outer horizon
the black holes within this family.

Generic theories with even k:For each evenk there are
two families of solutions labeled bya561 in Eq.~18! with
positive mass.

The branch witha51, describes black holes form>0
with a single horizon atr 1> l , and with the usual causa
structure. The boundm50 is saturated by the metric~19!.

The black hole solutions belonging to the branch witha
521, have an unusual mass range, bounded above an
low by mc>m>0, which in terms of the horizon radiu

3This solution can also be interpreted as a (d22)-brane with at
least one spatial direction wrapped up.
08401
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meansr c<r 1< l . The positive upper boundmc is given by
Eq. ~20!. For mc.m.0 the solutions have two horizonsr 2

andr 1 , however, unlike the standard solutions, as the m
increases,r 1 decreases. At first sight this might seem
contradict the second law of thermodynamics, but this is
the case. The configurationm50 will be excluded on ther-
modynamic grounds, as will be shown in Sec. IV.

The extreme case,m5mc corresponds to the limit in
which the horizons merge atr c given by Eq.~23!, which is
the smallest possible radius also in this case.

It is worth noting that if one considers a fixed mass p
rameter in the rangemc>m.0, there exist two different
topological black hole solutions, corresponding to thea5
11 anda521 branches, whose horizon radii are larger a
smaller thanl, respectively.

B. Chern-Simons theories:dÄ2k¿1

In these theories, the functionsa@2Gkm/(r d22k21)#1/k

degenerate into horizontal straight lines and thereforef 2(r )
in Eq. ~15! possesses only a simple zero at

r 15 lAa~2Gkm!2/(d21)2g.

This means that these solutions are black holes with a un
event horizon. Again, it is necessary to distinguish the th
ries with even and oddk, corresponding to dimensionsd
54n11 and d54n21, respectively. Table II shows th
allowed range ofm for which black holes exist (r 1>0).

As in the previous case, black holes with different valu
of g are analyzed separately.

g51: The spherical black holes were discussed in R
@24#, and in further detail in Ref.@15#. As seen in Eq.~17!,
the lower boundm51/2Gk corresponds to the zero mas
black hole (M50), which is separated by a mass gap fro
AdS space time (M521/2Gk). These black holes have
common causal structure with the (211)-dimensional solu-
tion @25#.

g50: As for the generic theories (d22kÞ1), the locally
flat transverse sectionS0, is assumed to be orientable with
least one compact direction. In that theory, the metric~18!
describes a black (d23) brane, whose horizon is located
r 15 l (2Gkm)1/(d21), as is obtained from Eq.~21! for d
22k51. Unlike the g51 case, the black brane vacuu
(m50) corresponds to the same metric as in the generic c
given by Eq.~22!, and there is no energy gap.

g521: As in the generic theories, solutions~18! describe
topological black holes for the range of masses included

TABLE II. Chern-Simons theories.

g51 g50 g521

Odd k (a51) m>
1

2Gk
m.0 m>2

1

2Gk

evenk m>
1

2Gk
m.0

a51 :m>0

a521 :
1

2Gk
>m>0
5-4
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Table II, except that form50, the metric~19! may or may
not be a black hole, depending on the topology ofS21.
Unlike the generic theory, these family of topological bla
holes possess a single event horizonr 1 even for negative
values ofm.

The minimum size of this kind of black holes isr c50, as
can be seen from Eq.~23!, whose critical mass parameter
given by

mc5
~21!k

2Gk
. ~24!

As in the generic case, the massive solutions of Che
Simons ~CS! theories have different features, for odd a
evenk.

CS theories with odd k (d54n21): The solution~18! de-
scribes black holes with a single event horizon form>mc
521/2Gk , and naked singularities otherwise.

CS theories with even k (d54n11): Two families of so-
lutions with positive mass labeled bya561 are obtained.

The branch witha511, describes black holes withm
>0 and r 1> l , where the boundm50 is saturated by Eq
~19!.

The mass range of the black holes witha521 is
bounded above and below by 0<m<mc51/2Gk , which in
terms of the horizon radius meansl>r 1>0. Note that for
a521, the mass is a decreasing function ofr 1 .

If the mass parameter is in the rangemc>m.0, two in-
equivalent topological black hole solutions are found, cor
sponding to the branchesa561, as in the generic theory.

Note that the static 211 black hole is obtained from Eq
~18! for g51 as well as forg50, because in three dimen
sions the transverse section degenerates toS1.

C. Vanishing cosmological constant limit

The full set of topological black hole metrics discuss
here approach asymptotically a locally AdS space time w
radius l, whose curvature at the boundary satisfiesRab→
2 l 22eaeb. Hence the asymptotically flat limit is obtained fo
l→`, instead of taking the vanishing limit of the volum
term (c0

k→0). The vanishing cosmological constant limit
the solutions in Eq.~18! coincides with the solutions of th
l→` limit of the actionI k , or equivalently, taking the sam
limit in the field Eqs.~7! and~8!, which amounts to replacing
R̄ab by Rab @15#.

The asymptotically flat limit of Eq.~18! is given by

ds252Fg2aS 2Gkm

r d22k21D 1/kGdt21
dr2

g2aS 2Gkm

r d22k21D 1/k

1r 2dsg
2 . ~25!

Hence, in case of vanishingL, these metrics describe blac
holes only for the spherically symmetric solutions in t
non-CS case (g51 andd22k21Þ0), with an event hori-
zon located atr 15(2GkM )1/(d22k21).
08401
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Some of the topological black holes discussed here h
been previously reported elsewhere. The case of Einst
Hilbert action—corresponding tok51 in our analysis—was
extensively studied in Refs.@7# and @8#. The topological
black holes corresponding tok51 possess a geometry re
sembling just those found for the actionsI k in Eq. ~18! with
odd k; in fact, they possess the same causal structure. H
ever, as is shown below, the thermodynamic behavior co
sponding to the Einstein-Hilbert case differs from the oth
odd k theories.

The theories withk5@(d21)/2# were studied in Ref.
@26# for oddk, which correspond to Chern-Simons and Bor
Infeld theories in dimensionsd54n21, 4n, respectively.

IV. THERMODYNAMICS

A. Temperature and specific heat

The black hole temperature is defined in the standard w
as b51/kBT, wherekB is the Boltzmann constant, and th
periodb54p(d f2/drur 1

)21 is found by demanding regular
ity of the Euclidean solution at the horizon. Thus

T5
~d21!

4pkBl 2

r 1
2 1gr c

2

kr1
, ~26!

wherer c is the critial radius defined in Eq.~23!. Note that for
CS theories the temperature has the universal expressio

TCS5
r 1

2pkBl 2
, ~27!

which does not depend ond or g. For generic theories with
g50, the temperature is also a linear function ofr 1 , and
this result is approximated forr 1@ l in all the other cases.

The specific heatC5dM/dT is given by

C5k
2pkB

Gk

Vd22

Sd22
r 1

d22kS g1
r 1

2

l 2 D k21F r 1
2 1gr c

2

r 1
2 2gr c

2G , ~28!

which for r 1@ l grows like C;r 1
d22 . Combining formulas

~26! and~28! with the mass parameterm(r 1) defined in Eq.
~16!, it is possible to investigate whether these topologi
black holes can reach thermal equilibrium with a heat bath
temperatureTB .

B. Thermal equilibrium

g51: The thermodynamic equilibrium of sphericall
symmetric black holes (g51) was discussed in Ref.@15#. In
this theory, ford22k21Þ0, the temperature~26! has a
minimum Tc5A(d22k21)(d21)/2pkBkl at r 15r c

5 lA(d22k21)/d21. The specific heat~28! is positive for
r 1.r c , and has the opposite sign forr 1,r c ; and near the
critical radius behaves asC;(r 12r c)

21, signaling the ex-
istence of a phase transition. Two generic situations m
occur.

~i! TB.Tc : In this case there are two possible equilibriu
states of radiir u ~unstable! and r s ~locally stable!, with r u
5-5



l i

o
ra

on
ol

se

le

ns

o
a

l

ge

e
a

th

a

e in-

an
t
ec

e

ts.

,

a
-
of
-
are

RODRIGO AROS, RICARDO TRONCOSO, AND JORGE ZANELLI PHYSICAL REVIEW D63 084015
,rc,rs. Thus, if the initial state hasr 1,r u , the black hole
cannot reach the equilibrium because it evaporates unti
final stage. Otherwise, forr 1.r u , the black hole evolves
towards an equilibrium configuration4 at r 15r s .

~ii ! TB,Tc : Under this assumption, a black hole cann
reach a stable equilibrium state and is doomed to evapo

In the special case ofd22k51 ~CS!, the specific heat
~28! is always positive, hence the equilibrium configurati
is always reached, independently of the initial black h
state and for any finite temperatureTB .

g50: In case of black holes with a locally flat transver
section (g50), the temperature~26! grows linearly withr 1

T5
1

k

~d21!

4pkB

r 1

l 2
, ~29!

and the specific heat is

C5k
2pkB

Gkl
2k22

Vd22

Sd22
r 1

d22 ,

which implies that, independently of the initial black ho
state, thermal equilibrium at somer 15r s , is always reached
for any finite temperature of the heat bathTB .

g521: For all theories labeled with differentk, the tem-
perature of the topological black holes with hyperbolic tra
verse sections is a monotonically increasing function ofr 1

which vanishes at the smallest possible size for a black h
r 15r c . This is consistent with the fact that for the extrem
solution,r 15r c , the Euclideanr 2t plane has the topology
of a cylinder and henceb is arbitrary.

The massless topological black hole in Eq.~19! has a
horizon atr 15 l and a universal temperature given by

Tl5
1

2pkBl
. ~30!

The specific heat~28! has a simple zero atr 15r c and a
zero of orderk21 at r 15 l . This second root is a loca
minimum for oddk and a saddle point5 for evenk. Thus the
approach to equilibrium depends on the parity of the inte
k.

1. Theories with oddk

For kÞ1, as depicted in Figs. 2 and 3, the temperatur
a strictly increasing function ofm and the specific heat is
non-negative for the allowed range ofr 1 . This implies that
equilibrium with a heat bath at temperatureTB is always
reached for any initial black hole state. Moreover, since
specific heat vanishes for the local minimum atr 15 l , the
topological black hole behaves as a ‘‘volatile’’ system ne

4Curiously, the minimum size for which a spherical black hole c
be at equilibrium with a heath bath (r c) corresponds to the smalles
size of a topological black hole with hyperbolical transverse s
tion.

5Except fork52, in which caseC has a simple zero atr 15 l .
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the massless configuration, as there is a sudden increas
temperature with an infinitesimal increase inm.

For the Einstein-Hilbert~EH! action (k51) the specific
heat neither vanishes nor has a minimum atr 15 l , as seen in

-

FIG. 3. The mass parameter (m) as function of the temperatur
is depicted forg521 solutions. For evenk, m has a local maxi-
mum atT50 and an absolute minimum atTl . For oddk, the mass
parameter has an absolute minimum atT50 and an inflexion point
at Tl for kÞ1. The specific heat vanishes at these critical poin
For evenk the specific heat is negative forT,Tl . For oddkÞ1,
the inflexion point atT5Tl signals the existence of a ‘‘volatile
point.’’ For the EH case (k51) there is not such volatile state
since the specific heat has an absolute minimum atT50.

FIG. 2. The temperature as a function ofr 1 is depicted for
generic theories withg50,61. For g51 the temperature has
minimum atr 15r c . Wheng50 the temperature is a linear func
tion of r 1 . Forg521 the temperature is an increasing function
r 1 that vanishes atr 15r c . For r 1@ l the temperature grows lin
early with r 1 for all cases. For CS theories the three curves
replaced by theg50 straight line with a universal slope.
5-6
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Fig. 3. This means that equilibrium with a heat bath is a
attained for any initial configuration, and there is no ‘‘vol
tility point’’ at all.

2. Theories with even k

As shown in Fig. 3, the topological black holes in a
theories with evenk have positive specific heat fo
r 1. l—corresponding to the branch witha511—while
C,0 for r c,r 1, l ~for a521). The zero of the specific
heat atr 15 l , which corresponds to the massless topologi
black hole in Eq.~19! at temperatureTl , gives rise to two
different scenarios depending whether the heat bath temp
ture is above or belowTl .

~i! TB,Tl : If the initial state of the topological black hol
is at a temperature aboveTB , both branches (a561) re-
duce their masses, reaching a stable vacuum configura
out of thermal equilibrium at temperatureTl and zero mass
On the contrary, if the initial state is atT,TB ~which can
only occur for the brancha521), the black hole increase
its mass tending towards the extreme state withT50 and
m5mc . Hence the configuration at thermal equilibrium (T
5TB) is unstable.

~ii ! TB.Tl : If the initial state of the topological black
hole belongs to the upper branch (a511 andT.Tl), the
equilibrium with the heat bath is always attained, in agr
ment with the positive specific heat of this branch. Co
versely, a black hole in the lower branch will move awa
reducing its temperature and increasing its mass, towards
extreme configuration. Note that now the vacuum configu
tion m50 is unstable.

3. Thermodynamics and topology fixing forgÄÀ1

As mentioned in Sec. III for theg521 case, the mass
less state~19! could be construed as a black hole or n
depending on the topology of the transverse section.
above thermodynamic analysis shows that the statem50
admits a standard black hole interpretation for oddk but not
for evenk.

To see this, consider a nearly massless black hole
vacuum~in a heat bath at zero temperature!: in a theory with
evenk both branches (a561) approach a final state atm
50 and T5Tl which cannot loose energy further as th
would make the metric complex. In this sense, this final s
cannot be interpreted as a standard black hole. On the o
hand, for theories with oddk them50 configuration behave
as a volatile state which radiates violently, decaying into
negative mass black hole.

Thus the thermodynamics provides a criterion to rest
the topology of the transverse sectionS21: for odd k, the
transverse section must have a topology such that the ge
etry for m50 is a black hole; on the contrary, for evenk, the
topology of the transverse section must be chosen so tha
massless solutionis not a black hole.

C. Entropy

An analytic expression for entropy as a function of t
horizon radiusr 1 , can be obtained in the semiclassical a
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proximation from the Euclidean version of the actionI k ~see
the Appendix!. Alternatively, the entropy can be obtaine
from the first law of thermodynamics,dM5TdS, as

dSk

dr1
5

Sd22

TVd22

dm

dr1
, ~31!

which, upon substitution of Eqs.~16! and ~26!, yields

dSk

dr1
5k

2pkBSd22

Vd22Gk
r 1

(d22k21)S g1
r 1

2

l 2 D k21

. ~32!

This expression shows that the entropy is a monotonic
increasing function ofr 1 for all cases, except ifk is even and
g521, in which case it is decreasing in the ranger c,r
, l .

For g51,0 the entropySk(r 1) is given by

Sk5kB

2kpSd22

Vd22Gk
E

r min

r 1

r (d22k21)S g1
r 2

l 2 D k21

dr, ~33!

for which the lower integration limit is chosen asr min50, so
that the vacuum (r 150) has vanishing entropy. Forg5
21, expression~33! is valid also for theories with oddk,
providedr 1.r c .

In the exceptional case~evenk, g521), Eq.~32! implies
that the entropy attains an absolute minimum at the vacu
configuration (r 15 l ). Hence the lower integration limit is
naturally chosen asr min5 l in order to have non-negativ
entropy.6 Superficially, the fact that in the ranger c,r 1, l ,
the entropy is a decreasing function ofr 1 , would seem to
violate the second law of thermodynamics. However, t
range of r 1 corresponds to the branch witha521, for
which the mass is also a decreasing function ofr 1 and hence
]S/]M51/T.0 as shown in Fig. 2.

All solutions with g50 obey an ‘‘area law’’ for allk:

Sk5kB

2pk

~d22!Vd22Gkl
2(k21)

A, ~34!

which in standard units is

Sk5k
G

Gkl
2(k21)

SEH ,

where the Einstein Hilbert entropy readsSEH

5(kB /G̃)(A/4), andA5Sd22r 1
d22 is the horizon area. It is

important to note that forg61 the entropy~33! approaches
the area law~34! in the limit r 1@ l .

6Note that in this case the entropy vanishes forr 15 l , where the
temperature is nonzero@T5(2pkBl )21#. This situation is not com-
pletely new, as it is found for instance in stringy dilatonic bla
holes@27#. These configurations are physically acceptable provid
the black hole has a mass gap, a condition which is met by
solutions presented here.
5-7
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D. Canonical ensemble

For spherically symmetric black holes in the fou
dimensional Einstein theory, it was shown in Ref.@1# that the
canonical ensemble is well defined provided a negative c
mological constant is included. Those arguments can be
tended to higher dimensions and for theories described
the action~1! @15#. It can be similarly shown that the canon
cal ensemble is also well defined for the whole set of to
logical black hole solutions considered here.

In the present case the partition function is given by

Zg
k~b!5(

a
E ra~M !e2bMdM, ~35!

where the sum extends overa561 only for evenk andg
521, while for all other casesa51 only. Integrating in
r 1 , this expression reads

Zg
k~b!5E

r c

`

r~r 1!e2bMU ]M

]r 1
Udr1 ~36!

for all cases. As the density of states is given byr(r 1)
5exp(Sk /kB), the convergence of~36! depends on the behav
ior of Sk andM for r 1@ l . Combining Eqs.~16! and~34!, the
integral~36! can be seen to converge for allk andg. In fact,
the integrand of Eq.~36! takes the convergent form
exp@2bM1aM(d22)/(d21)# (a.0) for L52 l 2Þ0,
whereas forL50, it behaves as exp@2bM1aM(d22k)/(d
22k21)# and diverges for allk>1.

E. Connection with thermal CFT’s

In the context of the Maldacena’s AdS/CFT duality co
jecture ~see, e.g., Ref.@9# and references therein!, a
d-dimensional Euclidean gravity theory with asymptotic Ad
behavior can be described by a suitable thermal confor
field theory on its boundary@10#. The fact that the actions
I k—defined in Eq.~1!—describes up to@(d21)/2# inequiva-
lent gravity theories in the bulk, would imply the existen
of an equal number of different (d21)-dimensional dual
CFT’s at the boundary. The asymptotic behavior of the
gravity theories, which can be read from the metrics~18!,
should be reconstructed from this set of CFT’s at the bou
ary through the UV/IR relation. This relation states that d
ferent radial positions are mapped to different field the
scales, in such a way that the infrared effects in the b
correspond to ultraviolet effects on the theory at the bou
ary @28#.

In particular, certain type of CFT renormalization grou
equation can be generated by the action of the radial Ha
tonian constraint in the bulk@13#. It is expected that devia
tions from the proposed renormalization group flow sho
result from modifying the Hamiltonian constraints by th
inclusion of higher curvature terms in the action. Thus the
of actions given byI k

d enhances the repertoire of theori
which could provide a concrete holographic interpretation
gravity.

The different asymptotic regions of the black holes d
cussed here provide inequivalent background spaceti
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where the corresponding dual CFT’s are realized@11,12#.
Thus CFT’s defined onS13Rd22, S13Sd22, or S13Hd22

are connected with black holes in the bulk forg50, 1, or
21, respectively.

Some insight about the correspondence can be gaine
looking at the thermodynamic quantities in the simplest c
corresponding to a thermal CFT on a flat background, tha
on S13Rd22. In this case, conformal invariance is sufficie
to fix the energy to be of the form

ECFT5sSBVCFTbCFT
12d , ~37!

wheresSB is the Stefan-Boltzmann constant. Using the fi
law of thermodynamics, the entropy can be written as7

SCFT5
d21

d22
sSB

1/(d21)VCFTS ECFT

VCFT
D (d22)/(d21)

, ~38!

The precise expression forsSB is determined by the dy-
namical structure of the specific CFT considered, and i
growing function of the number of degrees of freedom.
terms of the AdS/CFT correspondence, this CFT can
viewed as defined on the boundary of the Euclidean sp
for the metric ~18! with g50 at a large fixed radiusr 0
@r 1 . HenceVCFT corresponds to the volume of the tran
verse section, given by

VCFT5Sd22r 0
d22 . ~39!

Correspondingly, the temperature atr 0 is given by the red-
shifted black hole temperature as

TCFT5
l

r 0
T,

whereT is given by Eq.~29!. Consequently, the energyECFT
in Eq. ~37! corresponds to the red-shifted black hole mas

ECFT5
l

r 0
M , ~40!

provided the Stefan-Boltzmann constant is given by

sSB5
1

2Vd22
S 4pk

d21D d21 l d22k

Gk
. ~41!

Plugging expressions~37!, ~39! and ~41! into Eq. ~38!, al-
lows expressingSCFT in terms of the black hole mass den
sity,

SCFT5kS l 2(d2k21)

Gk
D 1/(d21) 2pkB

~d22!

Sd22

Vd22
~2m!(d22)/(d21),

~42!

which precisely matches the black hole entropySk for g
50 in Eq. ~34!.

7The form ofS can also be inferred demanding the entropy to
extensive and conformally invariant.
5-8
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It is worth noting that the entropy grows linearly withk,
the highest power of curvature in the action. Moreover, E
~41! relates the integerk to the number of degrees of freedo
of the corresponding CFT at strong coupling. For the cas
standard five-dimensional supergravity (k51), which is con-
jectured to be dual to four dimensional SYM withN54 at
largeN, the entropy relation~42! is reproduced up to a nu
merical factor@10#.

Finally, note that the entropy matching between bla
holes withg50 and CFT’s on a flat backgroundS13Rd22

is exact for all values ofb, but it is not necessarily so fo
CFT’s defined onS13Sd22 and S13Hd22, i.e., g51 and
21, respectively. Although the exact expression for the
tropy of a CFT on a generic curved background is unknow
an approximate result can be established forg561 in the
limit b→0. In fact, for g561, the curvature of the trans
verse section is61/r 0

2 and, by conformal invariance, th
entropy should be a function ofb/r 0 only. Hence the large
r 0 limit is equivalent tob→0 and therefore the high tem
perature limit is reproduced if the horizon radius is ve
large8 (r 1@ l ). Thus it is concluded that the entropy of
CFT and that of a black hole approach the same expres
given by Eq.~34! in the high temperature limit, providedsSB
is chosen as in Eq.~41!.

V. SUMMARY AND COMMENTS

Static black hole-like geometries, possessing topolo
cally nontrivial AdS asymptotics have been found as so
tions of a family of gravity theories which admit a uniqu
global AdS vacuum. These theories and their correspond
solutions are classified by an integerk, which is the highest
power of curvature in the Lagrangian. These solutions
further labeled by the constantg561,0, representing the
curvature of the transverse section.

Locally spherical transverse section

The caseg51 leads to a natural splitting between gene
and CS theories (d22k51). In the first case, the causal an
thermodynamic properties resemble those of
Schwarzschild-AdS black hole. In the CS case, black ho
behave like the 211 solution.

Locally flat transverse section

The caseg50 corresponds to~un!wrapped black branes
for all values ofd, k and M.0 exhibiting the same causa
structure as a Schwarzschild-AdS black hole, but whose t
modynamic properties are analogous to those of
211-dimensional black hole. Therefore they possess
single event horizon, their temperature is a linear function
r 1 , and hence they reach thermal equilibrium with a h

8In generic theories~non-CS! theories withg51, the limit b
→0 can be obtained forr 1! l . This branch, however, is thermo
dynamically unstable and this fact could be interpreted as a c
fined phase in the CFT@10#.
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bath at any temperature. Moreover, the entropy follows
area law,Sk5kB@2pk/(d22)Vd22Gkl

2(k21)#A.

Locally hyperbolic transverse section

The caseg521 naturally leads to a splitting betwee
theories with even and oddk which are treated separately. I
addition, the Einstein-Hilbert action (k51) and the CS case
exhibit a special behavior.

~i! Odd k. In this case, solutions with non-negative ma
have a single horizon radius larger thanl and their causal
structure is analogous to that of theg51 case discussed
above. ForM,0, in the generic case there are two horizo
with the same causal structure as the Reissner-Nords
AdS black hole, but wherer 1 and r 2 cannot be indepen
dently adjusted because they are functions of a single par
eter (m). The extremal case corresponds to the lower bou
for both mass andr 1 (M>Mc,0 and r 1>r c). The tem-
perature is a strictly increasing function of the mass a
hence the specific heat is non-negative for the entire phys
range (r 1>r c). This means that equilibrium with a heat ba
can always be reached. The specific heat vanishes atr 15 l ,
signaling the existence of ‘‘volatile’’ configurations near th
massless state. The Einstein theory (k51) is singled out in
this respect, since its specific heat neither vanishes nor h
minimum at the massless configuration and therefore ex
its no volatile behavior.

~ii ! Even k.These theories possess an interesting se
black hole solutions with hyperbolic transverse section.
this case, there exist two independent branches for a g
mass: the branch witha51 describes single horizon blac
holes with r 1> l . They have non-negative mass and t
usual causal structure. The other branch (a521), has a
nonstandard mass rangemc>m.0, and the corresponding
range of horizon radius isr c<r 1, l . On the other hand
solutions belonging to this latter branch present two horiz
and curiously,r 1 is a decreasing function of the mass, unli
the standard black holes. The extreme case correspond
the smallest possible size of the horizon radius (r c), which
has the largest possible mass (m5mc).

The following remarks on the thermodynamics are in
der.

Topological black holes with hyperbolic transverse se
tion and evenk can reach thermal equilibrium only if th
temperature of the bath is higher than that of the mass
(r 15 l ) configuration (TB.Tl), and if the initial state of the
black hole belongs to the upper branch (a511 and T
.Tl). Otherwise, the fate of the black hole is to approa
either the vacuum (m50), or the extremal configuration
(m5mc), as discussed in Sec. IV B.

It is remarkable that forg521, thermodynamics restrict
the topology of the transverse sectionS21: for even k it
must be such that the configurationm50 is not a black hole,
whereas for oddk, the massless configuration must be
black hole, which for instance can be obtain through suita
identification in the covering space of the transverse sect

For CS theories the temperature has a universal lin
dependence onr 1 for all d andg.

Solutions withg521, of CS theories always possess
n-
5-9
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single horizon and have qualitative thermodynamic beha
for even and oddk.

The canonical ensemble is well defined for all values
the parametersd, k, m, andg, provided a negative cosmo
logical constant is present. Otherwise, the partition funct
diverges.

In the vanishing cosmological constant limit, only th
spherically symmetric solutions (g51) with d22kÞ1 are
black holes.

Holography: The topological black hole solutions foun
here shed some light on holography in the sense of the A
CFT correspondence. It has been shown that the black
thermodynamics forg50 can be described in terms of
CFT at the boundary, for all the theories considered here.
g561 the matching occurs forr 1@ l . Thus Einstein’s
theory is not the only one which admits a holographic int
pretation, but the whole set of gravitational theories p
sented here do. The exact matching with a CFT is achie
provided the value of the Steffan-Boltzmann constant i
fixed function of d and k given by Eq. ~41!. Since sSB
;kd21, the number of degrees of freedom in the CFT m
increase with the power of the curvature in the bulk grav
tional theory. Hence, the AdS/CFT correspondence, in
sense, suggests the existence of@(d21)/2# inequivalent (d
21)-dimensional dual CFT’s, one for each actionI k , en-
larging the options for concrete holographic interpretation
gravity. In particular, in five dimensions there are two gra
tation actions within this family~EH and CS!, which are
candidates in equal footing to realize the AdS/CFT cor
spondence. One could speculate that for CS gravity,
asymptotic dynamics would be described by some hig
dimensional generalization of the WZW model~see, e.g.,
Refs. @29–32#!. Thus, WZW models may be relevant
count the microstates responsible for the entropy of th
black holes.

Topological black hole metrics in eleven dimensions w
k55 are also solutions of a supergravity theory, describe
terms of a CS action with gauge group 0Sp(32u1) @21#. Fur-
thermore, it can be shown that some of them admit Killi
spinors@33#. This claim might seem surprising as no loc
supersymmetric extension exists for the EH action with c
mological constant in eleven dimensions@34#.
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APPENDIX: MASS AND ENTROPY
FROM BOUNDARY TERMS

1. Mass

The aim of this appendix is to establish the relations
between the integration constantm, appearing in the solu
tions ~18!, and the mass. In the Hamiltonian approach,
gravitational action is
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I T5I G1B, ~A1!

whereI G is the canonical action in phase space,

I G5E ddx~p i j ġi j 2N'H'2NiHi !, ~A2!

and B is a boundary term, which is required in order
guarantee that the action attain an extremum on shell@35#.
Here Hm are the Hamiltonian generators of space-tim
diffeomorphisms.

Replacing the ansatz~11! into the action, allows to obtain
a one-dimensional minisuperspace model whose action,

I T5Dt
Sd22

Vd22
E N

2

d

dr H r d21

Gk
FFg~r !1

1

l 2G kJ dr1B,

~A3!

is a functional of the fieldsNªN'(r ) f 22(r ), and f 2(r ),
with Fg(r )5@g2 f 2(r )#/r 2. The field equations obtaine
from Eq. ~A3! reproduce Eqs.~12! and ~13!. The bulk term
vanishes on the field equations, so that the variation of
action ~A3! on shell, is the boundary term

dI T5Dt
Sd22

Vd22
E d

dr S N
r d21

2Gk
dFFg~r !1

1

l 2G kD dr1dB,

~A4!

which means that the action is stationary on the black h
solution provided

dB52DtN`

Sd22

Vd22
dm, ~A5!

and consequently, the boundary term to be added is

B52DtN`

Sd22

Vd22
m1B0 ,

whereB0 is an arbitrary constant without variation. This a
lows identifying the mass as

M5
Sd22

Vd22
~m2m0!, ~A6!

where the lapse at infinity (N`) has been chosen equal to
In order to avoid naked singularities with positive mass,
additive constantm0 is set equal to zero for all cases exce
for spherical black holes solutions of Chern Simons theo
(d52k11 andg51), that is,m05 (1/2Gk)dd22k,g .

An alternative way to obtain the mass and angular m
mentum for gravity theories with asymptotically locally Ad
behavior in even dimensions (d52n), has been recently pro
posed@2,3#. This construction is fully covariant and back
ground independent. This provides an independent chec
formula~A6!, which is summarized here. The demand on
action I k to have an extremum for asymptotically local
AdS space times fixes the boundary term that must be ad
to Eq. ~1! as the integral of the Euler density with a fixe
coefficient@15#,
5-10
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I T5I k1kanE E2n , ~A7!

where

an5cn
k
ª

~21!n1k11l 2(n2k)

2nS n21
k D . ~A8!

The invariance of Eq.~A7! under diffeomorphisms provide
a conserved current through Noether theorem,d* J50. As-
suming that the asymptotic region of the manifold is]M
5R3Sg , the conserved charge associated with diffeom
phismsxm→xm1jm is

Q@j#5E
Sg

jmvm
abTab , ~A9!

whereTab is the functional derivative of the total Lagrangia
in Eq. ~A7! with respect to the curvature

Tabª
dLT

dRab
. ~A10!

The mass is obtained from Eq.~A9! for j5] t , without mak-
ing further assumptions about the matching with a ba
ground geometry or its topology. Thus the mass for the
pological black holes given by Eq.~18! is

M5Q@] t#5m
Sd22

Vd22
, ~A11!

in agreement with the result obtained from the Hamilton
formalism in even dimensions.
ell

ell

tt.

Y

gy
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2. Entropy

In the semiclassical approximation the partition functi
is given byZ'e2I E, whereI E is the Wick rotated version o
the action~A3! given by

I E52b
Sd22

Vd22
E

r 1

` N

2

d

dr H r d21

Gk
FFg~r !1

1

l 2G kJ dr1BE .

~A12!

The on shell value ofI E is given byBE and therefore the
Helmholtz free energy,F5I E /b5M2S/(kBb), is com-
pletely determined by the boundary term, whe
(d f2/dr)ur 1

54pb21. The boundary termBE is also fixed
requiring the action to have an extremum on the Euclide
form of the geometry, which covers only the exterior secti
of the black hole (r .r 1). Its variation is now given by

dBE5bdM2k
2pSd22

Vd22Gk
r 1

(d22k21)S g1
r 1

2

l 2 D k21

dr 1 .

This implies that the variation of the entropy, as function
the horizon radius, reads

dSk5k
2pkBSd22

Vd22Gk
r 1

(d22k21)S g1
r 1

2

l 2 D k21

dr 1 .

~A13!

This relation can be integrated to yield a closed express
for entropy as a function ofr 1 , given in Eq.~33!.
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