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Vacuum polarization of massive scalar fields in the spacetime
of an electrically charged nonlinear black hole

Jerzy Matyjasek*
Institute of Physics, Maria Curie-Skłodowska University, pl. Marii Curie - Skłodowskiej 1, 20-031 Lublin, Poland

~Received 27 October 2000; published 12 March 2001!

The approximate renormalized stress-energy tensor of the quantized massive conformally coupled scalar
field in the spacetime of an electrically charged nonlinear black hole is constructed. It is achieved by functional
differentiation of the lowest order of the DeWitt-Schwinger effective action involving the coincidence limit of
the Hadamard-Minakshisundaram-DeWitt-Seely coefficienta3. The result is compared with the analogous
results derived for the Reissner-Nordstro¨m black hole. It is shown that the most important differences occur in
the vicinity of the event horizon of the black hole near the extremality limit. The structure of the nonlinear
black hole is briefly studied by means of the Lambert functions.
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I. INTRODUCTION

For the quantized massive fields in the large mass lim
i.e., when the Compton length is much smaller than the ch
acteristic radius of a curvature, the nonlocal contribution
the effective action can be neglected, and the series ex
sion inm22 of the renormalized effective actionWR may be
easily constructed with the aid of the DeWitt-Schwing
method @1,2#. As the renormalization prescription require
absorption of the first three terms of the series into the q
dratic classical gravitational action, thenth term of WR is
proportional to the integrated coincidence limit
the Hadamard-Minakshisundaram-DeWitt-Seely coeffici
~HMDS! an13. Unfortunately, the complexity of the coeffi
cients @an# rapidly increases withn, and consequently on
expects that the applicability of the series expansion is c
fined to a first and perhaps a second nonvanishing term

Having constructed a first orderWR , the renormalized
stress-energy tensor~which is the most important characte
istic of the quantized field in the curved spacetime! may be
obtained in a standard way, i.e., by functional differentiat
the constructed effective action with respect to the me
tensor. This method has been successfully applied in ca
lations of the approximate renormalized stress-energy te
of the quantized massive scalar, spinor, and vector field
the vacuum type-D geometries by Frolov and Zel’nik
@3–7#.

A different method, based on the WKB approximation
the solutions of the massive scalar field equation in a gen
spherically symmetric spacetime, and the summation t
obtained modes by means of the Abel-Plana formula,
been invented by Anderson, Hiscock, and Samuel and
plied in the context of the Reissner-Nordstro¨m ~RN! space-
time @8#. Their method is equivalent to the Schwinge
DeWitt expansion: to obtain the lowest~i.e., m22) terms,
one has to use sixth-order WKB approximation. Moreov
numerical calculations reported in Ref.@8# confirmed that the
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DeWitt-Schwinger method provide a good approximation
the renormalized stress-energy tensor of the massive s
field with arbitrary curvature coupling as long as the mass
the field remains sufficiently large. This approach and
modifications has been employed in various contexts in R
@9–15#.

Recently, extending the results of Frolov-Zel’nikov, w
have constructed a general formula describing the appr
mate renormalized̂Ta

b& ren of the quantized massive scala
spinor, and vector fields in arbitrary spacetime. The res
have been presented for the class of geometries with van
ing curvature scalar, and subsequently applied in the sp
time of the RN black hole and in the spacetime that could
obtained by expanding its near horizon geometry into
whole manifold @16#. Our formulas allow, in principle, to
determine the renormalized stress-energy tensor of the m
sive field once the line element has been chosen, altho
the specific calculations may be very tedious. For the qu
tized massive scalar field with arbitrary curvature coupling
the RN spacetime we have reproduced the results of An
son, Hiscock, and Samuel; neutral spinor and vector fie
have not been discussed earlier.

In this paper we shall extend the analyses of Ref.@16# to
the general geometry and construct the renormalized str
energy tensor of the massive quantized scalar field obe
the equation

~2h1jR1m2!f50, ~1!

wherej is the coupling constant andm is the mass of the
field. Since the background geometry is general, the m
direct approach is to use the first nonvanishing term of
renormalized effective action. The advantage of this
proach lies in the purely geometric nature of the approxim
tion that reflects its local nature. Although the construc
result is rather complex, we shall present it in its full leng
because it provides the generic formula from which t
renormalized stress-energy tensor in some physically in
esting cases may be easily obtained. As the effective ac
of the quantized massive scalar field differs form the ana
gous actions constructed for fields of higher spins only
numerical coefficients, one can generalize presented re
©2001 The American Physical Society04-1
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to fields of other spins. It should be emphasized howe
that the method has obvious limitations, and, when applie
rapidly varying or strong gravitational fields it breaks dow
Moreover, its massless limit is contaminated by nonphys
divergences.

Our general formulas will be employed in the calculatio
of ^Ta

b& ren in the geometry of the electrically charged bla
hole, being an exact solution of the coupled system of
Einstein equations and the equations of the nonlinear e
trodynamics recently proposed by Ayo´n-Beato and Garcı´a
~ABG! in Ref. @17#, to which the reader is referred for phys
cal motivations and technical details. Their exact solution
characterized by the electric chargee and the massM, and
may be elegantly expressed in terms of the hyperbolic fu
tions. An important and interesting feature of this solution
its regularity as radial coordinate tends to zero. We sh
show that the structure of horizons of the ABG solution m
by studied by means of the Lambert function@18#, allowing
analytical treatment of the vacuum polarization effects on
event horizon. At large distances their solution behaves
the RN solution. For small and intermediate values of
ratio ueu/M , the location of the event horizonr 1 is close to
the location of the event horizon of the RN black hole; s
nificant differences occur near the extremality limit. It wou
be, therefore, interesting to analyze how the similarities
the line elements are reflected in the behavior of the ren
malized stress-energy tensors.

The renormalized effective action of the massive sca
field involves the terms that are proportional to the first a
third power of j21/6. As the curvature scalar of the R
spacetime vanishes,^Ta

b& ren of the massive scalar field natu
rally divides into the part that describes pure conformal c
pling and an additional local part that is multiplied by
factor j21/6. On the other hand, however, the curvatu
scalar of the ABG geometry does not vanish, and the st
ture of the effective action indicates that the renormaliz
stress-energy tensor of the massive scalar depends on
constantj in a more complicated way. Since the conform
coupling leads to massive simplifications, one expects
the similarities in the renormalized̂Ta

b& ren ~if any! would
appear mainly in this case.

II. THE RENORMALIZED STRESS-ENERGY TENSOR
OF THE QUANTIZED MASSIVE SCALAR FIELD

The renormalized effective action constructed for t
quantized scalar field satisfying Eq.~1! is given by

Wren5
1

32p2 m2E d4xg1/2(
n53

`
~n23!!

~m2!n22
@an#, ~2!

where@an# is the coincidence limit of thenth HMDS coef-
ficient. The first three coefficients of the DeWitt-Schwing
expansiona0 , a1, anda2, which contribute to the divergen
part of the action have to be absorbed in the classical gr
tational action by renormalization of the bare coupling co
stant.

As the rigorous asymptotic analysis of the fundamen
solution is restricted, in general, to the operators defined
08400
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the space with the positive defined metric, we tacitly assu
that all steps that are necessary in construction of the fi
order renormalized stress-energy tensor have been ca
out in an analytically continued Euclidean spacetime. T
analytic continuation to the physical space is performed
the last stage of the calculations.

Calculation of the HDSM coefficients is an extremely l
borious task, and their exact form forn>5 is unknown. The
coefficient@a2#, which is proportional to the trace anoma
of the renormalized stress-energy tensor of the quantiz
massless, and conformally invariant fields, has been ca
lated by DeWitt@1#. The coincidence limit of the coefficien
a3 has been obtained by Gilkey@19,20# whereas the coeffi-
cient @a4# has been calculated by Avramidi@21–24#.

Restricting ourselves to the terms proportional tom22,
one has

Wren5
1

32p2 m2E d4xg1/2@a3#, ~3!

with

@a3#5
b3

7!
1

c3

360
, ~4!

where

b35
35

9
R3117R;pR;p2Rqa;pRqa;q24Rqa;pRpa;q

19Rqabc;pRqabc;p12RhR118h2R28RpqhRpq

2
14

3
RRpqR

pq124Rpq;a
qRpa2

208

9
RpqR

qaRa
p

112hRpqabR
pqab1

64

3
RpqRabR

paqb

2
16

3
RpqR abc

p Rqabc1
80

9
RpqabRc d

p aRqcbd

1
44

9
RpqabRcd

pqRabcd ~5!

and

c352~5j230j2160j3!R32~12j230j2!R;pR;p

2~22j260j2!RhR26jh2R24jRpqR
pq

12jRRpqR
pq22jRRpqabR

pqab. ~6!

Since the coincidence limit of the coefficienta4 is much
more complex one expects that using it in the calculations
the approximate renormalized stress-energy would be a
challenge. However, it still could by of use in the simpl
analyses of the field fluctuation̂f2& ren. Substituting Eqs.
~4!–~6! into Eq. ~3!, integrating by parts and making use
elementary properties of the Riemann tensor, one can red
the number of terms in the renormalized effective action
10 @21#:
4-2



ns and

VACUUM POLARIZATION OF MASSIVE SCALAR . . . PHYSICAL REVIEW D 63 084004
Wren
(1)5

1

192p2m2E d4xg1/2F S 1

2
j22

1

5
j1

1

56DRhR1
1

140
RpqhRpq1S 1

6
2j D 3

R32
1

30S 1

6
2j DRRpqR

pq

1
1

30S 1

6
2j DRRpqabR

pqab2
8

945
Rq

pRa
qRp

a1
2

315
RpqRabR p q

a b 1
1

1260
RpqR cab

p Rqcab

1
17

7560
Rab

pqRpq
cdRcd

ab2
1

270
R p q

a b R c d
p q R a b

c d G
5

1

192p2m2 (
i 51

10

a iWi , ~7!

wherea i are numerical coefficients that stand in front of the geometrical terms.
The renormalized stress-energy tensor is given by the standard relation

2

g1/2

d

dgab
Wren

(1)5^Tab& ren. ~8!

Functionally differentiating the renormalized effective action with respect to the metric tensor, performing simplificatio
necessary symmetrizations, after rather long calculations, one has

1

g1/2

d

dgmn
W15R;mR;n1~hR! ;mn1~hR! ;nm2

1

2
R;pR;pgmn22h2Rgmn22hRRmn, ~9!

1

g1/2

d

dgmn
W25Rpq

;mRpq;n2Rpq
;nRpm;q2Rpq

;mRpn;q1Rpq
;pRqm;n1Rpq

;pRqn;m1~hRp
m! ;np1~hRp

n! ;mp

2h2Rmn2
1

2
Rpq;rR

pq;rgmn2~hRpq!
;qpgmn1Rp q

m;n Rpq1Rp q
n;m Rpq2Rpq

;nqRpm2hRp
nRpm

2hRp
mRpn2Rpq

;mqRpn, ~10!

1

g1/2

d

dgmn
W356R;mR;n16RR;mn1

1

2
R3gmn26R;pR;pgmn26RhRgmn23R2Rmn, ~11!

1

g1/2

d

dgmn
W45R;nRp

m;p1R;mRp
n;p12Rpq

;nRpq;m1R;pRpm;n1R;pRpn;m22R;pRmn;p1RRp
m;np1RRp

n;mp

2RhRmn22R;pRq
p;qgmn22Rpq;rR

pq;rgmn2RRpq
;qpgmn1Rpq

;mnRpq1Rpq
;nmRpq

1R;pqR
pqgmn22hRpqR

pqgmn1
1

2
RRpqR

pqgmn1R;p
nRpm22RRp

nRpm1R;p
mRpn2hRRmn

2RpqR
pqRmn, ~12!

1

g1/2

d

dgmn
W5524R;pRq

mpn;q24R;pRq
npm;q12Rpqrs

;nRpqrs;m22RRp q
m n;qp22RRp q

n m;qp

22Rpqrs;tR
pqrs;tgmn1Rpqrs

;mnRpqrs1Rpqrs
;nmRpqrs22hRpqrsR

pqrsgmn1
1

2
RRpqrsR

pqrsgmn

2RmnRpqrsR
pqrs22RRpqr

nRpqrm22R;pqR
pmqn22R;pqR

pnqm, ~13!
084004-3
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1

g1/2

d

dgmn
W65

3

2
Rpq

;nRpm;q1
3

2
Rpq

;mRpn;q23Rp ;q
m Rpn;q1

3

2
Rpq

;pRqm;n1
3

2
Rpq

;pRqn;m2
3

2
Rpq

;pRr
q;rgmn

2
3

2
Rpq;rR

pr;qgmn1
3

2
Rp q

m;n Rpq1
3

2
Rp q

n;m Rpq2
3

2
Rpq;r

qRprgmn1
3

2
Rpq

;nqRpm2
3

2
hRp

nRpm

1
3

2
Rpq

;mqRpn2
3

2
hRp

mRpn2
3

2
Rpq r

;p Rqrgmn1RpqRr
pRqr23RpqR

pmRqn, ~14!

1

g1/2

d

dgmn
W75Rp

m;pRq
n;q1Rp ;q

n Rqm;p22Rpq
;pRmn;q2Rpq

;nRr
pqm;r2Rpq

;mRr
pqn;r1Rpq;rR

prqm;n

1Rpq;rR
prqn;m22Rpq;rR

pmqn;r12Rpq;rRs
pqr;sgmn2R ;pq

mn Rpq1Rp qr
m ;nrRpq2hRp q

m nRpq

1Rp qr
n ;mrRpq2Rpqrs

;sqRprgmn1
1

2
Rp ;q

n pRqm1
1

2
Rp q

n;p Rqm1
1

2
Rp ;q

m qRqn1
1

2
Rp q

m;p Rqn

2Rpq
;qpRmn1

1

2
RpqRrsR

prqs1Rpq r
;n Rprqm2

3

2
RpqRr

nRprqm1Rpq r
;m Rprqn2

3

2
RpqRr

mRprqn

2Rpq;rsR
psqrgmn2hRpqR

pmqn, ~15!

1

g1/2

d

dgmn
W8522Rp ;q

m Rr
pqn;r12Rp ;q

m Rr
npq;r22Rpq

;pRr
nqm;r1Rpqrs

;nRpqrm;s2Rpqr ;s
m Rpqrn;s

22Rpq;rR
pmrn;q2Rpqrs

;pRqmrs;n2
1

2
Rpqrs

;pRt
qrs;tgmn2

1

2
Rpqrs;tR

pqrt;sgmn22Rp q r
n m;p Rqr

22Rpqr
n;rpRqm12Rp ;qr

m Rprqn1Rp qr s
m ;n Rpsqr1Rp

mRqrs
nRpsqr2

1

2
Rpqrs;t

qRptrsgmn

2
1

2
hRp qr

n Rpmqr1Rpqrs
;nqRpmrs2

1

2
hRp qr

m Rpnqr12RpqRr s
p mRqrsn1

1

2
Rpqrs t

;p Rqtrsgmn

2
1

2
RpqRrst

pRqtrsgmn22Rpq;r
pRqmrn, ~16!

1

g1/2

d

dgmn
W9526Rpqr

n;rRs
mpq;s26Rpqr ;s

n Rpqsm;r23Rpqr
mRst

rnRpqst23Rpqr ;s
n rRpqsm23Rpqr ;s

m rRpqsn

23Rp qr s
n ;p Rqrsm23Rp qr s

m ;p Rqrsn1
1

2
RpqrsRtu

pqRrstu, ~17!

and

1

g1/2

d

dgmn
W1053Rpqr

m;pRs
rqn;s13Rpqr ;s

n Rpmrs;q13Rpqrs
;pRqmrn;s13Rpqrs

;pRqnrm;s2
3

2
Rp q ;rs

m n Rpsqr

2
3

2
Rp q ;rs

n m Rpsqr1
3

2
Rp qr s

n ;r Rpsqm1
3

2
Rp qr s

m ;r Rpsqn23Rpqr
mRs t

q nRpsrt1
3

2
Rpqr ;s

n qRpmrs

2
3

2
Rpqrs

;sqRpmrn1
3

2
Rpqr ;s

m qRpnrs2
3

2
Rpqrs

sqRpnrm1
1

2
RpqrsRt u

p rRqtsu. ~18!

As there are numerous identities involving the Riemann tensor, its covariant derivatives and contractions, the form o^Tb
a& ren

is, of course, not unique and depends on adopted simplification strategies. Here we presented our results in the form
have found useful in the further calculations. It should be noted that the resulting renormalized stress-tensor of the
scalar field depends on the coupling constant in a complicated way, and in a general spacetime it divides naturally
terms:
084004-4
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^Ta
b& ren5

1

30S j2
1

6DT(1)
a
b1

1

2 S j2
1

6D 2

T(2)
a
b

1S j2
1

6D 3

T(3)
a
b1T(4)

a
b , ~19!

where

T(1)ab5
1

96p2m2
g21/2

d

dgab
~W52W4!, ~20!

T(2)ab5
1

96p2m2
g21/2

d

dgab
W1 , ~21!

T(3)ab5
1

96p2m2
g21/2

d

dgab
W3 , ~22!

T(4)ab5
1

96p2m2
g21/2S b

d

dgab
W11a2

d

dgab
W2

1(
i 56

10

a i

d

dgab
Wi D , ~23!

and

b5
1

252
2

j

30
. ~24!

TABLE I. The coefficientsa i
(s) for the massive scalar, spino

and vector field.

s 5 0 s 5 1/2 s5 1

a1
(s) 1

2
j22

1

5
j1

1

56
2

3

140
2

27

280

a2
(s) 1

140

1

14

9

28

a3
(s) S162jD3 1

432
2

5

72

a4
(s)

2
1

30S 1

6
2j D 2

1

90

31

60

a5
(s) 1

30S 1

6
2j D 2

7

720
2

1

10

a6
(s)

2
8

945
2

25

378
2

52

63

a7
(s) 2

315

47

630
2

19

105

a8
(s) 1

1260

19

630

61

140

a9
(s) 17

7560

29

3780
2

67

2520

a10
(s)

2
1

270
2

1

54

1

18
08400
Inspection of Eqs.~9!–~18! shows that variational deriva
tives ofW1 andW3, with respect to the metric tensor vanis
in R50 geometries, and, additionally, that ofW2 , W4 , W6,
andW7 vanish for the Ricci-flat geometries. Moreover, o
has important simplifications of the general stress-ene
tensor for the conformally coupled massive fields as ther
no need to computeT(1)ab, T(2)ab, and T(3)ab. Finally we
observe that the analogous expression of the stress-en
tensor of the quantized massive spinor and vector fields
fers only by the numerical coefficientsa i . Inserting appro-
priate coefficients listed in the Table I into Eq.~7!, one may
easily generalize our discussion to the fields of higher sp
Note however, that to obtain the appropriate result for
neutral spinor field one has to multiply the renormalized
fective action by the factor 1/2.

III. ELECTRICALLY CHARGED NONLINEAR BLACK
HOLE

As is well known the Reissner-Nordstro¨m line element is
the only static and asymptotically flat solution of th
Einstein-Maxwell equations representing a black hole
massM and electric chargee. The appropriate line elemen
has the form

ds252U~r !dt21V21~r !dr21r 2~sin2udf21du2!,
~25!

where the metric functionsU(r ) andV(r ) are given by

U~r !5V~r !512
2M

r
1

e2

r 2
. ~26!

Because of its simplicity the RN solution may be studi
analytically; for e2,M2 the equationg0050 has two posi-
tive roots

r 65M6~M22e2!1/2, ~27!

and the larger root represents the location of the event h
zon, whiler 2 is the inner horizon. In the limite25M2 ho-
rizons merge atr 5M , and the RN solution degenerates
the extremal one. The singularity of the RN line element t
one encounters atr 50 is a nonremovable curvature sing
larity, while those atr 6 are merely spurious singularities th
may be easily removed by a suitable choice of coordinat

Recent interest in the nonlinear electrodynamics is p
tially motivated, in addition to a natural curiosity, by the fa
that the theories of this type frequently arise in modern t
oretical physics. For example, they appear as effective th
ries of string or M theory. Moreover, one expects that
should be possible to construct solutions to the coupled
tem of the Einstein field and equations of the nonlinear el
trodynamics, which may be interpreted as representing
bally regular black hole geometries, avoiding thus t
singularity problem. As the nonlinear electrodynamics in t
weak field limit coincides with the Maxwell theory, one ex
pects that the appropriate solution should approach at la
distances the RN solution.
4-5
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An interesting solution of this type, representing spa
time of the regular black hole with massM and chargee has
been constructed recently by Ayo´n-Beato and Garcı´a @17#.
The appropriate line element is given by Eq.~25! with

U~r !5V~r !512
2M

r F12tanhS e2

2Mr D G . ~28!

For e50 the ABG solution reduces to the Schwarzsch
solution; for small values of the charge it differs from th
Reisner-Nordstro¨m solution by terms of orderO(e6). At
large distances the metric structure of Eq.~28! also closely
resembles that of the RN solution. Indeed, expandingU(r )
in a power series one concludes that the ABG solution
haves asymptotically as

U~r !5V~r !512
2M

r
1

e2

r 2
2

e6

12M2r 4
1OS 1

r 6D . ~29!

Instead of referring to numerical calculations at this sta
of analyses of the ABG geometry, we show that although
metric coefficientU(r ) is a complicated function ofr, the
location of the horizons may be elegantly expressed in te
of the Lambert functions@18#. Indeed, making use of th
substitutionr 5Mx and e25q2M2, and subsequently intro
ducing a new unknown functionW by means of the relation

x52
4q2

4W2q2
, ~30!

one arrives at

exp~W!W52
q2

4
exp~q2/4!. ~31!

Since the Lambert function is defined as

exp@W~s!#W~s!5s, ~32!

one concludes that the location of the horizons as a func
of q5ueu/M , is given by the real branches of the Lambe
functions

x152
4q2

4WF0,2
q2

4
exp~q2/4!G2q2

~33!

and

x252
4q2

4WF21,2
q2

4
exp~q2/4!G2q2

. ~34!

The functions W(0,s) and W(21,s) are the only real
branches of the Lambert function with the branch point
s521/e, where e is the base of natural logarithms. Th
horizonsr 1 and r 2 for

ueu/M52W1/2~1/e!, ~35!
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e
e
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t

t

merge at

xextr5
4W~1/e!

11W~1/e!
, ~36!

where W(s) is a principal branch of the Lambert functio
W(0,s). Numerically one has

xextr50.871 ~37!

and

ueu
M

51.056. ~38!

Inspection of Eqs.~33! and~34! shows an interesting featur
of the ABG geometry: the black hole solution exists forq
greater than the analogous ratio of the parameters of the
solution.

The location ofr 1 and r 2 as a function ofq for the
charged black holes of both types is displayed in Fig. 1;
numerical values for some characteristic values ofueu/M are
presented in Table II. Inspection of the figure shows t
locations of the event horizons of the RN and ABG solutio
are almost indistinguishable for, approximately,ueu/M
&0.7, whereas the differences between the inner horiz
are more prominent. The latter differences are irrelevant h
as in our analyses we shall confine ourselves to the s
region exterior to the event horizon. Generally, for a givenq,
r 1 of the RN black hole is always greater thanr 1 of the
ABG geometry.

FIG. 1. The location ofr 1 ~upper branches! and r 2 ~lower
branches! of the RN and ABG geometries as a function ofe/M .
The curve representing horizons of the ABG black hole is shifted
the right with respect to the one which has been determined in
RN spacetime.

TABLE II. Location of r 1 andr 2 of ABG and RN black holes
for exemplar values ofueu/M .

ueu/M r 2/M ~ABG! r 1/M ~ABG! r 2/M ~RN! r 1/M ~RN!

0.10 0.001 1.995 0.005 1.995
0.50 0.060 1.866 0.134 1.866
0.95 0.422 1.356 0.688 1.312
extremal 0.871 0.871 1 1
4-6
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We remark here that the global structure of the AB
spacetime is similar to that of RN, with one notable distin
tion. Simple analysis shows that the curvature invariants
the curvature tensorR Ricci2, and Riem2 are regular asr
→0, and, moreover, other differential invariants of the R
mann tensor and its covariant derivatives also exhibit re
larity there. One concludes therefore that the ABG geome
for q<qextr represents the regular black hole solution. Wh
this property of the ABG solution is not surprising it shou
be remembered that earlier efforts have been in unsucce
in this regard.

By means of the Wick rotation one obtains the Euclide
version of Eq.~25! with Eq. ~28!, which has no conical sin
gularity provided the time coordinate is periodic with th
period given by

bH54p lim
r→r 1

@U~r !V21~r !#1/2S dU

dr D 21

. ~39!

Making use of elementary properties of the hyperbolic fu
tions one has

bH54pF 1

r 1
2

e2

r 1
2 M

S 12
r 1

4M D G21

. ~40!

We recall also that analogous period of the Euclideani
RN geometry is given by

bH54pS 2M

r 1
2

2
2e2

r 1
3 D 21

. ~41!

In the limit e→0 both Eqs. ~40! and ~41! tend to the
08400
-
f

-
-

ry

ful

n

-

d

Schwarzschild value 8pM whereas in the extremality limi
bH tends to infinity. As the Hawking temperature is propo
tional to the inverse of the periodbH one concludes that in
the extremality limit the Hawking temperature of the AB
black hole vanishes. Moreover, closer analysis indicates
for a givene andM the ABG black hole is hotter than its RN
counterpart characterized by the same values of the pa
eters. Of course, as expected, for small electric charges
temperatures are practically indistinguishable.

IV. RENORMALIZED STRESS-ENERGY TENSOR IN THE
SPACETIME OF ELECTRICALLY CHARGED BLACK

HOLE

In this chapter the method described in Sec. II is used
construct the renormalized stress-energy tensor of the q
tized massive scalar fields in the ABG and extremal AB
spacetimes in the region exterior to the event horizon.
there are important simplifications forj51/6 we shall con-
sider only the conformal coupling.

The analogous tensor in the RN geometry has been ev
ated in Ref.@8# by means of the sixth-order WKB approx
mation of the solution to the scalar field equation and
summation thus obtained mode functions by means of
Abel-Plana formula. This result has been rederived and
tended to the case of other spins, using simplified version
Eqs.~19!–~24! valid in the spacetimes with vanishing curv
ture scalar@16#.

Calculating the components of the Riemann tensor,
contractions and required covariant derivatives, inserting
results into Eqs.~9!–~18!, performing appropriate simplifica
tions, and finally constructing the renormalized stress-ene
tensor, after rather lengthy calculations one has
1

ga
^Tt

t& ren52$576gM7r 6~2626gM1285r !2576de2M5r 5~170g2M22669gMr 1270r 2!148de4M4r 4@186~247

1181b!g2M21~3967238132b134165b2!Mr 18520br 2#112de8M2r 2@2g2M2~3431b2147307b322976

232264b!1Mr ~2824152712b258927b2279068b3182459b4!15904b~2213b2!r 2#

296de6M3r 3@6~212972283b13576b2!g2M21~673025993b220190b2119453b3!Mr

21455r 2~123b2!#212de10Mr @2g2M2~130222253b212187b212485b3112449b4!

2Mr ~252424653b218930b2123420b3118930b4221291b5!1298~2215b2115b4!r 2#

1de12@2g2M2~69314629b25370b2219490b314745b4115409b5!23Mr ~23112720b24645b2

29600b3112785b417200b528691b6!1120br 2~17260b2145b4!#%, ~42!

1

gMa
^Tr

r& ren54032gM6~22gM215r !r 61d2e12g@~2702558b21500b212060b311350b421622b5!M

215~9250b2145b4!r #112de2r $248M4r 4~478g2M22391gMr 154r 2!14e2M3r 3@6~1011873b!g2M2

2~70713148b23855b2!Mr 1472br 2#1e6Mr @2~254421304b1957b212041b3!g2M2

1r ~3921408b21717b22612b311529b4!M140br ~223b2!#28e4M2r 2@6~273135b1222b2!g2M2

1r ~1702387b2510b21727b3!M111~3b221!r 2#1e8@2~181407b1441b22487b32551b4!g2M2

1r ~42287b230b21676b3130b42393b5!M12~2215b2115b4!r 2#%, ~43!
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and

1

ga
^Tu

u& ren5576gM7~734gM2315r !r 61de2$2576M5r 5~2202g2M221313gMr 1162r 2!

148e2M4r 4@6~139913777b!g2M21r ~23353210914b114267b2!M11976br 2#

212e6M2r 2@2~220221198b1749b212161b3!g2M21r ~15411184b22227b221776b312665b4!M

192b~2213b2!r 2#248e4M3r 3@6~2911649b11042b2!g2M21r ~87322308b22619b214054b3!M

1206~2113b2!r 2#112e8Mr @2~802519b21169b211089b311755b4!g2M2

1r ~21761639b11320b222716b321320b412253b5!M120~2215b2115b4!r 2#

2e10@2~1291441b21590b222750b312105b413001b5!g2M2

13r ~2432272b1781b21960b322005b42720b511299b6!M14b~17260b2145b4!r 2#%, ~44!

where
ve

ch

-

pl
e

ive

ces
on-
ll
ics

the
ten-

nted
nd
uan-

aled
-
the

ri-
a21596p2m2360480M5r 15, ~45!

b5tanh
e2

2Mr
, ~46!

g512b, ~47!

and

d511b. ~48!

The obtained tensor is, as expected, covariantly conser
and as could be easily verified in the limite50, it reduces to
the stress-energy tensor constructed in the Schwarzs
spacetime by Frolov and Zel’nikov.

Equations~8!–~18! may be employed also in the RN ge
ometry. Since the scalar curvature is zero there, bothT(2)ab

andT(3)ab vanishes, and the resulting tensor exhibits sim
linear dependence on the coupling constant. Indeed, rep
ing the calculations for the line element~26!, one has@8,16#

^Ta
b& ren

(0)5Ca
b1S j2

1

6DDa
b , ~49!

where

Ct
t52

1

30240p2m2r 12
~1248e62810r 4e21855M2r 4

1202r 2e421878M3r 311152Mr 3e212307M2r 2e2

23084rMe4!, ~50!

Cr
r5

1

30240p2m2r 12
~444e621488Mr 3e21162r 4e2

1842r 2e421932rMe41315M2r 412127M2r 2e2

2462M3r 3!, ~51!
08400
d,

ild

e
at-

and

Cu
u52

1

30240p2m2r 12
~3044r 2e422202M3r 3

210356rMe413066e624884r 3Me219909r 2M2e2

1945M2r 41486r 4e2!. ~52!

Since we are interested in the conformally coupled mass
scalar fields, the exact form of theDa

b tensor is irrelevant.
Now, we shall address the question of how the differen

between the geometry of the black hole spacetimes c
structed within the framework of the Einstein-Maxwe
theory, on the one hand, and the nonlinear electrodynam
coupled to general relativity on the other, are reflected in
overall behavior of the components of the stress-energy
sors. To answer this, let us analyze numerically^Ta

b& ren in
both cases. The results of our calculations are prese
graphically in Figs. 2–10. The plots of the time, radial, a
angular components of the stress-energy tensor of the q

FIG. 2. This graph shows the radial dependence of the resc
component̂ Tt

t& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field in
ABG geometry. From top to bottom the curves are forueu/M
50.95,0.5, and 0.1. In each case^Tt

t& ren has its positive maximum
at r 5r 1 and attains negative minimum away from the event ho
zon.
4-8
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tized massive scalar field as a function of the~rescaled! ra-
dial coordinate in the spacetimes of ABG and RN bla
holes for three exemplar values of the ratioueu/M50.1, 0.5,
and 0.95, are supplemented by similar plots drawn for
extremal black holes. Inspection of the figures indicates
there are striking qualitative similarities between the RN a
ABG solutions for a givenq. Moreover, for small values o
the ratio the curves are practically undistinguishable fr
each other and, as expected, noteworthy differences o
only for the black holes at and near the extremality lim
Since at large distances the line element~28! approaches tha
of the RN, the most interesting region is the neighborhood
the black hole event horizon. From Eq.~19! we know that
the renormalized stress-energy tensor depends on the
pling constantj in a complicated way, and, therefore, on
should not expect that such similarities occur also in a g
eral case.

Specifically, the dependence of^Tt
t& ren constructed in the

spacetime of the nonlinear black hole and the RN geom
on r /r 1 for ueu/M50.1, 0.5, 0.95, are shown in Figs. 2 an
3, respectively. In Fig. 4 similar curves are drawn for t
extremal black holes. In the most interesting region, i.e.
the vicinity of the event horizon, the energy densi
r52^Tt

t& ren, is negative and decreases with increas
ueu/M .

FIG. 3. This graph shows the radial dependence of the resc
component̂ Tt

t& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field in
RN spacetime. From top to bottom the curves are forueu/M
50.95, 0.5, and 0.1. In each case^Tt

t& ren has its positive maximum
at r 5r 1 and attains negative minimun away from the event ho
zon.

FIG. 4. This graph shows the radial dependence of the resc
component̂ Tt

t& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field.
to bottom the curves are respectively for the extremal ABG geo
etry and the extremal RN black hole.
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As is seen in Figs. 5–7, the radial component of t
stress-energy tensor is positive everywhere, and the hor
values of the radial pressurepr5^Tr

r& ren, increases with in-
creasing ueu/M . Of all components of the renormalize
stress-energy tensor, the most complicated behavior exh
the angular pressurepu5^Tu

u& ren ~Figs. 8–10!. Indeed, for
the ABG black hole the angular pressure is positive on
event horizon forueu/M&0.937 and negative for larger va
ues of the ratio. Moreover, forq&0.903,^Tu

u& ren has a maxi-
mum atr 5r 1 , whereas for larger values the angular pre
sure has its maximum away from the event horizo
Similarly, for the RN black holepu is positive for q
&0.927 and it has its maximum away from the event horiz
for q*0.864.

It could be checked by a direct calculation that

lim
r→r 1

~^Tt
t& ren2^Tr

r& ren!H 12
2M

r F12tanh
e2

2Mr G J 21

~53!

remains finite at the event horizon. We observe that since
DeWitt-Schwinger approximation is local and the geome

ed

e

-

ed

p
-

FIG. 5. This graph shows the radial dependence of the resc
component̂ Tr

r& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field in
Ayón-Beato and Gracia geometry. From top to bottom the cur
are for ueu/M50.95, 0.5, and 0.1. In each case^Tr

r& ren has its posi-
tive maximum atr 5r 1 and decreases monotonically withr.

FIG. 6. This graph shows the radial dependence of the resc
component̂ Tr

r& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field in
RN spacetime. From top to bottom the curves are forueu/M
50.95, 0.5, and 0.1. In each case^Tt

t& ren has its positive maximum
at r 5r 1 and decreases monotonically withr.
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at the event horizon is regular, one expects that the re
malized stress-energy tensor is also regular there.

It should be stressed once again that for arbitrary cur
ture coupling one has to incorporate also the termsT(1)ab,
T(2)ab, andT(3)ab, that may considerably modify the result
Moreover, inspection of the Table I shows that for the ne
tral massive spinor and vector fields in the ABG spaceti
one has to use the full system~9!–~18! while in the geometry
of the RN black hole, the terms~9! and~11! do not contrib-
ute to the final result.

V. CONCLUDING REMARKS

In this paper we have constructed the renormalized str
energy tensor of the massive conformally coupled sc
fields in the spacetime of the electrically charged black ho
which is the solution of the coupled Einstein equation a
the equation of nonlinear electrodynamics. A regular so
tion of this type has been recently given by Ayo´n-Beato and
Garcı́a. The method employed here is based on the obse
tion that the first order effective action could be expresse
terms of the traced coincidence limit of the coefficienta3.
The general̂ Ta

b& ren, which has been obtained by function

FIG. 7. This graph shows the radial dependence of the resc
component̂ Tr

r& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field.
to bottom the curves are respectively for the extremal ABG geo
etry and the extremal RN black hole.

FIG. 8. This graph shows the radial dependence of the resc
component̂ Tu

u& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field in
ABG geometry. From top to bottom the curves are forueu/M
50.1, 0.5, and 0.95. Forueu/M<0.903, ^Tu

u& ren has its positive
maximum atr 5r 1 . For larger values of the ratio it approaches
maximum away from the event horizon. Forueu/M50.937 the an-
gular pressure vanishes on the event horizon.
08400
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differentiation of the effective action with respect to a met
tensor, has been applied in the spacetime of the nonlin
black hole. Since the Reissner-Nordstro¨m line element and
ABG solution are practically indistinguishable from ea
other for small values ofueu/M , one expects that this simi
larity should be reflected in the behavior of the renormaliz
stress-energy tensor. Explicit calculations confirm this h
pothesis and show that important differences between ap
priate tensors,̂Ta

b& ren, evaluated in the spacetime of the R
black hole and that of ABG occur, as expected, near
extremality limit. For smallq constructed tensors are prac
cally indistinguishable. Moreover, analyses of the Hawki
temperatures indicate that for a given mass and elec
charge, the ABG black hole is hotter than its RN black ho
counterpart. Since notable differences appear for temp
tures close to zero one can ascribe this to the different w
of approaching the extremality limits.

Apart from obvious extensions of our results to the m
sive scalar fields with arbitrary curvature coupling and
fields of higher spins, let us mention an interesting and
portant direction for future work. It is a problem of the bac
reaction of the quantized fields upon spacetime geometr
the ABG black hole, which may be studied perturbatively

ed

p
-

ed

e

FIG. 9. This graph shows the radial dependence of the resc
component̂ Tu

u& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field in
RN spacetime. From top to bottom the curves are forueu/M
50.1, 0.5, and 0.95. Forueu/M<0.864, ^Tu

u& ren has its positive
maximum atr 5r 1 . For larger values of the ratio it approaches
maximum away from the event horizon. Forueu/M50.927 the an-
gular pressure vanishes atr 1 .

FIG. 10. This graph shows the radial dependence of the resc
component̂ Tu

u& ren @l590 84M6m2p2# of the renormalized stress
energy tensor of the massive conformally coupled scalar field.
to bottom the curves are respectively for the extremal ABG geo
etry and the extremal RN black hole.
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means of the semiclassical Einstein field equations wit
source term given by the renormalized stress-energy te
of the quantized massive field and the classical stress-en
tensor of the background nonlinear electromagnetic field.
guarantee the renormalizabilty at that level, the semiclass
equations should contain higher derivative geometric ter
It is especially important in view of the recent claim that t
semiclassical zero temperature RN black holes do not e
@14#.
e

ev

ev

v
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It should be stressed that the DeWitt-Schwinger exp
sion is local, and, therefore, does not describe particle
ation which is a nonperturbative and nonlocal phenomen
The method also breaks down in strong or rapidly vary
gravitational fields, and, moreover, the massless limit le
to the nonphysical divergences. However, it is expected
for sufficiently massive scalar field the DeWitt-Schwing
approximation provides a good approximation of the ex
renormalized stress-energy tensor.
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