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Effects of pair creation on charged gravitational collapse
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We investigate the effects of pair creation on the internal geometry of a black hole, which forms during the
gravitational collapse of a charged massless scalar field. Classically, a strong central Schwarzschild-like sin-
gularity forms, and a null, weak, mass-inflation singularity arises along the Cauchy horizon, in such a collapse.
We consider here the discharge, due to pair creation, below the event horizon and its influence on the
dynamical formatiorof the Cauchy horizon. Within the framework of a simple model we are able to trace
numerically the collapse. We find that a part of the Cauchy horizon is replaced by the strong spacelike central
singularity. This fraction depends on the value of the critical electric fig|dor the pair creation.
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[. INTRODUCTION Herman and HiscocKL4] studied the inner geometry and the
stability of a Cauchy horizon in the preexisting Reissner-
The well known exact solution of the coupled Maxwell- Nordstron space-time influenced by the pair creation effect.
Einstein equations outside the spherically symmetric matteFhe model in Ref[14] assumes the instantaneous disappear-
distribution is the Reissner-Nordstrosolution. The analytic ance of the electric field, when the pair creation takes place
extension of the Reissner-Nordatianetric has rather exotic inside the event horizon along,= const hypersurface. The
properties. The black hole’s interior contains Cauchy hori-Reissner-Nordstm patch of the space-time exterior to this
zons, timelike singularities and tunnels to other asymptotihypersurface is glued along thg=const hypersurface to an
cally flat regions. interior Schwarzschild patch. In this model the Cauchy hori-
Recently, it has been shown both in perturbative analysigon does not exist. The model in R¢L3] assumes an ini-
and by solving the full nonlinear problem that a Cauchytially Reissner-Nordstim geometry and allows the evolution
horizon inside a charged black hole is transformed into @f the electric field through the back-reaction of the created
null, weak singularity1-6]. The Cauchy horizon singularity Pairs. In this model the initial Reissner-Nordstrgeometry
is weak in the sense that an infalling observer crossing ievolves to an uncharged, Schwarzschild-like one—the
experiences only a finite tidal deformati¢®,4]. However, ~Cauchy horizon is shown to be unstable with respect to the
the curvature scalars diverge along the Cauchy horizon, leadocess of pair creation. It should be emphasized that in this
ing to an unbound growth of the internal mass parameter, gnodel the Cauchy horizon is assumed to be stationgpy
phenomenon known as mass inflat[@}. The earlier studies =const hypersurface. This is in contrast to the recent inves-
were done on the preexistingternal Reissner-Nordstra  tigations[1-7] where the Cauchy horizon was shown to be a
space-time. Hod and Pirdif] have demonstrated explicitly nonstatic, contracting null hypersurface.
that mass-inflation takes place also during a dynamical Although, the particle production in the intensive electric
charged gravitational collapse. The dynamical space-time iield is the simplest quantum process, its influence on the
drastically different from the analytically extended Reissner-nner structure of black holes was not studied yet in an evo-
Nordstron manifold: it resembles more the Schwarzschildlutionary context. The effect of pair creation in the intensive
one. The Penrose diagrams of the various space-times a@éectric field is probably most important, when dealing with
depicted in Fig. 1. formation of the inner structure of charged black holes. This
This is so far the classical picture. Our goal, here, is todepends, of course, on the parameters of the formed black
consider quantum effects and to investigate the influence diole. In this work we take a different point of view from
pair creation in strong electric fields on charged gravitational13,14 and explore the dynamical picture, i.e., we replace
collapse. Specifically, we are interested in the effects of paithe question of is the Cauchy horizon stable, with the ques-
creation on the inner structure of the black hole that forms irfion does it form at all. To address this question, one should
such a collapse. This goal differs from previous works on theconsider the collapse of a charged self-gravitating matter.
subject. Pair creation was mainly considered in the externalhe electron-positron pairs are produced in the electric field
region of a preexisting black hole’s space-time, outside th@f the collapsing matter. To treat consistently the problem of
event horizon9-12,. It has been shown that the produced such a collapse, one should take into account the back reac-
particles rapidly diminish the charge of a black hole as seetion of the produced pairs on the source’s electric field. This
by an external observer. is achieved by adding the electric current due to the pro-
Particles creation takes place, however, also in the innedluced pairs as a source to the Maxwell equations:
region of a black hole. Novikov and Starobinskii3] and
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FIG. 1. Penrose diagram@&@) and(b) are, respectively, the Schwarzschild and the Reissner-Néndsternal(preexisting spacetimes,
and (c) and (d) are ones expected to form during a dynamical collapse of a neutral and a charged matter, respectively. The actual,
dynamically calculated, space-time geometry for a charged gravitational coll@pgedramatically different from that depicted {d) and
it resemblegin broad termpsthe Schwarzschild space-time. In all the figures thick solid lines represent central singulspitieslike for the
Schwarzschild manifold or timelike for the Reissner-Norfistrang. The weak, null singularity itie) is represented as a thick dashed line,
while thin dashed lines describe various horizons.

Ja;azr(Faﬁ)_ (1.2 results are presented in Sec. V. We compare a classical
charged gravitational dynamical collapse with a collapse
The stress-energy of the electric current of the produced pawith the discharge. We summarize our conclusions in Sec.
ticles arises from the stress-energy of the electric field. Th&/I. We use units in whice=G=#=1.
latter is the source of the pairs, by means of the energy-
momentum conservation. Il. DISCHARGE IN A CLASSICAL CHARGED
To formulate the problem properly we need a back- SPACE-TIME
reaction formalism that includes the back reaction of the
pairs on the stress-energy tensor of the electric field that When pairs are created in an asymptotically flat region
creates them. Without this the problem would not be self-one of the particles, having the charge same as the field's
consistent. Such a formalism is not available. Instead weource, is repulsed from the body and escapes to infinity.
consider here a toy model that utilizes the main physicaAnother member of the pair is attracted to the body, decreas-
properties of the system—the fact that the pairs limit theing its charge. This occurs, for example, to pairs created in
electric field to a critical valu&,,. We describe this effect the field of a charged black hole outside its event horizon.
of pair creation by introducing a nonlinear dielectric constantThe black hole discharges rather quickly until its external
that prevents the electric field from exceedigg, the criti-  field becomes subcriticgb—12).
cal pair creating field. In doing so we have ignored the elec- A more interesting situation occurs when a significant pair
tric current of the pairs and their stress-energy. We also dissreation takes place within the event horizon of a charged
regard the contribution from vacuum polarization, whichblack hole. The newborn particles do not have a spatial in-
becomes significant only for the exponentially large fieldsfinity to escape to, they are trapped within the event horizon.
[8]. In spite of this simplifying assumptions we believe thatIn the Reissner-Nordstno manifold in the region between
this model captures the characteristic behavior of the redhe outer and the inner horizons the area coordinated the
system. time change their roles. The vectdfdr is now timelike,
In Sec. Il we consider discharge in a classical space-tim&hile the vectord/dt is spacelike. The only nonvanishing
and give the motivation of the investigation of the influencecomponents of the electromagnetic tensor Be=—F,,
of the pair creation on the inner structure of charged blacland onlyF ;= —F,, are nonzero. An infalling observer mov-
holes. In Sec. Ill we present the underlying physical modeling alongdt/dr=0 world line, in the region between the
We develop the formalism and discuss the applicability ofhorizons, will experience a spatially homogeneous electric
the model. Section IV describes our numerical scheme. Théeld, increasing in strength into the futu¢éhe r-coordinate
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Cauchy Horizons I1l. THE PHYSICAL MODEL

In this section we develop an evolutionary formulation
that includes the effect of pair creation in strong electric

- + fields. We present below a simplified toy model, describing
this effect for a dynamical space-time in which a black hole
forms.

surfaces of
r=const

(E=const) A. The formulation

The first study of charged particles production in an uni-
form electric field was undertaken by Schwinger in 1951.
The Schwinger formula for the number of scalar pairs cre-
ated by the fielde per unit four-volume is

2 *° n+1
€ (_1) _nEcr
_ 22:
F 2772ﬁ2C E = n2 ex[( E y (31)

wherem and e are the mass and the charge of a created

FIG. 2. Pair creation inside the event horizon. Here we depicParticle and the critical electric fielfl,, is defined as
the Penrose diagram of the Reissner-Nordstgpace-time. Pairs ) 3
are produced when the electric field reaches the critical vElye E — Tm=c
along the surface=r.. Oppositely charged particles are acceler- cr et
ated in opposite directions, leading to the redistribution of the
charge below the event horizon and to a change of the inner geonrhe production rate of fermions differs froif8.1) by an
etry of the charged black hole. overall flactor 2 and by the absence of the sign interchange
(_1)n+ .

The effect of the vacuum polarizatidthe change of the
vacuum electric permittivity in strong electric fields is in-
stantaneously stronger than the contribution from a pair pro-
duction[by In(E/E,) for E>E_,], but the latter can accumu-
late with time[8]. The integrated contribution from the pair
%reation can dominate the contribution from the vacuum po-
arization.

(3.2

decreases The electric field has only é—component:E

= (q(r,t)/r?)(a/at), wherein the boldface denotes usual
3-vectors. The direction of the field lines in a regular
Reissner-Nordstm space-time is from one singularity to the
other (see Fig. 2 The maximally extended Reissner-
Nordstrom space-time has a charge asymmetry in the sen

that two external observers in the two past asymptotically fla Our model utilizes the essential property of the Schwinger

regionsl andl’ see the black hole charged oppositely. Theresult(S.l)—the exponential dependence on the ratig/E,

left-hand and the right-hand singularities seem t0 Such Ob ' e that pair ereation rate is exponentially large for
servers to have opposite charges. P P y larg

i e e o cassiclCharge iack e, b, SPSCTCAL el and e e exponental suppesseq
the inner and the outer horizons, pairs of charged particl ' P 99

e : : . .
are produced by the electric field alomg-const surfaces. ﬁecljigliizstﬁg?iaiudcfv%ﬁr?oe(tjhgagriii;? sg?ljiéjced intensively,
Oppositely charged particles are accelerated in the opposi{g We neglect() the net electric current of tHe pairs afid

+ /gt directions. Thus, if the black hole has a negative

charge the positively charged particles will be attracted to itthe stress-energy of the produced particles, assuming that the

accelerating toward the left-hand singularity, while the nega’_role of the electric current is confined to prevent the electric

. . . s field from rising above the critical value. Hence, the electric
tively charged particles will be repulsed from this smgular-]cield will be taken as:
ity, accelerating toward the right-hand ofsee Fig. 2 :

This leads to the redistribution of the charge, which was E i B F
initially concentrated near the left-hand singularity. At the o ordinary ™ =cr 3.3
end of this process, in the perfectly symmetric situation, Eq if  Eordinan™Ecr-
when the charge is equally divided among the left-hand and
the right-hand singularities the electric field disappears. Bulhe Eginary Stands for the ordinary electric field that would
the whole exotic structure of the inner part of the analyticallyhave arisen in the absence of pair creation.
extended Reissner-Nordstnomanifold is due to the exis- In this case we can mimic the effect of particles produc-
tence of this electric field. Therefore, vanishing of the election as if the system was placed in a dielectric medium.
tric field leads to the disappearance of the tunnels to otheffectively, the polarization of this medium prevents the
asymptotically flat regions. We will show here that a similar electric fieldE from rising aboveE,, while theelectric dis-
redistribution of the charge takes place also in a dynamicagblacementD= eE, changes. The scalar quantiyis thedi-
space-time, leading, as we shall see, to the partial closure @lectric constantThe electric displacement is related to the
the “space tunnels.” density of a free charge via the Maxwell equation:
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V- -D=47pjee. (3.4 R 2 whereRis the Ricci curvature scalar. The Compton
wavelength of the particles is=(wch/eE,)Y2 Thus, the
condition for a flat-space approximatidrsR™*?, takes the
form

The dielectric “constant” that leads to E(3.3) is given by

1 if Eordinary< Ecr

€= ) (3.5
|D|/Ecr if EordinaryZEcr-

1/2

R| <1. (3.7

( wch
oE,

The local description of the classical theory of electro-
magnetism in a curved space-time in a dielectric medium cal

. ) ) But, the Ricci scalaR has been shown, in dynamical mod-
be derived from an effective local Lagrangian:

els, to diverge approaching the Cauchy horiz@his is the

1 1 |D? mass inflation scenaridhus, the approximation breaks down
reM—-_ — . p=—_— """ (3.6) in vicinity of the singular Cauchy horizon. Notwithstanding,
8 8m € our model is, actually, not based on exact Schwinger result,
but on its exponential dependence Bg/E which is non-

We use this Lagrangian withigiven by Eq.(3.5) to describe perturbative.

the effects of pair creation in the strong electric field. Anyway, all approximations will be broken at some mo-
_ Our toy model captures the essence of the physics, Pafent "Eventually, the curvature in the vicinity of the singular
ticularly the fast reduction of the supercritical field down to Cauchy horizon becomes Planckian since the “Coulomb
the critical valueE.; and the energy-momentum conserva-comnonent” of the Weyl curvature diverges exponentially
tion. The dielectric constant that we introduce hgs Fhe with advanced time(for a spherical symmetry,|
same effect as the pairs that “shorten” an electric fleldwm/rg with m the internal mass parameteMoreover, the

above E,,. However, we ignore all other features of the picqi curvature may dominate the Weyl curvature and sur-
pairs, specifically we ignore the pairs themselves, their

hich i | - pass the Planck values even earlier. In either case our analy-
energy-momentum tenséwhich is replaced by a modified gjg hecomes meaningless, and a theory of quantum gravity is

electromagnetic energy-momentum tensor that arises ffofeeqed. We obviously consider only the sub-Planckian re-
the dielectric constahfind their electric current. This is done

in order to obtain a simple self-consistent energy conservinglons'
system. It is difficult to estimate what would be the effect of
the electric current of the pairs. On the other hand it is clear
that the stress energy of the pairs would make a positive Our goal is to integrate numerically the evolution equa-
contribution to the mass paramet8r15 and will make the tions and to follow the collapse of a spherically symmetric
effects, which we will describe later, more pronounced.  regular initial scalar field distribution via the formation of an
Another artificial feature of our model is tle@l hocintro-  apparent horizon and a Cauchy horizon, toward a central
duction ofE,, . This critical field is associated with the mass singularity. The conventional choice of coordinates for this
of the charged particlefsee Eq.(3.2)]. However, for sim-  dynamical evolution is double-null coordinates. In these co-
plicity our model is based on a massless charged scalar fieldrdinates:(1) The apparent horizofwhen it forms is regu-
whose characteristics are along null geodesics. For suchlar, i.e., it is free from unphysical coordinate singularities;
massless field the critical electric field vanishes and charge) for a massless scalar field the characteristics are null so
massless pairs are produced even for an infinitely small ele¢his choice is “natural” for models involving massless scalar
tric field. We introduce a critical fiel&, as afree parameter fields.
that can be used to define the mass of the created particles We choose the line element of the form
through the relatior{3.2).
In addition to the above properties there are other minor ds*=—a(u,v)?du dv +r(u,v)*dQ?, (3.9
and physically justified assumptions: First, our toy model
ignores the contribution from vacuum polarization due to thewhere dQ? is the unit two-sphere. There is a coordinate
intensive electric fieldto be distinguished from the effective gauge freedom: the choice of coordinates is unique only
polarization, which we describe heréhis would be justi- up to a change of variables’'=f;(v),u’=1f,(u), which
fied if the effect of the vacuum polarization is small com- leaves the line elemeri8.8) unchanged. For the time being
pared to the pair-creation contribution. This is in fact thewe do not specify our double-null coordinates: these are just
situation when the electric field is not exponentially largegeneral ingoing and outgoing null coordinates. Later, when
[8]. discussing the numerical integration we will fix the gauge
Second, when constructing our model, we have utilizedreedom and specify the coordinates.
Schwinger’s result3.1), more precisely, its exponential de-  Let the F,, be the electromagnetic tensor, defined as
pendence orE/E. Schwinger's formula is valid, strictly F,,=A(,.,- In a spherically symmetric space-time the only
speaking, only for an uniform and static electric field over anonvanishing field components &fg,=—F,,. Thus, only
flat space-time background. The approximation of flat spacé,, and A, need be nonvanishing. The¥, can be removed
is valid if the radius of curvature of the dynamical geometryby the gauge transformatiomlA,—A,+A.,, with A
is much greater than the Compton wavelength of created=—fA,dv. We are left with A,#0 and we denote
particles. The radius of a curvature can be taken of ordea(u,v)=A,.

B. The equations
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We formulate the set of coupled Einstein-Maxwell-ScalarThe QED-corrected equations are reduced to the classical
Field equations as a first-order system. The numerical intesnes[7] by settinge=1.
gration of the first-order system functions very well both for
the uncharged case, see Réf5], and for the charged situa- o
tion [7]. It is convenient to define the auxiliary variables: C. The characteristic problem
The system of evolutionary equations has to be completed
by a specification of the initial and the boundary data along
some characteristic hypersurface. For models involving
massless fields the characteristics are null segments. Thus, it
s=\Vamy, w=s,, z=s,, (3.9 is natural to specify the initial conditions and the boundary
conditions along null hypersurfaces. A satisfactory, for an
wherein ¢ is the complex massless scalar field. We haveuncharged case, formulation of the initial-value problem has
adopted the notatiokV,=JW/dx for partial derivatives of been given by Burko and OfiL6]. The generalization for a
any functionW=W(x,y). charged case is given below.
We denote byq(u,v) the free charge, i.e., the charge of We choose the initial characteristic surfaces to be: the

the collapsing scalar field, and iythe total charge up to the Ng0INg v=constv; hypersurface, and, the outgoing
sphere of radius. The latter is the charge defined by the =CONSEU; hypersurface. If the domain of integration in-
QED effects. The scalar field is collapsing under the influ-cludes the origin of coordinates it leads to the necessity of a

~ series expansion of physical quantities in powers of the
ence of the total chargg not the free charge. In a local proper distance from the origin, in a vicinity o&=0. We

inertial frame,q=eq and we defin@=ale. are, however, interested in the formation of the Cauchy ho-
We write the closed system of equations for the QED-i;on \We can, therefore, exclude the origin-0 from the

corrected situation. Einstein equations: domain of integration. We achieve this by an appropriate
choice of the final outgoing segment= const=u;, so the

a=2 = -
=;1 :rua g:ryy

2.2
El=rf, +fg+ Eaz_ a_(]2= ' domain of integration does not include the origin.
4 der Now we can remove the coordinates’ freedom. To do so,
we fix the “linear” gauge, i.e., we taketo be linear withu
E2=g,—2dg+rz*z=0, or v along the characteristic hypersurfaces. Namely,uon
=u; segment we choosg=r,=1, onv=v; segment we
_ fg o® a’q® 1 . choosef=r, =r . To getr along initial surfaces it is nec-
E3=d,— 2 a2t gt Z Wzt wrz) essary to supply,=r(u; ,v;) that serves as a free parameter.

The conventional choice for characteristic segmants

1 ~ = L= i
+5iea(sz —s*2)=0. 0,vi=ro, yields
r(uj,v)=v, r(u,v;)=uUry+rg. (3.10
Maxwell equations:
- a%q Now we specify freely the scalar-field distribution along
Ml=a,— 5er? =0, the initial segments. We choose a compact ingoing scalar-
€

field pulse along the ingoing=u; segment; and the “no-
perturbation” along the initial outgoing=uv; segment. Spe-
cifically, we take (u,v;)=0 that corresponds to a fixed
static background fov <v;. And we choose)(u;,v)=0
except at some finite region,<v<wv,, (v;=v;). To be
concrete, for a complex scalar field, = ¢p,+i¢d,, with

M2=q,—ier?(s*z—sz*)=0.

The scalar-field equations:

~ ~ ie :
Sl=rz,+fz+gw+iearz+ieags+ HanS: 0, 1,9, two real scalar fields, we choose
o~ o~ ie ) a vV—Uq b v—Uq
S2=rw,+gw+fz+iearz+ieags+ T @ qs=0, b= siré| o . o= siré| ,
\/E Uy— U1 \/E V21
and, finally, the definition€3.9): (311
Di=d— ﬂzo wherea,b are constant amplitudes, amnd,v, are the end
ed ’ points of each of the real-fields pulses, ang=v; is their

common starting point. This choice of the initial data is dif-

D2=g-r,=0, ferentiable at the matching points;,v,. The integrated
space-time is schematically depicted in Fig. 3.
D3=z-s,=0. From Eq.(3.11) we obtain the initial values af andw:
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=0 singularity 2, noted that forv>m our ingoing null coordinate is closely
N ”% related (proportiona) to the ingoing Eddington-Finkelstein
N %, null coordinatev,. Theu coordinate is related to the proper

time of an observer at the origin. This is defined &5]

of integration

Domain T(u):foua(u"ul)du/_ (3.1

N

f; 2 In our choice the space-time to the left of thev; charac-

Ign , teristic hypersurface is Minkowskian until the very last mo-
5 e ments of the collapse. Hence(u,u)=1 except the section
B @ it whenu—u;, wherea(u,u)—0. Therefore, the integration
g v in Eq. (3.16 is trivial and yieldsT(u)=u. Later, we will

find it useful to utilize the proper time of an observer at the
origin as a measure of the “length” of the Cauchy horizon.

IV. THE NUMERICAL INTEGRATION SCHEME

We have converted the second-order equations to first-
order equations. Our numerical scheme is based on a simul-
taneous integration of this first-order system of coupled dif-
ferential equations. We solve numerically equati&isE2,

E4, M1-M2, S1-S2, D1, D3, andD5. We sete=1 to
obtain the classical collapse with no pair creation.

The domain of integration is covered by a double-null
grid. The characteristic initial-value problem is formulated in
FIG. 3. A schematic diagram of the integrated space-time. ~ S€C. [l C. The algorithm for the numerical integration in the

classical casedg=1) is described if7]. Here we generalize
B this algorithm to the case when pair creation is included.
sin( op U1 ) At each step we evolve andz usingE3 andS1 from the
Uy U, hypersurfaceu to u+du. Then we solve the appropriate
equations for the rest of the quantities along the outgoing
U_Ul) null rays u+du=const, starting from the initial outgoing
vo—U1)’ hypersurfacev =v;. We integrate equatioD1 to find «,
then we solve the coupled differential equati@® andE2
w(u,v;)=0. (3.12  to getr andg. Next, the equation®3,M2,M1 are inte-
grated to obtairs, g, anda. Finally, the differential equations
E1l andS2 are solved foff andw, respectively. After each
step in theu-direction we calculate the electric field strength,
q/r?, along the current outgoing null rayu¢ du=const).
a2 - We use this field value to establish the valuespaiccording
d(u;,v)= —sinz( 2m 1) to Eq. (3.5), for the nextu-step. o
; This integration scheme uses three distinct methods to
» 5 evolve the initial data. All these methods are well known and
b= v . ( vy ) (3.13 commonly used(see, for example, Presst al. [17]). To
—vq)’ ' evolve the quantities in the-direction we utilize the fifth
order Cash-Karp Runge-Kutta method. The differential equa-
a(u,v))=1. (3.19 tions in thewv direction are solved using a fourth order
Runge-Kutta method. The integrations in thelirection are
We assume the Minkowski space-time foxv;, therefore, performed using a three-point Simpson method.

Z(Ui,v): f
Uz_vj_

ibmr
+ sin| 27
U~V

From the constraint equatio-E3 and the definitioD1,
together with the choice(u;,v;)=1 one determines the ini-
tial values ofd and a:

we setq(u,v;) =0 anda(u,v;)=0. It is conventional to define the accuracy of a numerical
In our coordinates the mass functitthe mass paramefer method by the scaling of the numerical error. Thtk, order
becomes accuracy means that, the error scales as the step size to
5 powern:
r q 4
mt.o)= 2(” iz azr“rv)' (319 Frea ) = FeadX)+ O("), .3

Since the mass function vanishes for the flat space-{ime whereF ., stands for the actual value of a function at a point
the regionv <v;), one can calculate;,=— 7. It should be  x, while F, for a calculated value at the same point. The
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FIG. 4. (a) The error scaling
indicates a quadratic or higher
convergence except at a single
point with n=0.5. (b) To visual-
ize the reason for loss of accuracy
we give an approximateketchof
r(u,v) as a function ofv for u
=const, for different grid densi-
ties. We give only a sketch and
not the real plots, since in the lat-
ter the crossing is unobservable at
these scales(c) Variation of the
calculatedr (u,v) as a function of
v, for certain value ofu, for dif-
ferent grid-densities in a typical
(with  no line-crossing region.
The grid densities are: 60 grid
points per unit interval (solid
line), 120 grid pointddotted ling,
and 240 grid pointgdashed ling
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Runge-Kutta methods, which we utilize, are all at least secef rays: the outer and the inner rays. The outer rays, outgoing
ond order accurate, see RgL7]. The three-point Simpson rays at small, escape to infinityr (u,v —)—. Increas-
integration method is of order=4. ing u, one finds the first outgoing ray, which does not escape

We have performed a few simulations with the same frego infinity, but tends to a constant value. This ray indicates
parameters, but with different grid sizes in order to check thehe event horizon, which asymptotically coincides with the
scaling of the numerical errors. The numerical scheme progyter apparent horizon. The ray becomes vertical at about
cgeds in jtheu andv directions on gridg with corresponding ~ 16 (not displayedl Increasingu further, one steps into the
grid-spacingsh, andh, . These step sizes are connected byinner region of the integrated space-time. Outgoing rays in
the numerical stability requirementt,<f(u,v)h,, where g region approach a constant radius, dependingi,dn
f(u,v) is a slowly varying function of order unity. We per- oo mniatically late advanced times-c. This indicates the
form the convergence test by changing the grids’ density ir}ormation of a Cauchy horizon. Following the evolution of
both directions. h . the space-time, the solution approaches the origiaD.

. In what f°”°YVS' F denptes the numerically c_alculated, Since our code is not constructed to include the origin we
with the _numerlcal step size df valqe Qf a f“'_""“o_“c at stop atus, before the integration reaches the origin.
some point. Herd denotes the step size in thedirection. If The main feature seen here is the existence of a contract-

the numerical scheme mvplved in a calculatiorFofis con-, ing Cauchy horizon. The Cauchy horizon is not a stationary
vergent, then the connection between the above quantities Is

. by Ea. (4.1 W ¢ q i f ical cy=const hypersurface as in the case of a classical
given by q.(_ 1). We per ormed a Series of umerical paissnar-Nordstra space-time, but it depends on the outgo-
simulations with doubled grid densities, or, equivalently,

. . ) ing null coordinateu, namely, it contracts toward the origin
with halved step sizeh, (and, therefore, with halvet,). 9 y 9

r=0 in late retarded time.
We expect that:F'=F+0O(h"). Now, defining c;=F" Fi : ; . .
’ ) igure 6 depicts constant radii contour lines in the
—FM2 andc,=F"2—F"4 we expect that,/c,=2". Fig- g P

: e : uv-plane. The bottom of the figureiE 0) is the initial regu-
ure 4a) dep|ct§ log(c,/c,) along an ingoing nulb C.OO.rd" lar hypersurface. Looking along the direction one soon
nate, for a typlcEllJZ_co_nst ray. It is clear from this figure ,pqoreq the formation of an outer apparent horizon, along
that in generah~3, |nd|cat|ng a_th|rd-0rder_ CONVergence. —\yhich r,=0. The apparent horizon separates the two regions
One, however, notices the poimt=0.5, which indicates a

_~with r,>0 (on the lef}, andr,<0 (on the righ}. The latter
very poor convergence. Moreover, the plot looks very vari

able in the region 12v<15. The reason for this “jumpy” contains, also, the asymptotically v£2)  constant,
U= . . .
o . u-dependent sectioncy=rcy(u) representing the Cauch
behavior is understood, if one looks closer at the funckon P cH="rcn(u) rep g y

horizon. The Cauchy horizon itself is a null hypersurface that
itself. We have use& =r(u,v). We sketch in Fig. é) the y P

) ) is approached as goes to infinity.
radiusr (u,v) along anu=const outgoing null raysee the bp g Y

. ; . e > We depict the logarithm of the mass-functig®.15 in
next sectioin This sketch is magnified, since the actual pIotsFig_ 7, for a sequence ai=const null rays. The straight

of r for different grid densities are indistinguishable on this"nes indicate the exponential dependence of the mass func-

scale;. In the m_arked t_)(_)x oné _observe_s the crossing of CUV&ERn onv for late advanced times. The exponential growth
for different grid densities. This crossing Ieadls toa d‘.acreasgonfirms the conclusion that a mass-inflation indeed takes
of the convergence order. Notably, after this crossing th%lace in this collapse

convergence re_turns o the h|.gh. order. We have performed simulations with different free pa-
F|gure 4c) displays the variation of the cal_culat€das_a rameters: changing the amplitudasand b, the elementary
funct!qn ofv along a typ|c§U=const ray for different grids chargee, stretching and squeezing the domain of integration.
densities. The observed picture confirms the convergence. |, 4'these cases we have not seen any qualitative difference
between the results. The results, which we have obtained, are
in excellent agreement with the previously established re-
sults, and fit well with those ih7]. We conclude, thus, that
A. Classical charged collapse our numerical code gives correct results to this case. We turn
now to the problem of collapse with pair creation.

V. THE RESULTS

We begin with verifying our numerical code for a classi-
cal collapse, a collapse without quantum effects. Weeset
=1. We fix the free numerical parameters to define the prob-
lem: a=0.5, b=0.461, v;=ry=10, v;=90, v,=16, v, The critical electric fieldE,, is an additional free param-
=20, e=0.15. The number of grid points along outgoing eter in the problem with pair creation. The critical-field
and ingoing rays is of order of fQOper unit interval. We  strengthE, is chosen in the forthcoming graphs so that it is
follow the evolution of the regular initial data via the forma- reached just after the formation of the apparent horizon. This
tion of an apparent horizon and a Cauchy horizon, toward thehoice is arbitrary. Other comparable valueEgflead to a
central singularity. For this specific choice of free parametergjualitatively similar result, unless,, is reached long before
the resulting black hole has a charge-to-mass rafim  the formation of the apparent horizdésee below.
~0.98 in geometrical units. Figure 8 displays the radiugu,v) as a function ot for

Figure 5 displays the metric functiorfu,v) as a function a sequence afi=const null rays. This figure is analogous to
of the ingoing coordinate for different values of the outgo- Fig. 5 for the classical situation. On a first sight these figures
ing null coordinateu. One can distinguish between two kinds seem very similar. There are, however, obvious differences,

B. Collapse with pair creation
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FIG. 5. Radiusr(u,v) as a function ofy alongu=const rays. FIG. 7. Logarithm of the mass functiom(u,v), vsv alongu
The retarded time increases from the initial straight ray toward the = const null rays. The linear dependencent(fu,v) on late timev
origin (from the right to the left indicating the course of evolution indicates the mass inflation. The retarded timicreases toward

of the spacetime. the top of the figure.

both qualitative and quantitative. A closer look uncovers theaboutu¢=~21, before it crushes into the=0 singularity. We
different inclines of the late retarded rays-{ u;): while the  note thatu; is the proper time of an observer at the origin
rays depicted in Fig. 5 are practically vertical, those in Fig. 8(3.16.

have an observable incline toward the origin0. The very Figure 9 displays the contour lines of constant radii in the
last ray on the latter figure has an apparent tendency towardp -plane. This figure is analogous to Fig. 6 for the classical
the origin, indicating that the=0 strong singularity is close. situation. Again one can observe a different incline of the
Other signs of the difference between the two situations argontour lines in the late retarded and advanced time regions.
quantitative ones. The whole “life-time’(in terms of the  This difference in the incline between the classical and the
retardedu-time) of the QED-corrected system, before it hits QED-corrected problems can be interpreted as just a close
the r=0 singularity is significantly shorter than the “life- approach to the intersection of the Cauchy horizon with the
time” of the corresponding classical system. For examplestrong spacelike =0 singularity during the numerical simu-
for the certain set of free parametésee at the beginning of lation. The straightening of the outgoing rays occurs later in
the previous sectionthe evolution of the QED-corrected

system lastau;~12, while for a classical system it takes 4 . . . . . . .

35 B

30 —

20 —

151 -

10 I I I L L L
0 5 10 15 20 25 30 35 40

r

%o 15 . 20 25 FIG. 8. The radiusr(u,v), as a function oby alongu=const
rays for collapse with pair creation. The retarded turiacreases to
FIG. 6. Lines of constant radius iav-plane. The radius de- the left. One still observes the formation of the Cauchy horizon.
creases from the bottom toward the top of the figure. The apparerithere is also an apparent incline of the late retarded rays toward the
horizon, along whichr,=0, separates the exterior and the interior origin, indicating discharge and signaling the destruction of the
of the black hole. The latter region contains the Cauchy horizon. Cauchy horizon.
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FIG. 9. Contour lines of constant radius um-plane for a col- FIG. 11. Top panel: the free chargéu,v) alongu=const null
lapse with pair creation. The radius decreases from the bottom to- - 1oPPp ) geuv 9

ward the top of the figure. One observes the apparent horizon arf@yS: Bottom panel: the total charggu,v) along the sameu
the Cauchy horizon. =const null rays. On both panels the retarddine increases from

the leftmost ray toward the rightmost ray.

terms of the advanced-time: the curvature is high in the h I ith disch he “I h of th hv h
vicinity of the strong singularity turning the rays toward the the co a}!ose Wit Y Ischarge the "length™ of the Cauchy ho-
rizon is “shorter,” compared to the classical case.

singular origin. The discharge is more apparent in the situa
d d d ep On the top panel of Fig. 11 we depict the free charge

tion when the black hole, as seen from infinity, has the small X )
charge-to-mass ratio, see Fig. 10. g(u,v) as a function of the advanced time along u

We define the “length” of the Cauchy horizon as a =const rays. The bottom panel of Fig. 11 displays the total,

proper time of an observer at the origin between the momerfED-corrected charge(u,v) along the same = const out-

when he or she emits a last outgoing light signal that escape#0ing surfaces. The common characteristic property of the

to infinity (the event horizonand the moment when he or graphs is the straightening of the=const rays in late ad-

she emits a first outgoing light signal that unavoidably fallsvanced times, when approaching the formed Cauchy horizon.

into the spacelike singularity. This “length” is related to the Theu=const rays intersect the Cauchy horizonas> and

retarded timay, see Eq(3.16). We observe, therefore, that in for different u values the intersection occurs in different

points withrcy=rcy. Hence, a charge measured along an

180 outgoing null ray approaches a constantdependent value

160
1401
1201

5 100

80
60
40
20

150

- 100

50

FIG. 10. The radius(u,v) vsv along a sequence af=const 0 50 100 150 200 250
rays in the situation where the charge-to-mass ratio, seen from in-
finity, of the formed black hole is small compared to unity. The  FIG. 12. The dielectric constar#(u,v) vs v along u=const
bottom panel displays an enlargement of the marked region on theull rays. The retarded time increases from the left to the right.
top panel. The rays’ incline toward the origin is apparent, indicatingThe dielectric constant, which represents the “polarization” field,
the discharge. The heavy line marks the beginning of the discharggrows with timeu.
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FIG. 13. The logarithm of the mass functiar(u,v) vsv along
a sequence ofi=const null rays. Again, the linear dependence of >3f
m(u,v) on the late time indicates the mass inflation. The retarded =]
time u grows from the bottom to the top. 25}

20

that decreases with, indicating a contraction of the Cauchy
horizon to ther =0 singularity. The difference between the
graphs is the strong decay of the charge in the QED- ™
corrected case relative to the classical case. In the forme (b)
one, the charge approaches a maximum, which is defined by
the strength of the critical fiel&.,, and then it is reduced by
the created pairs keeping the electric field at a condEant
value. After the pair creation process brought the charge t

15

FIG. 14. The radius(u,v) vsv along a sequence af=const
rays in two situationsta) The discharge begins at an early moment
of collapse—the Cauchy horizon is unobservable and late rays are

: . . ?alling to the origin;(b) the discharge begins deep inside the appar-
the “right” value, according to Eq(3.5), the charge remains ent horizon of the black hole. The Cauchy horizon is almost unaf-

constant alo,ng an outgoing=const rays going toward the fected relative to the corresponding classical situation.
Cauchy horizon. Moreover, one observes the decrease to
nearly zero charge on the bottom panel, in contrast to thﬁole that is formed in the situatiafii). In this case the pic-

classical S|tu§1t|on._ . . . ture is very similar to the classical one. The pair creation
. The effective dleleqtnc gonstar@t is depicted as a func- begins at a very late stage when a significant part of the
tion of the advanced time in Fig. 12. We note the growth 5 ,chy horizon is already formed. The created pairs affect
of e(u,v) with the lapse of the retarded tinog(the rightmost ) the |ast stages of the evolution and the fully formed

ray in the figure is the late=const depicted ray, the left- 4 ,chy horizon is only slightly shorter than in the classical
most ray is the earlyi=const ray. This is readily under- gt ation.

stood: the electric displacemetis growing and in order to
keep the electric field at the constdfy, value, the polariza-
tion field, represented by, must grow, also.

In Fig. 13 we depict the logarithm of the mass function We have constructed a dynamical model of a collapse of
m(u,v) along a sequence af=const outgoing null rays. self-gravitating electrically charged massless scalar field in-
The exponential dependence is clear, indicating that a masduding pair creation in strong electric fields.
inflation takes place also in the collapse with the pair cre- Previous studies of the problem were concerned with par-
ation. ticles production in the electric fieldi) outside[9-12] or

In the simulations presented so f&,, was chosen such (ii) inside[13,14] the event horizon of a preexisting charged
that E, was reached just after the apparent horizon formsblack hole. Here, we have formulated the problem in a way
We have also performed simulations in which the criticalallowing us to address the question of the influence of the
field was reached) long before or(ii) long after the appar- QED-effects on the formation of black holes within the
ent horizon formed. Figure 14) displays the space-time of framework of anevolutionary modelOur particular interest
the black hole that is formed in the situatiGi In this case was devoted to a dynamical formation of the Cauchy hori-
the discharge begins long before the black hole forms. Theon.
charge of the black hole is very smald<M. Therefore, We have presented and used a toy model that treats the
r_~Q?Mc?<r, and the Cauchy horizon is unobservable, effect of pair creation in strong electric fields as an appear-
i.e., it forms(if at all) in the domain of very highPlanck  ance of a local effective dielectric constant. The characteris-
curvature. Figure 1) displays the space-time of a black tic field strengthE, describing the quantum effects in exter-

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK
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nal field is viewed as a boundary between the classical andieak singular, null section of a Cauchy horizon varies be-
the quantum stages of the system’s evolution. We have simuween a full, classical “length” and zero.

lated the collapsing matter by a massless scalar field. Hence, It should be emphasized that even if the critical field is
this critical fieldE., was set as a free parameter that definecapproached before the formation of an apparent horizon, but
the mass of the created particles according to(B®). The  after the momentii), the weak, null singular section of a
conclusions from the numerical integration are presented bezauchy horizon survives. This section is the familiar null
low. singularity, and an internal mass-parameter diverges expo-

If the critical electric field strength is reached long beforenentially approaching i{see Fig. 13 We observe in the
the formation of an apparent horizon, almost complete dissimulations the formatioifor the lack of a Cauchy horizon
charge of the collapsing matter takes place and the findh various situations, mentioned above.
black hole is an almost neutral Schwarzschild black hole, see A charged spherically symmetric collapse is not a generic
Fig. 14a). The black hole’s charge, as is measured fromphenomena in the nature. One does not expect, in general, a
infinity is not strictly zero. The remaining charge is of order significant excess of charge. But even if this is not the case,
E.M?, whereM is the mass of the black hole. the initially charged self-gravitating matter distribution will

If the critical valueE,, is approached after the apparent be rapidly neutralized by an accretion of an interstellar mat-
horizon forms, the black hole seems from outside to have alfler and by the pairs creation process.
its initial charge. Nevertheless, the process of discharge takes A more generic phenomenon of a collapse is one en-
place in the inner region of a black hole. In the classicaldowed with an angular momentum. This is an axisymmetric
collapse, strong central Schwarzschild-like singularity and grocess and it is rather difficult to study, both analytically
weak singular Cauchy horizon is formed. With pair creationand numerically. The common property of a charged, spheri-
only a fraction of the Cauchy horizon remains a weak, nullcally symmetric collapse and the general axisymmetric one
singular. The rest is replaced by a strong spacelike singulais the existence of Cauchy horizons inside the black hole.
ity. The “length” (as defined in Sec. VBof this weak Hence, we use the charged collapse as a toy model to simu-
singular section of the Cauchy horizon depends on the crititate the more general rotating situation and to derive conclu-
cal field-strengtrE,,. sions about the inner structure of the spinning black holes.

It is interesting to consider the interplay between the pair It would be an interesting question to apply the consider-
creation effects considered here and Planck scale quanturations of this work to a local production of particles below
gravity physics. There are two “extreme” situatioris. The  the event horizon of a rotating black hole. Outside the event
critical field is reached deep inside the inner region, in thehorizon of a rotating black hole the coupling of the black
Planck region surrounding the central singularity. Then theéhole’s spin to the orbital angular momentum of particles
Cauchy horizon is unaffecte@r, it is unclear how the hori- leads to the phenomenon of super-radiance. If this process
zon is affected at the Planck scaldsy the pair creation takes place below the event horizon of a spinning black hole,
effect. It remains just the same as in a classical collgpse  then this may lead to the destruction of a Cauchy horizon,
Fig. 14b)]. (i) The critical field is reached at some momentjust like in a charged case.
before the formation of the apparent horizon, then the
Cauchy horizon is not formed at dee Fig. 14a)]. More
precisely, as seen by an infalling observer, the formation of
the Cauchy horizon occurs on the Planck scale. That is, from We thank S. Hod and S. Ayal for helpful discussions. The
a practical point of view the Cauchy horizon does not form,research was supported by a grant from the Israel Basic Re-
cf. [13]. Between two extreme$) and(ii) the “length” ofa  search Foundation.
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