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Vacuum polarization of massive scalar fields in the spacetime
of an electrically charged nonlinear black hole
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The approximate renormalized stress-energy tensor of the quantized massive conformally coupled scalar
field in the spacetime of an electrically charged nonlinear black hole is constructed. It is achieved by functional
differentiation of the lowest order of the DeWitt-Schwinger effective action involving the coincidence limit of
the Hadamard-Minakshisundaram-DeWitt-Seely coefficent The result is compared with the analogous
results derived for the Reissner-Nordstrblack hole. It is shown that the most important differences occur in
the vicinity of the event horizon of the black hole near the extremality limit. The structure of the nonlinear
black hole is briefly studied by means of the Lambert functions.

DOI: 10.1103/PhysRevD.63.084004 PACS nunifer04.70.Dy, 04.62tv

I. INTRODUCTION DeWitt-Schwinger method provide a good approximation of
the renormalized stress-energy tensor of the massive scalar
For the guantized massive fields in the large mass limitfield with arbitrary curvature coupling as long as the mass of
i.e., when the Compton length is much smaller than the charthe field remains sufficiently large. This approach and its
acteristic radius of a curvature, the nonlocal contribution tonodifications has been employed in various contexts in Refs.
the effective action can be neglected, and the series expah?—15- _ _
sion inm~2 of the renormalized effective actioWs may be Recently, extending the results of FroI(_)v_-ZeI’nlkov, we
easily constructed with the aid of the DeWitt-Schwingerave constructed a general formula describing the approxi-
method[1,2]. As the renormalization prescription requires Mate renormalizeqT;) e, of the quantized massive scalar,
absorption of the first three terms of the series into the quaSPinor, and vector fields in arbitrary spacetime. The results
dratic classical gravitational action, teh term of Wi is have been presented for the class of geometries with vanish-

proportional to the integrated coincidence limit of ing curvature scalar, and subsequently applied in the space-

the Hadamard-Minakshisundaram-DeWitt-Seely coeﬂ‘icienf'me.Of the RN black _hole_and in the spacetime that CO.UId be
(HMDS) a,, 3. Unfortunately, the complexity of the coeffi- obtained by expanding its near honzon_geor_ne;ry nto - a
} nts = . whole manifold[16]. Our formulas allow, in principle, to
cients[a,] rapidly Increases witn, and.consequeptly ON€ " jetermine the renormalized stress-energy tensor of the mas-
expects that the applicability of the series expansion is congj e field once the line element has been chosen, although
fined to a first and perhaps a second nonvanishing term.  {he specific calculations may be very tedious. For the quan-
Having constructed a first ordeNg, the renormalized {jzeq massive scalar field with arbitrary curvature coupling in
stress-energy tens@which is the most important character- the RN spacetime we have reproduced the results of Ander-
istic of the quantized field in the curved spacetimeay be  son, Hiscock, and Samuel; neutral spinor and vector fields
obtained in a standard way, i.e., by functional differentiatinghave not been discussed earlier.
the constructed effective action with respect to the metric |n this paper we shall extend the analyses of IRE8] to
tensor. This method has been successfully applied in calcuhe general geometry and construct the renormalized stress-
lations of the approximate renormalized stress-energy tensehergy tensor of the massive quantized scalar field obeying
of the quantized massive scalar, spinor, and vector fields ithe equation
the vacuum type-D geometries by Frolov and Zel'nikov
[3-7]. (—O+éR+m?)¢=0, (1)
A different method, based on the WKB approximation of
the solutions of the massive scalar field equation in a generalhere ¢ is the coupling constant ana is the mass of the
spherically symmetric spacetime, and the summation thufield. Since the background geometry is general, the most
obtained modes by means of the Abel-Plana formula, hadirect approach is to use the first nonvanishing term of the
been invented by Anderson, Hiscock, and Samuel and apenormalized effective action. The advantage of this ap-
plied in the context of the Reissner-NordstrdRN) space-  proach lies in the purely geometric nature of the approxima-
time [8]. Their method is equivalent to the Schwinger- tion that reflects its local nature. Although the constructed
DeWitt expansion: to obtain the loweéite., m~2) terms, result is rather complex, we shall present it in its full length,
one has to use sixth-order WKB approximation. Moreoverbecause it provides the generic formula from which the
numerical calculations reported in REB] confirmed that the renormalized stress-energy tensor in some physically inter-
esting cases may be easily obtained. As the effective action
of the quantized massive scalar field differs form the analo-
*Email address: matyjase@tytan.umcs.lublin.pl; gous actions constructed for fields of higher spins only by
jurek@iris.umcs.lublin.pl numerical coefficients, one can generalize presented results
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to fields of other spins. It should be emphasized howeverthe space with the positive defined metric, we tacitly assume

that the method has obvious limitations, and, when applied tthat all steps that are necessary in construction of the first-

rapidly varying or strong gravitational fields it breaks down. order renormalized stress-energy tensor have been carried

Moreover, its massless limit is contaminated by nonphysicabut in an analytically continued Euclidean spacetime. The

divergences. analytic continuation to the physical space is performed at
Our general formulas will be employed in the calculationsthe last stage of the calculations.

of (T2)en in the geometry of the electrically charged black  Calculation of the HDSM coefficients is an extremely la-

hole, being an exact solution of the coupled system of thdorious task, and their exact form fo=5 is unknown. The

Einstein equations and the equations of the nonlinear elesoefficient[a,], which is proportional to the trace anomaly

trodynamics recently proposed by Ay®eato and Garar  of the renormalized stress-energy tensor of the quantized,

(ABG) in Ref.[17], to which the reader is referred for physi- massless, and conformally invariant fields, has been calcu-

cal motivations and technical details. Their exact solution idated by DeWittf[1]. The coincidence limit of the coefficient

characterized by the electric chargeand the mas$1, and a3 has been obtained by Gilkd{9,20 whereas the coeffi-

may be elegantly expressed in terms of the hyperbolic funceient[a,] has been calculated by Avramid1—24.

tions. An important and interesting feature of this solution is Restricting ourselves to the terms proportionalma?,

its regularity as radial coordinate tends to zero. We shalbne has

show that the structure of horizons of the ABG solution may

by studied by means of the Lambert functid8], allowing _ Y

analytical treatment of the vacuum polarization effects on the Wren_m f d'xg*qa,], 3

event horizon. At large distances their solution behaves as

the RN solution. For small and intermediate values of theyith

ratio |e|/M, the location of the event horizan, is close to

the location of the event horizon of the RN black hole; sig- b; ¢35

nificant differences occur near the extremality limit. It would [as]= 717 360’ )

be, therefore, interesting to analyze how the similarities of

the line elements are reflected in the behavior of the renomwhere

malized stress-energy tensors.

The renormalized effective action of the massive scalar

35 3 P qa;q paq
by= =R+ 17R ;R P— Ry pRI%I— 4R 5 R

field involves the terms that are proportional to the first and 9 P qap
third power of §—1/6. As the curvature scalar of the RN qabcp 5 o
spacetime vanishe¢T?) .., of the massive scalar field natu- +9RgancpR +2RUR+1811°R— 8RR

rally divides into the part that describes pure conformal cou- 14 208
pling and an additional local part that is multiplied by a —?Rququ+Zmpq;nga—TquRqaRap
factor ¢£—1/6. On the other hand, however, the curvature

scalar of the ABG geometry does not vanish, and the struc- 64

ture of the effective action indicates that the renormalized + 120RpqagRP920+ ngqRabRpaqb
stress-energy tensor of the massive scalar depends on the

constant¢ in a more complicated way. Since the conformal 16

coupling leads to massive simplifications, one expects that ~ 3 RR P apcRIP+ ngqabchdaRqud

the similarities in the renormalizedr®) ., (if any) would

appear mainly in this case. N ngqabRcdquade )

Il. THE RENORMALIZED STRESS-ENERGY TENSOR
OF THE QUANTIZED MASSIVE SCALAR FIELD and

The renormalized effective action constructed for the C3= — (5£—30£2+60£%)R3— (126 — 306%)R ,R'P

uantized scalar field satisfying E() is given b
a fying EQ) Is g Y —(226-60£*)ROR— 6£00°R—- 4£R,(RP
3)|

1 _ ab
Wren=32772m2j 1/22 2)n [, (2) +2ERR,(RPI- 2R Ry atRP92, (6)

Since the coincidence limit of the coefficient, is much
where[a,] is the coincidence limit of theth HMDS coef-  more complex one expects that using it in the calculations of
ficient. The first three coefficients of the DeWitt-Schwingerthe approximate renormalized stress-energy would be a real
expansiorgg, a;, anda,, which contribute to the divergent challenge. However, it still could by of use in the simpler
part of the action have to be absorbed in the classical gravianalyses of the field fluctuatiofp?),e,. Substituting Egs.
tational action by renormalization of the bare coupling con-(4)—(6) into Eq. (3), integrating by parts and making use of
stant. elementary properties of the Riemann tensor, one can reduce

As the rigorous asymptotic analysis of the fundamentathe number of terms in the renormalized effective action to
solution is restricted, in general, to the operators defined ir10[21]:
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Wb = ! fd“ g (Lo 1 1RDR 1RDR 1 R3 all RR,,RPY
o Jogzme) @ %9 |1 28 7567 56| RIRT 1gRea IR 5 7€) R 556 ¢ R

+i E—f RRp bquab—iRquRa—i- iquR Ra b 1 RP _ Racab
3016 qa 945 a4 @ 315 pa’ 1260 RoqR"cap

7 1
pag cd ab__ a b p cd
T75607ab Rea Red 57 pak e dRa b}

1 10

=— aiW;, 7
1927%m? 21 o @
where «; are numerical coefficients that stand in front of the geometrical terms.
The renormalized stress-energy tensor is given by the standard relation

2 4 (1) ab
gT/z E\Nren: <T >ren- 8

Functionally differentiating the renormalized effective action with respect to the metric tensor, performing simplifications and
necessary symmetrizations, after rather long calculations, one has

1 1
—5 7o Wi=RM™R"+(OR)™+(0OR) "5 R ,RPg™"— 200°Rg™"— 200RR™, 9)
g 59 2
1 6 N S N o - . .
ngz$W2=qu'meq’“—qu'”Rpm'q—qu'me”'ququ*qum'”Jrqu'qu“’m+(DRpm)’”p+(DRp“)'mp
mn
—DZR”‘“—%R [RPHgM— (R, WP+ R,™" RPI+ R ™ RPI—R, MIRPM— IR "RP™
— m — \mq
OR,"RP"— R, ™IRP", (10)
1 1
— 5 7 W3=6R™R"+B6RR™"+ - R%g™"- 6R ,RPg""— 6RORG""— 3R’R™, (11
g OYmn 2
1
— 5 5 Wa=RRyP+ RMREP+ 2R, "RPH M+ R RPN R RPN — 2R, R™P+ RR M P+ RR M MP
g SYmn
—ROR™-2R. ;R P 99™"— 2R, [RP¥ g™~ RR,9Pg™"+ R, ""RPI+ R,/ ""RP
1
R;pqRPIg™"— 200RRP g™+ 5 RRygRP g™+ R,"RP™-2RR,"RP™+R "RP"—JRR™"
~RyRPR™, (12)
1 . . . .
F%W5=—4R;qump”q—4R;qu”pmq+2qurs'”qu’S'm—2RRpmq”‘qp—ZRRp”qm'qp
pgrs;tymn ,mnppars ;NMppqars pgrsymn 1 parsymn
= 2Rpqr5tRPISGM M Ry MR+ Ry g MR 200 Ry, sRPISgM M 5 RRyqrRP97°g
—R™R,rsRPI™— 2RR, "RPI™M— 2R, RPMI"- 2R ) RPN, (13
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1 1) 3 3 3 3
R — n 1 _ ym q m 1 _ HY 1 _ P m_ _ PR ar
e BgmnWG_Zqu RPM+ 2 Ryq "RPMI— 3R, RPM4 SR PRIMN+ SR PRIMM- SR, (PR, g™
3 3 , 3 3 C 3
=5 Rogr RGN+ SR RPIH SR RPI— SR RPN SRy MIRPT— S IR, "R
3 . 3 C
+§qu'qup“— ED Rmep“—Equ'p RIgM"+ RpgR; PRAM— 3quRmeq”, (14)
iiw =R MPR MAL RN RAMP_9R PRMMA_R NR PAMI_p Mp panr, p RPramn
g2 8mn P q P q Pq pg r pg pa;r
+qu;errq”;m—2qu;ermqm+Zqu;rRSpq"ng”— Rm'?qupq—F Rpmqr;meq—DRpmq "RP4
+R" sMRPAd_R 'SARPr mn+£R n qum-F}R n;p qu+1R m qan+lR mp Ran
p ar pars 9 2 P 2 P q 2 P 2 P q
) 1 , 3 . 3
—Roq PRMM+ 2 RygRsRP%+ Ry " RP1AM— 2 Ry R "RPIM Ry ™ RPTA"— 2 Ry R, "RP1A"
—RpqrsRPSIGMM— IR, (RP™", (15)
1 . ' . . ' .
s S Wa= 2R, IR, M+ 2Ry R M = 2Ry PR, MM+ Ry R Ry TRP TS
pmrn;q Ppamrsn 1 PP ars;tamn 1 pqrt;symn n mp pgr
_Zqu;rR ' _qurs R _Equrs Rt g _Equrs;tR g _ZRp q rR
: . 1
_ 2qurn,rqum+ 2Rpm;quprqn+ Rpmqr ,nSRpsqr+ RmeqrsanSQI’_ Equrs;[qutrsgmn
1 ) 1 1 .
_EDanqupmqr+ qurs,anpmrs_ E|:|Rl:)r1‘1qul'Jl'1qI’_|_ 2quRr ps qursn+§qurS,pthtrsgmn
1
_ERPqust PRITSGM-2R,, PRI, (16)
iiw _ _6R n;rR mpq;s_6R n qusmr_3R mR I’anqSt_3R n I‘quSm_sR m erqsn
g2 9mn 9 pgr s par ;s pgr Mst par ;s par ;s
. . 1
_ 3anqr,pqursm_ 3Rpmqr ,pSRqrsn+§qurthu qurstu’ (17)
and
1 o _ m;pp rgn;s n ppmrsq ppamrn;s Ppgnrm;s 3 m n psqr
gT/2_5gmnW10_3qur R —|—3qur <R +3qurs R * +3qurs R b _ERP q +sR
_ER n m Rpsqr+§R n gr Rpsqm+§R m r Rpsqn_3R mR q ansrt+§R n qumrs
2P qrs 27 par s 27 ar s par Ms t 2 par s
—ER ;qupmrn+§R m qunrs_ﬁR qupnrm_FlR R, P 'Ratsu 18
2 ‘pars 2 'par s 2 ‘pars 2 Tparstt u ' ( )

As there are numerous identities involving the Riemann tensor, its covariant derivatives and contractions, the T@pg, of

is, of course, not unique and depends on adopted simplification strategies. Here we presented our results in the form that we
have found useful in the further calculations. It should be noted that the resulting renormalized stress-tensor of the massive
scalar field depends on the coupling constant in a complicated way, and in a general spacetime it divides naturally into four

terms:
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TABLE I. The coefficientsa(® for the massive scalar, spinor, Inspection of Eqs(9)—(18) shows that variational deriva-

and vector field.

s=0 s=1/2 s=1
1 1 3 27
(s) . el 2 et
“ 28 5858 140 280
o 1 1 9
140 14 28
1 3 1 5
(s L = _ 2
“ (6 5) 432 72
o 1 ( 1 g) L 31
3016 90 60
o Ly BRA Y
30\ 6 720 10
o0 8 BER
945 378 63
o 2 a7 U
315 630 105
© 1 19 61
CYB RN JR— R
1260 630 140
© 17 29 67
ag —_— —_— —_——_—
7560 3780 2520
(s) 1 1 1
i T - = a
270 54 18
b 1 1 (1)b 1 1)2 (2)b
<Ta>ren=§) 5_6 T a+§ 5_5 T a
1 3
+| é- E) TEb LT (19
where
T(l)ab: -1/2 We—W,), (20)
96m2m2Y  ggy s WA
1 o
T(Z)ab_ —-1/2 W , (21)
96m2m2°  8ap
1 )
T(S)ab_ —-1/2 W. , (22)
96m2m2°  8ap
T(4)ab_ gl/Z( B Wl as 4 W2
9672m? ég 69ap
10 P
+ ai—W,; |, 23
2 aig ) (23
and
1 '3

tives of W; andWS3;, with respect to the metric tensor vanish
in R=0 geometries, and, additionally, that\f,, W,, Wj,
andW- vanish for the Ricci-flat geometries. Moreover, one
has important simplifications of the general stress-energy
tensor for the conformally coupled massive fields as there is
no need to comput@1)ab T()ab and T(3)2b  Finally we
observe that the analogous expression of the stress-energy
tensor of the quantized massive spinor and vector fields dif-
fers only by the numerical coefficients . Inserting appro-
priate coefficients listed in the Table | into EJ), one may
easily generalize our discussion to the fields of higher spins.
Note however, that to obtain the appropriate result for the
neutral spinor field one has to multiply the renormalized ef-
fective action by the factor 1/2.

lll. ELECTRICALLY CHARGED NONLINEAR BLACK
HOLE

As is well known the Reissner-Nordstroline element is
the only static and asymptotically flat solution of the
Einstein-Maxwell equations representing a black hole of
massM and electric charge. The appropriate line element
has the form

ds?=—U(r)dt?+V~(r)dr?+r?(sifod >+ d6?),
(25)

where the metric functiong (r) andV(r) are given by

2

2M e
U =Vv(ry=1—- —+ —. (26)
r r2

Because of its simplicity the RN solution may be studied
analytically; fore?><M? the equatiorge,=0 has two posi-
tive roots
r.=M=(M2—e?)%2 (27

and the larger root represents the location of the event hori-
zon, whiler _ is the inner horizon. In the limi¢?=M?2 ho-
rizons merge at =M, and the RN solution degenerates to
the extremal one. The singularity of the RN line element that
one encounters at=0 is a nonremovable curvature singu-
larity, while those at .. are merely spurious singularities that
may be easily removed by a suitable choice of coordinates.

Recent interest in the nonlinear electrodynamics is par-
tially motivated, in addition to a natural curiosity, by the fact
that the theories of this type frequently arise in modern the-
oretical physics. For example, they appear as effective theo-
ries of string or M theory. Moreover, one expects that it
should be possible to construct solutions to the coupled sys-
tem of the Einstein field and equations of the nonlinear elec-
trodynamics, which may be interpreted as representing glo-
bally regular black hole geometries, avoiding thus the
singularity problem. As the nonlinear electrodynamics in the
weak field limit coincides with the Maxwell theory, one ex-
pects that the appropriate solution should approach at large
distances the RN solution.
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An interesting solution of this type, representing space- M
time of the regular black hole with mass and charges has 2
been constructed recently by Aydeato and Garai[17].

The appropriate line element is given by E85) with 1.5

e2
1—tan)’(m”. (28) 1

For e=0 the ABG solution reduces to the Schwarzschild 0.5
solution; for small values of the charge it differs from the
Reisner-Nordsinm solution by terms of orde©(e®). At /M
large distances the metric structure of E28) also closely 02 04 06 08

resembles that of the RN solution. Indeed, expandirg)

in a power series one concludes that the ABG solution be- FIG. 1. The location ofr, (upper b_ranche)sand - (lower
: branchey of the RN and ABG geometries as a functionesivi.
haves asymptotically as

The curve representing horizons of the ABG black hole is shifted to

2M
U(r)=V(r)=1—T

2

6 the right with respect to the one which has been determined in the
U(r):\/(r):l_z_M+e__e— —1. (29 RN spacetime.
ror2 12mM%r* &)
merge at
Instead of referring to numerical calculations at this stage
of analyses of the ABG geometry, we show that although the AW(1/e)
metric coefficientU(r) is a complicated function of, the Xextr:1+W(1/e)' (36)

location of the horizons may be elegantly expressed in terms

of the Lambert functiong18]. Indeed, making use of the whereW(s) is a principal branch of the Lambert function
substitutionr =Mx and e®’=q?M?, and subsequently intro- \W(0,s). Numerically one has

ducing a new unknown functiow by means of the relation

Xextr: 0871 (37)
4092
X=— > (30 and
4W—q
one arrives at &'21.056. (38
2
expW)W= — qZexp(q2/4). (31  Inspection of Eqs(33) and(34) shows an interesting feature
of the ABG geometry: the black hole solution exists fpr
Since the Lambert function is defined as greater than the analogous ratio of the parameters of the RN
solution.
exgW(s)JW(s)=s, (32 The location ofr, andr_ as a function ofg for the

charged black holes of both types is displayed in Fig. 1; its
one concludes that the location of the horizons as a functionumerical values for some characteristic valuegepfM are
of g=|e|/M, is given by the real branches of the Lambertpresented in Table II. Inspection of the figure shows that
functions locations of the event horizons of the RN and ABG solutions
are almost indistinguishable for, approximatelje|/M
49? =0.7, whereas the differences between the inner horizons
2 (33 are more prominent. The latter differences are irrelevant here
4W[0,— ZGXD(QZM)}—QZ as in our analyses we shall confine ourselves to the static
region exterior to the event horizon. Generally, for a gigen
and r, of the RN black hole is always greater than of the
ABG geometry.

Xp=—

402
q2
-1,- Zexp(q2/4)

(34 TABLE Il. Location of r, andr_ of ABG and RN black holes
—q? for exemplar values dfe|/M.

X =—
4w

le//M  r_/M (ABG) r./M (ABG) r_/M (RN) r./M (RN)

The functionsW(0,s) and W(—1,s) are the only real

branches of the Lambert function with the branch point at0.10 0.001 1.995 0.005 1.995
s=—1/e, wheree is the base of natural logarithms. The 0.50 0.060 1.866 0.134 1.866
horizonsr ;. andr _ for 0.95 0.422 1.356 0.688 1.312
extremal 0.871 0.871 1 1
le|l/M=2W"41/e), (35
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We remark here that the global structure of the ABGSchwarzschild value 8M whereas in the extremality limit
spacetime is similar to that of RN, with one notable distinc- 3, tends to infinity. As the Hawking temperature is propor-
tion. Simple analysis shows that the curvature invariants ofional to the inverse of the perigf, one concludes that in
the curvature tensoR Ricci?, and Riem are regular as the extremality limit the Hawking temperature of the ABG
—0, and, moreover, other differential invariants of the Rie-black hole vanishes. Moreover, closer analysis indicates that
mann tensor and its covariant derivatives also exhibit regufor a givene andM the ABG black hole is hotter than its RN
larity there. One concludes therefore that the ABG geometrgounterpart characterized by the same values of the param-
for q=gey represents the regular black hole solution. Whileeters. Of course, as expected, for small electric charges both
this property of the ABG solution is not surprising it should temperatures are practically indistinguishable.
be remembered that earlier efforts have been in unsuccessful

in this regard. IV. RENORMALIZED STRESS-ENERGY TENSOR IN THE
By means of the Wick rotation one obtains the Euclidean SPACETIME OF ELECTRICALLY CHARGED BLACK
version of Eq.(25) with Eq. (28), which has no conical sin- HOLE

gularity provided the time coordinate is periodic with the

; ; In this chapter the method described in Sec. Il is used to
period given by

construct the renormalized stress-energy tensor of the quan-
du\ -1 tized massive scalar fields in the ABG and extremal ABG

By=4m lim [U(r)Vl(r)]l’z(d—) (39  spacetimes in the region exterior to the event horizon. As

r—=ry there are important simplifications f@= 1/6 we shall con-

. . . sider only the conformal coupling.
Making use of elementary properties of the hyperbolic func- The analogous tensor in the RN geometry has been evalu-

tions one has ated in Ref[8] by means of the sixth-order WKB approxi-
1 o2 ; -1 mation of the solution to the scalar field equation and the
Br=4m —— (1——*) _ .
r~ r2m aM Abel-Plana formula. This result has been rederived and ex-
tended to the case of other spins, using simplified version of

(40)  summation thus obtained mode functions by means of the
We recall also that analogous period of the Euclideanize@QS.(19)_(24) valid in the spacetimes with vanishing curva-

RN geometry is given by ture scalaf16].
5\ -1 Calculating the components of the Riemann tensor, its
Bu=4m Z_M_zi (41) contractions and required covariant derivatives, inserting the
H ri r3+ ' results into Eqs(9)—(18), performing appropriate simplifica-

tions, and finally constructing the renormalized stress-energy
In the limit e—0 both Egs.(40) and (41) tend to the tensor, after rather lengthy calculations one has

1 t 7,6 2\ 15,5 2n 2 2 Ann b4
(T o= — {576yM r8(— 626yM + 285 ) — 57656°M 5r 3(170y2M 2 — 669y M + 270r2) + 485e*M 4r [ 186( — 47
va t/re

+1818) y*M 2+ (3967— 381328+ 341658%)Mr + 852Q8r 2]+ 126e®M 2r2[ 22M?(343182+ 4730783 — 2976

—322648)+Mr(2824+527128— 5892782 — 790683° + 824593*) + 59048( — 2+ 38%)r?]

—965e®M3r3[6(— 1297 2838+ 35763%) y°M 2+ (6730- 59938 — 2019082+ 1945B°)Mr

—14552(1—38%)]— 126e*™Mr[2y°M?(1302— 22538 — 121873°+ 24858°+ 12449B%)

—Mr (2524 46538— 1893(08%+ 2342(83+ 1893(3* — 212918°) + 298 2 — 1582+ 158%)r?]

+ 814 2y°M?(693+ 46293 — 537Q8% — 1949Q3°+ 47458*+ 154096°) — 3Mr (231+ 27203 — 46453°

— 960033+ 127856+ 72008°— 86913°) + 1208r2(17— 6082+ 45384 ]}, (42)
%(T[)reﬁ 4032yM8(22yM — 15r)r8+ 5%e1?y[ (270 5588 — 150082+ 206083+ 135084 — 16228°)M

—15(9— 5082+ 458%)r |+ 126€°r { — 48M*r*(478y*M2—391yMr + 54r2) + 4€?’M3r3[ 6(101+ 8738) y>M?

—(707+31483—38558%)Mr +4728r%]+ e®Mr[ 2( — 544— 13048+ 95782+ 204133) y>M?

+1(392+4083— 17178°— 61283+ 152B*)M + 408r (2—38%) | — 8e*M?r?[ 6( — 73+ 358+ 222B?) y>M?

+r(170-3878—5108%+ 7278%)M + 11(3B°— 1)r?]+ e¥[ 2(18+ 4078+ 4418%— 487B%— 5518%) y°M?

+r1(4—2878—30B%+ 6768+ 303*—3938°)M + 2(2— 1582+ 158%)r?]}, (43)
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and

1 6 7 6 2 5.5 20/ 2 2
~Todrer= 576YM7(734yM — 318 )r®+ de*{ — 576°r*(2202y°M >~ 1313yMr + 162

+48e°M4r4[6(1399%+37778) y*°M?+r(—3353- 109143+ 1426 78°)M + 19763r2]
—12e5M2r2[2(—202— 11983+ 74982+ 21618%) y*M?+r (154+ 11843 — 22278 — 17768°+ 26658*)M
+92B8(—2+3B%)r2]—48e*M3r3[6( — 91+ 6498+ 104282) y*M 2+ (873— 23088 — 261932+ 40548°)M
+206 —1+3B2)r?]+12e8Mr[2(80— 5198 — 11693+ 108983+ 17558%) y°M?

+r(—176+ 6398+ 13208%2— 271633 — 132Q3%+ 22533°)M +20(2 — 1582+ 158*)r?]

— el 2(129+ 4418 — 159082 — 275083+ 21058* + 30018°) y°M?2

+3r(—43-2728+7818%+ 9608°— 200568* — 7208°+ 12998°%)M + 4 3( 17— 6082+ 458*)r2]}, (44)
where
[
a” 1=96m’m?x 6048M °r 15, (45 and
eZ 0_ 1 2,4 3,3
B:tanhZMr , (46) Co=— W(3044 e"—220M°r
y=1-8, 47 —10356Me*+3066e°— 4884 3M e?+ 9909 2M 2e?
and +945\%r4+ 486 %e?). (52)
s=1+3. (48) Since we are interested in the conformally coupled massive

scalar fields, the exact form of thi2? tensor is irrelevant.
The obtained tensor is, as expected, covariantly conserved, Now, we shall address the question of how the differences
and as could be easily verified in the lineit= 0, it reduces to  Petween the geometry of the black hole spacetimes con-
the stress-energy tensor constructed in the Schwarzschiffructed within the framework of the Einstein-Maxwell
spacetime by Frolov and Zel'nikov. theory, on the one hand, and the nonlinear electrodynamics

Equations(8)—(18) may be employed also in the RN ge- coupled to general relativity on the other, are reflected in the

ometry. Since the scalar curvature is zero there, B&H#P overall behavior of the components of the stress-energy ten-
and T2 vanishes, and the resulting tensor exhibits simplesors. To answer this, let us analyze numericlly) e, in
linear dependence on the coupling constant. Indeed, repedtoth cases. The results of our calculations are presented
ing the calculations for the line eleme(®6), one hag8,16]  graphically in Figs. 2—10. The plots of the time, radial, and

angular components of the stress-energy tensor of the quan-

1
(D@=c+ |- 3ot @ ——
where 10
8
t 1 6 4.2 2,4 6
Ci=— ——————(1248%-810"e?+ 858\ %r ur,
302407°m?r 12 4 12 14 16 18
+2022%e*— 1878133+ 115Mr3e?+ 230 ?r2e? 2
0

—3084Me?), (50

FIG. 2. This graph shows the radial dependence of the rescaled

componen{TH,.,[A\=90 8*M°®m?#?] of the renormalized stress-
(44465~ 148EMr3e? + 162 e ponent Toren| ]

re m energy tensor of the massive conformally coupled scalar field in the
ABG geometry. From top to bottom the curves are fef/M
1+ 8422e*—19327Me*+ 315M2r4+ 2127 2r 22 =0.95,0.5, and 0.1. In each cakE),e, has its positive maximum
atr=r, and attains negative minimum away from the event hori-
—462M°%r3), (51)  zon.
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}"<Ttt >Ren 7\v<Trr >Ren
17.5
15 10
12.5
10
7.5

r,
2_5&.2 14 16 18 2
0

FIG. 3. This graph shows the radial dependence of the rescaled ) ]
componen{T!) e, [A=90 8M°®m2x2] of the renormalized stress- FIG. 5. This graph shows the radial dependence of the rescaled
energy tensor of the massive conformally coupled scalar field in th&OMPONENt Tt} e[\ =90 8_4M6m2772] of the renormalized stress-
RN spacetime. From top to bottom the curves are [iglfM energy tensor of the massive conformally coupled scalar field in the
=0.95,0.5, and 0.1. In each cakB),e, has its positive maximum Ayon-Beato and Gracia geometry. From top to bottom the curves

atr=r, and attains negative minimun away from the event hori-are for|e[/M=0.95,0.5, and 0.1. In each calE) e has its posi-
zon. tive maximum atr =r, and decreases monotonically with

N B OV

T,
1.2 14 1.6 1.8

tized massive scalar field as a function of thescaled ra- As is seen in Figs. 5-7, the radial component of the
dial coordinate in the spacetimes of ABG and RN blackstress-energy tensor is positive everywhere, and the horizon
holes for three exemplar values of the rdéfyM=0.1, 0.5, values of the radial pressugg={T).en, increases with in-
and 0.95, are supplemented by similar plots drawn for thereasing|e|//M. Of all components of the renormalized
extremal black holes. Inspection of the figures indicates thagtress-energy tensor, the most complicated behavior exhibits
there are striking qualitative similarities between the RN andhe angular preSSUFBg:<Tz>ren (Figs. 8—10. Indeed, for
ABG solutions for a givery. Moreover, for small values of the ABG black hole the angular pressure is positive on the
the ratio the curves are practically undistinguishable fromeyent horizon foffe|/M <0.937 and negative for larger val-
each other and, as expected, noteworthy differences occygs of the ratio. Moreover, far=< 0.903,(T%),e, has a maxi-
only for the black holes at and near the extremality limit. ,,m atr=r, , whereas for larger values the angular pres-
Since at large distances the line elem@® approaches that g ,re has its maximum away from the event horizon.
of the RN, the most interesting region is the neighborhood Oéimilarly, for the RN black holep, is positive for g

the black hole event horizon. From EQ.9) we know that  —( 957 and it has its maximum away from the event horizon
the renormalized stress-energy tensor depends on the cogy; q=0.864.

pling constant¢ in a complicated way, and, therefore, one
should not expect that such similarities occur also in a gen-
eral case.

It could be checked by a direct calculation that

2 -1
Specifically, the dependence ©F}) e, constructed in the im (T8 —(T" 1 ﬂ[l—tamh € }
spacetime of the nonlinear black hole and the RN geometry H,+(< Dren (Tr)ren) r 2Mr
onr/r, for |e[/M=0.1, 0.5, 0.95, are shown in Figs. 2 and (53

3, respectively. In Fig. 4 similar curves are drawn for the

extremal black holes. In the most interesting region, i.e., Ir}emains finite at the event horizon. We observe that since the

the V'C'tn'ty O.f the eyent horizon, the energy densr_[y, DeWitt-Schwinger approximation is local and the geometry
p=—(T)en, is negative and decreases with increasing

e|/M.
| | >\v<Trr >Ren
A<T > Ren 17.5
15
100 12.5
80 10
60 7.5
40 >
20 /1,
. 1.2 14 1.6 1.8
e
1.2 4 1.6 1.8

FIG. 6. This graph shows the radial dependence of the rescaled
FIG. 4. This graph shows the radial dependence of the rescalecomponent T, [A=90 8*M®m2#?] of the renormalized stress-
component{Ti) ., [A=90 8*M®m272] of the renormalized stress- energy tensor of the massive conformally coupled scalar field in the
energy tensor of the massive conformally coupled scalar field. TofRN spacetime. From top to bottom the curves are [g/M
to bottom the curves are respectively for the extremal ABG geom=0.95, 0.5, and 0.1. In each caSé{)ren has its positive maximum
etry and the extremal RN black hole. atr=r_ and decreases monotonically with
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A<T >Ren A<Tg® >Ren
100 75
5
80 25
60 0
_ or
40 2'2 12 14 16 18 2 °
20 75
1/T, -10
12 14 16 18 2

FIG. 9. This graph shows the radial dependence of the rescaled
egomponen(TZ),en[)\zgo 8*M®m?7?] of the renormalized stress-

. ) energy tensor of the massive conformally coupled scalar field in the
energy tensor of the massive conformally coupled scalar field. To 9y y P

to bottom the curves are respectively for the extremal ABG geom N spacetime. From fop to bottom the curves are fiel/M
=0.1,0.5, and 0.95. Fofe|/M=<0.864, (T%,., has its positive
etry and the extremal RN black hole. fe {To)ren b

maximum atr =r , . For larger values of the ratio it approaches its

. . maximum away from the event horizon. Het/M =0.927 the an-
at the event horizon is regular, one expects that the renogyjar pressure vanishesmt .

malized stress-energy tensor is also regular there.

It should be stressed once again that for arbitrary curva- . L ) . . .
ture coupling one has to incorporate also the tefrda? differentiation of the effective action with respect to a metric

T@ab andT(®ab, that may considerably modify the results. t€nsor, has been applied in the spacetime of the nonlinear
Moreover, inspection of the Table | shows that for the neuRlack hole. Since the Reissner-Nordstrdine element and

tral massive spinor and vector fields in the ABG spacetimé?BG solution are practically indistinguishable from each
one has to use the full systei®—(18) while in the geometry other for small values ofe|/M, one expects that this simi-

of the RN black hole, the term®) and(11) do not contrib-  larity should be reflected in the behavior of the renormalized
ute to the final result. stress-energy tensor. Explicit calculations confirm this hy-

pothesis and show that important differences between appro-
priate tensors(Tg)ren, evaluated in the spacetime of the RN
black hole and that of ABG occur, as expected, near the
In this paper we have constructed the renormalized stres§xtremality limit. For smallg constructed tensors are practi-
energy tensor of the massive conformally coupled scalagally indistinguishable. Moreover, analyses of the Hawking
fields in the spacetime of the electrically charged black holetemperatures indicate that for a given mass and electric
which is the solution of the coupled Einstein equation andcharge, the ABG black hole is hotter than its RN black hole
the equation of nonlinear electrodynamics. A regular solucounterpart. Since notable differences appear for tempera-
tion of this type has been recently given by AyBeato and tures close to zero one can ascribe this to the different ways
Garca. The method employed here is based on the observ&f approaching the extremality limits.
tion that the first order effective action could be expressed in Apart from obvious extensions of our results to the mas-
terms of the traced coincidence limit of the coefficieqt ~ Sive scalar fields with arbitrary curvature coupling and to

The genera(T%),e,, Which has been obtained by functional fields of higher spins, let us mention an interesting and im-
portant direction for future work. It is a problem of the back

reaction of the quantized fields upon spacetime geometry of

FIG. 7. This graph shows the radial dependence of the rescal
component{T})en[A=90 8'M®m?#?] of the renormalized stress-

V. CONCLUDING REMARKS

A<Te® . X .
< ; 7Ren the ABG black hole, which may be studied perturbatively by

6 7~<Tee >Ren

4 0
r,
2
_5o 1 14 16 18
0 -75
r,
12 14 1.6 1.8 2 -100
. . -125
FIG. 8. This graph shows the radial dependence of the rescaled 150
componentT% .,[A=90 8*M®m?72] of the renormalized stress- -

energy tensor of the massive conformally coupled scalar field in the

ABG geometry. From top to bottom the curves are fe[/M FIG. 10. This graph shows the radial dependence of the rescaled
=0.1,0.5, and 0.95. Foe|//M=<0.903, (T%) e has its positive componentT4).,[A=90 8'M®m27?] of the renormalized stress-
maximum atr=r , . For larger values of the ratio it approaches its energy tensor of the massive conformally coupled scalar field. Top
maximum away from the event horizon. Het/M =0.937 the an-  to bottom the curves are respectively for the extremal ABG geom-
gular pressure vanishes on the event horizon. etry and the extremal RN black hole.
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means of the semiclassical Einstein field equations with a It should be stressed that the DeWitt-Schwinger expan-
source term given by the renormalized stress-energy tensesion is local, and, therefore, does not describe particle cre-
of the quantized massive field and the classical stress-energgion which is a nonperturbative and nonlocal phenomenon.
tensor of the background nonlinear electromagnetic field. T@he method also breaks down in strong or rapidly varying
guarantee the renormalizabilty at that level, the semiclassicgravitational fields, and, moreover, the massless limit leads
equations should contain higher derivative geometric termgo the nonphysical divergences. However, it is expected that
It is especially important in view of the recent claim that thefor sufficiently massive scalar field the DeWitt-Schwinger
semiclassical zero temperature RN black holes do not existpproximation provides a good approximation of the exact
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