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Effects of pair creation on charged gravitational collapse
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~Received 28 September 2000; published 13 March 2001!

We investigate the effects of pair creation on the internal geometry of a black hole, which forms during the
gravitational collapse of a charged massless scalar field. Classically, a strong central Schwarzschild-like sin-
gularity forms, and a null, weak, mass-inflation singularity arises along the Cauchy horizon, in such a collapse.
We consider here the discharge, due to pair creation, below the event horizon and its influence on the
dynamical formationof the Cauchy horizon. Within the framework of a simple model we are able to trace
numerically the collapse. We find that a part of the Cauchy horizon is replaced by the strong spacelike central
singularity. This fraction depends on the value of the critical electric fieldEcr for the pair creation.
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I. INTRODUCTION

The well known exact solution of the coupled Maxwe
Einstein equations outside the spherically symmetric ma
distribution is the Reissner-Nordstro”m solution. The analytic
extension of the Reissner-Nordstro”m metric has rather exotic
properties. The black hole’s interior contains Cauchy ho
zons, timelike singularities and tunnels to other asympt
cally flat regions.

Recently, it has been shown both in perturbative analy
and by solving the full nonlinear problem that a Cauc
horizon inside a charged black hole is transformed int
null, weak singularity@1–6#. The Cauchy horizon singularity
is weak in the sense that an infalling observer crossin
experiences only a finite tidal deformation@3,4#. However,
the curvature scalars diverge along the Cauchy horizon, le
ing to an unbound growth of the internal mass paramete
phenomenon known as mass inflation@2#. The earlier studies
were done on the preexisting~eternal! Reissner-Nordstro”m
space-time. Hod and Piran@7# have demonstrated explicitl
that mass-inflation takes place also during a dynam
charged gravitational collapse. The dynamical space-tim
drastically different from the analytically extended Reissn
Nordstro”m manifold: it resembles more the Schwarzsch
one. The Penrose diagrams of the various space-times
depicted in Fig. 1.

This is so far the classical picture. Our goal, here, is
consider quantum effects and to investigate the influenc
pair creation in strong electric fields on charged gravitatio
collapse. Specifically, we are interested in the effects of p
creation on the inner structure of the black hole that forms
such a collapse. This goal differs from previous works on
subject. Pair creation was mainly considered in the exte
region of a preexisting black hole’s space-time, outside
event horizon@9–12#. It has been shown that the produc
particles rapidly diminish the charge of a black hole as s
by an external observer.

Particles creation takes place, however, also in the in
region of a black hole. Novikov and Starobinskiı˘ @13# and
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Herman and Hiscock@14# studied the inner geometry and th
stability of a Cauchy horizon in the preexisting Reissn
Nordstro”m space-time influenced by the pair creation effe
The model in Ref.@14# assumes the instantaneous disappe
ance of the electric field, when the pair creation takes pl
inside the event horizon alongr cr5const hypersurface. The
Reissner-Nordstro”m patch of the space-time exterior to th
hypersurface is glued along ther cr5const hypersurface to a
interior Schwarzschild patch. In this model the Cauchy ho
zon does not exist. The model in Ref.@13# assumes an ini-
tially Reissner-Nordstro”m geometry and allows the evolutio
of the electric field through the back-reaction of the crea
pairs. In this model the initial Reissner-Nordstro”m geometry
evolves to an uncharged, Schwarzschild-like one—
Cauchy horizon is shown to be unstable with respect to
process of pair creation. It should be emphasized that in
model the Cauchy horizon is assumed to be stationaryr CH
5const hypersurface. This is in contrast to the recent inv
tigations@1–7# where the Cauchy horizon was shown to be
nonstatic, contracting null hypersurface.

Although, the particle production in the intensive elect
field is the simplest quantum process, its influence on
inner structure of black holes was not studied yet in an e
lutionary context. The effect of pair creation in the intensi
electric field is probably most important, when dealing w
formation of the inner structure of charged black holes. T
depends, of course, on the parameters of the formed b
hole. In this work we take a different point of view from
@13,14# and explore the dynamical picture, i.e., we repla
the question of is the Cauchy horizon stable, with the qu
tion does it form at all. To address this question, one sho
consider the collapse of a charged self-gravitating mat
The electron-positron pairs are produced in the electric fi
of the collapsing matter. To treat consistently the problem
such a collapse, one should take into account the back r
tion of the produced pairs on the source’s electric field. T
is achieved by adding the electric current due to the p
duced pairs as a source to the Maxwell equations:

Fab
;b54pJfree

a 14pJpairs
a . ~1.1!

The charge conservation equation in the situation with p
creation is modified by adding the charge source:
©2001 The American Physical Society06-1
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FIG. 1. Penrose diagrams.~a! and~b! are, respectively, the Schwarzschild and the Reissner-Nordstro”m eternal~preexisting! spacetimes,
and ~c! and ~d! are ones expected to form during a dynamical collapse of a neutral and a charged matter, respectively. Th
dynamically calculated, space-time geometry for a charged gravitational collapse,~e! is dramatically different from that depicted in~d! and
it resembles~in broad terms! the Schwarzschild space-time. In all the figures thick solid lines represent central singularities~spacelike for the
Schwarzschild manifold or timelike for the Reissner-Nordstro”m one!. The weak, null singularity in~e! is represented as a thick dashed lin
while thin dashed lines describe various horizons.
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;a5G~Fab!. ~1.2!

The stress-energy of the electric current of the produced
ticles arises from the stress-energy of the electric field. T
latter is the source of the pairs, by means of the ener
momentum conservation.

To formulate the problem properly we need a bac
reaction formalism that includes the back reaction of
pairs on the stress-energy tensor of the electric field
creates them. Without this the problem would not be s
consistent. Such a formalism is not available. Instead
consider here a toy model that utilizes the main phys
properties of the system—the fact that the pairs limit
electric field to a critical valueEcr . We describe this effec
of pair creation by introducing a nonlinear dielectric const
that prevents the electric field from exceedingEcr , the criti-
cal pair creating field. In doing so we have ignored the el
tric current of the pairs and their stress-energy. We also
regard the contribution from vacuum polarization, whi
becomes significant only for the exponentially large fie
@8#. In spite of this simplifying assumptions we believe th
this model captures the characteristic behavior of the
system.

In Sec. II we consider discharge in a classical space-t
and give the motivation of the investigation of the influen
of the pair creation on the inner structure of charged bl
holes. In Sec. III we present the underlying physical mod
We develop the formalism and discuss the applicability
the model. Section IV describes our numerical scheme.
08400
r-
e
y-

-
e
at
f-
e
l

e

t

-
s-

s
t
al

e

k
l.
f
e

results are presented in Sec. V. We compare a class
charged gravitational dynamical collapse with a collap
with the discharge. We summarize our conclusions in S
VI. We use units in whichc5G5\51.

II. DISCHARGE IN A CLASSICAL CHARGED
SPACE-TIME

When pairs are created in an asymptotically flat reg
one of the particles, having the charge same as the fie
source, is repulsed from the body and escapes to infin
Another member of the pair is attracted to the body, decre
ing its charge. This occurs, for example, to pairs created
the field of a charged black hole outside its event horiz
The black hole discharges rather quickly until its extern
field becomes subcritical@9–12#.

A more interesting situation occurs when a significant p
creation takes place within the event horizon of a charg
black hole. The newborn particles do not have a spatial
finity to escape to, they are trapped within the event horiz
In the Reissner-Nordstro”m manifold in the region between
the outer and the inner horizons the area coordinater and the
time change their roles. The vector]/]r is now timelike,
while the vector]/]t is spacelike. The only nonvanishin
components of the electromagnetic tensor areFuv52Fvu
and onlyFrt52Ftr are nonzero. An infalling observer mov
ing along dt/dt50 world line, in the region between th
horizons, will experience a spatially homogeneous elec
field, increasing in strength into the future~the r-coordinate
6-2
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EFFECTS OF PAIR CREATION ON CHARGED . . . PHYSICAL REVIEW D63 084006
decreases!. The electric field has only at̂ -component:E
5 „q(r ,t)/r 2

…(]/]t) , wherein the boldface denotes usu
3-vectors. The direction of the field lines in a regul
Reissner-Nordstro”m space-time is from one singularity to th
other ~see Fig. 2!. The maximally extended Reissne
Nordstro”m space-time has a charge asymmetry in the se
that two external observers in the two past asymptotically
regionsI and I 8 see the black hole charged oppositely. T
left-hand and the right-hand singularities seem to such
servers to have opposite charges.

In the interior of a classical charged black hole, betwe
the inner and the outer horizons, pairs of charged parti
are produced by the electric field alongr 5const surfaces
Oppositely charged particles are accelerated in the oppo
6]/]t directions. Thus, if the black hole has a negat
charge the positively charged particles will be attracted to
accelerating toward the left-hand singularity, while the ne
tively charged particles will be repulsed from this singula
ity, accelerating toward the right-hand one~see Fig. 2!.

This leads to the redistribution of the charge, which w
initially concentrated near the left-hand singularity. At t
end of this process, in the perfectly symmetric situati
when the charge is equally divided among the left-hand
the right-hand singularities the electric field disappears.
the whole exotic structure of the inner part of the analytica
extended Reissner-Nordstro”m manifold is due to the exis
tence of this electric field. Therefore, vanishing of the el
tric field leads to the disappearance of the tunnels to o
asymptotically flat regions. We will show here that a simi
redistribution of the charge takes place also in a dynam
space-time, leading, as we shall see, to the partial closur
the ‘‘space tunnels.’’

FIG. 2. Pair creation inside the event horizon. Here we de
the Penrose diagram of the Reissner-Nordstro”m space-time. Pairs
are produced when the electric field reaches the critical valueEcr

along the surfacer 5r cr . Oppositely charged particles are accele
ated in opposite directions, leading to the redistribution of
charge below the event horizon and to a change of the inner ge
etry of the charged black hole.
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III. THE PHYSICAL MODEL

In this section we develop an evolutionary formulatio
that includes the effect of pair creation in strong elect
fields. We present below a simplified toy model, describ
this effect for a dynamical space-time in which a black ho
forms.

A. The formulation

The first study of charged particles production in an u
form electric field was undertaken by Schwinger in 195
The Schwinger formula for the number of scalar pairs c
ated by the fieldE per unit four-volume is

G5
e2

2p2\2c
E2(

n51

`
~21!n11

n2 expS 2nEcr

E D , ~3.1!

where m and e are the mass and the charge of a crea
particle and the critical electric fieldEcr , is defined as

Ecr5
pm2c3

e\
. ~3.2!

The production rate of fermions differs from~3.1! by an
overall factor 2 and by the absence of the sign intercha
(21)n11.

The effect of the vacuum polarization~the change of the
vacuum electric permittivity! in strong electric fields is in-
stantaneously stronger than the contribution from a pair p
duction@by ln(E/Ecr) for E@Ecr#, but the latter can accumu
late with time@8#. The integrated contribution from the pa
creation can dominate the contribution from the vacuum
larization.

Our model utilizes the essential property of the Schwin
result~3.1!—the exponential dependence on the ratioEcr /E,
which means that pair creation rate is exponentially large
a supercritical field and the rate is exponentially suppres
for a subcritical field. This dependence suggests that once
field rises aboveEcr , charged pairs are produced intensive
reducing the field down to the critical value.

We neglect~i! the net electric current of the pairs and~ii !
the stress-energy of the produced particles, assuming tha
role of the electric current is confined to prevent the elec
field from rising above the critical value. Hence, the elect
field will be taken as:

E[H Eordinary if Eordinary,Ecr

Ecr if Eordinary>Ecr .
~3.3!

The Eordinary stands for the ordinary electric field that wou
have arisen in the absence of pair creation.

In this case we can mimic the effect of particles produ
tion as if the system was placed in a dielectric mediu
Effectively, the polarization of this medium prevents th
electric fieldE from rising aboveEcr , while theelectric dis-
placement, D5eE, changes. The scalar quantitye is thedi-
electric constant. The electric displacement is related to th
density of a free charge via the Maxwell equation:

t

e
m-
6-3
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“•D54pr free. ~3.4!

The dielectric ‘‘constant’’ that leads to Eq.~3.3! is given by

e[H 1 if Eordinary,Ecr

uDu/Ecr if Eordinary>Ecr .
~3.5!

The local description of the classical theory of elect
magnetism in a curved space-time in a dielectric medium
be derived from an effective local Lagrangian:

L (eff)52
1

8p
E•D52

1

8p

uDu2

e
. ~3.6!

We use this Lagrangian withe given by Eq.~3.5! to describe
the effects of pair creation in the strong electric field.

Our toy model captures the essence of the physics,
ticularly the fast reduction of the supercritical field down
the critical value,Ecr and the energy-momentum conserv
tion. The dielectric ‘‘constant’’ that we introduce has th
same effect as the pairs that ‘‘shorten’’ an electric fie
above Ecr . However, we ignore all other features of th
pairs, specifically we ignore the pairs themselves, th
energy-momentum tensor~which is replaced by a modified
electromagnetic energy-momentum tensor that arises f
the dielectric constant! and their electric current. This is don
in order to obtain a simple self-consistent energy conserv
system. It is difficult to estimate what would be the effect
the electric current of the pairs. On the other hand it is cl
that the stress energy of the pairs would make a posi
contribution to the mass parameter~3.15! and will make the
effects, which we will describe later, more pronounced.

Another artificial feature of our model is thead hocintro-
duction ofEcr . This critical field is associated with the ma
of the charged particles@see Eq.~3.2!#. However, for sim-
plicity our model is based on a massless charged scalar fi
whose characteristics are along null geodesics. For su
massless field the critical electric field vanishes and char
massless pairs are produced even for an infinitely small e
tric field. We introduce a critical fieldEcr as afree parameter
that can be used to define the mass of the created part
through the relation~3.2!.

In addition to the above properties there are other mi
and physically justified assumptions: First, our toy mod
ignores the contribution from vacuum polarization due to
intensive electric field~to be distinguished from the effectiv
polarization, which we describe here!. This would be justi-
fied if the effect of the vacuum polarization is small com
pared to the pair-creation contribution. This is in fact t
situation when the electric field is not exponentially lar
@8#.

Second, when constructing our model, we have utiliz
Schwinger’s result~3.1!, more precisely, its exponential de
pendence onEcr /E. Schwinger’s formula is valid, strictly
speaking, only for an uniform and static electric field ove
flat space-time background. The approximation of flat sp
is valid if the radius of curvature of the dynamical geome
is much greater than the Compton wavelength of crea
particles. The radius of a curvature can be taken of or
08400
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R21/2, whereR is the Ricci curvature scalar. The Compto
wavelength of the particles isl 5(pc\/eEcr)

1/2. Thus, the
condition for a flat-space approximation,l !R21/2, takes the
form

S pc\

eEcr
RD 1/2

!1. ~3.7!

But, the Ricci scalarR has been shown, in dynamical mod
els, to diverge approaching the Cauchy horizon,~this is the
mass inflation scenario! thus, the approximation breaks dow
in vicinity of the singular Cauchy horizon. Notwithstandin
our model is, actually, not based on exact Schwinger res
but on its exponential dependence onEcr /E which is non-
perturbative.

Anyway, all approximations will be broken at some m
ment. Eventually, the curvature in the vicinity of the singu
Cauchy horizon becomes Planckian since the ‘‘Coulo
component’’ of the Weyl curvature diverges exponentia
with advanced time ~for a spherical symmetry—uC2u
;m/r 3, with m the internal mass parameter!. Moreover, the
Ricci curvature may dominate the Weyl curvature and s
pass the Planck values even earlier. In either case our an
sis becomes meaningless, and a theory of quantum gravi
needed. We obviously consider only the sub-Planckian
gions.

B. The equations

Our goal is to integrate numerically the evolution equ
tions and to follow the collapse of a spherically symmet
regular initial scalar field distribution via the formation of a
apparent horizon and a Cauchy horizon, toward a cen
singularity. The conventional choice of coordinates for th
dynamical evolution is double-null coordinates. In these
ordinates:~1! The apparent horizon~when it forms! is regu-
lar, i.e., it is free from unphysical coordinate singularitie
~2! for a massless scalar field the characteristics are nul
this choice is ‘‘natural’’ for models involving massless sca
fields.

We choose the line element of the form

ds252a~u,v !2du dv1r ~u,v !2 dV2, ~3.8!

where dV2 is the unit two-sphere. There is a coordina
gauge freedom: the choice of coordinatesu,v is unique only
up to a change of variablesv85 f 1(v),u85 f 2(u), which
leaves the line element~3.8! unchanged. For the time bein
we do not specify our double-null coordinates: these are
general ingoing and outgoing null coordinates. Later, wh
discussing the numerical integration we will fix the gau
freedom and specify the coordinates.

Let the Fmn be the electromagnetic tensor, defined
Fmn[A[n;m] . In a spherically symmetric space-time the on
nonvanishing field components areFuv52Fvu . Thus, only
Av andAu need be nonvanishing. ThenAv can be removed
by the gauge transformationAa→Aa1L ;a , with L
52*Av dv. We are left with AuÞ0 and we denote
a(u,v)[Au .
6-4
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We formulate the set of coupled Einstein-Maxwell-Sca
Field equations as a first-order system. The numerical i
gration of the first-order system functions very well both f
the uncharged case, see Ref.@15#, and for the charged situa
tion @7#. It is convenient to define the auxiliary variables:

d[
av

a
, f [r u , g[r v ,

s[A4pc, w[su , z[sv , ~3.9!

wherein c is the complex massless scalar field. We ha
adopted the notationWx[]W/]x for partial derivatives of
any functionW5W(x,y).

We denote byq(u,v) the free charge, i.e., the charge
the collapsing scalar field, and byq̃ the total charge up to the
sphere of radiusr. The latter is the charge defined by th
QED effects. The scalar field is collapsing under the infl
ence of the total chargeq̃ not the free chargeq. In a local
inertial frame,q5eq̃ and we defineã[a/e.

We write the closed system of equations for the QE
corrected situation. Einstein equations:

E1[r f v1 f g1
1

4
a22

a2q2

4er 2 50,

E2[gv22dg1rz* z50,

E3[du2
f g

r 2 2
a2

4r 2 1
a2q2

2er 4 1
1

2
~wz* 1w* z!

1
1

2
ieã~sz* 2s* z!50.

Maxwell equations:

M1[ãv2
a2q

2er 2 50,

M2[qv2 ier2~s* z2sz* !50.

The scalar-field equations:

S1[rzu1 f z1gw1 ieãrz1 ieãgs1
ie

4er
a2qs50,

S2[rwv1gw1 f z1 ieãrz1 ieãgs1
ie

4er
a2qs50,

and, finally, the definitions~3.9!:

D1[d2
av

a
50,

D2[g2r v50,

D3[z2sv50.
08400
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The QED-corrected equations are reduced to the class
ones@7# by settinge51.

C. The characteristic problem

The system of evolutionary equations has to be comple
by a specification of the initial and the boundary data alo
some characteristic hypersurface. For models involv
massless fields the characteristics are null segments. Th
is natural to specify the initial conditions and the bounda
conditions along null hypersurfaces. A satisfactory, for
uncharged case, formulation of the initial-value problem h
been given by Burko and Ori@16#. The generalization for a
charged case is given below.

We choose the initial characteristic surfaces to be:
ingoing v5const[v i hypersurface, and, the outgoingu
5const[ui hypersurface. If the domain of integration in
cludes the origin of coordinates it leads to the necessity o
series expansion of physical quantities in powers of
proper distance from the origin, in a vicinity ofr 50. We
are, however, interested in the formation of the Cauchy
rizon. We can, therefore, exclude the originr 50 from the
domain of integration. We achieve this by an appropri
choice of the final outgoing segmentu5const[uf , so the
domain of integration does not include the origin.

Now we can remove the coordinates’ freedom. To do
we fix the ‘‘linear’’ gauge, i.e., we taker to be linear withu
or v along the characteristic hypersurfaces. Namely, onu
5ui segment we chooseg[r v51, on v5v i segment we
choosef [r u5r u0. To get r along initial surfaces it is nec
essary to supplyr 05r (ui ,v i) that serves as a free paramete

The conventional choice for characteristic segmentsui
50, v i5r 0, yields

r ~ui ,v !5v, r ~u,v i !5uru01r 0 . ~3.10!

Now we specify freely the scalar-field distribution alon
the initial segments. We choose a compact ingoing sca
field pulse along the ingoingu5ui segment; and the ‘‘no-
perturbation’’ along the initial outgoingv5v i segment. Spe-
cifically, we takec(u,v i)[0 that corresponds to a fixe
static background forv,v i . And we choosec(ui ,v)[0
except at some finite regionv1,v,v2 , (v1>v i). To be
concrete, for a complex scalar fieldc, c5f11 if2, with
f1 ,f2 two real scalar fields, we choose

f15
a

A4p
sin2S p

v2v1

v282v1
D , f25

b

A4p
sin2S p

v2v1

v22v1
D ,

~3.11!

wherea,b are constant amplitudes, andv28 ,v2 are the end
points of each of the real-fields pulses, andv15v i is their
common starting point. This choice of the initial data is d
ferentiable at the matching pointsv1 ,v2. The integrated
space-time is schematically depicted in Fig. 3.

From Eq.~3.11! we obtain the initial values ofz andw:
6-5
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z~ui ,v !5
ap

v282v1

sinS 2p
v2v1

v282v1
D

1
ibp

v22v1
sinS 2p

v2v1

v22v1
D ,

w~u,v i ![0. ~3.12!

From the constraint equationsE2-E3 and the definitionD1,
together with the choicea(ui ,v i)51 one determines the ini
tial values ofd anda:

d~ui ,v !5
a2p2v

2~v282v1!2
sin2S 2p

v2v1

v282v1
D

1
b2p2v

2~v22v1!2 sin2S 2p
v2v1

v22v1
D , ~3.13!

a~u,v i !51. ~3.14!

We assume the Minkowski space-time forv,v i , therefore,
we setq(u,v i)50 anda(u,v i)50.

In our coordinates the mass function~the mass parameter!
becomes

m~u,v !5
r

2 S 11
q2

r 2 1
4

a2 r ur vD . ~3.15!

Since the mass function vanishes for the flat space-time~in
the regionv,v i), one can calculate:r u052 1

4 . It should be

FIG. 3. A schematic diagram of the integrated space-time.
08400
noted that forv@m our ingoing null coordinatev is closely
related ~proportional! to the ingoing Eddington-Finkelstein
null coordinateve. Theu coordinate is related to the prope
time of an observer at the origin. This is defined as@15#

T~u!5E
0

u

a~u8,u8!du8. ~3.16!

In our choice the space-time to the left of thev5v i charac-
teristic hypersurface is Minkowskian until the very last m
ments of the collapse. Hence,a(u,u)51 except the section
when u→uf , wherea(u,u)→0. Therefore, the integration
in Eq. ~3.16! is trivial and yieldsT(u)5u. Later, we will
find it useful to utilize the proper time of an observer at t
origin as a measure of the ‘‘length’’ of the Cauchy horizo

IV. THE NUMERICAL INTEGRATION SCHEME

We have converted the second-order equations to fi
order equations. Our numerical scheme is based on a si
taneous integration of this first-order system of coupled d
ferential equations. We solve numerically equationsE1-E2,
E4, M1-M2, S1-S2, D1, D3, and D5. We sete51 to
obtain the classical collapse with no pair creation.

The domain of integration is covered by a double-n
grid. The characteristic initial-value problem is formulated
Sec. III C. The algorithm for the numerical integration in th
classical case (e51) is described in@7#. Here we generalize
this algorithm to the case when pair creation is included.

At each step we evolved andz usingE3 andS1 from the
hypersurfaceu to u1du. Then we solve the appropriat
equations for the rest of the quantities along the outgo
null rays u1du5const, starting from the initial outgoing
hypersurfacev5v i . We integrate equationD1 to find a,
then we solve the coupled differential equationsD2 andE2
to get r and g. Next, the equationsD3,M2,M1 are inte-
grated to obtains, q, andã. Finally, the differential equations
E1 andS2 are solved forf and w, respectively. After each
step in theu-direction we calculate the electric field strengt
q/r 2, along the current outgoing null ray (u1du5const).
We use this field value to establish the value ofe, according
to Eq. ~3.5!, for the nextu-step.

This integration scheme uses three distinct methods
evolve the initial data. All these methods are well known a
commonly used~see, for example, Presset al. @17#!. To
evolve the quantities in theu-direction we utilize the fifth
order Cash-Karp Runge-Kutta method. The differential eq
tions in the v direction are solved using a fourth orde
Runge-Kutta method. The integrations in thev direction are
performed using a three-point Simpson method.

It is conventional to define the accuracy of a numeri
method by the scaling of the numerical error. Thus,nth order
accuracy means that, the error scales as the step siz
powern:

F real~x!5Fcalc~x!1O~hn!, ~4.1!

whereF real stands for the actual value of a function at a po
x, while Fcalc for a calculated value at the same point. T
6-6
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FIG. 4. ~a! The error scaling
indicates a quadratic or highe
convergence except at a sing
point with n50.5. ~b! To visual-
ize the reason for loss of accurac
we give an approximatesketchof
r (u,v) as a function ofv for u
5const, for different grid densi-
ties. We give only a sketch and
not the real plots, since in the lat
ter the crossing is unobservable
these scales.~c! Variation of the
calculatedr (u,v) as a function of
v, for certain value ofu, for dif-
ferent grid-densities in a typica
~with no line-crossing! region.
The grid densities are: 60 grid
points per unit interval ~solid
line!, 120 grid points~dotted line!,
and 240 grid points~dashed line!.
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EVGENY SORKIN AND TSVI PIRAN PHYSICAL REVIEW D63 084006
Runge-Kutta methods, which we utilize, are all at least s
ond order accurate, see Ref.@17#. The three-point Simpson
integration method is of ordern54.

We have performed a few simulations with the same f
parameters, but with different grid sizes in order to check
scaling of the numerical errors. The numerical scheme p
ceeds in theu andv directions on grids with correspondin
grid-spacingshu andhv . These step sizes are connected
the numerical stability requirement:hu< f (u,v)hv , where
f (u,v) is a slowly varying function of order unity. We per
form the convergence test by changing the grids’ density
both directions.

In what follows, Fh denotes the numerically calculate
with the numerical step size ofh, value of a functionF at
some point. Hereh denotes the step size in thev direction. If
the numerical scheme involved in a calculation ofFh is con-
vergent, then the connection between the above quantiti
given by Eq. ~4.1!. We performed a series of numeric
simulations with doubled grid densities, or, equivalent
with halved step sizeshv ~and, therefore, with halvedhu).
We expect that:Fh5F1O(hn). Now, defining c1[Fh

2Fh/2, andc2[Fh/22Fh/4, we expect thatc1 /c252n. Fig-
ure 4~a! depicts log2(c1 /c2) along an ingoing nullv coordi-
nate, for a typicalu5const ray. It is clear from this figure
that in generaln'3, indicating a third-order convergence

One, however, notices the pointn'0.5, which indicates a
very poor convergence. Moreover, the plot looks very va
able in the region 12<v<15. The reason for this ‘‘jumpy’’
behavior is understood, if one looks closer at the functioF
itself. We have usedF5r (u,v). We sketch in Fig. 4~b! the
radiusr (u,v) along anu5const outgoing null ray~see the
next section!. This sketch is magnified, since the actual plo
of r for different grid densities are indistinguishable on th
scale. In the marked box one observes the crossing of cu
for different grid densities. This crossing leads to a decre
of the convergence order. Notably, after this crossing
convergence returns to the high order.

Figure 4~c! displays the variation of the calculatedF as a
function ofv along a typicalu5const ray for different grids
densities. The observed picture confirms the convergenc

V. THE RESULTS

A. Classical charged collapse

We begin with verifying our numerical code for a class
cal collapse, a collapse without quantum effects. We see
51. We fix the free numerical parameters to define the pr
lem: a50.5, b50.461, v i5r 0510, v f590, v2516, v28
520, e50.15. The number of grid points along outgoin
and ingoing rays is of order of 102 per unit interval. We
follow the evolution of the regular initial data via the form
tion of an apparent horizon and a Cauchy horizon, toward
central singularity. For this specific choice of free paramet
the resulting black hole has a charge-to-mass ratioq/m
'0.98 in geometrical units.

Figure 5 displays the metric functionr (u,v) as a function
of the ingoing coordinatev for different values of the outgo
ing null coordinateu. One can distinguish between two kind
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of rays: the outer and the inner rays. The outer rays, outgo
rays at smallu, escape to infinity:r (u,v→`)→`. Increas-
ing u, one finds the first outgoing ray, which does not esca
to infinity, but tends to a constant value. This ray indica
the event horizon, which asymptotically coincides with t
outer apparent horizon. The ray becomes vertical at abor
'16 ~not displayed!. Increasingu further, one steps into the
inner region of the integrated space-time. Outgoing rays
this region approach a constant radius, depending onu, in
asymptotically late advanced timesv→`. This indicates the
formation of a Cauchy horizon. Following the evolution
the space-time, the solution approaches the origin,r 50.
Since our code is not constructed to include the origin
stop atuf , before the integration reaches the origin.

The main feature seen here is the existence of a contr
ing Cauchy horizon. The Cauchy horizon is not a station
r CH5const hypersurface as in the case of a class
Reissner-Nordstro”m space-time, but it depends on the outg
ing null coordinateu, namely, it contracts toward the origi
r 50 in late retarded timeu.

Figure 6 depicts constant radii contour lines in t
uv-plane. The bottom of the figure (u50) is the initial regu-
lar hypersurface. Looking along theu direction one soon
observes the formation of an outer apparent horizon, al
which r v50. The apparent horizon separates the two regi
with r v.0 ~on the left!, andr v,0 ~on the right!. The latter
contains, also, the asymptotically (v→`) constant,
u-dependent sectionr CH5r CH(u) representing the Cauch
horizon. The Cauchy horizon itself is a null hypersurface t
is approached asv goes to infinity.

We depict the logarithm of the mass-function~3.15! in
Fig. 7, for a sequence ofu5const null rays. The straigh
lines indicate the exponential dependence of the mass f
tion on v for late advanced times. The exponential grow
confirms the conclusion that a mass-inflation indeed ta
place in this collapse.

We have performed simulations with different free p
rameters: changing the amplitudesa and b, the elementary
chargee, stretching and squeezing the domain of integrati
In all these cases we have not seen any qualitative differe
between the results. The results, which we have obtained
in excellent agreement with the previously established
sults, and fit well with those in@7#. We conclude, thus, tha
our numerical code gives correct results to this case. We
now to the problem of collapse with pair creation.

B. Collapse with pair creation

The critical electric fieldEcr is an additional free param
eter in the problem with pair creation. The critical-fie
strengthEcr is chosen in the forthcoming graphs so that it
reached just after the formation of the apparent horizon. T
choice is arbitrary. Other comparable values ofEcr lead to a
qualitatively similar result, unlessEcr is reached long before
the formation of the apparent horizon~see below!.

Figure 8 displays the radiusr (u,v) as a function ofv for
a sequence ofu5const null rays. This figure is analogous
Fig. 5 for the classical situation. On a first sight these figu
seem very similar. There are, however, obvious differenc
6-8
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EFFECTS OF PAIR CREATION ON CHARGED . . . PHYSICAL REVIEW D63 084006
both qualitative and quantitative. A closer look uncovers
different inclines of the late retarded rays (u→uf): while the
rays depicted in Fig. 5 are practically vertical, those in Fig
have an observable incline toward the originr 50. The very
last ray on the latter figure has an apparent tendency tow
the origin, indicating that ther 50 strong singularity is close
Other signs of the difference between the two situations
quantitative ones. The whole ‘‘life-time’’~in terms of the
retardedu-time! of the QED-corrected system, before it hi
the r 50 singularity is significantly shorter than the ‘‘life
time’’ of the corresponding classical system. For examp
for the certain set of free parameters~see at the beginning o
the previous section! the evolution of the QED-correcte
system lastsuf'12, while for a classical system it take

FIG. 5. Radiusr (u,v) as a function ofv alongu5const rays.
The retarded timeu increases from the initial straight ray toward th
origin ~from the right to the left!, indicating the course of evolution
of the spacetime.

FIG. 6. Lines of constant radius inuv-plane. The radius de
creases from the bottom toward the top of the figure. The appa
horizon, along whichr v50, separates the exterior and the inter
of the black hole. The latter region contains the Cauchy horizo
08400
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aboutuf'21, before it crushes into ther 50 singularity. We
note thatuf is the proper time of an observer at the orig
~3.16!.

Figure 9 displays the contour lines of constant radii in t
uv-plane. This figure is analogous to Fig. 6 for the classi
situation. Again one can observe a different incline of t
contour lines in the late retarded and advanced time regi
This difference in the incline between the classical and
QED-corrected problems can be interpreted as just a c
approach to the intersection of the Cauchy horizon with
strong spaceliker 50 singularity during the numerical simu
lation. The straightening of the outgoing rays occurs late

nt

FIG. 7. Logarithm of the mass function,m(u,v), vs v alongu
5const null rays. The linear dependence ofm(u,v) on late timev
indicates the mass inflation. The retarded timeu increases toward
the top of the figure.

FIG. 8. The radius,r (u,v), as a function ofv along u5const
rays for collapse with pair creation. The retarded timeu increases to
the left. One still observes the formation of the Cauchy horiz
There is also an apparent incline of the late retarded rays toward
origin, indicating discharge and signaling the destruction of
Cauchy horizon.
6-9
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EVGENY SORKIN AND TSVI PIRAN PHYSICAL REVIEW D63 084006
terms of the advancedv-time: the curvature is high in the
vicinity of the strong singularity turning the rays toward th
singular origin. The discharge is more apparent in the sit
tion when the black hole, as seen from infinity, has the sm
charge-to-mass ratio, see Fig. 10.

We define the ‘‘length’’ of the Cauchy horizon as
proper time of an observer at the origin between the mom
when he or she emits a last outgoing light signal that esca
to infinity ~the event horizon! and the moment when he o
she emits a first outgoing light signal that unavoidably fa
into the spacelike singularity. This ‘‘length’’ is related to th
retarded timeu, see Eq.~3.16!. We observe, therefore, that i

FIG. 9. Contour lines of constant radius inuv-plane for a col-
lapse with pair creation. The radius decreases from the bottom
ward the top of the figure. One observes the apparent horizon
the Cauchy horizon.

FIG. 10. The radiusr (u,v) vs v along a sequence ofu5const
rays in the situation where the charge-to-mass ratio, seen from
finity, of the formed black hole is small compared to unity. T
bottom panel displays an enlargement of the marked region on
top panel. The rays’ incline toward the origin is apparent, indicat
the discharge. The heavy line marks the beginning of the discha
08400
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the collapse with discharge the ‘‘length’’ of the Cauchy h
rizon is ‘‘shorter,’’ compared to the classical case.

On the top panel of Fig. 11 we depict the free char
q(u,v) as a function of the advanced timev along u
5const rays. The bottom panel of Fig. 11 displays the to
QED-corrected chargeq̃(u,v) along the sameu5const out-
going surfaces. The common characteristic property of
graphs is the straightening of theu5const rays in late ad-
vanced times, when approaching the formed Cauchy horiz
Theu5const rays intersect the Cauchy horizon asv→` and
for different u values the intersection occurs in differe
points with r CH5r CH. Hence, a charge measured along
outgoing null ray approaches a constantu-dependent value

FIG. 12. The dielectric constante(u,v) vs v along u5const
null rays. The retardedu time increases from the left to the righ
The dielectric constant, which represents the ‘‘polarization’’ fie
grows with timeu.

o-
nd

n-
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g
e.

FIG. 11. Top panel: the free chargeq(u,v) alongu5const null

rays. Bottom panel: the total chargeq̃(u,v) along the sameu
5const null rays. On both panels the retardedu time increases from
the leftmost ray toward the rightmost ray.
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EFFECTS OF PAIR CREATION ON CHARGED . . . PHYSICAL REVIEW D63 084006
that decreases withu, indicating a contraction of the Cauch
horizon to ther 50 singularity. The difference between th
graphs is the strong decay of the charge in the QE
corrected case relative to the classical case. In the for
one, the charge approaches a maximum, which is define
the strength of the critical fieldEcr , and then it is reduced by
the created pairs keeping the electric field at a constantEcr
value. After the pair creation process brought the charg
the ‘‘right’’ value, according to Eq.~3.5!, the charge remains
constant along an outgoingu5const rays going toward th
Cauchy horizon. Moreover, one observes the decreas
nearly zero charge on the bottom panel, in contrast to
classical situation.

The effective dielectric constante is depicted as a func
tion of the advanced timev in Fig. 12. We note the growth
of e(u,v) with the lapse of the retarded timeu ~the rightmost
ray in the figure is the lateu5const depicted ray, the left
most ray is the earlyu5const ray!. This is readily under-
stood: the electric displacementD is growing and in order to
keep the electric field at the constantEcr value, the polariza-
tion field, represented bye, must grow, also.

In Fig. 13 we depict the logarithm of the mass functi
m(u,v) along a sequence ofu5const outgoing null rays
The exponential dependence is clear, indicating that a m
inflation takes place also in the collapse with the pair c
ation.

In the simulations presented so far,Ecr was chosen such
that Ecr was reached just after the apparent horizon form
We have also performed simulations in which the critic
field was reached~i! long before or~ii ! long after the appar-
ent horizon formed. Figure 14~a! displays the space-time o
the black hole that is formed in the situation~i!. In this case
the discharge begins long before the black hole forms.
charge of the black hole is very small,Q!M . Therefore,
r 2'Q2/Mc2!r 1 and the Cauchy horizon is unobservab
i.e., it forms ~if at all! in the domain of very high~Planck!
curvature. Figure 14~b! displays the space-time of a blac

FIG. 13. The logarithm of the mass functionm(u,v) vs v along
a sequence ofu5const null rays. Again, the linear dependence
m(u,v) on the late timev indicates the mass inflation. The retard
time u grows from the bottom to the top.
08400
-
er
by

to

to
e

ss
-

s.
l

e

,

hole that is formed in the situation~ii !. In this case the pic-
ture is very similar to the classical one. The pair creat
begins at a very late stage when a significant part of
Cauchy horizon is already formed. The created pairs af
only the last stages of the evolution and the fully form
Cauchy horizon is only slightly shorter than in the classi
situation.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

We have constructed a dynamical model of a collapse
self-gravitating electrically charged massless scalar field
cluding pair creation in strong electric fields.

Previous studies of the problem were concerned with p
ticles production in the electric field:~i! outside@9–12# or
~ii ! inside@13,14# the event horizon of a preexisting charge
black hole. Here, we have formulated the problem in a w
allowing us to address the question of the influence of
QED-effects on the formation of black holes within th
framework of anevolutionary model. Our particular interest
was devoted to a dynamical formation of the Cauchy ho
zon.

We have presented and used a toy model that treats
effect of pair creation in strong electric fields as an appe
ance of a local effective dielectric constant. The characte
tic field strengthEcr describing the quantum effects in exte

f

FIG. 14. The radiusr (u,v) vs v along a sequence ofu5const
rays in two situations:~a! The discharge begins at an early mome
of collapse—the Cauchy horizon is unobservable and late rays
falling to the origin;~b! the discharge begins deep inside the app
ent horizon of the black hole. The Cauchy horizon is almost un
fected relative to the corresponding classical situation.
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nal field is viewed as a boundary between the classical
the quantum stages of the system’s evolution. We have si
lated the collapsing matter by a massless scalar field. He
this critical fieldEcr was set as a free parameter that defin
the mass of the created particles according to Eq.~3.2!. The
conclusions from the numerical integration are presented
low.

If the critical electric field strength is reached long befo
the formation of an apparent horizon, almost complete d
charge of the collapsing matter takes place and the fi
black hole is an almost neutral Schwarzschild black hole,
Fig. 14~a!. The black hole’s charge, as is measured fr
infinity is not strictly zero. The remaining charge is of ord
EcrM

2, whereM is the mass of the black hole.
If the critical valueEcr is approached after the appare

horizon forms, the black hole seems from outside to have
its initial charge. Nevertheless, the process of discharge t
place in the inner region of a black hole. In the classi
collapse, strong central Schwarzschild-like singularity an
weak singular Cauchy horizon is formed. With pair creati
only a fraction of the Cauchy horizon remains a weak, n
singular. The rest is replaced by a strong spacelike singu
ity. The ‘‘length’’ ~as defined in Sec. V B! of this weak
singular section of the Cauchy horizon depends on the c
cal field-strengthEcr .

It is interesting to consider the interplay between the p
creation effects considered here and Planck scale quan
gravity physics. There are two ‘‘extreme’’ situations.~i! The
critical field is reached deep inside the inner region, in
Planck region surrounding the central singularity. Then
Cauchy horizon is unaffected~or, it is unclear how the hori-
zon is affected at the Planck scales! by the pair creation
effect. It remains just the same as in a classical collapse@see
Fig. 14~b!#. ~ii ! The critical field is reached at some mome
before the formation of the apparent horizon, then
Cauchy horizon is not formed at all@see Fig. 14~a!#. More
precisely, as seen by an infalling observer, the formation
the Cauchy horizon occurs on the Planck scale. That is, f
a practical point of view the Cauchy horizon does not for
cf. @13#. Between two extremes~i! and~ii ! the ‘‘length’’ of a
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weak singular, null section of a Cauchy horizon varies b
tween a full, classical ‘‘length’’ and zero.

It should be emphasized that even if the critical field
approached before the formation of an apparent horizon,
after the moment~ii !, the weak, null singular section of
Cauchy horizon survives. This section is the familiar n
singularity, and an internal mass-parameter diverges ex
nentially approaching it~see Fig. 13!. We observe in the
simulations the formation~or the lack! of a Cauchy horizon
in various situations, mentioned above.

A charged spherically symmetric collapse is not a gene
phenomena in the nature. One does not expect, in gener
significant excess of charge. But even if this is not the ca
the initially charged self-gravitating matter distribution w
be rapidly neutralized by an accretion of an interstellar m
ter and by the pairs creation process.

A more generic phenomenon of a collapse is one
dowed with an angular momentum. This is an axisymme
process and it is rather difficult to study, both analytica
and numerically. The common property of a charged, sph
cally symmetric collapse and the general axisymmetric o
is the existence of Cauchy horizons inside the black ho
Hence, we use the charged collapse as a toy model to s
late the more general rotating situation and to derive con
sions about the inner structure of the spinning black hole

It would be an interesting question to apply the consid
ations of this work to a local production of particles belo
the event horizon of a rotating black hole. Outside the ev
horizon of a rotating black hole the coupling of the bla
hole’s spin to the orbital angular momentum of particl
leads to the phenomenon of super-radiance. If this proc
takes place below the event horizon of a spinning black h
then this may lead to the destruction of a Cauchy horiz
just like in a charged case.
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