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Asymptotically locally AdS black hole geometries of dimensiba3 are studied for nontrivial topologies of
the transverse section. These geometries are static solutions of a set of theories labeled by ak integer
e{1,2,...[(d—1)/2]} which possess a unique globally AdS vacuum. The transverse sections of these solu-
tions ared—2 surfaces of constant curvatuse normalized toy=*=1,0 allowing for different topological
configurations. The thermodynamic analysis of these solutions reveals that the presence of a negative cosmo-
logical constant is essential to ensure the existence of stable equilibrium states. In addition, it is shown that
these theories are holographically related (d— 1)/2] different conformal field theories at the boundary.
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[. INTRODUCTION radial Hamiltonian constraint of a gravitation theory with
higher powers of the curvature.

Several formal arguments suggest that at a fundamental In dimensions higher than 4, in addition to Einstein’s
level the cosmological constanA] should be negative, in theory, there exist a host of sensible gravity actions which
spite of recent observations that favor a positive effectivecontain higher powers of the curvatufer a recent review,
value at a cosmic scale. As shown by Hawking and Fage Se€e, e.g., Ref14] and references therginA particular class
the presence of a negative makes it possible for black of these .theorl_es gives rise to sepond order field equ'atlons'for
holes to reach thermal equilibrium with a heat bath. More-the metric, which possess spherical black hole solutions with
over, a negative cosmological constant is required to obtain & Well defined asymptotically AdS behavigt5]. In this
correct definition of Noether charges representing the mas0rk, that family of black hole solutions is extended to ge-
and angular momentufi2,3]. Even in a spacetime with van- ometries with I_o_cally flat and_ hyperbollp horizons, including
ishing A, the correct results are obtained provided the condifferent nontrivial asymptotic topologies. The thermal be-
struction is carried out with <0 and taking the\ — 0 limit haV|or_ of thls_ class_of theories around these _solutlons is ana-
at the end. In this sensa, acts as a regulator allowing the Iy_zed in detail and is shown to be holographically connected
canonical ensemble as well as Noether charges, to be welfith different thermal CFT’s.
defined.

On the other hand, black holes witti>0 do not admit a
global definition of time, which prevents the existence of a
positive energy theorem. This fact is related with the nonex- A minimally sensible gravity theory should be described
istence of a locally supersymmetric extension of gravity forby an action leading to second order field equations for the
positive A [4]. metric in order to avoid problems with causality in the clas-

The topological censorship theoref®] states that in as- sical theory, or ghosts at the quantum level. The so called
ymptotically flat spacetimes only spherical horizons can giveLanczos-Lovelock gravities are the only purely metric theo-
rise to well defined causal structure for a black hole. This igies that satisfy this requiremefi6], although they present
circumvented by the presence of a negative cosmologicaeveral problems. For each dimension, they possess a num-
constant, in which case well defined black holes with locallyber of arbitrary constants. As a consequence, their field equa-
flat or hyperbolic horizons have been shown to ej@st8].  tions allow the existence of spherically symmetric black
This kind of black hole with topologically nontrivial AdS holes with negative energy, as well as positive energy solu-
asymptotics is relevant in testing the AdS conformal fieldtions with naked singularities. Moreover, these solutions do
theory(CFT) correspondenci®] in the cases where the ther- not have a unigue asymptotic behavior and can even sponta-
mal CFT is defined on backgrounds of different topologiesneously jump between distinct geometrjdg—19.

Il. AdS GRAVITY THEORIES IN HIGHER DIMENSIONS

such asS'x R972, S'x S92 or StxHY2[10-13. As will These problems can be overcome by requiring the theo-
be shown, these backgrounds correspond to the asymptoties to possessa unique cosmological constant, which
regions of the solutions discussed below. strongly restricts the arbitrary coefficients in the Lanczos-

As observed in Ref.13] the renormalization group equa- Lovelock actions. Hence one is led to a set of theories which,
tion for a CFT at the boundary should be obtained from thefor each dimensionl, have a number of Lagrangians labeled
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by an integek which represents the highest power of curva-kind theories with negative cosmological constant is known

ture in the Lagrangian. The action reads to exist for any odd dimension, in particular fde= 11 [21].
. An illustrative example of the kind of theories considered
Ky (0) here, is thek=2 case. This action, which exists only fdr
he= > L, (1) >4, is written in tensor components as
2 2
whereL( is given by :—Z(d—3)!;<j dy "7 LR
l2 2 N9 5 =3y d=a) TRTA)
LP = €a,.. .adRaﬁ‘z. . - R%2p-132pgd2p+1. . . gad, ) (9)
and wherefR? stands for the Gauss-Bonnet density,
126-0 [k M%:=(R,,0pR*"*P— 4R, R+ R?). (10)
ck=¢ (d—2p)\p P=X, (3) In this paper, only torsion-free solutions will be consid-
P 0. p=k ered, so that Eq@) is trivially satisfied.
with Ill. TOPOLOGICAL SOLUTIONS
Let us considerd-dimensional static spacetimes whose
1<k< d-1 (4) spatial sections are foliated along the radial direction dby (
2 —2)-dimensional transverse surfacgs of constant curva-
] ture y. In terms of Schwarzschild-like coordinates, the met-
where[x] stands for the integer part af _ ric can be written as
Unlike a generic Lanczos-Lovelock theory, which would
be obtained for arbitrary coefficienté(p, the actionl, pos- ) ) dr? oy 2
sesses only two fundamental constartandl, related to the ds’=—N2(r)f%(r)dt*+ 2(r) +rodas, (11
gravitational constanG, and the cosmological constanit
throught where —co<t<o, and O<r < is the radial coordinate for
which r—oo defines the asymptotic region. The arc length
. 1 (5) doi corresponds to the distance &n. Substituting the an-
2(d=2)1Q4_,G,’ satz(11) in the field Egs.(7), leads to the following equa-
tions for N(r) andf?(r):
(d—1)(d—2)
AT © N, 12
2 T (12)
whereQ_, is the surface area of a uniti{- 2)-sphere. 1]
d-1 all B
The field equations read dr ( r Fy(r)+ 2 =0, (13

Gbalu-ad_lﬁalaz’ . R2%k-1%2kgd2k+1...@2%d-1=0, (7)  where the functiorF (r) is given by

Dasa Dok 182k T a0+ 1082k ag_1— y—f2(r)
Eaba3~--adR 384. . . RA2k-182kTA2k+1g82%~+2. . . @%d-1=0, (8) y( )= r— (14

whereR® =R+ 1/ 2% and T? is the torsion 2-form. By virtue of Eqs.(12) and(13), N is a constant, which can be
Note that the Einstein-Hilbert action id dimensions is  chosen as Isee Appendix Sec.)land

obtained by setting=1 in Eq.(1). This is the only possible
choice in three and four dimensions, while in five or more )
dimensions there are other inequivalent theories Wit . FAr)=y+ |_z_“
In the casedl=5 andk=2 the Lagrangian can be cast as the

Euler-Chern-Simons form for the AdS groy@0]. The  respectively, wherer= (1)1,

Euler-Chern-Simons form is obtained from E@) in any The constanty can be normalized ta-1,0 by an appro-
odd dimension for the maximum allowed valde=(d priate rescaling of the coordinates. Thus the local geometry
—1)/2. The locally supersymmetric extension of these lasbf X is a sphere, a plaf@r a hyperboloid:

2 2,LLGK

prEcTasy I (19

The gravitational constant has natural units given [l,] 2For y=0 it is necessary that at least one direction3af be
=(lengthy'~ 2%, and| corresponds to the AdS radius. In this work compact, otherwise the integration constantcould be rescaled
the conventions of Ref15] are followed. away.
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Sd—2' ,y:]_'
3, locally = R972,  y=0,
HI"2, y=—-1.

The solution(15) may vanish for some values of The
largest zero off?(r) corresponds to the outer horizan
which allows to express the integration constanas

r2 )\
r(er—2|<—1) v+ l_;)
w= 2G, , (16
and is related to the mads through
a2y Lo (17)
M 2d72 2Gk d—2k,y -

Here3,_, is the volume of the transverse space, &nd ,
corresponds to the volume & 2. Note that the mass is
shifted with respect to the integration constanbnly for d
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Y=1 =0 y=1

Black Hole

FIG. 1. The horizons are located at the zerosf4(fr), which
occur at the intersections of the parabolgs-¢?/1%) and the func-

—2k=1= 1, which corresponds to a spherically symmetrictions o] 2Gu/(r¢=2~1]1*¥. These are displayed far=0,+1, and

solution in Chern-SimongCS) theory(see Appendix Sec.)1
Summarizing, for a fixed value of the labklin d dimen-
sions, the action, in Eq. (1) is extremized by the metric

r2 2Gk/_[, 1/k7
ds?=— v+ ——a dt?
2 pd—2k-1
dr? S
+- —+redo (18)
2 Tk 1z
r 2Gk,u
LA arva

with a=(+1)*"1, whose asymptotic behavior is locally
AdS, for any topology ok, .

Note that theu=0 solution,
r2
Y+ 2

dr?
ds’=— dt2+—r2+r2da§, (19
Y+ |—2>

is a locally AdS manifold, which is a common solution to the

Egs.(7) and(8) for any value ok, in particular for Einstein’s
theory k=1). As discussed in Ref$7,8], when the trans-
verse section is locally hyperbolicyE —1), although the
metric (19) possesses a horizonrat=1, it may not describe
a black hole. If the transverse secti@h ; has topology
R972, Eq. (19) is not a black hole, but it could be one pro-
vided suitable identifications are performed Bn,, analo-
gous to the Bamdos-Teitelboim-Zenelli(BTZ) solution
[22,23.

Note that for theories with odkK, the line elementl18) is

real for all values of the integration constants, however, fo

evenk only positive u is allowed. In what follows it is
shown that this metric describes black hole$?r) has at

least one zero, and they are naked singularities otherwise.

different values ofa and w. There exists a single horizon far
=1 andu=0. Two horizons arise either far=1 andu . <u<O0,

or for a=—1 and < u<pu.. In the extreme case, both horizons
coalesce fou=p..

is apparent from Eq(18) that the theory withd—2k—1
=0 must be treated separately.

A. Generic theories:d—2k#1

In Fig. 1, the zeros of?(r) correspond to the intersec-
tions of the parabolas y+r?/1?) and the functions
a[2G, ul (r@=2<=D1% for y=0,+1, and different values
of a and u, respectively.

It is necessary to consider separately the theories of even
and oddk. The range ofu for which black holes exist is
summarized for different values of andk in Table 1.

For y=—1 there is a critical valug., given by

(_ 1)k|d*2k*l
2G,

(d—2k—1)4 21 2K)*
(d_ 1)dfl

M=
(20)

which separates topological black holes with hyperbolic
transverse section from naked singularities.

v=1: This case corresponds to the static, spherically sym-
metric black holes analyzed in R¢fL5]. They have a single
event horizon, providege>0. For any integek such that

TABLE I. Generic theoriesd—2k#1).

y=1 y=0 y=-—1
rOddk(oz:l) u>0 u>0 L= e <0
=1 =0
Evenk ©n>0 ©n>0 “ H
a=—1 u=u=0

it
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1sk<(d—1)/2, these solutions share a common causal TABLE II. Chern-Simons theories.
structure with the Schwarzschild-Ag8lack hole solution of
Einstein’s theory k=1). y=1 y=0 y=-1

v=0: In this case, the set of geometries described by Eq. 1 1
(18) possess Ioca}lly flat transverse. secti@}_ﬁ which are - Oddk (a=1) M>£ u>0 ,u?—g
assumed to be orientable. The metric describes a topological k k
black hole for eaclk, with a unique event horizon located at L a=1 1=0

r= (262 MEY), (2 e R .
2Gy

for any positivex. Considering that at least one of the trans-
verse directions must be compact, this solution can be cast as
a black @—3) brane® whose world sheet could be further meansr.<r,<I. The positive upper boung. is given by
wrapped. The vacuum configuratiop € 0) is given by the Eq. (20). For u.>u>0 the solutions have two horizoms
locally AdS manifold, described by the metric andr, , however, unlike the standard solutions, as the mass
increasesy , decreases. At first sight this might seem to
contradict the second law of thermodynamics, but this is not
the case. The configuratign=0 will be excluded on ther-
modynamic grounds, as will be shown in Sec. IV.
which has no analogous in the vanishing cosmological con- The extreme caseu = u. corresponds to the limit in
stant limit. which the horizons merge at given by Eq.(23), which is

y=—1: In this case, the set of metrics in H348) describe the smallest possible radius also in this case.
topological black holes which possess a different behavior, It is worth noting that if one considers a fixed mass pa-
depending on whethdcis odd or even. For all values &  rameter in the rangg..=u>0, there exist two different
the exceptional casg.=0 possesses a horizon mt =I,  topological black hole solutions, corresponding to the
which could be a black hole depending on the topology oft 1 anda=—1 branches, whose horizon radii are larger and
the transverse sectioB _;. Both subcases—odd and even smaller tharl, respectively.
k—must be distinguished.

Generic theories with odd Kor theories with odd, if B. Chern-Simons theories:d=2k+1
u=0 there is always a single horizon of radius=I. The
causal structure is the same as that of the casd, dis-
cussed above.

It is noteworthy that black hole solutions with negative
mass densities can alsq exist f_or dddf M= ©n<0, with g r,=1Ja(2G ) 7@,
given by Eq.(20), the singularity ar =0 is surrounded by
two horizons,r _ andr, , and the causal structure is analo- This means that these solutions are black holes with a unique
gous to that of the Reissner-Nordstresolution with nega-  event horizon. Again, it is necessary to distinguish the theo-
tive cosmological constant. For the critical vajue= u. both  ries with even and odd, corresponding to dimensiorts

r2 |2
ds2=—|—2dt2+r—2dr2+r2dog, (22)

In these theories, the functions[2G,u/(r4 2< 1)1

degenerate into horizontal straight lines and therefé(e)
in Eq. (15) possesses only a simple zero at

horizons coalesce at =4n+1 andd=4n—1, respectively. Table Il shows the
allowed range ofu for which black holes existr(. =0).
- /d_2k_ 1 (23) As in the previous case, black holes with different values
¢ d-1 "~ of vy are analyzed separately.

) . . v=1: The spherical black holes were discussed in Ref.
which corresponds to the extremal solution. The critical ra124], and in further detail in Refi15]. As seen in Eq(17)
diusr, is the smallest possible size of the outer horizon fory,q 1Iower boundu=1/2G, corresponds to the zero m’ass
the black holes within this family. black hole M =0), which is separated by a mass gap from

Generic theories with even IEor each everk there are  54g space time Nl = — 1/2G,). These black holes have a
two families of solutions labeled by==1 in Eq.(18 with  common causal structure with the £2)-dimensional solu-
positive mass. tion [25].

_The branch witha=1, describes black holes fqt=0 y=0: As for the generic theoried(- 2k# 1), the locally
with a single horizon ar, =1, and with the usual causal {j5¢ {ransverse sectiahy, is assumed to be orientable with at
structure. The boungk =0 is saturated by the metrid9). least one compact direction. In that theory, the meti®)

The black hole solutions belonging to the branch with  jegcribes a blackd—3) brane, whose horizon is located at
=—1, have an unusual mass range, bounded above and qe;=I(ZGkM)1’(d‘1) as is obtained from Eq(21) for d

low by p.=u=0, which in terms of the horizon radius _ox—1 Unlike the y=1 case, the black brane vacuum

(n=0) corresponds to the same metric as in the generic case
given by Eq.(22), and there is no energy gap.
3This solution can also be interpreted asda-@2)-brane with at y=—1: As in the generic theories, solutio(E3) describe
least one spatial direction wrapped up. topological black holes for the range of masses included in
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Table II, except that fope=0, the metric(19) may or may
not be a black hole, depending on the topology3of;.
Unlike the generic theory, these family of topological black
holes possess a single event horizan even for negative
values ofw.

The minimum size of this kind of black holesris=0, as
can be seen from E@23), whose critical mass parameter is
given by

(—1)¥
2G,

Mc=

(24
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Some of the topological black holes discussed here have
been previously reported elsewhere. The case of Einstein-
Hilbert action—corresponding th=1 in our analysis—was
extensively studied in Refd.7] and [8]. The topological
black holes corresponding to=1 possess a geometry re-
sembling just those found for the actiohsin Eg. (18) with
oddk; in fact, they possess the same causal structure. How-
ever, as is shown below, the thermodynamic behavior corre-
sponding to the Einstein-Hilbert case differs from the other
odd k theories.

The theories withk=[(d—1)/2] were studied in Ref.
[26] for oddk, which correspond to Chern-Simons and Born-

As in the generic case, the massive solutions of Chernlnfeld theories in dimensiond=4n—1, 4n, respectively.

Simons (CS) theories have different features, for odd and
evenk.

CS theories with odd k (d4n—1): The solution(18) de-
scribes black holes with a single event horizon for u.
—1/2G, and naked singularities otherwise.

CS theories with even k f#in+1): Two families of so-
lutions with positive mass labeled y=+1 are obtained.

The branch witha= +1, describes black holes with
=0 andr,=I, where the boungk=0 is saturated by Eq.
(19.

The mass range of the black holes with=—1 is
bounded above and below by=Qu=< u.=1/2G,, which in
terms of the horizon radius meahsr  =0. Note that for
a=—1, the mass is a decreasing functionrqf.

If the mass parameter is in the range= >0, two in-

equivalent topological black hole solutions are found, corre-

sponding to the branches= + 1, as in the generic theory.

Note that the static 21 black hole is obtained from Eg.
(18) for y=1 as well as fory=0, because in three dimen-
sions the transverse section degenerates! to

C. Vanishing cosmological constant limit

The full set of topological black hole metrics discussed

here approach asymptotically a locally AdS space time with

radius |, whose curvature at the boundary satisfiR®—
—1~2e%eP. Hence the asymptotically flat limit is obtained for
|-, instead of taking the vanishing limit of the volume
term (c‘g—>0). The vanishing cosmological constant limit of
the solutions in Eq(18) coincides with the solutions of the
| —o limit of the actionl, or equivalently, taking the same
limit in the field Eqs.(7) and(8), which amounts to replacing
R2P by R3P [15].

The asymptotically flat limit of Eq(18) is given by

1k
2G, 1 dr?
ds?=—| y—a dt?+
Y ( rd72k71 B 2GkM 1k
YT a (d-2k—1
+rido?. (25)

Hence, in case of vanishiny, these metrics describe black
holes only for the spherically symmetric solutions in the
non-CS casey=1 andd—2k—1+#0), with an event hori-
zon located at | =(2G,M)Y(@-2k=1),

IV. THERMODYNAMICS
A. Temperature and specific heat

The black hole temperature is defined in the standard way
as B=1/kgT, wherekg is the Boltzmann constant, and the
period/3=41-r(df2/dr|r+)*1 is found by demanding regular-
ity of the Euclidean solution at the horizon. Thus

Lo (=D rfagrg
Kkr,

(26)

4arigl?

wherer . is the critial radius defined in E¢23). Note that for
CS theories the temperature has the universal expression

ry

(27)

T —
s 27Kp

12’

which does not depend ahor y. For generic theories with

v=0, the temperature is also a linear functionrof, and

this result is approximated far, >1 in all the other cases.
The specific hea€C=dM/dT is given by

re
|2

27TKB Qd*Z d—2k
+
C':‘k Ed—2

2 2
+ T Y
2 (29
+ c

)k_l rs+yr
r

which for r > grows like C~r%72. Combining formulas

(26) and(28) with the mass parametes(r , ) defined in Eq.

(16), it is possible to investigate whether these topological

black holes can reach thermal equilibrium with a heat bath at
temperaturel g .

B. Thermal equilibrium

vy=1: The thermodynamic equilibrium of spherically
symmetric black holes¥= 1) was discussed in Rdf15]. In
this theory, ford—2k—1+#0, the temperaturé26) has a
minimum  T,=(d—2k—1)(d—1)/27kgkl at r, =r,
=1y(d—2k—1)/d—1. The specific hed8) is positive for
r,.>r., and has the opposite sign for <r.; and near the
critical radius behaves &8~ (r,. —r.) 1, signaling the ex-
istence of a phase transition. Two generic situations may
occur.

(i) Tg>T.: In this case there are two possible equilibrium
states of radiir, (unstable andrg (locally stablg, with r,
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<r.<rg. Thus, if the initial state has, <r, the black hole
cannot reach the equilibrium because it evaporates until its
final stage. Otherwise, for, >r,, the black hole evolves
towards an equilibrium configuratibmtr_ =r.

(ii) Tg<T.: Under this assumption, a black hole cannot
reach a stable equilibrium state and is doomed to evaporate.
In the special case ad—2k=1 (CS), the specific heat
(28) is always positive, hence the equilibrium configuration
is always reached, independently of the initial black hole

state and for any finite temperatufg .
v=0: In case of black holes with a locally flat transverse
section (y=0), the temperatur&6) grows linearly withr ;.

_1(d—1)r_+

"k 4mkg |2 29

T
and the specific heat is +

FIG. 2. The temperature as a function of is depicted for
generic theories withy=0,=1. For y=1 the temperature has a
minimum atr , =r.. Wheny=0 the temperature is a linear func-
tion of r, . For y=—1 the temperature is an increasing function of

which implies that, independently of the initial black hole "+ that vanishes at, =r.. Forr,>I the temperature grows lin-

state, thermal equilibrium at some =r, is always reached early with r, for all cases. For CS theories the three curves are
for ar,Iy finite temperature of the heatsl’i)atg replaced by they=0 straight line with a universal slope.

y=—1: For all theories labeled with differeif the tem-  he massless configuration, as there is a sudden increase in-
perature of the topological black holes with hyperbolic transtemperature with an infinitesimal increasegin
verse sections is a monotonically increasing functiom of For the Einstein-Hilber{EH) action k=1) the specific

which vanishes at the smallest possible size for a black holg,a4t neither vanishes nor has a minimum a¢ 1, as seen in
r.=r.. This is consistent with the fact that for the extremal
n

solution,r , =r., the Euclidearnr —t plane has the topology
of a cylinder and hencg is arbitrary.

The massless topological black hole in Eq9) has a
horizon atr . =1 and a universal temperature given by

ZWKB Qdﬂ
le %k=2 Ed—2

d-2
—+ )

Odd k E/venk

even

1

: ZWKQ.

(30

The specific heat28) has a simple zero at, =r. and a
zero of orderk—1 atr,=I. This second root is a local
minimum for oddk and a saddle poinfor evenk. Thus the
approach to equilibrium depends on the parity of the integer
k.

1. Theories with oddk

Fork+1, as depicted in Figs. 2 and 3, the temperature is
a strictly increasing function oft and the specific heat is a
non-negative for the allowed range of . This implies that
equilibrium with a heat bath at temperatufg is always
reached for any initial black hole state. Moreover, since the M
specific heat vanishes for the local minimumrat=1, the

topological black hole behaves as a “volatile” system near /G- 3. The mass parametea) as function of the temperature
is depicted fory=—1 solutions. For evel, u has a local maxi-

mum atT=0 and an absolute minimum &t. For oddk, the mass
parameter has an absolute minimunTat0 and an inflexion point
4Curiously, the minimum size for which a spherical black hole canat T, for k# 1. The specific heat vanishes at these critical points.
be at equilibrium with a heath bath{) corresponds to the smallest For evenk the specific heat is negative far<T,. For oddk+1,
size of a topological black hole with hyperbolical transverse secthe inflexion point atT=T, signals the existence of a “volatile

odd

tion.
SExcept fork=2, in which caseC has a simple zero at, =1.

point.” For the EH case K=1) there is not such volatile state,
since the specific heat has an absolute minimuf=a0.
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Fig. 3. This means that equilibrium with a heat bath is alsgproximation from the Euclidean version of the actignsee
attained for any initial configuration, and there is no “vola- the Appendiy. Alternatively, the entropy can be obtained
tility point” at all. from the first law of thermodynamicelM=TdS as

2. Theories with even k dS. 24, du a1

As shown in Fig. 3, the topological black holes in all dry TQqg o dr,

theories with evenk have positive specific heat for
r ,>l—corresponding to the branch with=+1—while
C<O0 forr.<r, <l (for a=—1). The zero of the specific ds,
heat atr . =1, which corresponds to the massless topological =
black hole in Eq.(19) at temperaturd|, gives rise to two

different scenarios depending whether the heat bath tempera- ) ) )
ture is above or below, . This expression shows that the entropy is a monotonically

(i) Tg<T, : If the initial state of the topological black hole increasing function of . for all cases, except Kis even and
is at a temperature aboves, both branches¢=+1) re- ¥=—1, in which case it is decreasing in the range<r
duce their masses, reaching a stable vacuum configuratioﬁ'-

which, upon substitution of Eq$16) and(26), yields

k—1
ZWKBEd,Z |'2+
K DB Am 2 (d-2k—1) _*
ar. 0y ,0, ry v+ 2 . (32

out of thermal equilibrium at temperatufe and zero mass. For y=1,0 the entropy§(r ;) is given by

On the contrary, if the initial state is 8t<Tg (which can o\ k-1

only occur for the branclx= —1), the black hole increases _ 2k772d2fr+ (d=2k-1)[ 14 — d 33

its mass tending towards the extreme state withO and — KB Q4 -Gy rminr Y |2 r. 33

u=u.. Hence the configuration at thermal equilibriuf (

=Tg) is unstable. for which the lower integration limit is chosen as;,=0, S0
(i) Tg>T,: If the initial state of the topological black that the vacuumr(,=0) has vanishing entropy. Foy=

hole belongs to the upper branch£€+1 andT>T,), the  —1, expression33) is valid also for theories with od#,

equilibrium with the heat bath is always attained, in agreeprovidedr , >r..

ment with the positive specific heat of this branch. Con- |n the exceptional cag@venk, y=—1), Eq.(32) implies
versely, a black hole in the lower branch will move away, that the entropy attains an absolute minimum at the vacuum
reducing its temperature and increasing its mass, towards tfmnfiguration ¢.=1). Hence the lower integration limit is
extreme configuration. Note that now the vacuum configuranaturally chosen as,,,=| in order to have non-negative

tion ©=0 is unstable. entropy® Superficially, the fact that in the range<r_ <I,
the entropy is a decreasing function nof , would seem to
3. Thermodynamics and topology fixing fop=—1 violate the second law of thermodynamics. However, this

As mentioned in Sec. Il for the/=—1 case, the mass- @nge ofr, corresponds to the branch wiia=—1, for
less state(19) could be construed as a black hole or not,hich the mass is also a decreasing function.ofind hence
depending on the topology of the transverse section. ThéS/dM=1/T>0 as shown in Fig. 2"‘ )
above thermodynamic analysis shows that the stated All solutions with y=0 obey an “area law" for alk:
admits a standard black hole interpretation for &dalt not
for evenk. _ 27k A (34)

To see this, consider a nearly massless black hole in S KB(d—Z)Qd_ZGkIZ(kfl) '
vacuum(in a heat bath at zero temperaturi@ a theory with
evenk both branches¢=*1) approach a final state a&  which in standard units is
=0 and T=T, which cannot loose energy further as that
would make the metric complex. In this sense, this final state G
cannot be interpreted as a standard black hole. On the other Sc=K 50 Sens
hand, for theories with odklthe =0 configuration behaves Gul
";}zgz tivv"e'aﬂgsztiﬁzcﬁhr'gl‘efad'ates violently, decaying into &, _the Einstein Hibert entropy readsSey,

Thus the thermodynamics provides a criterion to restrict=(«s/G)(A/4), andA=X4_,r5 “is the horizon area. It is
the topology of the transverse sectidn ;: for odd k, the ~ important to note that foy=1 the entropy(33) approaches
transverse section must have a topology such that the georifle area law34) in the limitr >1.
etry for =0 is a black hole; on the contrary, for ev&nthe
topology of the transverse section must be chosen so that the
massless solutiors nota black hole. ®Note that in this case the entropy vanishesrfor=1, where the
temperature is nonzefd = (2«gl) ~1]. This situation is not com-
pletely new, as it is found for instance in stringy dilatonic black
holes[27]. These configurations are physically acceptable provided

An analytic expression for entropy as a function of thethe black hole has a mass gap, a condition which is met by the
horizon radius , , can be obtained in the semiclassical ap-solutions presented here.

C. Entropy
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D. Canonical ensemble where the corresponding dual CFT’s are realizéd,12].
) : 1 d-2 1 -2 1 d—2
For spherically symmetric black holes in the four- Thus CFT's defined o™X R™"%, S xS172, or S'xH

dimensional Einstein theory, it was shown in Ridfl that the &€ connected with black holes in the bulk fp=0, 1, or
canonical ensemble is well defined provided a negative cos- 1, respectively. ,
mological constant is included. Those arguments can be ex- SOMe insight about the correspondence can be gained by

tended to higher dimensions and for theories described biPoking at the thermodynamic quantities in the simplest case
the action(1) [15]. It can be similarly shown that the canoni- corresponding to a thermal CFT on a flat background, that is,

cal ensemble is also well defined for the whole set of topo©" S' R In this case, conformal invariance is sufficient
logical black hole solutions considered here. to fix the energy to be of the form

In the present case the partition function is given b _
P P g Y Ecrr=oseVermBerT, (37)
Z‘;(ﬂ)zE f p(M)e AMdM, (350  whereoggis the Stefan-Boltzmann constant. Using the first
@ law of thermodynamics, the entropy can be writteh as
where the sum extends over==*1 only for evenk and y d—1 Ecpp|(@-2/@-1)
=—1, while for all other casesr=1 only. Integrating in ScpTzd_Zoélédl)VCFT<v , (39
CFT

r,, this expression reads

The precise expression fargg is determined by the dy-
dr, (36)  namical structure of the specific CFT considered, and is a
growing function of the number of degrees of freedom. In
terms of the AdS/CFT correspondence, this CFT can be
for all cases. As the density of states is given gy ;)  viewed as defined on the boundary of the Euclidean space
=expS/xg), the convergence ¢B6) depends on the behav- for the metric (18) with y=0 at a large fixed radius,
ior of S andM for r . >1. Combining Eqs(16) and(34),the  >r, . HenceVgt corresponds to the volume of the trans-
integral(36) can be seen to converge for klandy. In fact,  verse section, given by
the integrand of EqQ.(36) takes the convergent form

® oM
Zi(ﬁ)=frcp(r+>eﬁ“” s

exd —AM+aM(d—2)/(d—1)] (a>0) for A=-—1%#0, Verpr=3g4_2r5 2. (39)
whereas forA =0, it behaves as ekp SM+aM(d—2k)/(d ) o
—2k—1)] and diverges for alk=1. Correspondingly, the temperatureratis given by the red-

shifted black hole temperature as

E. Connection with thermal CFT's I

In the context of the Maldacena’s AdS/CFT duality con- TCFT:ETv

jecture (see, e.g., Ref.[9] and references thergina
d-dimensional Euclidean gravity theory with asymptotic AdSwhereT is given by Eq(29). Consequently, the enerdgegt
behavior can be described by a suitable thermal conformah Eq. (37) corresponds to the red-shifted black hole mass,
field theory on its boundary10]. The fact that the actions
| —defined in Eq(1)—describes up tp(d—1)/2] inequiva- E —l—M (40)
lent gravity theories in the bulk, would imply the existence cFT
of an equal number of differentd-1)-dimensional dual
CFT’s at the boundary. The asymptotic behavior of thesérovided the Stefan-Boltzmann constant is given by
gravity theories, which can be read from the metit8),
should be reconstructed from this set of CFT’s at the bound- - 1 ( 47k
ary through the UV/IR relation. This relation states that dif- SBT 204 ,\d-1
ferent radial positions are mapped to different field theory
scales, in such a way that the infrared effects in the bullPlugging expression37), (39) and (41) into Eq. (38), al-
correspond to ultraviolet effects on the theory at the boundlows expressindcer in terms of the black hole mass den-
ary [28]. sity,

In particular, certain type of CFT r_enormalizatio_n group |2(d—k-1)| U(d-1) 5 s
equation can be generated by the action of the radial Hamll-SC =k( ) TKB <d-2 (2)(@ 2D
tonian constraint in the bulkL3]. It is expected that devia- FT Gy (d=2) Qg H :
tions from the proposed renormalization group flow should (42
result from modifying the Hamiltonian constraints by the )
inclusion of higher curvature terms in the action. Thus the sefVhich precisely matches the black hole entrdgy for y
of actions given bylﬁ enhances the repertoire of theories =0 In EQ. (34).
which could provide a concrete holographic interpretation of
gravity.

The different asymptotic regions of the black holes dis- "The form ofScan also be inferred demanding the entropy to be
cussed here provide inequivalent background spacetimestensive and conformally invariant.

d71|d72k

5 (41
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It is worth noting that the entropy grows linearly wikh ~ bath at any temperature. Moreover, the entropy follows an
the highest power of curvature in the action. Moreover, Eqarea law,S,= «g[ 27k/(d—2)Q4_,G 12K D]A.
(41) relates the integdeto the number of degrees of freedom

of the corresponding CFT at strong coupling. For the case of Locally hyperbolic transverse section

standard five-dimensional supergravik~1), which is con-

jectured to be dual to four dimensional SYM witti=4 at The casey=—1 naturally leads to a splitting between

large N, the entropy relatiori42) is reproduced up to a nu- theories with even and oddwhich are treated separately. In

merical factor{10]. addition, the Einstein-Hilbert actiorkE 1) and the CS cases
Finally, note that the entropy matching between blackexhibit a special behavior.

holes withy=0 and CFT’s on a flat backgrour@tx R9-2 (i) Odd k.In this case, solutions with non-negative mass

is exact for all values of3, but it is not necessarily so for have a single horizon radius larger theand their causal
CFT’s defined onS'xS%"2 andS'xH% 2 je. y=1 and structure is analogous to that of the=1 case discussed
—1, respectively. Although the exact expression for the enabove. FoM <0, in the generic case there are two horizons
tropy of a CFT on a generic curved background is unknownWwith the same causal structure as the Reissner-Nordstrom
an approximate result can be establishedyer+1 in the  AdS black hole, but where. andr_ cannot be indepen-
limit B—0. In fact, for y=+1, the curvature of the trans- dently adjusted because they are functions of a single param-
verse section ist1/r§ and, by conformal invariance, the €ter (). The extremal case corresponds to the lower bound
entropy should be a function @/r, only. Hence the large for both mass and. (M=M.<0 andr,=>r). The tem-

ro limit is equivalent toB—0 and therefore the high tem- Perature is a strictly increasing function of the mass and
perature limit is reproduced if the horizon radius is veryhence the specific heat is non-negative for the entire physical
larg® (r,>1). Thus it is concluded that the entropy of a range .=r). This means that equilibrium with a heat bath
CFT and that of a black hole approach the same expressidigh always be reached. The specific heat vanishes at,
given by Eq.(34) in the high temperature limit, providegsg signaling the existence of “volatile” configurations near the
is chosen as in Eq41). massless state. The Einstein theoky=() is singled out in

this respect, since its specific heat neither vanishes nor has a
minimum at the massless configuration and therefore exhib-
its no volatile behavior.

Static black hole-like geometries, possessing topologi- (i) Even k.These theories possess an interesting set of
cally nontrivial AdS asymptotics have been found as Somblgck hole solutlon_s with hyperbollc transverse section. In
tions of a family of gravity theories which admit a unique this case, there exist two independent branches for a given
global AdS vacuum. These theories and their correspondinass: the branch wita=1 describes single horizon black
solutions are classified by an integerwhich is the highest holes withr,=I. They have non-negative mass and the
power of curvature in the Lagrangian. These solutions arélsual causal structure. The other braneh=(—1), has a
further labeled by the constant=+1,0, representing the nhonstandard mass range.=u>0, and the corresponding
curvature of the transverse section. range of horizon radius isc<r+<l. On the other hand,
solutions belonging to this latter branch present two horizons
and curiouslyr . is a decreasing function of the mass, unlike
the standard black holes. The extreme case corresponds to

The casey=1 leads to a natural splitting between genericthe smallest possible size of the horizon radiug ,(which
and CS theoriesd— 2k=1). In the first case, the causal and has the largest possible mags= ).
thermodynamic  properties resemble those of the The following remarks on the thermodynamics are in or-
Schwarzschild-AdS black hole. In the CS case, black holesler.

V. SUMMARY AND COMMENTS

Locally spherical transverse section

behave like the 2 1 solution. Topological black holes with hyperbolic transverse sec-
tion and everk can reach thermal equilibrium only if the
Locally flat transverse section temperature of the bath is higher than that of the massless

(r,=1) configuration Tg>T,), and if the initial state of the
The casey=0 corresponds téun)wrapped black branes, plack hole belongs to the upper branch=+1 and T

for all values ofd, k andM>0 exhibiting the same causal >T,). Otherwise, the fate of the black hole is to approach
structure as a Schwarzschild-AdS black hole, but whose the@nher the vacuum A:O), or the extremal Configuration

modynamic properties are analogous to those of g, =, ), as discussed in Sec. IV B.

2+1-dimensional black hole. Therefore they possess a |tis remarkable that foy= — 1, thermodynamics restricts
single event horizon, their temperature is a linear function otpe topology of the transverse sectidn ;: for evenk it
r., and hence they reach thermal equilibrium with a heaiyyst be such that the configuratipr=0 is not a black hole,
whereas for oddk, the massless configuration must be a
black hole, which for instance can be obtain through suitable
8n generic theoriegnon-CS theories withy=1, the limit 8 identification in the covering space of the transverse section.

—0 can be obtained for, <I. This branch, however, is thermo- For CS theories the temperature has a universal linear
dynamically unstable and this fact could be interpreted as a condependence on, for all d andy.
fined phase in the CF[TL0]. Solutions withy=—1, of CS theories always possess a
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single horizon and have qualitative thermodynamic behavior lt=15+B, (A1)
for even and oddk.

The canonical ensemble is well defined for all values ofwherel s is the canonical action in phase space,
the parameterd, k, w, and vy, provided a negative cosmo-
logical constant is present. Otherwise, the partition function
diverges.

In the vanishing cosmological constant limit, only the
spherically symmetric solutionsy&1) with d—2k#1 are and B is a boundary term, which is required in order to
black holes. guarantee that the action attain an extremum on $B8]l

Holography: The topological black hole solutions found Here H, are the Hamiltonian generators of space-time
here shed some light on holography in the sense of the AdSfiffeomorphisms.

CFT correspondence. It has been shown that the black hole Replacing the ansatd1) into the action, allows to obtain
thermodynamics fory=0 can be described in terms of a a one-dimensional minisuperspace model whose action,
CFT at the boundary, for all the theories considered here. For

|G:fddX(Wijgij—NlHL_NiHi)a (A2)

y==*1 the matching occurs for,>I|. Thus Einstein's Sg_o (N d [rd7?t 1]*
theory is not the only one which admits a holographic inter- |T=At—f 531 & | Fr)+ | (dr+B,
g L . Qd—Z 2 dr Gk |2
pretation, but the whole set of gravitational theories pre- (A3)

sented here do. The exact matching with a CFT is achieved
provided the value of the Steffan-Boltzmann constant is 85 a functional of the fields\ =N*(r)f~2(r), and f2(r)

fixed function ofd and k given by EQ(41) Since OsB with Fy(r):[,y_fZ(r)]/r2_ The field equations obtained

~k971, the number of degrees of freedom in the CFT mus
increase with the power of the curvature in the bulk gravitaffrorn Eq. (A3) reproduce Eqs(12) and(13). The bulk term

tional theory. Hence, the AdS/CFT correspondence, in thié/anishes on the field equations, so that the variation of the
sense, suggests the existencd (@— 1)/2] inequivalent ¢l action(A3) on shell, is the boundary term

—1)-dimensional dual CFT’s, one for each actign en- s d d-1 17

larging the options for concrete holographic interpretation of Slo=At d—2J _ Nr_5 F(r)+—| |dr+B
gravity. In particular, in five dimensions there are two gravi- Qqp) drl 2G| 7 12 ’
tation actions within this familyEH and C$, which are (A4)

candidates in equal footing to realize the AdS/CFT corre-

spondence. One could speculate that for CS gravity, th&hich means that the action is stationary on the black hole
asymptotic dynamics would be described by some highesolution provided

dimensional generalization of the WZW modgee, e.g.,

Refs. [29—3%). Thus, WZW models may be relevant to 5B:_AthEd—2 Su, (A5)
count the microstates responsible for the entropy of these Qq_»
black holes.

Topological black hole metrics in eleven dimensions withand consequently, the boundary term to be added is
k=5 are also solutions of a supergravity theory, described in
terms of a CS action with gauge groug (32/1) [21]. Fur- B= — AtN 242 ‘B
thermore, it can be shown that some of them admit Killing de,zl’L o

spinors[33]. This claim might seem surprising as no local
supersymmetric extension exists for the EH action with coswhereB, is an arbitrary constant without variation. This al-

mological constant in eleven dimensioisst]. lows identifying the mass as
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APPENDIX: MASS AND ENTROPY behavior in even dimensions € 2n), has been recently pro-
FROM BOUNDARY TERMS posed[2,3]. This construction is fully covariant and back-

ground independent. This provides an independent check of
formula(A6), which is summarized here. The demand on the

The aim of this appendix is to establish the relationshipaction |, to have an extremum for asymptotically locally
between the integration constaat appearing in the solu- AdS space times fixes the boundary term that must be added
tions (18), and the mass. In the Hamiltonian approach, theo Eq. (1) as the integral of the Euler density with a fixed
gravitational action is coefficient[15],

1. Mass
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2. Entropy
lr=l+ "““J Ean. (A7) In the semiclassical approximation the partition function
is given byZ~e™'E, wherel ¢ is the Wick rotated version of
where the action(A3) given by
(—1)nkH120-K) . d-1 K
ag=Ck:= — (A8) IE:_Bzwff ﬂfif__ F(r)+i dr+Bg.
2n( K Qg oJ)r,2dr| G| 7 12
(A12)

The invariance of Eq(A7) under diffeomorphisms provides
a conserved current through Noether theordf]=0. As-  The on shell value of¢ is given byBg and therefore the

suming that the asymptotic region of the manifolddis1 Helmholtz free energyF=I1z/B=M—S/(xgB), is com-
=RXZX,, the conserved charge associated with diffeomorpletely determined by the boundary term, where

phismsx*— x#+ £ is (df?/dr)|, =4mB~*. The boundary temBe is also fixed
requiring the action to have an extremum on the Euclidean
Q&= f §“wib7;b, (A9)  form of the geometry, which covers only the exterior section
2y of the black hole (>r ). Its variation is now given by

whereT,, is the functional derivative of the total Lagrangian

in Eq. (A7) with t to th t 2\ k=1

g. (A7) with respect to the curvature B [ T 2
OBg=BM —K——r1 Y+ = oy .
Ly Qq-2Gx I

%b:_ 5Rab '

(A10)

This implies that the variation of the entropy, as function of
The mass is obtained from E@A9) for ¢=4,, without mak-  the horizon radius, reads
ing further assumptions about the matching with a back-
ground geometry or its topology. Thus the mass for the to-

k=1
pological black holes given by E@18) is 55, 2TKg2q-» p@-2k-n) E 5
0. .G + Y |2 4 -
Ed—2 d—2%k
M=Q[d]=u 04, (A11) (A13)

in agreement with the result obtained from the HamiltonianThis relation can be integrated to yield a closed expression
formalism in even dimensions. for entropy as a function af, , given in Eq.(33).
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