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New family of inhomogeneousg-law cosmologies: Example of gravitational waves
in a homogeneouspÄ%Õ3 background
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We present an explicit three-parameter class ofp5g% (2
1
3 <g,1) cosmological models admitting a

two-dimensional groupG2 of isometries acting on spacelike surfaces. The family is self-similar in the sense
that it has a further homothetic vector field and it contains subfamilies of both~previously unknown! tilted and
nontilted Bianchi models with that equation of state. This is the first algebraically general class of solutions of
this kind including dust inhomogeneous solutions. The whole class presents a universal spacelike big-bang
singularity in the finite past. More interestingly, the casep5%/3 constitutes a new two-parameter inhomoge-
neous subfamily which can be viewed as a Bianchi type V background with a gravitational wave traveling
orthogonally to the surfaces of transitivity of theG2 group. This wave generates the inhomogeneity of the
spacetime and is related to the sound waves tilting the perfect fluid. It seems to be the first explicit exact
example of a gravitational wave traveling along a homogeneous background that has a realistic equation of
statep5%/3.

DOI: 10.1103/PhysRevD.63.084008 PACS number~s!: 04.20.Jb, 04.30.2w, 04.40.Nr
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I. INTRODUCTION

There is no need to mention that among the various m
ods used for the study of spatially inhomogeneous cos
logical models, the research on exact solutions of Eins
field equations plays a crucial role. Because of the high n
linearity of the equations, the exact solutions are neces
for the understanding of particular qualitative features t
may constitute a guide in the study of general situatio
Indeed, this has been the way in which many new kind
unexpected behaviors have been found. Of course, the e
solutions properties must be related and compared with
results obtained from other methods, such a combina
usually leads to very powerful and general conclusions.
instance, when using the dynamical systems technique
cosmology@1#, some special exact solutions are shown to
asymptotic states of general classes of models. Exact s
tions can also be compared with approximations or pertu
tions to check the validity of the involved expansions@2#.
Yet another example could be the study of the structure
appearance of singularities, which complements and sh
some light onto the singularity theorems and their conc
sions, see Ref.@3#, and references therein.

The research on exact solutions is based on some ph
cally reasonable restrictions used to simplify the Einst
equations. As an outstanding example, and with regard
geometrical properties, the existence of symmetries
scribed byn-dimensional groups of motionsGn ~see Ref.@2#,
and references therein! was the first assumption treated in
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systematic way, see, e.g.,@4,5,2,6#, leading to classifications
of solutions as well as to fruitful techniques for their findin
In this sense, and with the study of spatially inhomogene
cosmologies in mind, an important and particularly fruitf
line of research during the last two decades has been
consideration of the class of spacetimes admitting a maxi
two-dimensional group of isometriesG2 acting on spacelike
surfaces. This line was somehow launched in Ref.@7# with a
classification scheme for the particular Abelian case of th
so-called ‘‘G2 spacetimes’’ based solely on the properti
and relations of the Killing vector fields. The classificatio
was generalized for the non-Abelian case in Ref.@8#, see
Ref. @9# for a complete review. Among the classes defined
the Abelian case, the most simple subcase arises when
exists a family of surfaces orthogonal to the orbits of t
group~it is then said that the group acts orthogonally tran
tively! and the two Killing vectors are mutually orthogona
which implies that they are in fact hypersurface orthogon
so that the metric can be cast in diagonal form in coordina
adapted to the Killing vectors. Focusing the attention
these diagonalG2 spacetimes, some additional assumptio
have been made in order to simplify the field equations fo
perfect fluid source, as, for example, the existence of ad
tional homothetic or proper conformal symmetries, see R
@10,11#, and references therein. Let us recall here that th
have also been general studies on orthogonally transitiveG2
cosmologies from a qualitative point of view, analyzing t
autonomous system of first-order partial differential equ
tions derivable from the Einstein field equations by usi
methods from the theory of dynamical systems@12,13,1#.
The relations between some of the known explicit solutio
and these theoretical studies were widely analyzed in R
@1#, and many references therein.

Another important simplifying assumption for the perfec
©2001 The American Physical Society08-1
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fluid diagonalG2 spacetimes, which has received systema
attention, corresponds to the separability of the metric fu
tions in coordinates that keep the diagonal form of the m
ric, so called canonical coordinates. The case when th
canonical coordinates that bring the metric functions to
separate form are also adapted to the velocity vector of
fluid, that is to say, they are comoving coordinates too, w
exhausted in Refs.@14,13,15#, except for a very particula
case identified in Ref.@9# that did not appear in Ref.@13#
accidentally. The general treatment of the separability
noncomoving canonical coordinates can be found in R
@16,9#, where a classification for separable diagonalG2 onS2
perfect-fluid solutions was obtained depending on the nu
ber of linearly independent functions appearing in the met
leading to a systematic procedure for the obtaining of so
tions. The classification was exhausted, but not who
solved, because once the machinery for the systematic
vation of solutions was established, the main effort was
cused on finding solutions with special interest or physi
relevance in order to study them in detail.

Thus, for instance, an interesting solution was singled
in Ref. @9# ~named 22BIIc! because of itsg-law equation of
state which includes the relevant casesg50 ~dust models!
andg5 1

3 ~models for relativistic radiation!. It is also inter-
esting because it provides inhomogeneous generalization
some Bianchi III, V, and VIh models found in Refs.@17,18#,
see also Ref.@1#. The particular dust solutions belonging
this family are actually included in one of the two classes
dust spacetimes studied in Ref.@19#. The solutions with non-
zerog, including those withg5 1

3 , are new, though. In fact
the number of exact solutions for inhomogeneous spaceti
with a p5%/3 equation of state is rather scarce: as far as
know the first one appeared in the Wainwright-Goode fam
@14# to which followed the Feinstein-Senovilla solution@20#,
Davidson’s @21#, the singularity-free metric of Ref.@22#,
their common generalization in the Ruiz-Senovilla cla
@13#, and the nondiagonalp5g% family found by Mars and
Senovilla@23,24#.

The aim of this paper is to present the explicit family
solutions mentioned in the previous paragraph, as well a
perform an extensive detailed geometrical and physical st
of its main features. The solutions constitute a thr
parameter class ofp5g%, 2 1

3 <g,1, cosmological models
admitting a maximalG2 acting on spacelike surfaces. Th
whole family is self-similar in the sense that it has a furth
homothetic vector field and it contains subfamilies of bo
tilted and nontilted Bianchi models. This is the first inhom
geneous family with ag-law equation of state having a freeg
which includes theg50 case, something which may be ve
useful in order to study perturbations of the dust case.

The structure of the paper is as follows. In Sec. II w
introduce the line element for the whole family in nonc
moving canonical coordinates and show the ranges of
free parameters and the perfect-fluid variables, which ar
turn expressed in terms of its velocity potential~Secs. II A
and II B!. The kinematical quantities of the fluid flow an
their properties, as well as the deceleration parameter an
Weyl tensor are given in Secs. II C and II D. Then, in S
II E, we study the general symmetries of the spacetimes
08400
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cluding the analysis of the special cases that arise, wh
include previously known exact ‘‘nontilted’’ Bianchi space
times together with some other new ‘‘tilted’’ ones. Nex
comoving canonical coordinates are introduced in Sec. I
on the one hand to show that the metric is nonseparabl
comoving coordinates in general, and on the other hand
construct a half-null coordinate system that will be used
make manifest the singularity structure and its type in S
II G. The result is that the whole class presents a unive
spacelike big-bang singularity in the finite past, which tur
out to be of Kasner type@25,26#. Similarly, the future
asymptotic behavior of the solutions is shown in Sec. II H

In Sec. III we present the most interesting particular su
families and limits of the general spacetime. In particul
two vacuum limits in the half-null coordinates are found
Sec. III A, providing two two-parameter families of pur
gravitational pp-wave solutions. Thep5%/3 subfamily is
studied then in Sec. III B, and it is given the interpretation
a Bianchi V background inhomogenized by means of a p
gravitational wave traveling along the direction orthogonal
the surfaces of transitivity of theG2 group. This gravitational
wave is closely related to some acoustic waves which tra
along and tilt the perfect fluid. This result is new in the sen
that all previous works concerning propagation of waves
curved backgrounds were developed in the case of vac
or massless minimally coupled scalar fields without poten
~the latter includes the stiff fluidp5% case, see Ref.@27# for
a pioneering treatment of the subject!, see, e.g., Refs.@28–
31#, and references therein, for a selection of main results
in an anisotropic generalization of the stiff fluid in which th
energy density equals the pressure on the direction of pro
gation of the waves@32#, and finally, in the case of electro
magnetic fields, see Ref.@33#. There have also been othe
works on solutions describing exact solitonic perturbatio
of g-law perfect fluid backgrounds@34,35,30#, but the for-
malism consists in translating the solutions of the Einst
field equations into equivalent five-dimensional massl
scalar field spacetimes, and thus the backgrounds are
verely restricted by some conditions on the matter conten
that eventually only Friedmann-Lemaıˆtre-Robertson-Walker
~FLRW! spacetimes were used. Moreover, these pertu
tions give rise to anisotropies in the energy-momentum t
sor. In our case, the gravitational wave is exact and trav
on a spatially homogeneous but anisotropic background,
both the background and the resulting inhomogeneous sp
time satisfy the same realistic equation of statep5%/3. This
is the first known example of such a situation.

Finally, the dust subfamily is identified within the gener
classes found in Ref.@19# in sub-Sec. III C. Throughout the
paper we follow the following conventions and notation
The metric has signature12. L” vW denotes the Lie derivative
with respect to the vector fieldvW . Primes and dots will stand
for derivatives with respect tox and t, respectively. Greek
indices run from 0 to 3. We take units with 8pG5c51.

II. THE MODELS

This section is devoted to presenting, in as compact a w
as possible, the new family of spacetimes and their m
geometrical and physical properties.
8-2
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A. The line element

The line element was derived using separability of
metric functions in noncomoving coordinates@16# @more pre-
cisely, it arises as a particular case of them5n
52(22BIIc) class as defined in Ref.@9## and it can be writ-
ten as follows:

ds25F2~ t,x!~2dt21dx2!1em@a/~a1b!#~ t2x!~12e2mt!

3$@em@b/~a1b!#~ t2x!~12e2mt!#2ldy21@em@b/~a1b!#~ t2x!

3~12e2mt!#22ldz2%, ~1!

with

F~ t,x![expF m

a1b
~ td2cx!G~12e2mt!l,

and where we have defined the following constants:

a[~4l11!~n221!~n21!,

b[~6ln22l1n11!~n221!,

c[n~2l11!@n21112~2n21!~n11!l#,

d[n21112~n13!ln212~5n224n11!~n11!l2,

with l being

l[ l 221/4

an auxiliary constant that will be used for the sake of si
plicity. Actually, the constants satisfy the relationc5n@d
2l(a1b)#[n ĉ that allows to cast the functionF(t,x) in
the alternative and possibly more convenient form given

F~ t,x!5expF m ĉ

a1b
~ t2nx!G~emt21!l.

Nevertheless, and for the sake of simplicity in some expr
sions, we prefer to keep the four constantsa, b, c, d, andF as
given previously.

The family of solutions has then three free parametel
~or l!, n, andm, although the latter simply provides the c
ordinate scaling. We obviously havel>21/4, and we can
choosem.0 without loss of generality~see below!. Further-
more, we must havea1bÞ0, which eventually will be
equivalent to

~5n23!l1nÞ0.

B. The perfect fluid

The line element~1! is a solution of Einstein’s field equa
tions for a perfect-fluid energy-momentum tensorTab5(%
1p)uaub1pgab(%1pÞ0) whenevern is restricted by

12n2.0, ~2!

which in turn implies the last condition of the previous su
section. The unit velocity vector fielduW then reads
08400
e
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y
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uW 5
1

FA12n2 F ]

]t
1n

]

]xG .
The ranges forn and l immediately implya.0. One can
also deduce thatd.0 as follows: we have 5n224n11
.0,;n, and thusd.dul521/45(32n)(32n2)/8.0.

The energy density is given by

%5F22S a2b

a1bD m2~l11!

~emt21!
,

and the equation of state is barotropic and obeys the gam
law

p5g%,

whereg is given explicitly in terms ofl by

g5
l

l11
5

l 221/4

l 213/4
,

so that we have21/3<g,1. Notice that in the%13p50
casel521/4⇔ l 50 and the solutions admit a planeG3 on
S2 .

From the above expressions is clear that the soluti
have an initial big-bang singularity att50, and this is why
we have takenm.0 without loss of generality. Section II G
is devoted to studying the singularity structure of the fami
and in particular it will be shown that the big-bang singula
ity at t50 is the only one for the whole family.

The perfect-fluid region covers the entire manifold, a
we have%.0 everywhere whenevera22b2.0, which is
equivalent to

~5n23!l1n,0, ~3!

where we have taken into account that (a2b)/@2(12n2)#
5(n11)l11.0 ~so that%Þ0) which follows from the
ranges forn andl. In fact, the previous condition~3! implies
a1b522(12n2)@(5n23)l1n#.0, and this ensures th
fulfillment of both the dominant and the strong energy co
ditions on the whole spacetime.

Since the fluid flow is irrotational it can be expressed
the normalized gradient of a scalar field, the so-called vel
ity potentials @26#, that is,

ua5s ,a /A2s ,bs ,b,

where the commas stand for the partial derivative. Beca
of the gamma law equation of state, the corresponding
ergy density reads%5(2s ,as ,a)(g11)/2g, and the velocity
potential satisfies a homogeneous wave equation~nonlinear
wheneverpÞ%) which gives the sound wave equation on
it is linearized @26#. The velocity potential for the whole
family is given by
8-3
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s52S m2~l11!
a2b

a1bD l/~2l11!

3
~2l11!~a1b!

m ĉA12n2
expF m ĉ

~2l11!~a1b!
~ t2nx!G

apart from an additive constant, so that the parametern is
nothing but the peculiar spatial fluid velocity2s8/ṡ. The
range given in Eq.~2! for the perfect fluid is consistent with
this interpretation, so that given anyg the corresponding
subfamily contains all the possible values the ratios8/ṡ can
achieve. Indeed, since this ratio is constant, this family
solutions does not follow an asymptotically velocit
dominated regime near the initial singularity except for t
casesn→0, which could be seen as perturbations of hom
geneous models~see Sec. II E!.

C. The kinematical quantities

In order to compute the kinematical~and other! quantities
for the fluid congruence defined byuW , let us take the ortho-
normal tetrad$ua% with ua}dxa in the above coordinate
system$xa%5$t,x,y,z%. Of course, the vorticity of the fluid
congruence vanishes identically. Regarding its accelera
its nonvanishing components are

a052na1 , a15F21ml
n

12n2

1

~12e2mt!
, ~4!

so that the fluid flow does not follow geodesic trajectories
any point of the spacetime, except for the special casen
50 or l50, in which the acceleration vanishes everywhe
These special cases will be discussed later in Sec. II E.

With respect to the expansion and the nonzero com
nents of the shear tensor we have

u5F21
m

A12n2~a1b!~emt21!

3@a2~emt21!1~a1b!~l11!#,

s005n2s11, s0152ns11,

s1152F21
m@an1b2emta~n21!#

~12n2!3/2~a1b!~emt21!

1
2

3~12n2!
u,

s221s335F21
m

3A12n2~a1b!~emt21!

3$@23~d2nc!2a2#

3~emt21!2~a1b!~2l21!%,

s222s335F21
2m l @a1nb2emtb~n21!#

A12n2~a1b!~emt21!
, ~5!
08400
f

-

n,

t

.

o-

where we have defineda2[d2nc1a(12n), which is in-
deed a positive constant for the given ranges ofn andl. This
can be easily deduced from its explicit expression

a252~12n2!~11l!@~4n223n11!l1~n2!1~12n!#,

as every term between round brackets is strictly positive
cause of Eq.~2! ~in fact 4n223n11.0,;n), and so the
less favorable case would correspond tol521/4, which
gives a positive value for the term in square brackets for
valid range ofn.

Therefore, from expression~5! we see that the fluid con
gruence is expanding everywhere,u.0, starting with an un-
bounded value at the initial singularityt50 and decreasing
continuously from then on arriving eventually to zero ast
tends to infinity. A straightforward calculation also show
that

sabsab

2u2 ~ t→`!→ 2~12n2!2

3a2 F1

4
@a~12n!22~d2nc!#2

13~12n!2b2l 2G ,
so that the only case in which the solutions isotropize in
future is given by l5 1

2 and n50 (s1150,s2252s33
Þ0), which is a ‘‘comoving’’ family with an additional
symmetry, as we will see later in Sec. II E.

Finally, we present the expression of the deceleration
rameterq, whose general definition is

uW ~u21![
1

3
~11q!,

so that it reads

1

3
~11q!5

m

FA12n2u
Fd2nc

a1b
1

emt1l

~emt21!

2
a2emt

a2~emt21!1~a1b!~l11!G ,
from where it can be checked that at the singularityq(t
→0)52. It is interesting to remark that, as follows from th
previous expression and Eq.~5!, q is independent ofx, de-
spite the inhomogeneity of the solutions. It should
stressed that this result holds in the above coordinate sys
which is not comoving, and it is a simple consequence of
separability of the metric components in these coordina
In the comoving coordinates adapted to the fluid flow, wh
will be given in Sec. II F, the deceleration parameter c
tainly depends on the corresponding spatial variable.

D. The Weyl tensor

Concerning the Weyl tensor, the nonvanishing scal
computed in the null tetrad~see Ref. @2#! k5221/2(u 0

2u1), l5221/2(u 01u1), m5221/2(u 21 i u 3), are given by
8-4
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C02C452
m2l

F2~a1b!2~emt21!
$@2~bl1c!2a#a1@~2l

21!b22d#b12emt~c1d2a!b%,

C25
m2

12~a1b!F2~emt21!2 $emt@~10l11!b1~2l21!a#

1~a2b!~4l11!%,

C05
m2l

2~a1b!F2~emt21!2 $~a1b!~2l21!12~c2d!

2emt@2~c2d!2b2a#%,

and therefore, the Weyl tensor does not vanish and the
no possible particularization to a conformally flat soluti
within the whole family. In particular, flat spacetime is n
included in the family.

The Petrov type is I at generic points for the general c
with a maximalG2 , and type D for theG3 on S2 case (l
50) as well as for the casen50, l52, which admits two
additional isometries, belonging then to the class of L
models~see Sec. II E!. The nonzero component of the ma
netic part of the Weyl tensor with respect touW is given by

H23~uW !5
11n

12n
C02

12n

11n
C4 ,

so thatH(uW ) only vanishes in the type D cases:n50, l
52 or l 50.

E. The symmetries: Special cases

The line element~1! admits in general a two-paramet
group of isometries, generated by the two Killing vectors

jW5
]

]y
, hW 5

]

]z
,

which obviously commute, so that theG2 is Abelian. More-
over, the metric admits a homothetic vector field given b

zW52
]

]x
1

m

a1b
~a12bl22c!y

]

]y

1
m

a1b
~a22bl22c!z

]

]z
, ~6!

which satisfies

L” zWgab524cmgab .

It follows that the general family of solutions withcÞ0
belongs to the class of so-called ‘‘tilted’’ inhomogeneo
self-similar perfect-fluid models@10#: the velocity vectoruW is
neither tangential nor orthogonal to the orbits of the thr
dimensional homothetic groupH3 generated by$jW ,hW ,zW%,
which is acting on spacelike hypersurfaces (S3). The alge-
braic structure ofH3 is described by the following Bianch
types: Bianchi VIh with h52@(a22c)/2lb#2 ~Bianchi III is
08400
is

e

S

-

indeed included whenh521) wheneverlbÞ0, and Bianchi
V whenlb50. In this last possibility, by taking into accoun
that the casel 50 already admits aG3 on S2 group of isom-
etries, the resulting group is anH4 acting onS3 if l 50.

Coming to the possible particular cases with further sy
metry we first find the already mentioned case withl 50
(l521/4), so that the equation of state has the form%
13p50. This solution admits aG3 group of isometries act-
ing multiply-transitively on spacelike planeS2-orbits, and
the Petrov type is D.

When lÞ0, the only possible cases with additional Kil
ing vectors are all given byc50, in which case the line-
element~1! admits the vector fieldzW given by Eq.~6! re-
stricted toc50, that is,

zW52
]

]x
1

m

a1b
~a12bl !y

]

]y
1

m

a1b
~a22bl !z

]

]z
,

so that theH3 becomes aG3 on S3 with the same Bianchi
types as indicated above~see Refs.@17,5,1#, and references
therein!. The explicit expression ofc leads to two possibili-
ties for c50.

~1! Case withn50. Now the velocity vectoruW is orthogo-
nal to the orbits of the simply transitiveG3 group, so that the
resulting solutions belong to the following nontilted Bianc
classes of spacetimes.

Bianchi V whenl5 1
2 . This homogeneous spacetime is

special case of the general Bianchi V family withp5%/3
found by Ruban in Ref.@18# @line element~9.20! in Ref. @1#
with a5m2]. This is the only solution of the whole family
such that the flow generated byuW isotropizes in the future
~see Sec. II C!.

Bianchi III when l52. As already mentioned, this cas
corresponds to another algebraically special solution~Petrov
type D!, which actually admits a fourth Killing vector given
by

xW 5yS ]

]x
1

3

8
m

]

]yD ,

so that this case belongs to the LRS (G4 on S3) models of
class II in Ref.@36#. As we said in Sec. II C, this is the onl
solution in Eq.~1!, apart from the planeG3 on S2 case (l
50), having a purely electric Weyl tensor with respect
the fluid vectoruW , H(uW )50 ~see Ref.@37#!.

A one-parameter family of Bianchi type VIh spacetimes
whenlÞ 1

2 ,2. This family is included in the class of evolvin
nontilted Bianchi VIh spacetimes forp5g% ~Table 9.4 in
Ref. @1#!. Following the notation in Ref.@1# ~using a tilde for
the quantities in Ref.@1#!, the present families are include
in the general cases withk̃5u423g̃u/2 ~Table 9.4 in Ref.
@1#!, discovered by Uggla and Rosquist@38# up to quadra-
tures.

~2! Case with

l5
11n2

2~122n!~n11!
,

8-5
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which satisfies%.0 and 1/A10,g,1 @for nP(21,1/2)].
In this case, and fornÞ0, the perfect-fluid flow has a non
vanishing projection onto theG3 orbits, so that it constitutes
a one-parameter family of exact ‘‘tilted’’ Bianchi solution
The free parameter can be chosen to beg with the restriction
above and taking into account that the caseg5 1

3 ~and n
50) falls onto the previous ‘‘nontilted’’ Bianchi V case. Th
Bianchi type for this ‘‘tilted’’ homogeneous solutions is VIh
with h52@n2(4l11)#21 ~including Bianchi III!.

F. The comoving coordinates

As is known@7#, every perfect-fluid diagonalG2 solution
can be written in comoving coordinates$T,X,y,z% keeping the
diagonal form of the metric. By comoving coordinates w
mean those such thatuW }]T . The comoving coordinates wil
be useful for the study of the singularities that will be pe
formed in Sec. II G. Also, this will prove that the use
comoving coordinates may sometimes be not well adapte
writing some solutions in explicit form, or even to look fo
them.

The explicit change to comoving coordinates for the m
ric ~1! is easily found to be

t5
1

A12n2
~T1nX!, x5

1

A12n2
~X1nT!, ~7!

where the Jacobian of the change is 1. By writingm̂
[m/A12n2, the line element becomes

ds25F2~T,X!~2dT21dX2!1em̂@a/~a1b!#~12n!~T2X!J~T,X!

3$@em̂@b/~a1b!#~12n!~T2X!J~T,X!#2ldy2

1@em̂@b/~a1b!#~12n!~T2X!J~T,X!#22ldz2%, ~8!

where now

F~T,X!5expF m̂

a1b
@~d2cn!T2~c2nd!X#GJl~T,X!,

and we have that

J~T,X!512exp@2m̂~T1nX!#. ~9!

Then the fluid velocity vector field simply readsuW
5F21]T . As is obvious, this family of solutions is not sep
rable in comoving coordinates fornÞ0. See Ref.@9# for a
study of the loss of separability when performing arbitra
coordinate changes~within the two-spaces orthogonal to th
G2-group orbits! which keep the diagonal form of the metri

As we can see, the structure of the line-element is perh
not too cumbersome in comoving coordinates, but it is co
plicated enough so that the solutions had not been fo
until the Ansätz of separability in noncomoving coordinate
was used. The structure shown in Eq.~8! may indicate some
new Ansätzeproviding, perhaps, generalizations of theseG2
spacetimes withp5g%.
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G. The half-null coordinates: Singularity structure

As mentioned previously, the solutions present an ini
big-bang singularity at the spacelike hypersurfacet50 com-
ing from the vanishing of the functionJ given in Eq.~9! for
the metric~8!. Nevertheless, the form of the functionF/Jl

may suggest that other singularities could be present, as
instance, atx→6`. We are going to show that this is no
the case, and consequently the only singularity of the so
tions is the reachable universal spacelike singularity at
50, which in the comoving coordinates is given byT1nX
50.

To that end, let us start by noticing that the coordina
ranges of Eq.~8! are in principle only restricted by

T1nX.0. ~10!

Simple inspection on the expressions for the energy den
and the Weyl scalars indicates that in this coordinate ra
the only other possible singular points would be those wh
the functionF/Jl vanishes, and that the singularities of bo
the Ricci and Weyl tensors coincide. At this point, it is ve
useful to perform the change to null coordinates$U,V% in the
surfaces orthogonal to the orbits of theG2 group, given by

U5
1

&
~T2X!, V5

1

&
~T1X!, ~11!

so that Eq.~10! now becomes

V~11n!1U~12n!.0. ~12!

Let us define now the following two constants:

ku[&
m̂

a1b
~12n!~d1c!, kv[&

m̂

a1b
~11n!~d2c!,

whose fundamental property will turn out to be their posit
ity. Indeed, we have first of all that

~12n!~d1c!5~12n2!@2~3n21!2l21~8l11!n211#.

Since l>21/4 andn2,1 we have thatn2(8l11).21,
which, together witha1b.0, easily leads toku.0. On the
other hand, the following explicit expression

~11n!~d2c!5~12n2!@2l2~12n2!1~4l11!n211#,

directly shows thatkv.0 too. The functionF is now such
that

F~U,V!J2l~U,V!5e~1/2!~kuU1kvV!,

and the usefulness of the change is now clear since the
gion with F/Jl→0, that iskuU1kvV→2`, can be reached
within the range~12! only if U→2` or V→2`. In order
to ascertain whether or not they are reachable, let us t
bring them to finite values by making the typical coordina
change
8-6



i-
.

a

ef

th

er

-

NEW FAMILY OF INHOMOGENEOUSg-LAW . . . PHYSICAL REVIEW D 63 084008
U5
1

ku
log~kuu!, V5

1

kv
log~kvv !,

so that the range of the new null coordinates (u,v) is given,
in principle, byu.0, v.0 and the restriction coming from
Eq. ~12!, which reads

~kuu!~12n!/ku~kvv !~11n!/kv.1. ~13!

The line element then becomes

ds2522J2l~u,v !dudv1~kuu!a/~d1c!J~u,v !

3$@~kuu!b/~d1c!J~u,v !#2ldy2

1@~kuu!b/~d1c!J~u,v !#22ldz2%, ~14!

where now

J~u,v !512~kuu!2~a1b!/ @2~d1c!#~kvv !2~a1b!/ @2~d2c!#,

andF/Jl5(kuu)(kvv), so that the other possible singular
ties have been transported touv50 in the new coordinates

The point now is that the singularity att50, which lies in
the limit of the restriction given in Eq.~13! and has the form
~for some constantA!

u5A2v2~d1c!/~d2c!, ~15!

does hide the other possible singularities atuv50 in the
sense that any endless past-directed causal curve from
point in our manifold terminates necessarily att50 ~this is
why it is called a universal big-bang singularity, see R
@3#!. In other words,uv50 is not accessible within the
physical spacetime, see Fig. 1.

Singularity type. The three~nonvanishing! eigenvalues of
the distortion tensor of the fluid congruence defined byuW ,

uab[sab1
1

3
uPab ,

where Pab[gab1uaub is the projector orthogonal touW ,
read as follows at the limitt→0:

u15 f l, u25 f S 1

2
1 l D , u35 f S 1

2
2 l D ,

where we have definedf [ limt→0 m/(A12n2FJ). The
beahviour of the fluid congruence is described then by
scale factorsl i( i :1,2,3) defined byuW (log li)5ui , giving three
different possibilities depending on the values ofl at the
limit t→0:

l,0:l 1→`, l 2 ,l 3→0; l50: l 2→0, l 1 and l 3 tend to a
finite value;l.0: l 3→`,l 1 ,l 2→0.
Therefore, the initial singularity is of cigar type whenev
lÞ0 and of pancake type forl50. This can be also inferred
by means of the limitt→0 on the line-element in Eq.~1!,
which after changing (mt)ldt5dt, redefiningm and absorb-
ing some constants iny andz reads
08400
ny

.

e

ds2u t→05e22c@m/~a1b!#x@2dt21~mt!2l/~11l!dx2#

1e2@m/~a1b!#~a12bl !x~mt!~112l !/~11l!dy2

1e2@m/~a1b!#~a22bl !x~mt!~122l !/~11l!dz2.

In other words, the exponentspi such thatl i}t pi ~Ref. @1#,
p. 121! are $2p152l/(11l), 2p25(112l )/(11l), 2p3
5(122l )/(11l)% so that

p11p21p35p1
21p2

21p3
251.

Therefore, the singularity is of Kasner type@25,26#.

H. Future asymptotic behavior of the solutions

The future asymptotic behavior is to be computed here as
the limit T→` in comoving coordinates.~The same result is
obtained, of course, by performing the limitt→`, but the
final expressions will be eventually better related to well-
known homogeneous spacetimes by using the comoving co
ordinates.! The line-element~8! in that limit and for finite
values of the spacelike coordinateX reads

FIG. 1. Diagrams showing the singularity in the (u,v) surfaces
for the three possibilities~a! kv.ku , ~b! kv,ku , ~c! kv5ku . The
whole spacetime is the product of these surfaces with the group
orbits. As usual, null lines are at 45°. The fluid flow is indicated by
arrowed lines in the region given by expression~13!. Notice that the

shown coordinates$ t̂ ,x̂% would correspond to the Lorentzian coor-
dinates related to$u,v% in the same manner as$T,X% are related to
$U,V% ~11!. The big-bang singularity att50, or equivalently Eq.
~15!, which is a spacelike hypersurface, is denoted by a thick curve
which tends asymptotically touv50 ~denoted by dashed lines!. Of
course, it is evident thatuv50 is hidden ‘‘in the past’’ of the
big-bang singularity in the physically meaningful spacetime (%
.0), and therefore the valuesu50 or v50 are unreachable.
8-7
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ds2uT→`5e2@m/~a1b!#~d2cn!T~2dT21dX2!

1e@m/~a1b!#~12n!~a12bl !Tdy2

1e@m/~a1b!#~12n!~a22bl !Tdz2,

and thus the whole family tends to the perfect-fluid se
similar Bianchi I solutions@1#, the threepi exponents read
ing then p151, p25(12n)(a12bl)/@2(d2cn)#, p35(1
2n)(a22bl)/@2(d2cn)#. The asymptotic behavior for th
only case in which the solutions isotropize in the futurel
51/2, n50) is easily identified here as the flat FLRW sol
tion with p5%/3 (p15p25p351).

III. INTERESTING PARTICULAR SUBFAMILIES

In this section we present some of the solutions includ
in the general family which are of some physical interest. W
have selected three types of subfamilies: the dust subfam
which was actually considered at length in Ref.@19# as a
particular family of a broader class of dust solutions; thep
5%/3 family, which has a physically realistic equation
state for radiation-dominated epochs and, as we will se
provides a simple example of how a gravitational wave c
give rise to the inhomogeneization of the underlying perf
fluid; and the vacuum limits, which include some plane-wa
spacetimes and, therefore, will also be relevant for the
cussion about the inhomogeneization of the spacetime by
gravitational waves just mentioned. These three cases
treated in separate subsections.

A. The vacuum limits

The half-null coordinates of the previous section are v
useful to find vacuum limits of the general solution. For t
line-element as written in Eq.~14!, the expression for the
fluid velocity vectoruW transforms to

uW 5J2l~u,v !
1

A2~kuu!~kvv !
F ~kuu!

]

]u
1~kvv !

]

]vG ,
~16!

and the energy density now reads

%

5J22l21S a2b

a1bD ~12n2!m̂2~l11!

~kuu!11~a1b!/@2~d1c!#~kvv !11~a1b!/@2~d2c!#

From this it follows thatn251 provides vacuum limits in
this coordinate system. Performing them in the form~14! we
arrive at the following.

~1! Case withn51. The line element becomes

ds2522J2ldudv1J~J2ldy21J22ldz2!,

whereJ511&m̂v. This is a particularpp-wave@2# with ]u
as a null Killing vector. The Petrov type isN and the Weyl
tensor takes the simple form

C054l l m̂2J22l22.
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~2! Case withn521. Now the line element reads

ds2522J2ldudv1~kuu! ãJ~@~kuu! b̃J#2ldy2

1@~kuu! b̃J#22ldz2!,

where we have putã[2(114l)/(114l116l2) and b̃
[8l/(114l116l2) and the functionJ becomes

J512~kuu!2~ ã1b̃!/2.

This is again a pure gravitationalpp-wave, and the type-N
Weyl tensor has the only nonvanishing scalar

C452
4l l m̂2

J2l12~kuu! ã1b̃12~8l11!

3@124~16l224l21!~kuu! ã1b̃22~16l13!

3~kuu! ã1b̃22~16l13!~kuu!~ ã1b̃!/2#.

The previous vacuum solutions correspond to limits of
family of perfect fluid spacetimes of Sec. II B, wheren was
restricted by Eq.~2!. Nevertheless, the line element given b
Eq. ~1! contains further vacuum spacetimes arising whene
a2b50 apart from the casesn561, that is, if

nl1l1150,

which together with the restrictionl>2 1
4 requiresn.3 or

n,21. The line element for these cases reads

ds25F2~ t,x!~2dt21dx2!1~e~m/2!~ t2x!2e2~m/2!~ t1x!!

3@~e~m/2!~ t2x!2e2~m/2!~ t1x!!2ldy21~e~m/2!~ t2x!

2e2~m/2!~ t1x!!22ldz2#, ~17!

with

F~ t,x![e2~m/2!x~e~m/2!~ t2x!2e2~m/2!~ t1x!!l.

This vacuum subfamily has in general a maximal AbelianG3
acting simply transitively on spacelike hypersurfaces, the
ditional spacelike Killing vector field given by

hW 5e~m/2!xFsinhS m

2
t D ]

]t
1coshS m

2
t D ]

]xG ,
and is of Petrov type I in general, so that it is the well-know
Kasner metric@2#.

B. The pÄ%Õ3 subfamily: Propagation of gravitational waves
in a homogeneous background

This section is devoted to the radiation caseg5 1
3 (l

5 1
2 ). The condition ~3! then readsn, 3

7 . As has been
shown, this family constitutes a generalization of the Rub
‘‘nontilted’’ Bianchi V solution, and we are now going to
prove that, in fact, the general family can be interpreted
the inhomogeneization, via the propagation of plane grav
tional waves, of the mentioned Bianchi V Ruban solution
8-8



ap
tio
on

e
er
e
r-
m
ily
t

f
o

m
ck
ge

ou

ly

p
r
he

hy
at
ity

g
chi
or-

of
by

nc-
s
e

al

the
ves
stic
eity

ctor
the

ful

line

ve-

ves

onal

VI
ird

er-
ion
in
oge-

fect-
lar
ing
In
the
nd
m

ity
way
t

NEW FAMILY OF INHOMOGENEOUSg-LAW . . . PHYSICAL REVIEW D 63 084008
To that end, first of all it is necessary to choose the
propriate coordinate system in which the inhomogeneiza
will be more transparent. In this case, and despite what
might try at first, the natural choice isnot the comoving
coordinates~nor their half-null counterpart!, but rather the
original noncomoving coordinates$t,x,y,z%. The reason for
this is that the change to comoving coordinates~7! depends
explicitly on the parametern, but this very parameter is th
one defining the inhomogeneization. Thus, for the sev
different inhomogeneous metrics~which are selected by th
particular values ofn!, a different change to comoving coo
dinates is needed. In other words, in order to use a com
coordinate system which is valid for the general subfam
as well as for the particular Bianchi V metrics, one has
resort to the system$t,x,y,z%. This is an explicit example o
the adequacy of using noncomoving coordinates in some
casions based on physical grounds.

Now, we show how to write the line element in a for
that makes it explicit the homogeneous Bianchi V ba
ground and the traveling waves leading to its inhomo
neization. By settingl5 1

2 , the metric~1! can be rewritten as

ds25ef V1 f inh~2dt21dx2!1egV1pinh~epV2)pinhdy2

1e2pV1)pinhdz2!, ~18!

where

ef V[emt21, egV[ef V2mx,

epV[~12e2mt!), ~19!

correspond to the functions of the Bianchi V homogene
solution, defined byn50, whereas

f inh[mS 4n~3n11!

~12n2!~327n! D ~ t2nx!,

pinh[mS 4n

327n D ~ t2x!,

are the functions linked to the inhomogeneities of thisp
5%/3 family of solutions. The energy density for this fami
takes the following expression:

%5
3

2
m2e2~2 f V1 f inh!S 31n

327n D .

As we see, the inhomogeneity is driven by the same
rametern that ‘‘tilts’’ the perfect fluids, that is, the peculia
spatial velocity. This inhomogeneity appears primarily in t
transversal part of the metric as the functionpinh , which
depends only on the null coordinatet2x, so that pinh is
obviously a solution of the flat-space wave equation

hhpinh50, ~20!

wherehh denotes the d’Alembertian for the Minkowski~h!
metric. Thus, this inhomogeneity is constant at the null
persurfacest2x5const, or in other words, it propagates
the speed of light orthogonally to the surfaces of transitiv
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of the G2 group of motions. We interpret this as signallin
the existence of gravitational waves traveling in the Bian
V background whose spacelike propagation direction is
thogonal to theS2 orbits spanned by$y,z%. This interpretation
seems to be in accordance with that given for the family
inhomogeneous nondiagonal stiff fluid solutions found
Wainwright and Marshman in Ref.@27# ~see also Ref.@30#!,
where the inhomogeneization is driven by an arbitrary fu
tion depending ont2x. In our case, the effect of the wave
is a fortiori revealed also by the imprint which leave on th
longitudinal part of the line element, given byf inh . Actually,
since f inh is functionally dependent on the velocity potenti
via

s}ef inh/4,

the implicit relation between the gravitational waves and
propagation of inhomogeneities through the acoustic wa
is manifest. The propagation of the gravitational and acou
waves has thus two effects: it breaks the spatial homogen
of the spacetime and at the same time tilts the velocity ve
of the matter but keeping the perfect-fluid character of
matter content.

Of course, all this has to be considered in a more care
way. For instance, in the casen52 1

3 we fall into the special
cases analyzed in the final point of Sec. II E, so that the
element~18! is in fact a Bianchi VI23 spatially homogeneous
solution, but now withpinhÞ0 and f inh50. The form of the
longitudinal part is kept, but there appears a nontrivial wa
like inhomogeneity in the transversal part given bypinhÞ0.
It would seem that, in this case, the propagation of the wa
would not give rise to the inhomogeneous trace left inf inh .
However, this can be seen to arise as a rather excepti
situation because, by imposingf inh50 but settingpinh5b(t
2x), one obtains a one-parameter family of Bianchi V–
solutions for a nonperfect fluid matter content. The th
Killing vector is given by

zW52
]

]x
1@m1~12) !b#y

]

]y
1@m1~11) !b#z

]

]z
.

The energy-momentum tensor of this family can be int
preted as a fluid with a nonzero energy flux in the direct
of propagation of the wavelike inhomogeneity. Thus,
these cases, the waves seem to keep the spatially hom
neous character of the spacetime but breaking the per
fluid character of the matter. The restriction to the particu
value b52m/4 leads to the mentioned case correspond
to n52 1

3 , in which the matter content is a perfect fluid.
this exceptional case, the inhomogeneization effects of
traveling waves, together with that of the flux of energy a
of the acoustic waves shown by the tilting of the fluid, see
altogether to balance in a final outcome ofpinh which simply
changes the Bianchi type of the solution.

Summarizing, one could better say it is the inhomogene
that generates the gravitational waves and not the other
round. Indeed, clearlyf inhÞ0⇒pinhÞ0, but as we have jus
seenpinhÞ0⇒” f inhÞ0. This preferable point of view would
state that the tilting~or the acoustic waves! generates the
8-9
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inhomogeneity inf inh which, in turn, is responsible for th
appearance of the gravitational waves.

The above paragraphs seriously indicate that one ca
talk about gravitational-wave propagation and its inhomo
neization properties in a naive manner. Therefore, we h
tried to support the interpretation ofpinh representing gravi-
tational waves propagating in the homogeneous backgro
in two other independent ways. These are presented in w
follows.

The first way is the comparison with the available syste
atic studies for the description of exact gravitational wav
on homogeneous backgrounds. These studies were init
developed in Refs.@29,39#. The exact formalism presented
that reference, later used in Ref.@40#, applies to perfect-fluid
solutions of the Einstein field equations, as well as the
generacies thereof, containing gravitational waves propa
ing over Bianchi I to VII backgrounds along an ‘‘algebr
ically’’ preferred direction. The case we are interested in
that of Bianchi V cosmologies which, after inhomogeneiz
tion takes place, become diagonalG2 perfect-fluid solutions.
This case was termed as the single polarization~1! waves in
Bianchi V, see Refs.@29,40#. Using the explicit form of the
metric as given in Ref.@18# wherepV ,gV ,pV correspond to
functions of a fully general Bianchi V spacetime and taki
pinh(t,x) and f inh(t,x) to be free functions giving the inho
mogeneous generalization, the Einstein equations for a
fect fluid can be split as follows:

hh~Re2mx!52~%2p!Re2mxef V1 f inh, ~21!

hc50, ~22!

plus two other first order differential equations forf inh ~lon-
gitudinal scale equations@29#!. Here h denotes the
d’Alambertian,R[ef v1pinh describes the transverse scale e
pansion, andc[pV2)pinh corresponds to the so calle
wave amplitude@29#. It must be noticed that, in this forma
ism, the function satisfying a source-free massless sc
field equation ispV2)pinh , that is, the full combination of
the function corresponding to the background plus the fu
tion carrying the inhomogeneity. This is so for the cases w
a single~1! polarization, which restricts the Bianchi types
be I, III, V, or VI, and furthermore is in accordance wit
previous works in which the diagonal Einstein-Rosen@41#
form of the line element is taken andc is the function ap-
pearing in the transverse part once the transitivity surf
area element, which corresponds toRe2mx in Eq. ~18!, is
factorized, see Refs.@26,28,30,31#. Nevertheless, as we se
in the previous case, the transverse scale expansionR as
defined in Ref.@29# is not equivalent to the transitivity sur
face area element in general. Actually, for some other Bi
chi types this implies that the definition ofc in Refs.@29,40#
differs from that in the ‘‘Einstein-Rosen view,’’ and thereb
the wave equation they satisfy are different.

The functionpinh(t,x) will actually satisfy the homoge
neous wave equationhpinh50 for those cases with%5p,
that is, for stiff fluids including the vacuum and the min
mally coupled massless scalar field solutions. This is so
marily because the so-called ‘‘transverse scale’’ Eq.~21!
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couplesR to the matter source through the function%2p, so
as long as this function vanishes,Re2mx is completely inde-
pendent of the matter content and satisfies a flat-space w
equation. One can argue then thatR has to be in fact the
‘‘homogeneous’’ functionR5RV(t) in order to have models
that reduce to the Bianchi spacetime when the waves red
to zero, see Ref.@40#. In other occasions, as was the case
the ‘‘Einstein Rosen view,’’ the conditionR,mR,m,0 every-
where was often imposed, see Ref.@26#. These simplifica-
tions, for the stiff fluid case, imply eventually that th
d’Alambertian h coincides with hV , that is, with the
d’Alambertian of the homogeneous background metric,1 and
thus, sincehpV5hVpV50, Eq. ~22! implies hpinh50.
That is, bothpV and pinh are solutions of the same wav
equation~22!.

Fortunately, despite all the above, the simplification onR
is not necessary and, moreover, for more realistic equat
of stateR evolves~as must be! coupled with the matter. The
former statement follows trivially in general because, in E
~18!, the homogeneous spacetime is recovered whenpinh
50, while the latter immediately implies that, in fact,h

ÞhV . In Eq. ~18! they are related as follows:

h5e2 f inh@hV2 ṗinh] t1pinh8 ]x#,

and therefore the coupling ofR with the matter leads to the
appearance ofpinh , causing the inhomogeneization of th
transverse scale expansion, which in turn drives the coup
of the functionc with the matter through the operatorh.
The longitudinal scale equations would account then forf inh .
Notice that, as remarked before, in the present family~18!
with ~19!, it is f inh , or equivalentlys, that actually switches
on the inhomogeneization. In Eq.~18! together with Eq.~19!
and becausepinh is a function oft2x, we have that

hpinh5e2 f inhhVpinh5hpV /)

52e2~ f inh1 f V!
m

)
S 4n

327n D ṗV ,

the second equality coming from Eq.~22!. Thus, the propa-
gation of pinh is not that of a source-free massless sca
field, rather it is driven by the interaction with the bac
ground geometry transverse part, clearly showing the non
earity on the splitting of the background and the wave. T
important thing here, however, is that the above equatio
manifestly hyperbolic in character, as is obvious in its si
pler form ~20!, and that the characteristic propagation spe
of its solutions is the speed of light. Having no electroma
netic field present, the propagation of gravitational wav
seems the best possibility.

The second way to support our claim comes from
vacuum limits of the solutions presented in Sec. III A. B
cause of the nonlinear interaction of the waves with the m
ter proper to general relativity, and as we have seen in

1We are concentrating on the Bianchi V case, but similar s
narios arise in the rest of the Bianchi I–VII spacetimes@29#.
8-10
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previous paragraph for this particular case, it is not poss
nor desirable to separate the metric into two linear ter
representing the background and the waves, respectiv
However, one can try to annihilate completely one of the t
terms, and then only the other must survive. Of course,
construction, if we set the wavelike part defined bypinh to
zero we obtain the Bianchi V,p5%/3, homogeneous back
ground. This corresponds to puttingn50. But can we also
get rid of the matter, so that only the gravitational wa
remains? A striking and beautiful answer would come fro
finding that the vacuum limits in the coordinates of Eq.~18!
correspond to plane gravitational waves, as was the cas
the limits found in Sec. III A. Unfortunately, there are n
vacuum limits in these coordinates. To achieve the vacu
limits one has to make use of other coordinate systems,
then again the limit depends on the coordinate system ch
@39#. In spite of this, the existence of coordinate systems
which the limits n561 correspond to a gravitationalpp-
wave has already been shown in Sec. III A. At this point,
question giving unequivocal sense to the gravitational w
inhomogeneity interpretation for this family ofp5%/3 solu-
tions would thus be: do all the vacuum limits of this fami
with n521 correspond to a plane gravitational wave? W
do not have a rigorous answer for this question yet, but
do believe that the answer is positive. In this sense, we cl
that getting rid of the matter, whenever this is possible, a
within the allowed range of the parametern, provides a pure
and simple gravitationalpp-wave, which we interpret as th
remanent of the mixed case.

Hitherto, the work on gravitational waves in cosmologic
backgrounds based on exact solutions has been mainly
led in the cases of vacuum, scalar and electromagnetic fie
and stiff fluid ~and its anisotropic generalization@32#! as
sources inG2 on S2 spacetimes, see the reviews@28–31#,
and references therein. As mentioned in the Introduct
there are other works presenting solitonic perturbations
p5%/3 FLRW spacetimes@34#, later generalized top5g%
in Ref. @35#, but the energy-momentum tensor of the inh
mogeneous spacetime turns out to be a nonperfect fluid.
general formalism used in these papers assumes tha
backgrounds in which the perturbations propagate hav
restricted type of energy-momentum tensors, so it has b
applied only to FLRW spacetimes. The present family
e,
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solutions may constitute then the first exact solution in g
eral relativity for a perfect fluid with a realisticp5%/3 equa-
tion of state describing gravitational waves traveling on
spatially homogeneous background.

C. The dust subfamily

The particular dust cases, defined byl50 @so that Eq.~3!
requires nown,0], belong to a more general family o
algebraically general dust spacetimes already presente
Ref. @19#. We devote this short subsection to identifying t
present dust one-parameter subfamily within the more g
eral dust family appearing in Ref.@19#.

By taking profit of the form of the line-element in th
half-null coordinates$u,v,y,z% ~14!, and by making a coor-
dinate change to Lorentzian coordinates analogous to tha
Eq. ~11!, the line element~14! with l50 coincides exactly
with expression~7! of Ref. @19# for the following particular
values of the constants~here, we denote with a tilde th
quantities which appear in Ref.@19#, if necessary!.

ã5ku /&. This can be seen as the free parameter of
solution.

c250, c1,0. This implies the relationku5kv , which
follows from l50.

b̃5n(11n)/(11n2). By remembering thatnP(21,0),
this leads to the restrictionb̃P@ b̃2,0) for the parameterb̃ of
Ref. @19#.
The diagram for this subfamily corresponds to the Fig. 2~f!
of Ref. @19# with the pointp̃ at p̃5 x̃50, in agreement with
the particular case~c! of the present Fig. 1.
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