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We present an explicit three-parameter classpefyp (—%s v<1) cosmological models admitting a
two-dimensional groufis, of isometries acting on spacelike surfaces. The family is self-similar in the sense
that it has a further homothetic vector field and it contains subfamilies of (po¢iviously unknowitilted and
nontilted Bianchi models with that equation of state. This is the first algebraically general class of solutions of
this kind including dust inhomogeneous solutions. The whole class presents a universal spacelike big-bang
singularity in the finite past. More interestingly, the cgse /3 constitutes a new two-parameter inhomoge-
neous subfamily which can be viewed as a Bianchi type V background with a gravitational wave traveling
orthogonally to the surfaces of transitivity of t@®, group. This wave generates the inhomogeneity of the
spacetime and is related to the sound waves tilting the perfect fluid. It seems to be the first explicit exact
example of a gravitational wave traveling along a homogeneous background that has a realistic equation of

statep= /3.
DOI: 10.1103/PhysRevD.63.084008 PACS nuni®er04.20.Jb, 04.36-w, 04.40.Nr
I. INTRODUCTION systematic way, see, e.§4,5,2,6, leading to classifications

of solutions as well as to fruitful techniques for their finding.
There is no need to mention that among the various methin this sense, and with the study of spatially inhomogeneous
ods used for the study of spatially inhomogeneous cosmdeosmologies in mind, an important and particularly fruitful

logical models, the research on exact solutions of Einsteifi"€ Of research during the last two decades has been the

field equations plays a crucial role. Because of the high nongonsideration of the class of spacetimes admitting a maximal

linearity of the equations, the exact solutions are necessartwo'dimenSionaI group of isometrids, acting on spacelike
y q ' Jurfaces. This line was somehow launched in Réfwith a

. J - . af|assification scheme for the particular Abelian case of these
may constitute a guide in the study of general situationsgg_called ‘G, spacetimes” based solely on the properties

Indeed, this has been the way in which many new kind ofand relations of the Killing vector fields. The classification
unexpected behaviors have been found. Of course, the exaghs generalized for the non-Abelian case in H&f, see
solutions properties must be related and compared with thRef.[9] for a complete review. Among the classes defined in
results obtained from other methods, such a combinatiothe Abelian case, the most simple subcase arises when there
usually leads to very powerful and general conclusions. Foexists a family of surfaces orthogonal to the orbits of the
instance, when using the dynamical systems techniques igroup (it is then said that the group acts orthogonally transi-
cosmology{ 1], some special exact solutions are shown to beively) and the two Killing vectors are mutually orthogonal,
asymptotic states of general classes of models. Exact solwhich implies that they are in fact hypersurface orthogonal,
tions can also be compared with approximations or perturbaso that the metric can be cast in diagonal form in coordinates
tions to check the validity of the involved expansidi&d.  adapted to the Killing vectors. Focusing the attention on
Yet another example could be the study of the structure anthese diagona, spacetimes, some additional assumptions
appearance of singularities, which complements and shedsave been made in order to simplify the field equations for a
some light onto the singularity theorems and their concluperfect fluid source, as, for example, the existence of addi-
sions, see Ref3], and references therein. tional homothetic or proper conformal symmetries, see Refs.
The research on exact solutions is based on some phygit0,11], and references therein. Let us recall here that there

cally reasonable restrictions used to simplify the Einsteirhave also been general studies on orthogonally transgive
equations. As an outstanding example, and with regard teosmologies from a qualitative point of view, analyzing the
geometrical properties, the existence of symmetries deautonomous system of first-order partial differential equa-
scribed byn-dimensional groups of motiors, (see Ref[2],  tions derivable from the Einstein field equations by using
and references thergimas the first assumption treated in a methods from the theory of dynamical systef®,13,1.

The relations between some of the known explicit solutions

and these theoretical studies were widely analyzed in Ref.

*Also at Laboratori de Bica Matemtica, Societat Catalana de [1], and many references therein.

Fisica, IEC, Barcelona. Another important simplifying assumption for the perfect-
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fluid diagonalG, spacetimes, which has received systematiccluding the analysis of the special cases that arise, which
attention, corresponds to the separability of the metric funcinclude previously known exact “nontilted” Bianchi space-
tions in coordinates that keep the diagonal form of the mettimes together with some other new “tilted” ones. Next,
ric, so called canonical coordinates. The case when thesgomoving canonical coordinates are introduced in Sec. IIF,
canonical coordinates that bring the metric functions to &0 e one hand to show that the metric is nonseparable in

separate form are also adapted to the velocity vector of th§0MoVving coordinates in general, and on the other hand, to

fluid, that is to say, they are comoving coordinates too, wagonstruct a half-null coordinate system that will be used to

exhausted in Refg.14,13,15, except for a very particular make manifest t_he singularity structure and its type ir_1 Sec.
case identified in Ref[9] that did not appear in Ref13] IIG. The result is that the whole class presents a universal
accidentally. The general treatment of the separability irPacelike big-bang singularity in the finite past, which turns
noncomoving canonical coordinates can be found in Refs2ut to be of Kasner typg25,2§. Similarly, the future
[16,9], where a classification for separable diagd®alon S, asymptotic behavior of the solut|or_1$ is shpwn in _Sec. IIH.
perfect-fluid solutions was obtained depending on the nums Ir.1|'Sec. i \Ifye'presfenr: the mostl interesting particular SIUb'
ber of linearly independent functions appearing in the metric,[aml les and l_'m_'ts 0 :] ehgicnerﬁ spagc_etlme. In pfart'cg ar,
leading to a systematic procedure for the obtaining of solyWo vacuum |m_|(tjs_ in the half-null coor me]}tes_l_are ofun n
tions. The classification was exhausted, but not wholly>€¢: !l A, [I)row 'ng tW(l) t.wo-parr;:me_ter ami '?S (')I bure
solved, because once the machinery for the systematic def@ravitationalppwave solutions. Thep=g/3 subfamily is
vation of solutions was established, the main effort was foStudied then in Sec. Il B, and it is given the interpretation of
cused on finding solutions with special interest or physicaf Bianchi V background inhomogenized by means of a pure
relevance in order to study them in detail. gravitational wave trgygllng along the dlrect.|on orthogonal to
Thus, for instance, an interesting solution was singled outh€ surfaces of transitivity of th® group. This gravitational
in Ref.[9] (named 22BlIIg because of its-law equation of ~WaVve is closely related to some acoustic waves which travel
state which includes the relevant cases0 (dust models along and tilt the perfect fluid. This result is new in the sense
and y=1 (models for relativistic radiation It is also inter- that all previous works concerning propagation of waves in

esting because it provides inhomogeneous generalizations §f7Ved backgrounds were developed in the case of vacuum
some Bianchi Ill, V, and \j models found in Refg17,1§,  °F massless minimally co_uple_d scalar fields without potential
see also Refl1]. The particular dust solutions belonging to (the_ Iatterllncludes the St"]:f frl]umzbe case, see Re[f2f7] for

this family are actually included in one of the two classes of2 Pioneering treatment of the su J)3c3e§, €.9., R_e 428-

dust spacetimes studied in REE9]. The solutions with non- 31], and references therein, for a selection of main results, or
zeroy, including those withy= 1, are new, though. In fact in an anisotropic generalization of the stiff fluid in which the
the number of exact solutions for inhomogeneous spacetimes €9y density equals the pressure on the direction of propa-
with a p= ¢/3 equation of state is rather scarce: as far as w ation O.f the wave$32], and finally, in the case of electro-
know the first one appeared in the Wainwright-Goode fam"ymagnetlc fields, see Ref33]. There have also been other

- - : - ; ks on solutions describing exact solitonic perturbations
[14] to which followed the Feinstein-Senovilla solutif2o], Vo' .
Davidson's[21], the singularity-free metric of Refl22], of y-law perfect fluid backgroundg34,35,3Q, but the for-

their common generalization in the Ruiz-Senovilla classMalism consists in translating the solutions of the Einstein

: _ - field equations into equivalent five-dimensional massless
[Slsgioiirllg[tgg gjl)]nmagonqd ve family found by Mars and scalar field spacetimes, and thus the backgrounds are se-

The aim of this paper is to present the explicit family of VETelY restricted by some conditions on the matter content so
pap b P y glat eventually only Friedmann-Lentaa-Robertson-Walker

solutions mentioned in the previous paragraph, as well as t )
perform an extensive detailed geometrical and physical stud LRW) spacetimes were used. Moreover, these perturba-

of its main features. The solutions constitute a threeX'°"S give rise to anisotropies_ in the energy-momentum ten-
parameter iass i~ e, 1< <1 cosmological modls <, 7 0 #4581 griatons wave = mact and v
admitting a maximalG, acting on spacelike surfaces. The P y 9 b 9 !

whole family is self-similar in the sense that it has a furtherbOth the background and the resulting inhomogeneous space-

homothetic vector field and it contains subfamilies of bothf[Ime satisfy the same realistic equation of sfatee/3. This

tilted and nontilted Bianchi models. This is the first inhomo- 'S th.e first known example.of.su.ch a situation.
geneous family with a-law equation of state having a free Finally, the dust subfamily is identified within the general

which includes they=0 case, something which may be very classes found in Ref19] in §ub—Sec. - C Throughout _the
useful in order to study perturbations of the dust case. paper we follow _the following conventions "J?”d hotations.
The structure of the paper is as follows. In Sec. Il WeThe metric has signature 2. £; denotes the Lie derivative

introduce the line element for the whole family in nonco- with respect to the vector field. Primes and dots will stand

moving canonical coordinates and show the ranges of thgor.derlvatwes with respect ta andt_, res.pectlvely. Greek
free parameters and the perfect-fluid variables, which are imd'ces run from 0 to 3. We take units with5=c=1.
turn expressed in terms of its velocity potenti&ecs. Il A
and 11 B). The kinematical quantities of the fluid flow and
their properties, as well as the deceleration parameter and the This section is devoted to presenting, in as compact a way
Weyl tensor are given in Secs. IIC and IID. Then, in Sec.as possible, the new family of spacetimes and their main
I E, we study the general symmetries of the spacetimes ingeometrical and physical properties.

Il. THE MODELS
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NEW FAMILY OF INHOMOGENEOUS y-LAW . . .

A. The line element

The line element was derived using separability of the

metric functions in noncomoving coordinafd$] [more pre-
cisely, it arises as a particular case of tha=n
=2(22BlIc) class as defined in R€P]] and it can be writ-
ten as follows:

ds?=F2(t,x)(—dt?+dx?) + e/ (@rDIt=x)(] _g~ut)
% {[e/.L[b/(a+ b)](t—x)( 1— e”“)]z'dszr [eﬂ[b/(a+ b)](t—x)
X(1-e #H]2dZ%, (1)

with

(1—e ¥,

F(t,x)Eex;{J—b(td—cx)
and where we have defined the following constants:
a=(4n+1)(v¥—1)(v—1),
b=(6Av—2\+v+1)(v>—1),
c=v(2N+1)[v?+1+2(2v—1)(v+1)A],
d=12+14+2(v+3)Av2+2(5v°—4v+1)(v+1)\?,
with \ being
A=12-1/4
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1

N

The ranges forw and A immediately implya>0. One can
also deduce thatl>0 as follows: we have &—4v+1
>0,Yv, and thusd>d|, - _,,=(3— »)(3— v?)/8>0.

The energy density is given by

d J

= —+v—].
u at ¥ ox

a—b
a+b

pP(N+1)
(eM-1)

-2

o=F

and the equation of state is barotropic and obeys the gamma
law

p=ve,
wherey is given explicitly in terms o by

R _|2—1/4
YTNT1 1?r3/a

so that we have-1/3<y< 1. Notice that in thep +3p=0
case\ = —1/4=1=0 and the solutions admit a pla@; on
S,.
From the above expressions is clear that the solutions
have an initial big-bang singularity &&0, and this is why
we have takenu>0 without loss of generality. Section Il G

an auxiliary constant that will be used for the sake of sim-is devoted to studying the singularity structure of the family,

plicity. Actually, the constants satisfy the relatias v[d
—\(a+b)]=vC that allows to cast the functioR(t,x) in

and in particular it will be shown that the big-bang singular-
ity at t=0 is the only one for the whole family.

the alternative and possibly more convenient form given by The perfect-fluid region covers the entire manifold, and

F(t,x)=ex;{%(t— ) | (et — 1),

we havep>0 everywhere whenevear®—b?>0, which is
equivalent to

(5v—3)\+v<0, (3

Nevertheless, and for the sake of simplicity in some expres-

sions, we prefer to keep the four constaatb, ¢, d, andF as
given previously.

The family of solutions has then three free parameters

(or \), v, and u, although the latter simply provides the co-
ordinate scaling. We obviously hawe=—1/4, and we can
chooseu>0 without loss of generalitysee below. Further-
more, we must have+b+#0, which eventually will be
equivalent to

(5v—3)A+v+#0.

B. The perfect fluid

The line elementl) is a solution of Einstein’s field equa-
tions for a perfect-fluid energy-momentum ten3qy;= (e
+p)uUstpg,s(e+p#0) whenever is restricted by

)

1-1%>0,

which in turn implies the last condition of the previous sub-

section. The unit velocity vector field then reads

where we have taken into account that(b)/[2(1— »?)]
=(v+1)N+1>0 (so thatp#0) which follows from the
ranges forw and\. In fact, the previous conditio(8) implies
a+b=-2(1-v?)[(5v—3)\+v]>0, and this ensures the
fulfillment of both the dominant and the strong energy con-
ditions on the whole spacetime.

Since the fluid flow is irrotational it can be expressed as
the normalized gradient of a scalar field, the so-called veloc-
ity potential o [26], that is,

ua=a"a/\/—0',50'"8,

where the commas stand for the partial derivative. Because
of the gamma law equation of state, the corresponding en-
ergy density readg =(—o ,0*)(**1/2and the velocity
potential satisfies a homogeneous wave equdtmmlinear
wheneverp # ¢) which gives the sound wave equation once
it is linearized[26]. The velocity potential for the whole
family is given by
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—b N(2N+1)

where we have defined?=d— vc+a(1—v), which is in-
0'=—<,u2()\+1)—

deed a positive constant for the given ranges ahd\. This

a+b . . . .
can be easily deduced from its explicit expression

vX)

(2x+1)(a+b) ut
X a@?=2(1—v?)(L+ N[ (4v>=3v+ DA+ (D) +(1—v)],

L= S arn)

apart from an additive constant, so that the parametisr
nothing but the peculiar spatial fluid velocityo'/o. The
range given in Eq(2) for the perfect fluid is consistent with '© V! f
this interpretation, so that given any the corresponding 9ives a positive value for the term in square brackets for the
subfamily contains all the possible values the ratiés can ~ Valid range ofv. , _

achieve. Indeed, since this ratio is constant, this family of 1herefore, from expressiofs) we see that the fluid con-
solutions does not follow an asymptotically velocity- 9"uénce is expanding everywheee; 0, starting with an un-
dominated regime near the initial singularity except for thebounded value at the initial singularity=0 and decreasing
casesv— 0, which could be seen as perturbations of homo-=ontinuously from then on arriving eventually to zerotas

as every term between round brackets is strictly positive be-
cause of Eq(2) (in fact 4v°—3v+1>0VYv), and so the
less favorable case would correspondite —1/4, which

geneous modelsee Sec. Il E

C. The kinematical quantities

In order to compute the kinematic@nd othey quantities
for the fluid congruence defined hyy let us take the ortho-
normal tetrad{#*} with @“cdx® in the above coordinate
system{x“} ={t,x,y,z}. Of course, the vorticity of the fluid

tends to infinity. A straightforward calculation also shows
that

2(1-v%)71 5
322 Z[a(l—v)—Z(d—vc)]

(t—)—

+3(1-v)?b??

congruence vanishes identically. Regarding its acceleration,

its nonvanishing components are

NI S
T R a—e

a.0: - Va.l,

so that the fluid flow does not follow geodesic trajectories at
any point of the spacetime, except for the special cases
=0 orA=0, in which the acceleration vanishes everywhere.

These special cases will be discussed later in Sec. Il E.

With respect to the expansion and the nonzero compo-

nents of the shear tensor we have

6=F

71 M
V1—1%(a+b)(e*t—1)
X[a?(e*'—1)+(a+b)(N+1)],

_ .2 _
Opo=V 011, Op1= — V011,

_, mlav+ b—e*ta(v—1)]
(1—v?)%(a+b)(e*—1)
2

T301-9

o1="—

01

o
3V1-rv?(a+b)(e®—-1)
x{[—3(d—vc)— a?]

X (eM—1)—(a+b)(2A—1)},

0ot ogg=F 1

_, 2plla+ vb—ettb(v—1)]

J1—12(a+b)(e*—1)

©)

Oy~ 033=F

so that the only case in which the solutions isotropize in the
future is given bya=3 and v=0 (01,=0,05=— 033
#0), which is a “comoving” family with an additional
symmetry, as we will see later in Sec. Il E.

Finally, we present the expression of the deceleration pa-
rameterg, whose general definition is

1
a(o~hH=5(1+q),
3
so that it reads
1 1 B “ d—vc et
R =N e P T oY

a,Ze,ut
C (e —1)+(at+b)(A+1)]|

from where it can be checked that at the singulag(y
—0)=2. Itis interesting to remark that, as follows from the
previous expression and E(p), q is independent ok, de-
spite the inhomogeneity of the solutions. It should be
stressed that this result holds in the above coordinate system,
which is not comoving, and it is a simple consequence of the
separability of the metric components in these coordinates.
In the comoving coordinates adapted to the fluid flow, which
will be given in Sec. IIF, the deceleration parameter cer-
tainly depends on the corresponding spatial variable.

D. The Weyl tensor

Concerning the Weyl tensor, the nonvanishing scalars
computed in the null tetradsee Ref.[2]) k=2"Y%(9°
—0Y), 1=2"Y7 9%+ ¢'), m=2"22(9?+i0%), are given by
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2

Vo—V¥,=- FZ(a+[;l;2|(eMt_ 1) {[2(bA+c)—ala+[(2A
—1)b—2d]b+2e*(c+d—a)b},
u?
Y= 12(a+b)F2(eF— 1)2{6’“[(10)\-1— 1)b+(2r—1)a]

+(a—b)(4N+1)},
_ w2l
“2(arb)F (e 121

—e*[2(c—d)—b-al},

v, (a+b)(2N—1)+2(c—d)

and therefore, the Weyl tensor does not vanish and there

no possible particularization to a conformally flat solution

within the whole family. In particular, flat spacetime is not
included in the family.

The Petrov type is | at generic points for the general case, that theH

with a maximalG,, and type D for theG; on S, case (
=0) as well as for the case=0, A =2, which admits two

PHYSICAL REVIEW D 63 084008

indeed included wheh= —1) whenevetb # 0, and Bianchi
V whenlb=0. In this last possibility, by taking into account
that the casé=0 already admits &5 on S, group of isom-
etries, the resulting group is ath, acting onS; if 1=0.

Coming to the possible particular cases with further sym-
metry we first find the already mentioned case wlithO
(A=—1/4), so that the equation of state has the fagm
+3p=0. This solution admits &5 group of isometries act-
ing multiply-transitively on spacelike plang,-orbits, and
the Petrov type is D.

When| #0, the only possible cases with additional Kill-
ing vectors are all given bg=0, in which case the line-

element(1) admits the vector field given by Eq.(6) re-
stricted toc=0, that is,

is

J
Ix

-

o0 * s obly ot (am2blz s

becomes &3 on S; with the same Bianchi
types as indicated abovsee Refs[17,5,1, and references
therein. The explicit expression of leads to two possibili-

additional isometries, belonging then to the class of LRSjes forc=0.

models(see Sec. Il E The nonzero component of the mag-
netic part of the Weyl tensor with respectias given by

1-v
1+v

1+v

st(l]):—l_y‘l’o Wy,

so thatH(U) only vanishes in the type D cases=0, \
=2 orl=0.

E. The symmetries: Special cases

The line element{1) admits in general a two-parameter
group of isometries, generated by the two Killing vectors

ay

which obviously commute, so that tl@&, is Abelian. More-
over, the metric admits a homothetic vector field given by

(? -
’ n= -,

€= 9z

>

d M
=2 — 4+ —
(=2 a

J
X ij(aJerI—Zc)yW

+ -2 2bl—20)z 6
m(a— - C)Zﬁ, (6)

which satisfies
£29a3: - 4Clu‘gaﬁ .

It follows that the general family of solutions witb# 0

(1) Case withv=0. Now the velocity vectoii is orthogo-
nal to the orbits of the simply transitiv@; group, so that the
resulting solutions belong to the following nontilted Bianchi
classes of spacetimes.

BianchiV when\ = . This homogeneous spacetime is a
special case of the general Bianchi V family wip= /3
found by Ruban in Ref.18] [line element(9.20 in Ref.[1]
with a=m?]. This is the only solution of the whole family
such that the flow generated lyisotropizes in the future
(see Sec. II¢

Bianchi Ill whenA=2. As already mentioned, this case
corresponds to another algebraically special soluti®etrov
type D), which actually admits a fourth Killing vector given

by

Jd 3 4

X=Y affg#«@),

so that this case belongs to the LRS,(on S;) models of
class Il in Ref.[36]. As we said in Sec. Il C, this is the only
solution in Eq.(1), apart from the plan&; on S, case (
=0), having a purely electric Weyl tensor with respect to
the fluid vectord, H(0)=0 (see Ref[37]).

A one-parameter family of Bianchi type Ykpacetimes
when\ # 3 ,2. This family is included in the class of evolving
nontilted Bianchi V|, spacetimes fop=+ye (Table 9.4 in
Ref.[1]). Following the notation in Ref1] (using a tilde for
the quantities in Ref{1]), the present families are included

belongs to the class of so-called “tilted” inhomogeneousin the general cases witk=|4—37%/2 (Table 9.4 in Ref.

self-similar perfect-fluid modelglO]: the velocity vecton is

[1]), discovered by Uggla and Rosqu[&8] up to quadra-

neither tangential nor orthogonal to the orbits of the threelures.

dimensional homothetic groupl; generated by{¢,7,Z},
which is acting on spacelike hypersurfac&s)( The alge-
braic structure oH; is described by the following Bianchi
types: Bianchi V}, with h=—[(a—2c)/2lb]? (Bianchi lll is

(2) Case with

\ 1+v2
C2(1-2v)(v+1)’
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which satisfieso>0 and 1A/E< y<1 [for ve(—1,12)]. G. The half-null coordinates: Singularity structure

In this case, and for#0, the perfect-fluid flow has a non- As mentioned previously, the solutions present an initial
vanishing projection onto th&; orbits, so that it constitutes g-hang singularity at the spacelike hypersurfee® com-

a one-parameter family of exact “tilted” Bianchi solutions. jng from the vanishing of the functiod given in Eq.(9) for

The free parameter can be chosen toybeith the rlestriction the metric(8). Nevertheless, the form of the functidn/J*
above and taking into account that the case; (and »  may suggest that other singularities could be present, as, for
=0) falls onto the previous “nontilted” Bianchi V case. The jnstance, ak— +«. We are going to show that this is not

Bianchi type for this “tilted” homogeneous solutions is\Vl  the case, and consequently the only singularity of the solu-

with h=—[»*(4x+1)]"* (including Bianchi I1). tions is the reachable universal spacelike singularityt at
=0, which in the comoving coordinates is given by »X
F. The comoving coordinates =0.

To that end, let us start by noticing that the coordinate

As is known[7], every perfect-fluid diagonds, solution ranges of Eq(8) are in principie only restricted by

can be written in comoving coordinat€E, X,y,% keeping the
diagonal form of the metric. By comoving coordinates we T+ »X>0. (10)
mean those such that<d;. The comoving coordinates will

be useful for the study of the singularities that will be per-sjmple inspection on the expressions for the energy density
formed in Sec. I1G. Also, this will prove that the use of and the Weyl scalars indicates that in this coordinate range
comoving coordinates may sometimes be not well adapted tghe only other possible singular points would be those where
writing some solutions in explicit form, or even to look for the functionF/J* vanishes, and that the singularities of both

them. o . . the Ricci and Weyl tensors coincide. At this point, it is very
~ The explicit change to comoving coordinates for the metysefy| to perform the change to null coordinagesV} in the
ric (1) is easily found to be surfaces orthogonal to the orbits of tBe group, given by

1 1
t _1_V2(T+ vX), X _1_V2(X+ vT), (7) Uzg(T—X). V=5(T+X), (12)

where the Jacobian of the change is 1. By writigg

so that Eq.(10) now becomes
=ulJ1— 12, the line element becomes a

; V(1+v)+U(1-»)>0. (12)
ds2=F2(T,X)(—d T2+ dX2) + eA@@+D)1a=-n(T-X) j(T x)
X{[G‘A’“[b/(a”)]“_V)(T‘X)J(T,X)]Z'dyz Let us define now the following two constants:

+[eAb/@+DIA=)(T=X) 3T x)]~2d 72}, 8 -t O _
[ (T,X)] } 8 k=V2 - (1=-v)(d+c), x,=V2_(1+v)(d-0c),

where now ) ) -
whose fundamental property will turn out to be their positiv-
i ity. Indeed, we have first of all that
F(T,X)=ex;{—[(d—0v)T—(c—vd)X] INT,X),
atb (1—v)(d+c)=(1—12)[2(3v—1)°\2+ (8N + 1) 2+ 1].

and we have that SinceA\=—1/4 and¥?’<1 we have that’(8\+1)>—1,
which, together witta+b>0, easily leads tac,>0. On the
J(T,X)=1—exd — a(T+vX)]. (99 other hand, the following explicit expression

Then the fluid velocity vector field simply reads (1+v)(d—c)=(1—v?)[2\*(1—v?) + (4N +1)v?+1],
=F191. As is obvious, this family of solutions is not sepa-
rable in comoving coordinates for#0. See Ref[9] for a  directly shows thatk,>0 too. The functiorF is now such
study of the loss of separability when performing arbitrarythat
coordinate changesvithin the two-spaces orthogonal to the
G,-group orbitg which keep the diagonal form of the metric. F(U,V)J " NU,V) =gtV

As we can see, the structure of the line-element is perhaps
not too cumbersome in comoving coordinates, but it is comand the usefulness of the change is now clear since the re-
plicated enough so that the solutions had not been foungdion with F/J*—0, that isx,U + «,V— — o, can be reached
until the Ansdz of separability in noncomoving coordinates within the range(12) only if U— —o or V— —c<. In order
was used. The structure shown in E8). may indicate some to ascertain whether or not they are reachable, let us then
new Ansdze providing, perhaps, generalizations of th&g  bring them to finite values by making the typical coordinate
spacetimes witlp=yo. change

084008-6



NEW FAMILY OF INHOMOGENEOUS y-LAW . . .

u

1| V—-ll
Py 0g(xyu), s 0g9(k,v),

so that the range of the new null coordinatesu( is given,
in principle, byu>0, v>0 and the restriction coming from
Eq. (12), which reads

(Kuu)u—y)/Ku(KUU)(1+u)/xv>1_ (13)
The line element then becomes
ds?=—2JM(u,v)dudo + (k,u)¥ @ 93(u,v)
X{[(,w)® @9 I(u,v) 17 dy?
[ ()@ 93(u,0)] " 2d 2, (14

where now

J(U,U) _ 1—(KUU)_<a+b)/[2(d+C)](va)_(a+b)/[2(d_c)],

andF/J"=(k,u)(k,v), so that the other possible singulari-
ties have been transporteduo =0 in the new coordinates.

The point now is that the singularity &t 0, which lies in
the limit of the restriction given in Eq13) and has the form
(for some constand)

u:sz—(dﬁ—c)/(d—c), (15)

does hide the other possible singularitiesuat=0 in the

PHYSICAL REVIEW D 63 084008

FIG. 1. Diagrams showing the singularity in the,¢) surfaces
for the three possibilitie&) «,>«,, (b) k,<ky, (C) k,=k,. The
whole spacetime is the product of these surfaces with the group
orbits. As usual, null lines are at 45°. The fluid flow is indicated by
arrowed lines in the region given by expressi@B). Notice that the
shown coordinatest,%} would correspond to the Lorentzian coor-
dinates related t¢u,v} in the same manner 43,X} are related to
{U,V} (11). The big-bang singularity at=0, or equivalently Eq.
(15), which is a spacelike hypersurface, is denoted by a thick curve
which tends asymptotically tov =0 (denoted by dashed lineOf

sense that any endless past-directed causal curve from aRY¥urse, it is evident thatiy =0 is hidden “in the past’ of the

point in our manifold terminates necessarilytat0 (this is

big-bang singularity in the physically meaningful spacetinge (

why it is called a universal big-bang singularity, see Ref.> ) and therefore the values=0 orv =0 are unreachable.

[3]). In other words,uv=0 is not accessible within the
physical spacetime, see Fig. 1.

Singularity type The three(nonvanishing eigenvalues of
the distortion tensor of the fluid congruence definediby

HaﬁE 0'a6+ 3

0P .5,

where P,z=0,5+ uauB_is_ the projector orthogonal tai,
read as follows at the limit—0:

| i

where we have defined=lim, ,u/(J1—»?FJ). The

1
gl:f)\, 02:f(§+|

d52|t*>0: e—ZC[lL/(a+b)]X|: _ d7'2+ (MT)Z)\/(1+)\)dX2]

e [ulat b)](a+2b|)X(MT)(l+2|)/(1+)\)dy2

+ e*[,u/(aer)](a*Zbl)X(Iu/T)(l*Zl)/(1+)\)d22.

In other words, the exponenps such that ;=7 P! (Ref.[1],
p. 120 are{2p;=2N\/(1+N\), 2p,=(1+21)/(1+1N), 2p;
=(1-21)/(1+\)} so that

P1+Pa+pa3=pi+ps+pi=1.

beahviour of the fluid congruence is described then by thdherefore, the singularity is of Kasner typ25,26.

scale factors;(i:1,2,3) defined byi(logl;)= @, giving three
different possibilities depending on the valuesofat the
limit t—0:

A<0:l;—%, I,,13—0; A=0:1,—0, 1, andl; tend to a
finite value;N>0: 13—00,14,l1,—0.

H. Future asymptotic behavior of the solutions

The future asymptotic behavior is to be computed here as
the limit T—oc in comoving coordinategThe same result is

Therefore, the initial singularity is of cigar type whenever obtained, of course, by performing the lintit-, but the

A #0 and of pancake type for=0. This can be also inferred
by means of the limit—0 on the line-element in Eq1),
which after changingt) dt=dr, redefiningu and absorb-
ing some constants ipandz reads

final expressions will be eventually better related to well-
known homogeneous spacetimes by using the comoving co-
ordinates. The line-elemen{8) in that limit and for finite
values of the spacelike coordinaXereads
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dSZ|T*>oo: ez[ﬂl(aﬁ’b)](d*CV)T( _ dT2+ dx2)

+glw/(a+b)l(1=v)(a+2b) Ty 2

+elultarb))(1-va-2)Ty 2

and thus the whole family tends to the perfect-fluid self-
similar Bianchi | solutiond1], the threep; exponents read-
ing thenp;=1, p,=(1—v)(a+2bl)/[2(d—cv)], p3=(1
—v)(a—2bl)/[2(d—cv)]. The asymptotic behavior for the
only case in which the solutions isotropize in the futuke (
=1/2,v=0) is easily identified here as the flat FLRW solu-

tion with p=g/3 (p1=p,=p3=1).

IIl. INTERESTING PARTICULAR SUBFAMILIES

In this section we present some of the solutions included
in the general family which are of some physical interest. We
have selected three types of subfamilies: the dust subfamily,

which was actually considered at length in REE9] as a
particular family of a broader class of dust solutions; the
= p/3 family, which has a physically realistic equation of

state for radiation-dominated epochs and, as we will see, i

PHYSICAL REVIEW D 63 084008

(2) Case withv=—1. Now the line element reads
ds2=— 232 dud + (e ,u) ([ (x,u)PI]2 dy?
(k)] 2d ),

where we have puBi=2(1+4\)/(1+4x+16\2) and b
=8\/(1+4\+16\?) and the function) becomes

3=1—(kyu) @D

This is again a pure gravitationgp-wave, and the typ&t
Weyl tensor has the only nonvanishing scalar

NG
\]2)\+2(Kuu)5+b+2(8}\+ 1)

X[1—4(1602— 4N — 1) (x,u)2*P—2(16\ +3)
X (1e,U)2+D— (16N +3) (r ) @D,

The previous vacuum solutions correspond to limits of the
'l’amily of perfect fluid spacetimes of Sec. Il B, wheravas

provides a simple example of how a gravitational wave Cafggtricted by Eq(2). Nevertheless, the line element given by

give rise to the inhomogeneization of the underlying perfecigq (1) contains further vacuum spacetimes arising whenever
fluid; and the vacuum limits, which include some plane-wave, _p_ o apart from the cases= =+ 1, that is, if

spacetimes and, therefore, will also be relevant for the dis-
cussion about the inhomogeneization of the spacetime by the
gravitational waves just mentioned. These three cases are

VA+AN+1=0,

treated in separate subsections.

A. The vacuum limits

The half-null coordinates of the previous section are very

useful to find vacuum limits of the general solution. For the
line-element as written in Eq14), the expression for the
fluid velocity vectorud transforms to

1% 1%
(Kuu)%_i_(va)% 1
(16)

G=J"(u,v)

1
V2(ru)(K,v)

and the energy density now reads

%
a—b
a+b

(1- 1) B2\ +1)
(1eyu) T DA )T+ @FDI2d—cll

:\]*2)\*1

From this it follows thatr?=1 provides vacuum limits in
this coordinate system. Performing them in the fqdm) we
arrive at the following.

(1) Case withv=1. The line element becomes

ds?=—23dudv +J(J?dy?+J2dZ?),

whereJ=1+v2av. This is a particulapp-wave[2] with 4,
as a null Killing vector. The Petrov type N and the Weyl
tensor takes the simple form

Wo=4Np23" 22,

which together with the restriction=— ; requiresv>3 or
v<—1. The line element for these cases reads

ds”=F2(t,x)(—dt*+dx?) + (/217X — g~ (W2t
% [(e(MIZ)(t—x)_ e—(M/Z)(t+x>)2|dy2+ (e(Mlz)(t—x)

_ e*(,u/2)(t+x))72ld22],

(17)
with

F(t,x) Ee*(,u/Z)X(e(M/Z)(t*X)_ e*(#/Z)(HX)))\_

This vacuum subfamily has in general a maximal Abelgn
acting simply transitively on spacelike hypersurfaces, the ad-
ditional spacelike Killing vector field given by

{31 -+cos 51

and is of Petrov type | in general, so that it is the well-known
Kasner metrid 2].

d

)

o
Et

2.
cos
J

> — alu/2)x
=e
" at

B. The p= /3 subfamily: Propagation of gravitational waves
in a homogeneous background

This section is devoted to the radiation cage 3 (A
=1). The condition (3) then readsv<32. As has been
shown, this family constitutes a generalization of the Ruban
“nontilted” Bianchi V solution, and we are now going to
prove that, in fact, the general family can be interpreted as
the inhomogeneization, via the propagation of plane gravita-
tional waves, of the mentioned Bianchi V Ruban solution.
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To that end, first of all it is necessary to choose the apof the G, group of motions. We interpret this as signalling
propriate coordinate system in which the inhomogeneizatioithe existence of gravitational waves traveling in the Bianchi
will be more transparent. In this case, and despite what on¥ background whose spacelike propagation direction is or-
might try at first, the natural choice isot the comoving thogonal to theS, orbits spanned b{y,Z. This interpretation
coordinates(nor their half-null counterpaxt but rather the seems to be in accordance with that given for the family of
original noncomoving coordinate,x,y,4. The reason for inhomogeneous nondiagonal stiff fluid solutions found by
this is that the change to comoving coordinaf@sdepends Wainwright and Marshman in Reff27] (see also Ref.30]),
explicitly on the parameter, but this very parameter is the where the inhomogeneization is driven by an arbitrary func-
one defining the inhomogeneization. Thus, for the severalion depending ori—x. In our case, the effect of the waves
different inhomogeneous metri¢which are selected by the is a fortiori revealed also by the imprint which leave on the
particular values o¥), a different change to comoving coor- longitudinal part of the line element, given Iby,. Actually,
dinates is needed. In other words, in order to use a commosincef;,, is functionally dependent on the velocity potential
coordinate system which is valid for the general subfamily,via
as well as for the particular Bianchi V metrics, one has to

resort to the systert,x,y,2. This is an explicit example of gocelin4,
the adequacy of using noncomoving coordinates in some oc-
casions based on physical grounds. the implicit relation between the gravitational waves and the

Now, we show how to write the line element in a form propagation of inhomogeneities through the acoustic waves
that makes it explicit the homogeneous Bianchi V back-is manifest. The propagation of the gravitational and acoustic
ground and the traveling waves leading to its inhomogewaves has thus two effects: it breaks the spatial homogeneity
neization. By setting. = %, the metric(1) can be rewritten as of the spacetime and at the same time tilts the velocity vector

of the matter but keeping the perfect-fluid character of the

ds?=ev*fin( — dt?+ dx?) + e9v ™ Pinn( gPv~V3Pinn y2 matter content.

+e PV YPing ). (18) Of course, all this has to be colnsidereq in a more careful

way. For instance, in the case= — 3 we fall into the special
where cases analyzed in the final point of Sec. Il E, so that the line

element(18) is in fact a Bianchi VI 5 spatially homogeneous

efv=ert—1, edv=elv—rxX solution, but now withp;,,#0 andf,,=0. The form of the
longitudinal part is kept, but there appears a nontrivial wave-

ePv=(1-e ¥, (19 like inhomogeneity in the transversal part given figy,# 0.

. . . It would seem that, in this case, the propagation of the waves
corre_spond to the functions of the Bianchi V homogeneous, , ,iq not give rise to the inhomogeneous trace left if.
solution, defined by'=0, whereas However, this can be seen to arise as a rather exceptional

situation because, by imposirig,,=0 but settingp;,,= B(t
)(t— vX), —X), one obtains a one-parameter family of Bianchi V-VI

solutions for a nonperfect fluid matter content. The third

Killing vector is given by

B ( 4p(3v+1)
finh:ﬂ/ (1—1}2)(3_71/)

B 4y ¢
Pinn=#| 3=, | (t=X), o 5 5
[=2 +[u+(1-V3)Bly o +u+(1+V3)Blz— .
are the functions linked to the inhomogeneities of this y
= 0/3 family of solutions. The energy density for this family

takes the following expression: The energy-momentum tensor of this family can be inter-

preted as a fluid with a nonzero energy flux in the direction
of propagation of the wavelike inhomogeneity. Thus, in

. these cases, the waves seem to keep the spatially homoge-
neous character of the spacetime but breaking the perfect-

As we see, the inhomogeneity is driven by the same paf_luid character of the matter. The restriction to the particular

rametery that “tilts” the perfect fluids, that is, the peculiar Valu€ 8= —u/4 leads to the mentioned case corresponding

_ l . . . .
spatial velocity. This inhomogeneity appears primarily in thet® »=— 3, in which the matter content is a perfect fluid. In
transversal part of the metric as the functipp,, which this exceptional case, the inhomogeneization effects of the

depends only on the null coordinate-x, so thatp,,, is traveling waves, together with thar: of_;[he flufx r?f eﬂng(;gy and
obviously a solution of the flat-space wave equation of the acoustic waves shown by the tilting of the fluid, seem
altogether to balance in a final outcomepgf, which simply
O, Pinn=0 (20) changes the Bianchi type of the solution.
nMinh ' L. - . .
Summarizing, one could better say it is the inhomogeneity
where[], denotes the d’Alembertian for the Minkowskj)  that generates the gravitational waves and not the other way
metric. Thus, this inhomogeneity is constant at the null hyround. Indeed, clearly;,,# 0= pi,n# 0, but as we have just
persurfaced —x=const, or in other words, it propagates at seenp;,,# 0= f;,,#0. This preferable point of view would
the speed of light orthogonally to the surfaces of transitivitystate that the tilting(or the acoustic wavésgenerates the

3
Q—EM

3+v
3—7v

2= (2 fy+finp)
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inhomogeneity inf;,, which, in turn, is responsible for the couplesRto the matter source through the functier-p, so
appearance of the gravitational waves. as long as this function vanishége™ #* is completely inde-
The above paragraphs seriously indicate that one cann@€endent of the matter content and satisfies a flat-space wave
talk about gravitational-wave propagation and its inhomoge€equation. One can argue then tiathas to be in fact the
neization properties in a naive manner. Therefore, we havéhomogeneous” functiorR=Ry(t) in order to have models
tried to support the interpretation gf., representing gravi- that reduce to the Bianchi spacetime when the waves reduce
tational waves propagating in the homogeneous backgrouri@ zero, see Ref40]. In other occasions, as was the case in
in two other independent ways. These are presented in wh#te “Einstein Rosen view,” the conditioR ,R*<0 every-
follows. where was often imposed, see REZ6]. These simplifica-
The first way is the comparison with the available systemdions, for the stiff fluid case, imply eventually that the
atic studies for the description of exact gravitational wavesd’Alambertian [J coincides with (I, that is, with the
on homogeneous backgrounds. These studies were initiall’Alambertian of the homogeneous background méteagd
developed in Refg§29,39. The exact formalism presented in thus, sinceCp,=0,py=0, Eqg. (22) implies Op;,,=0.
that reference, later used in Rg40], applies to perfect-fluid That is, bothpy, and p;,, are solutions of the same wave
solutions of the Einstein field equations, as well as the deequation(22).
generacies thereof, containing gravitational waves propagat- Fortunately, despite all the above, the simplificationFon
ing over Bianchi | to VII backgrounds along an “algebra- is not necessary and, moreover, for more realistic equations
ically” preferred direction. The case we are interested in isof stateR evolves(as must becoupled with the matter. The
that of Bianchi V cosmologies which, after inhomogeneiza-former statement follows trivially in general because, in Eq.
tion takes place, become diagoi@) perfect-fluid solutions. (18), the homogeneous spacetime is recovered whgn
This case was termed as the single polarizatiehwaves in =0, while the latter immediately implies that, in faci
Bianchi V, see Refd.29,40. Using the explicit form of the #0O. In Eq. (18) they are related as follows:
metric as given in Ref18] wherep,,,gy,py correspond to
functions of a fully general Bianchi V spacetime and taking O=e" "o Oy~ Pinnd;+ Pinndsl

pinn(t,x) and f;,,(t,x) to be free functions giving the inho- . )
mogeneous generalization, the Einstein equations for a pefnd therefore the coupling & with the matter leads to the

fect fluid can be split as follows: appearance op;,,, causing the inhomogeneization of the
transverse scale expansion, which in turn drives the coupling
O, (Re #)=—(p—p)Re #efv*fin (21)  of the functiony with the matter through the operatat.
7 ’ . . .
The longitudinal scale equations would account therf fgr.
Oy=0, (22) Notice that, as remarked before, in the present fari§)

with (19), it is f,,,, or equivalentlyo, that actually switches
plus two other first order differential equations figg, (lon- O the inhomogeneization. In E(L8) together with Eq(19)
gitudinal scale equationg29]). Here [ denotes the and becauseiy is a function oft—x, we have that
d’Alambertian,R=e"* Pinh describes the transverse scale ex- O o] — ObulV3
pansion, andy=py—Vv3p;,, corresponds to the so called Pinn=€ vPinh= =Py

wave amplitudg29]. It must be noticed that, in this formal- w 4v
ism, the function satisfying a source-free massless scalar :—e<finh+fv>—( )pv,
field equation igpy—Vv3pinn, that is, the full combination of V3\3=T7v

the function corresponding to the background plus the func- ) )

tion carrying the inhomogeneity. This is so for the cases witi€ seécond equality coming from E@2). Thus, the propa-

a single(+) polarization, which restricts the Bianchi types to 9ation of piyy is not that of a source-free massless scalar
be I, I, V, or VI, and furthermore is in accordance with field, rather it is driven by the interaction with the back-
previous works in which the diagonal Einstein-Rogéd] groynd geometry transverse part, clearly showing the nonlin-
form of the line element is taken anglis the function ap- €&ty on the splitting of the background and the wave. The
pearing in the transverse part once the transitivity surfacdmportant thing here, however, is that the above equation is
area element, which correspondsRe “* in Eq. (18), is manifestly hyperbolic in character, as is obvious in its sim-
factorized, see Ref$26,28,30,31 Nevertheless, as we see Pler form(20), and that the characteristic propagation speed
in the previous case, the transverse scale exparRias of its s_olut|ons is the speed of I|g_ht. Having no _electromag-
defined in Ref[29] is not equivalent to the transitivity sur- Netic field present, the propagation of gravitational waves
face area element in general. Actually, for some other BianS€€MS the best possibility.

chi types this implies that the definition gfin Refs.[29,40) The second way to support our claim comes from the
differs from that in the “Einstein-Rosen view,” and thereby Yacuum limits of 'the splutlons' presented in Sec. Ill A. Be-
the wave equation they satisfy are different. cause of the nonlinear interaction of the waves with the mat-

The functionp;(t,x) will actually satisfy the homoge- ter proper to general relativity, and as we have seen in the
neous wave equationlp;,,=0 for those cases witke =p,
that is, for stiff fluids including the vacuum and the mini-
mally coupled massless scalar field solutions. This is so pri- !we are concentrating on the Bianchi V case, but similar sce-
marily because the so-called “transverse scale” E2{l) narios arise in the rest of the Bianchi |-VII spacetini2g].
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previous paragraph for this particular case, it is not possiblesolutions may constitute then the first exact solution in gen-
nor desirable to separate the metric into two linear termeral relativity for a perfect fluid with a realistig= ¢/3 equa-
representing the background and the waves, respectivelyion of state describing gravitational waves traveling on a
However, one can try to annihilate completely one of the twospatially homogeneous background.

terms, and then only the other must survive. Of course, by
construction, if we set the wavelike part defined fiy, to
zero we obtain the Bianchi \p= ¢/3, homogeneous back-
ground. This corresponds to putting=0. But can we also The particular dust cases, definedoy 0 [so that Eq(3)

get rid of the matter, so that only the gravitational waverequires nowr<0], belong to a more general family of
remains? A striking and beautiful answer would come fromalgebraically general dust spacetimes already presented in
f|nd|ng that the vacuum limits in the coordinates of E_‘B) Ref. [19] We devote this short subsection to identifying the
correspond to plane gravitational waves, as was the case féfesent dust one-parameter subfamily within the more gen-
the limits found in Sec. IllA. Unfortunately, there are no €ral dust family appearing in Ref19].

vacuum limits in these coordinates. To achieve the vacuum By taking profit of the form of the line-element in the
limits one has to make use of other coordinate systems, bifalf-null coordinategu,v,y,z} (14), and by making a coor-
then again the limit depends on the coordinate system chosétinate change to Lorentzian coordinates analogous to that in
[39]. In spite of this, the existence of coordinate systems irEd. (11), the line elemen{14) with =0 coincides exactly
which the limits v=*+1 correspond to a gravitationgp-  With expression(7) of Ref.[19] for the following particular
wave has already been shown in Sec. Ill A. At this point, thevalues of the constantéhere, we denote with a tilde the
question giving unequivocal sense to the gravitational wavéuantities which appear in RefL9], if necessary
inhomogeneity interpretation for this family gf= /3 solu- a=k,/v2. This can be seen as the free parameter of the
tions would thus be: do all the vacuum limits of this family solution.

with v=—1 correspond to a plane gravitational wave? We C>=0, ¢;<0. This implies the relationc,= «,, which

do not have a rigorous answer for this question yet, but wéollows from A =0.

do believe that the answer is positive. In this sense, we claim b= »(1+ »)/(1+ v?). By remembering thav e (—1,0),

that getting rid of the matter, whenever this is possible, anghjs |eads to the restrictione [b_,0) for the parameteb of
within the allowed range of the parametgrprovides a pure  Ref [19].

and simple gravitationgbp-wave, which we interpret as the Tne diagram for this subfamily corresponds to the Fig) 2

remanent of the mixed case. . _of Ref.[19] with the pointp atp=%=0, in agreement with
Hitherto, the work on gravitational waves in cosmological the particular caséc) of the present Fig. 1.

backgrounds based on exact solutions has been mainly tack-

C. The dust subfamily
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and stiff fluid (and its anisotropic generalizatidi32]) as
sources inG, on S, spacetimes, see the revief\&3-31], We are grateful to Alex Feinstein, Filipe C. Mena, and

and references therein. As mentioned in the IntroductionReza Tavakol for some fruitful comments and helpful indi-
there are other works presenting solitonic perturbations o€ations concerning references. The authors also thank finan-
p= /3 FLRW spacetime$34], later generalized tp= yp cial support from the Basque Country University, from the
in Ref. [35], but the energy-momentum tensor of the inho-Generalitat de Catalunya, and from the Ministerio de Educa-
mogeneous spacetime turns out to be a nonperfect fluid. Theon y Cultura, under Project Nos. UPV 172.310-G02/99,
general formalism used in these papers assumes that tB8SGR 00015, and PB96-0384, respectively. R.V. thanks the
backgrounds in which the perturbations propagate have Spanish Secretaride Estado de Universidades, Investiga-
restricted type of energy-momentum tensors, so it has beesion y Desarrollo, Ministerio de Educacioy Cultura, Grant
applied only to FLRW spacetimes. The present family ofNo. EX99 52155527.

[1] Dynamical Systems in Cosmologgdited by J. Wainwright bridge University Press, Cambridge, England, 1997
and G. F. R. Ellis(Cambridge University Press, Cambridge, [7]J. Wainwright, J. Phys. A4, 1131(1981).
England, 199¥. [8] A. Sintes, Ph.D. thesis, Universitat de les llles Balears, 1997.

[2] D. Kramer, H. Stephani, E. Herlt, and M. A. H. MacCallum, [g] R. Vera, Ph.D. thesis, Universitat de Barcelona, 1998.

Exact Solutions of Einstein’s Field Equatiof@ambridge Uni- [10] J. Carot and A. M. Sintes, Class. Quantum Gra¢, 1183
versity Press, Cambridge, England, 1980 (i997) Y ' ' i

[3] J. M. M. Senovilla, Gen. Relativ. Gravig0, 701 (1998.
[4] A. Z. Petrov,New Methods in General Relativitin Russian [11] M. Mars a“?' T. Walf, Class. Quantum Gral4, 2303(1997.
[12] C. G. Hewitt and J. Wainwright, Class. Quantum Gray.

(Nauka, Moskow, 1966 [English edition, Einstein Spaces

(Pergamon, New York, 1969 2295(1990.
[5] M. P. Ryan and L. C. Sheplefomogeneous Relativistic Cos- [13] E. Ruiz and J. M. M. Senovilla, Phys. Rev.45, 1995(1992.
mologies(Princeton University Press, Princeton, 1875 [14] J. Wainwright and S. W. Goode, Phys. Rev. 22, 1906
[6] A. Krasinski, Inhomogeneus Cosmological Mode{€am- (1980.

084008-11



JOSEM. M. SENOVILLA AND RAU L VERA

[15] A. F. Agnew and S. W. Goode, Class. Quantum Gra.
1725(19949).

[16] J. M. M. Senovilla and R. Vera, Class. Quantum Gra®,
1737(1998.

[17] G. F. R. Ellis and M. A. H. MacCallum, Commun. Math. Phys.
12, 108(1969.

[18] V. A. Ruban, Zh. Eksp. Teor. FiZ2, 1201(1977 [Sov. Phys.
JETP45, 629 (1977)].

[19] J. M. M. Senovilla and R. Vera, Class. Quantum Grag,
3481(1997).

[20] A. Feinstein and J. M. M. Senovilla, Class. Quantum Gv.
L89 (1989.

[21] W. Davidson, J. Math. Phy&2, 1560(1990.

[22] J. M. M. Senovilla, Phys. Rev. Leté4, 2219(1990.

[23] M. Mars, Ph.D. thesis, Universitat de Barcelona, 1995.

[24] M. Mars and J. M. M. Senovilla, Class. Quantum Gra¥,
205 (1997).

[25] E. M. Lifshitz and I. M. Khalatnikov, Usp. Fiz. Nau&0, 391
(1963 [Sov. Phys. Usp6, 495(1964].

[26] E. P. Liang, Astrophys. 204, 235(1976.

[27] J. Wainwright and B. J. Marshman, Phys. LeIRA, 275

PHYSICAL REVIEW D 63 084008

(1979.

[28] M. Carmeli, Ch. Charach, and S. Malin, Phys. R&p, 79
(198)).

[29] P. J. Adams, R. W. Hellings, R. L. Zimmerman, H. Farhoosh,
D. I. Levine, and S. Zeldich, Astrophys. 253 1 (1982.

[30] E. Verdaguer, Phys. Re@29 1 (1993.

[31] J. Bick and J. B. Griffiths, Ann. PhygN.Y.) 252 180(1996.

[32] P. S. Letelier, Phys. Rev. 6, 2623(1982.

[33] G. A. Alekseev, Proc. Stecklov Inst. Mag 215 (1988.

[34] J. Iba@ez and E. Verdaguer, Astrophys.3D6, 401 (1986.

[35] M. C. Diaz, R. J. Gleiser, and J. A. Pullin, Class. Quantum
Grav. 4, L23 (1987.

[36] J. M. Stewart and G. F. R. Ellis, J. Math. Ph9s1072(1974).

[37] H. van Elst and G. F. R. Ellis, Class. Quantum Gr&s;,. 1099
(1996.

[38] C. Uggla and K. Rosquist, Class. Quantum Gra@y.L279
(1990.

[39] R. Geroch, Commun. Math. Phy%3, 180(1969.

[40] P. J. Adams, R. W. Hellings, and R. L. Zimmerman, Astro-
phys. J.288 14 (1985.

[41] A. Einstein and N. Rosen, J. Franklin In&23 43 (1937.

084008-12



